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Abstract. This paper addresses the problem of packet classification within a network processor (NP)
architecture without the separate associative device. By the classification, we mean the process of identifying
a packet by its header. The classification stage requires the implementation of data structures to store the flow
tables. In our work, we consider the NP without the associative memory. Flow tables are represented by an
assembly language program in the NP. For translating flow tables into assembly language programs, a tables
translator was used. The main reason for implementing data compression algorithms in a flow tables translator
is that modern flow tables can take up to tens of megabytes. In this paper, we describe the following data
compression algorithms: Optimal rule caching, recursive end-point cutting and common data compression
algorithms. An evaluation of the implemented data compression algorithms was performed on a simulation
model of the NP.
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Mockosckuii 2ocyoapcmeennulii ynusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mockea, Jlenunckue 2opbl, 0. 1

Aunoranus. JlaHHasi cTaThs MOCBsIIEHA IpoGieMaM KilacCH(HKALMU MAKETOB B apXUTEKTYpe CETEBOIO
nponeccopHoro ycrpoiicta (CIIY) Ge3 BBIIeNCHHOTO acCOIMATUBHOTO ycTpoiicTa. Ilox kmaccuduxanueit
MBI TIOHHMaeM IIpolecC HACHTH(UKAINH MaKeTa IO ero 3aroioBKy. Ha sTame xmaccuduxamuu tpebyercs
peanu3aiysi CTpYKTYp JTQHHBIX JUIsl XpaHeHHUs TabauL NOTOKOB. B nanHoit pabote paccmarpusaercs CITY Ge3
azipecyeMoil amsITH, a TabIMLbl IIOTOKOB NPECTABISIOTCS B BUE NPOrpaMMbl Ha s3bike accembiuepa CITY.
Jlna mepeBoia TaONUI MOTOKOB B IPOrpaMMy Ha s3bIKe acceMOliepa HCIIONB3YeTCs TPAHCILATOpP TaOMIuI
MOTOKOB. HeoOXoAMMOCTh pealu3aliy aJTOPUTMOB CKAaTHA IAHHBIX B TPAHCIATOpE TaOJHI] IOTOKOB
00yCJIaBIMBACTCSl TEM, YTO COBPEMEHHbIE TaOJIUIIbI [IOTOKOB MOTYT 3aHMMATh MaMsITh 00bEMOM JI0 JIECSITKOB
MerabaiiT. B Hacrosmieil craTbe paccMaTpHBAIOTCS CIELYIONINE AITOPUTMBI CXKaTHs JAaHHBIX: aITOPUTM
OIITUMAJIBHOTO KJIIHPOBAHUSA, PEKypPCHBHOIO OTCEUCHHs M OONIME alrOpPUTMBI CKaTHs JaHHBIX. OIeHKa
pearH30BaHHBIX AITOPUTMOB CXKATHs JAHHBIX IPOBOAMIACH HA HMHTAIIMOHHON Monemn CITY.
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1. Introduction

At present, software-defined networks (SDN) are in active development and require high-
performance switches [1]. The main functional element of the high performance SDN switch is a
programmable network processor (NP). The network processor is a system-on chip specialized for
network packet processing. In this work, we consider a programmable NP. A programmable NP is
one that supports on-the-fly modification of the packet processing program and the set of header
fields to be processed.

In this article, we discuss data compression algorithms used for flow tables. Flow tables are needed
for packet classification process. A flow table is the set of rules defined by OpenFlow protocol.
OpenFlow is one of the most common protocols for controlling a network SDN switch. This paper
considers OpenFlow version 1.3 [2]. Each rule contains a match field, a bit string by witch a packet
can be identified and a set of actions, that the NP performs on this packet. Classification is the
process of the identification of a network packet by its header.

This article has the following structure: in second section we introduce problem, in third section we
introduce the NP architecture and flow tables translator, in fourth section we describe related work,
in fifth section we describe data compression algorithm implementation and in sixth section we
introduce our evaluation methodology.

2. The problem

Let us consider OpenFlow tables formalisation. An ordered set of all considered attributes is denoted
as I = {my,m,,...,my}. Every attribute m; from the set I is described by a bit string m; €
{0,1,%}% . In this article symbol = denotes any bit. But, if Elm{ € m; and m{ = x, then for Ym¥ ,
where k > j,m¥ = «. The length of the attribute is denoted len(m;) = W;.

