Tpyoe IHCII PAH, mox 33, ewin. 4, 2021 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021

DOI: 10.15514/ISPRAS-2021-33(4)-12

A Multilayer Approach to Subgraph Matching
in HP-graphs

N.M. Suvorov, ORCID: 0000-0003-2871-9757 <SuvorovNM@gmail.com>
L.N. Lyadova, ORCID: 0000-0001-5643-747X <LNLyadova@gmail.com>
HSE University,

20, Myasnitskaya Ulitsa, Moscow, 101978, Russia

Abstract. Visual modeling is widely used nowadays, but the existing modeling platforms cannot meet all the
user requirements. Visual languages are usually based on graph models, but the graph types used have
significant restrictions. A new graph model, called HP-graph, whose main element is a set of poles, the subsets
of which are combined into vertices and edges, has been previously presented to solve the problem of
insufficient expressiveness of the existing graph models. Transformations and many other operations on visual
models face a problem of subgraph matching, which slows down their execution. A multilayer approach to
subgraph matching can be a solution for this problem if a modeling system is based on the HP-graph. In this
case, the search is started on the higher level of the graph model, where vertices and hyperedges are compared
without revealing their structures, and only when a candidate is found, it moves to the level of poles, where the
comparison of the decomposed structures is performed. The description of the idea of the multilayer approach
is given. A backtracking algorithm based on this approach is presented. The Ullmann algorithm and VF2 are
adapted to this approach and are analyzed for complexity. The proposed approach incrementally decreases the
search field of the backtracking algorithm and helps to decrease its overall complexity. The paper proves that
the existing subgraph matching algorithms except ones that modify a graph pattern can be successfully adapted
to the proposed approach.

Keywords: DSM platform; visual model; subgraph matching; isomorphism; graph model; HP-graph;
algorithms on graphs.

For citation: Suvorov N.M., Lyadova L.N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy
ISP RAN/Proc. ISP RAS, vol. 33, issue 4, 2021, pp. 163-176. DOI: 10.15514/ISPRAS-2021-33(4)-12

MHorocnoiHbIiit noaxoa k NoMcky nsomopdHbIX noarpados
B HP-rpachax

H.M. Cysopos, ORCID: 0000-0003-2871-9757 <SuvorovNM@gmail.com>
JLH. JIaoosa, ORCID: 0000-0001-5643-747X < LNLyadova@gmail.com>
He i KUl YHUGepCUment « Belcuias wkona SKOHOMUKUY,
101978, Poccus, 2. Mockea, yi. Macuuykas, 0. 20

Annoramusi. BusyanbHoe MOJETHPOBAHHE HA JaHHBIL MOMEHT IIMPOKO PAacrpOCTPAHEHO, OIHAKO

CYWIECTBYIOIME TIaT(OPMBL, TIPE, s HE MOTYT YJOBICTBOPHTb BCC
P rreneit. Bu: A3BIKK, KaK . Ha rpa)OBBIX MOJICIAX, OJHAKO
rpadoBsie (hopManM3MBI, HCTIONB3yEMBIE AT MoJenei, T CYIICCT

orp: Jns p p 1 HEJIOCTATOUHON BBIPAZUTEILHOCTH CYIICCTBYIOIIMX IPadoBBIX

Mozieneit panee Obina mpeacTasneHa HoBas rpaoBas Moaenb (HP-rpad)), OCHOBHBIM 37E€MEHTOM KOTOPOi
SABJIACTCS MHOKECTBO TOJIFOCOB. MOJIMHOKECTBA KOTOPBIX Dﬁ‘be:ll/ﬂ'leﬂbl B BCPLUIMHBI M l'l/ll'leppeﬁp& Meuorue

OMepPaLH HAJ BU3YATbHBIMH MOJCISIMH, BKIIOHAs MoJenei, TCs ¢ mpobneMoit
ToHCKa HSOMOP(I)HOI'O no:lrpa(l)a‘ YTO OKa3pIBACT 3HAYMTCIBPHOC B/IMAHWUC HAa CKOPOCTh HX BBINOTHCHMSA.
163

Cysopos HM., Jlsziosa JI.H. Muorocsiojiiblii TOZIXo K NOHCKY 30MopdHEIX moarpahon B HP-rpagpax. Tpyou JICIT PAH, Tow 33, Bhim. 4,
2021 r.. cTp. 163-176

Suvorov N.M., Lyadova L.N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

for protein structure analysis can reach up to tens of thousands [15]; that is why active efforts are
currently being made to find an optimal algorithm for subgraph matching.