Flow tables are represented by a set of rules R = {ry, 1,..., 1,}. With every rule r; binding the
features:

e Anindex i;

e Apriorityp; € Z,;

e A vector of values of attributes f; = {f2,f2 ,..., ¥ }, where fij is an attribute value m; € I;

e Asetofactions Ai = {a;,a,,...,a,}

A network packet header x and its metadata with vector values of attributes g =

{94, 9%..., g} (x » g), a match rule r; € R with a vector of values of the attributes f; =

(f f2 ,...,f¥} and a priority p; (arule ; € R identifies a network packer with a vector values of

attributes g), if:

1) avector values of attributes g match a vector of values of the attributes f,Vg; € g, len(g;) =
len(f), vf” € f!, f7 € {xg"} L = Tk

2) apriority p; is the highest among all rules 7; € R, if a vector g match a vector f;.

The set of rules R must satisfy the following constraint. For any two rules 1;,7; € R, 1; # 13 , if their

vectors of values intersect, there is a set of attribute values. This set corresponds to vectors of values

of attributes of both rules p; # p;.
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Let us introduce the function for network packet identification x — gin flow table R, (denotes as
R(x)). It returns a set of actions, that corresponded to the rule x — gin.

R(x) = Ay, where 4,, is the set of actions 1; € R.

We need to introduce a similar concept of the sets of rules R; and R,. The set R; is similar to the
set R, when for any network packet header, that can be identified by some rule from the set r; €
Ry, and there exists another rule that identifies itasr; € Ry, and 4; = A;.

We need to develop an algorithm for compressing flow tables. This algorithm must translate an input
flow table (a set of rules R,) into a new compressed set of rules R,.

1) The set of rules R; is similar to the set of rules R,.

2) The cardinality of the set R, must be lower than the cardinality of the set R;.

3. Network processor architecture

In the considered NP the pipeline architecture is used, with each pipeline consisting of 10 computing
blocks. To avoid complex memory organization, there is no associative memory in the considered
NP. The NP uses the same memory both for commands and data.

Let us consider the pipeline NP architecture. Each computing block has an access to the memory
area where the program with data is located. There is a limit of 25 clock cycles per packet on each
processing block. There is up to 512 kilobytes to store assembly language program representing flow
tables. Due to the instruction set architecture, there is no separate memory area where data is stored.
Therefore, the microcode contains all the data, required to classify packets.

3.1 Flow tables translator

Flow tables translator is a tool that is executed on CPU. It is used for flow tables translating into
assembly language programs, that can be interpreted by NP. Flow tables translator uses tree
structures for flow table representation. Every node of the tree structure can be associated with a
table rule. After building a tree every node is translated into a part of an assembly language program.
Here is a flow tables translator workflow:

1) Load a flow table from file.

2) Check every rule in the table.

3) Build a tree structure from a set of rules.

4) Translate every node into a part of an assembly language program.

5) Combine all translated parts into the one assembly language program.
6) Add a header that corresponds to used protocol.

7) Write the assembly language program into file.

This tool was implemented in work [3]

4  Related work

In this section, we introduce a review on data compression algorithms, that already used for other
network processors [4]. To choose algorithms for implementation in NP we used the following
criteria:

1) Compression rate, is needed for algorithm performance evaluation.

2) Evaluation of compression algorithm complexity.

3) Usability of compressed flow tables without decompression.

4) The necessity to use external memory by the algorithm.

79

Nikiforov N.I., Volkanov D.Yu. Data compression algorithms for flow tables in Network Processor RuNPU. Trudy ISP RAN/Proc. ISP RAS,
vol. 33, issue 4, 2021, pp. 77-86

4.1 Most common data compression algorithms

Data compression algorithms have evolved over the years. Nowadays compression algorithms can
be used in many different ways. In this section we describe the algorithms that compress data in
binary format. There are most known of them: Huffman codding, JPEG, LWZ, zip. These algorithms
require decompression for data usage. And this is why we will not use them in our flow table
translator.

4.2 Optimal rule caching

Optimal rule caching algorithm is more specific data compression algorithm. It is used for table
compressing in SND switches [5]. It is based on search tree structure, that is built based on rules
usage frequencies. There are two trees: the first tree consists of the most used rules. This tree is
translated into assembly language program. The second tree consist from other rules; it is stored in
CPU memory.

4.3 Recursive end point cutting

Recursive end-point cutting algorithm is based on HyperSplit tree usage. Compressing is performed
by destroying duplication rules [6]. This algorithm permits operations with flow tables without full
rebuilding tree. By rules duplication we understand the following rules:

e A rule storing in a node duplicates the rules in leaf nodes (particle duplication).

e A rule storing in a node duplicates the rules in all leafs nodes (full duplicating rule).