In visual modeling the problem is the same. The thesis [5] proposes to represent all the models in
the form of a single graph, which allows users to maintain links between the models and
automatically propagate changes from the source model to the target ones associated with it. For
instance, a change in the metamodel of the subject area should be propagated to all the models built
on this metamodel. However, storing all the models as a single graph increases the computational
complexity of the algorithms on this graph, which requires developing an efficient subgraph search
algorithm for the graph model used.

The contributions of these paper are:

1) anew multilayer approach to decrease complexity of subgraph matching algorithms,

2) abacktracking algorithm based on this approach,

3) applications of this approach in several existing subgraph matching algorithms.

The paper is organized as follows. Section 2 discusses related work and the main algorithms for
finding subgraph isomorphism. Section 3 presents the proposed graph model, definitions of the HP-
subgraph and isomorphism of the HP-graphs, and the multilayer approach to subgraph matching.
Section 4 introduces a backtracking algorithm based on this approach. Section 5 presents several
applications of the approach in the existing subgraph matching algorithms. Section 6 describes the
obtained results. Section 7 concludes the paper.

2. Related work

The problem of subgraph matching has been investigated for many years. The works of many
scientists, such as [16]-[18], are dedicated to exploring applicability, time complexity and limitations
of the existing subgraph matching algorithms. These algorithms are generally divided into two
classes:
e Algorithms that observe many graphs {G, ..., G,} and retrieve those which contain a query
graph 0.
e Algorithms that observe a single graph G and retrieve all its subgraphs which are isomorphic
to a query graph Q.
In both of these approaches, algorithms can either return a correct and complete answer (having an
exponential time complexity) or return an approximate answer (having a polynomial time
complexity). While the complete answers describe all subgraphs exactly isomorphic to a pattern, the
approximate answers are generally obtained using specific similarity measures and, thus, may also
contain false positive subgraphs.
This work belongs to the second class of the algorithms. Most of these algorithms use backtracking
to move through the built search tree and find appropriate combination of corresponding vertices of
the source graph and the graph-pattern. Algorithms in this class include Ullmann algorithm [19],
VF2 [20] (and also VF2 Plus [21] and VF3 [22]), TurboISO [23], CFL-Match [24], QuickSI [25],
SPath [26] and others. These algorithms implement various techniques to decrease time needed for
the matching process.
Exploiting Pruning Rules. The Ullmann algorithm uses refining procedure on each step of the
algorithm by comparing degrees of corresponding neighbors of the added pair of vertices. VF2 [20]
provides feasibility rules that are checked before a vertex is added to a graph-candidate. There rules
check consistency of graph-candidates with this vertex and check for a sufficient number of vertices-
neighbors of these graph-candidates. SPath [26] uses neighborhood signature for each vertex to
store information about the surrounding vertices. These signatures are compared with the
corresponding signatures of the query graph and are used for search space pruning before subgraph
matching. TurboISO [23] compares quantity of neighborhood labels of corresponding vertices and
prune out unpromising ones. CFL-Match [24] proposes a compact-path-index (CPI) structure

165

MerorocnoiiHas ctpykrypa HP-rpada rno3BosiseT CHH3HTh BPEMCHHYIO CIIOKHOCTb IFOPHTMOB IOHCKA.
K TBO il MOKET OBITH Graroapst TOMy, 4TO MOWCK M3HAYAIBbHO OCYIIECTBISIETCS HA
ClIOC BEPIUMH U rreppedep, U TOIbKO B CIYYAC HAXOXKACHHS moarpada ¢ KelIaeMBIMM XapaKTCPHCTHKAMU
ATTOPHTM MEPEXOTUT Ha G07Iee AeTaNbHBII YPOBEHD, I1¢ CPABHUBAIOTCS HAGOPHI COOTBETCTBYFOMUIHX TOTHOCOB

cBA3eit 0TO0) noarpados. Ilp M/ICH MHOT ffHOTO MoAX01a
TlpeanoskeH anropuT™ MOMCKa ¢ BO3BPATOM, OCHOBAHHBIN HA 3TOM moaxoae. Aaropurmsr Yiabmana u VF2
aanTUPOBaHbI K JAHHOMY TOJIXOTY, OLIHKA UX BP i i, Tpen it noaxo

TIOCTENICHHO COKPAm@AcT 06/1acTh MOKMCKA ATTOPHTMOB M TOMOTACT YMEHBIIMTh HX OOIIYIO CIOKHOCTS.
B cratee 10KA3BIBACTCA, YTO CYMICCTBYIOIIME ATTOPHTMBI CONOCTABICHHS TIOArPadOB, 32 UCKIIOYCHHCM TCX,
KOTOPBIC H3MCHSIOT MIA0IOH rpa)a. MOTYT GBITh YCTICUIHO ATANTHPOBAHBI K TPEUIATACMOMY T0IXO0Y.

KmoueBbie cioBa: DSM nmardopma; BusyanbHas MOJE/b; MOMCK M30MOpHOro moarpada; msomophusm;
rpadosast Mozens; HP-rpad; anropurmer Ha rpadax

Jast wirrnposannsi: Cysopos HM., Jlsazosa JI.H. MuorocnoifHsiii moaxox k MOMCKY H30MOPQHBIX
noarpagos B HP-rpadpax. Tpyaer UCIT PAH. tom 33. Beim. 4, 2021 1. ctp. 163-176 (Ha aHrmMiicKOM sI3bIKE).
DOI: 10.15514/ISPRAS-2021-33(4)-12

1. Introduction

The study of any objects and processes, as well as their design, can barely be done without modeling;
that is why software tools that allow specialists to build various models and formalize descriptions
of objects and processes, or use modeling as a method of analysis, are becoming more popular.
Models are described and built with the help of a visual modeling language, which is a fixed set of
graphical symbols and rules for constructing visual models by using these symbols [1]. Visual
languages can be represented as various types of graphs, including oriented graphs [2], hypergraphs
[3], hi-graphs [4], meta-graphs [5] and P-graphs [6].

Previously, a new graph model, called HP-graph, was proposed as a formalism for representing
visual languages [7]. This model unites expressive possibilities of all the mentioned graph types and,
thus, it can be used for building more complicated models than those which can be built with the
help of the other graph models. The paper [7] proved that this graph model allows the creation of a
flexible visual model editor based on it.

This model is proposed as a basis for domain-specific modeling, one of the key aspects of which is
model transformations. Such transformations allow users to move from one level of abstraction to
another (a vertical transformation) or from one modeling language to another (a horizontal
transformation) [5]. Different approaches can be used to transform visual models, but the current
standard is the algebraic approach which is based on the graph grammars [9]. Based on this
approach, a transformation r = (L, R) includes the left and the right part, where L is a subgraph to be
found in a source graph, and R is a subgraph replacing L in the source graph.

As for the HP-graph, only main operations, including operations of adding and removing graph
elements and operations of decomposition, were described for this model, and no algorithm were
proposed to perform an isomorphic subgraph search operation. The structural complexity of the
model requires modifying the existing algorithms to adapt them to this model. The HP-graph has a
multilayer structure which consists of the layer of vertices and hyperedges and the layer of poles and
links, sets of which are combined into the elements of the former layer. The multilayer structure of
the graph model allows to reduce time complexity of search algorithms. The number of operations
can be decreased due to the fact that the first search and matching is performed on the layer of
vertices and hyperedges, and only after finding a subgraph with the desired characteristics, the
algorithm moves to a more detailed level, where the already selected sets of corresponding poles
and ordinary edges are compared.

In practice, a task of finding an isomorphic subgraph has a wide range of applications, including
chemical compound search [10], social network analysis [11], pattern recognition [12], and protein
interaction analysis [13]. However, subgraph matching is a bottleneck in the overall performance
for most of these applications due to the fact that this task is NP-hard [14]. For instance, nodes count
164

Suvorov N.M., Lyadova L:N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

presented as a tree which is built from the source graph vertices with the same labels as query graph
vertices and then refined by exploiting matching operations.