This algorithm recursively uses NewHypersplit tree to remove duplicate rules from the currently
being built tree. The deleted duplicate rules are then collected into a second rule table, called a
recursive table, to build a second tree. It is possible that duplicate rules still exist in the second tree,
and some of them are also removed and used to build the third tree.

This tree building process is performed recursively while there are duplicate rules in the last tree.

4.4 Algorithms comparison

Let us describe data compression algorithms comparison in Table 1. Each algorithm has its own
pros and cons.

1) Optimal rule caching — has the highest compression ratio, and is quickly implemented in the
considered NP. The need to use external memory imposes additional overhead on some packet
processing.

2) Recursive end-point cutting — has the lowest compression ratio, it is more difficult to implement
than the optimal rule caching algorithm. Moreover, this algorithm does not require the use of external
memory.

3) Common data compression algorithms — have good compression ratios on average, but require
data decompression.

Tablel. Data compression algorithms comparison

Name Complexity of | Compression | CPU memory | Decompression
construction rate usage needed
Optimal rule O(N?) 0.1...09 yes no
caching
Recursive end- O(N 0.1 no no
point cutting * log(N))
Common data O(K * log, N) 0.1...08 no yes
compression
algorithms
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5. Our solution

In this section, we introduce our solution of flow tables compressing.

5.1 Flow table optimization

First of all, we need to introduce operation getting last important bit last(m;) = j, m{ € {0,1}
and m(l.”l) =+ We claim that the rules € R and 7 € R are the same if Vu €
len(fy) last(fi* ) = last(f{*) = I but f# # fj"l and A; = A;. For flow table optimization we

need to remove all same rules.

5.2 Main flow table compression algorithm

Let us introduce a packet header distribution P where p, mean network packet income probability
x - g = {g~g%...,9%}. We need a correction ratio Tp (R;,R,) where R; and R, are two
different flow tables. Thus correction ratio means probability of incoming network packet header by
distribution P. As well as probability of identifying this network packet by rules r; € Ry and r, € 2.
Moreover, the sets of actions of this rules are similar A, = 4,, A; €1y, A, € 15.

T RuR) = Y b
X=g,R1(x)=R2(x)
The optimal correction ratio for flow table R and a number of rules n and a network packet header
distribution P is:
{(m,R,P) = max Tp(RR)).

Ry |Ri|<=n
Let p’ be probability of choosing rule r; € R, in distribution P. Let rules in flow table R be in not
increasing order of their probabilities. Then:

(R, P) > Z pil- Z pl > n/no.
i€[1,n] i€[1,ng]
This algorithm needs exploration and building a flow table R, based on input flow table R. There is
a minimal set of rules (n,) and a maximum optimal correction ratio {(n, R, P).

5.3 Software solution

In this section, we introduce software workflow of our algorithm. First of all we need to add a new
fields in tree structure nodes for our algorithm.

e A probability into tree node. It must be filled if node contains rule.
e A sum of probabilities of leaf nodes.

Let us introduce program operation for split tree.

¢ Generate a set of tree nodes.

e Sort this set in non-increasing order.

e  Create a counter that stores a sum of node probabilities.

e Get the first node with maximum self-probability.

e Increase the counter.

e Add this node into another set and remove from first.

e  Repeat last three operations while counter less than 0.95.

e Build tree from second set of rules.

After performing these operations, we get the set of nodes. We could build first tree from second set
of rules and second tree from first set of nodes. After this, we need to translate the first tree into an
assembly language program.
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5.3.1 Notation used

Let node1, node, — tree vertices, value — some feature value. Let’s introduce the following notations:
e Tree.root — the root node of the tree Tree.

*  nodei(value) — the descendant of the node node;, connected to it by an arc with the mark value.
*  node.rules — set of rules corresponding to node node;.

* node.edges — set of marks of arcs coming from node node;.

*  node).prob — an amount of probabilities of rules.

e copy(node, val, node;) — a procedure that adds to the node nodel a descendant with an arc
marked value, copying the tree that forms the node node.

e equals(nodei, node,) — function that returns true if the trees formed by nodes node; and node-
are the same, otherwise it returns false. The comparison takes into account the rule sets and arc
labels associated with the nodes.

e same(rule,, rule;) — function that returns true if rules are same.
e isleaf(node;) — function that returns true if node; — tree leaf, otherwise it returns false.

5.3.2 Flow table optimization algorithm
Let us introduce procedure Same (Listing 1), it returns a set of rules that are a union of same rules
in the sets of two nodes.