Graph Pattern Modification. The Ullmann algorithm and VF2 [20] do not modify graph pattern
and search its embeddings in the source graph. SPath [26] changes the way of graph query processing
from vertex-at-a-time to path-at-a-time, which tends to be more cost-effective than traditional graph
matching methods. TurboISO [23] presents a NEC-tree structure which merges similar vertices
together and present a query graph as a tree. CFL-Match [24] transform a query into a set of dense
subgraphs, forests, and leaves. The source graph in this algorithm is only probed for non-tree edge
validation, whereas other query parts are checked in the CPI structure.

Optimizing Matching Order. The Ullmann algorithm [19] does not specify the matching order of
the vertices, whereas VF2 [20] starts from a random query vertex and then recursively adds those
vertices that are connected with the already matched ones. QuickSI [25] exploits an order which is
based on the vertex label frequency, and the algorithm starts a process of matching from the least
frequent ones. TurboISO [23] implements a concept of candidate region exploration and produces a
matching order for every region where a NEC-tree was found. CFL-Match [24] present all
candidates as a CPI-structure, where all the pattern embeddings are filtered and validated by
traversing this tree structure.

The most of theoretical research of this problem was conducted specifically for ordinary graphs [18];
that is why the approaches of these algorithms have to be adapted to an HP-graph model. In
particular, this paper presents an adaptation of a standard backtracking algorithm for subgraph
matching, the Ullmann algorithm [19] and the VF2 algorithm [20], which are optimized for the
multilayer structure of this graph model.

3. Graph-Matching Approach for HP-graphs

Let Pol be a set of all poles of the graph, including external poles and internal poles of vertices and
hyperedges. Then, an HP-graph is an ordered triple G = (P, V, W), where P = {m,...,m,} is a set of
external poles, V= {vi,...,vs} is a non-empty set of vertices, W= {wi,...,w} is a set of hyperedges
[7]. An example of the graph model is demonstrated on fig. 1.

Puc. 1. Ipumep HP-zpapa

Fig. 1. Example of an HP-graph
In this figure external poles are represented by a set P = {m,m}, hyperedges by a set
W= {wi,...,ws}, and vertices by a set V= {vi,...,vs}. A set Pol includes of the poles of the graph
and is presented as {p1,... pi2}{m, m}.
Every hyperedge w of the HP-graph G can be presented by ordinary links, which are defined as a
set E,, = {ei,...,en}, where every link (e € Ey) is a pair of connected poles (p,), where p is a source
pole and r is a target pole of a link. An example of this decomposition is presented in Fig. 2. The
hyperedge w defines a set Ev, = {(p4, p8), (p4, p6), (06, p8)}. Every vertex and hyperedge can also
be decomposed by a new HP-graph, which is described in detail in [7].
166

Cyopos H.M.. JIszosa JI.H. Mioroczofiiiii nofxoA i moncky msomopdiix noarpagor & HP-rpagax. Tpyde ICIT PAH, tom 33. nuin. 4,
2021 r., ctp. 163-176

Puc. 2. Jlexomnosiuyuu 2uneppedpa w2
Fig. 2. Decomposition of the hyperedge w2

3.1 Definitions of a Subgraph and Isomorphism
To determine subgraph matching operations, it is needed to give a definition to a subgraph of the
HP-graph. An HP-graph G' = (P, V', W') is a subgraph of an HP-graph G = (P, V, W) iff G” is a part
ofthe graph G (P'= P & (Vv'eV'3v € V: [v' = v]) & W' = W) and meets the condition (1) to make
transformation operations possible [7]. A subgraph can contain vertices called incomplete whose
sets of poles are only part of the sets of poles of the vertices of the original graph:

Ywe W(3ve V'\Vparial ([Pol(w)NPol(v)#S)—we W), (1)
the set V'ypariar 18 a set of the incomplete vertices in the graph, where V'yapiar = V.
To define the isomorphism mapping, it is necessary to establish one-to-one correspondences
between the same type elements of graphs that preserve the incident relations. This, two HP-graphs
G=(P, V, W) and G' = (P', V', W") are isomorphic iff there exists a bijection f: 27°/(@ 27! such
that for V¢e 2P0l

(te Wefit)e W &(te Vesf(t)e V)&(te PoA(1) e P').