Let us introduce flow table optimization algorithm. It can be described by the procedure Optimize
(Listing 2), where node — tree node. For optimizing flow table, we need to perform this procedure
to Tree.root.

1 procedure Same(node_ 1, node_2):

2 rules = {}

3

4" for all rule 1 in node 1.rules do

5 for all rule 2 in node_2.rules do

6" if same(rule_1, rule 2) then

7> rules += {rule 1 union rule 2}
8~ endif

9

10° return rules

Listing 1. Procedure for obtaining a set of rules derived from the same rules

1 procedure Optimize (node) :
2 if not isleaf (node) then

3 for all val 1 in node.edges do

4 for all val_2 in node.edges do

5 if val_1 not equal val 2 then

6 node.rules += Same(node(val 1), node(val 2))
7 endif

8 for all val in node.edges do

9 Optimize (node (val))

10 endif

Listing 2. Procedure for optimizing the tree
6. Evaluation

6.1 Evaluation methodology

In this section, we describe evaluation methodology. Flow table compression algorithms can be
assessed by an assembly language program evaluation. This is so because flow tables translator with

82



Huxkudpopos H.U., Bonkanos J1.10. Mccneopanne NpUMEHMMOCTH aJIFOPUTMOB CXKATHs JIAHHBIX JUIs TAOJIHIL TOTOKOB B CETEBOM
nporeccope RuNPU. Tpyowr UCIT PAH, Tom 33, Ben. 4, 2021 1., c1p. 77-86

Nikiforov N.I., Volkanov D.Yu. Data compression algorithms for flow tables in Network Processor RuNPU. Trudy ISP RAN/Proc. ISP RAS,
vol. 33, issue 4, 2021, pp. 77-86

implemented data compression algorithms translates flow table into an assembly language program.
We used the following parameters in our evaluation:

e An assembly language program memory usage%Memory usage by assembly language
program.

e An assembly language program average number of instructions requires for one packet
processing.

The described analysis requires doing the following actions for each flow table.

1) Choose a flow table for this experiment.

2) Translate the flow table using flow tables translator implementation based on: LPM tree, AVL
tree, Our flow table compression algorithm.

3) Execute simulation on the NP simulation model.

4) Evaluate results.

6.1.1 Memory usage calculation method

The flow tables translator tool uses intermediate flow table representation as trees. Each node of the
tree is translated into an assembly language program part. Fully assembled from parts assembly
language program has N instructions. Every instruction uses 128 bits of memory. Therefore, memory
usage defined as M can be calculated as:

M = 128 * N.
In our evaluation results we use Kbyfes to represent memory usage units.

6.2 Evaluation data
Several variants of the flow tables should be used for the evaluation. These variants cover most
usable network protocols. In this section, we will introduce the flow table templates.

e  The first pattern — a flow table rule pattern contains the values of three attributes: an input port
number, a destination MAC address and a source MAC address.

e The second pattern — a flow table rule pattern contains the values of two attributes: an IPv4
destination address and an IPv4 source address.

e  The third pattern — a flow table contains five attributes: an input port number, a destination
MAC address, a VLAN ID, a L3-level header ID (EtherType) and a destination IPv4 address.

An example of input data represented in Listing 4.

1 {SRC MAC , DST MAC , INSTR}

2 {SRC_MAC , DST MAC , INSTR}

I e +ommm - B i +
4 | 1] :12 | :10:1 | goto _table 1 |
5 4+---4----------- +ommmm - tommmm - +
6 | 1 | :23:45 | :20 | goto table 1 |
A e +ommm - tommmm - +
8 | 1] :0 | 1 | goto _table 1 |
S R +ommmm - tommm - +

Listing 4. Example of input data for input of a flow table

6.3 Evaluation results

We performed an evaluation on the simulation model of the NP. This evaluation shows that our
solution allowed to use several times less memory of the NP.

We carried out our research for different sized flow tables. Currently, the maximum size of a flow
table is 6000 rules with compression. Flow table without compression can contain only about 1500
rules.
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Optimal caching has the best compression rate (fig. 1a) but the worst average number of instructions
required to processing one packet (fig. 1b).
This can be explained by necessity to use many instructions to make the CPU call.
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Fig. 1. Results of evaluation

7. Future work

In the future works, we will refine evaluation data. We expect less memory usage with our
compression algorithm implemented into flow table translator. In the first experiments conducted,
we obtained results showing a significant reduction in the amount of memory usage with the help
the data compression algorithm. After this we could check possibility of TCAM memory
implementation and use this compression algorithm for it.
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