3.2 A Multilayer Approach to Graph Matching

As the graph model is proposed to store all the models together, search algorithms for this formalism
have to be optimized for this task. A possible solution to this problem is to divide the HP-graph into
two main levels: the level of vertices and hyperedges, and the level of poles and ordinary links
between them. In this case, the search is started on the higher level, and when a candidate is found,
it moves to the lower level, where a more detailed comparison of graph elements is performed.

Fig. 3(a) illustrates an example of a query graph Q, which is a pattern for subgraph matching for a
data G from Fig. 1. As is seen, it contains 4 vertices, 2 hyperedges and 4 poles. Its higher (or first)
level is presented in fig. 3(b). It contains only 4 vertices and 2 hyperedges, whereas all the poles are
eliminated. This layer is compared with the first layer of the graph G (fig. 4), and when a potential
subgraph is found, the matrix of vertex correspondence is built.

wl_—

Al wil] 7 1 e
| vl ,pl') :‘ Vi \ v2'

w2 w2'

- < - -
VI Loval [LA
L e L 4 L /
(a) Query graph Q (b) First layer of graph Q

Puc. 3. I'pagp-nammepn Q u e20 eepxnuit yposeHs
Fig. 3. Query graph Q and its first level

167

Cysopos HM., Jlsziosa JI.H. Muorocsiojiiblii TOZIXo K NOHCKY 30MopdHEIX moarpahon B HP-rpagpax. Tpyou JICIT PAH, Tow 33, Bhim. 4,
2021 r.. cTp. 163-176

Considering the division of the subgraph matching into several levels, the search algorithm should
be modified to perform the isomorphism search operation separately at the vertex level, separately
at the hyperedge level, and separately at the level of poles and links.

Let CompElems define a set of compared elements: vertices, hyperedges or poles. Then, an
algorithm for matching the corresponding sets of graph elements can be presented as follows
(listing 1):

Function FindIsomorphism(G, Q, CompElems, args):
M, M, H F, k, d = InitializeValues(G, Q, CompElems, args);

do:
k = GetNextNonVisitedColumn(M, F, k);
if (k = -1):
if (d=1):
return null;
else
MakeStepBack (F, d, M, k);
continue;

M = ChangeRowElementsToZerosExceptChosen(M, d, k);
MakeStepForward(k, d, F, H, M);

while (d < |CompElems(Q)|);

return ValidateIsomorph(M’, CompElems(G), CompElems(Q));

[Tucmune 1. I PUMMA CONO ;) MHOMCECTE zpagpa
Listing 1. Pseudocode of the algorithm that matches the corresponding sets of graph elements
This algorithm at the beginning initializes a matrix M° which defines possible candidates between
corresponding elements of graphs. If m%; = 1 then the i-th element of the first graph is a candidate
for isomorphism for the j-th element of the second graph. Otherwise, they cannot form a pair of
corresponding elements. At each step, the modification of this matrix is used to determine
appropriate pairs of elements. Thus, it is needed to define rules for building this matrix for each set
of HP-graph elements.
For vertices matching, external poles and vertices can be combined into one set and named as
vertices (for simplification). Thus, the matrix M° = |QroQp|%|GoGp| is filled according to the rule
(2); if this condition is not met, m®%; = 0:
m®% = {1| Deg(va;)=Deg(voi) & Count(va;)=Count(vor)}, 2)
Deg(v) is a number of hyperedges incident to the vertex v, Count(v) is a number of the vertex poles.
For hyperedges matching, the matrix M° = |Qu{*|Gw/ is filled according to the rule (3):
m®; = {1| Vertices(wgj) = Vertices(wgi)}, 3)
Vertices(w) is a set of vertices incident to the hyperedge w.
For poles matching, the matrix M° is created for each pair of grouped hyperedges; thus
M= |Pol(Wg)|<|Pol(Wem)|. The matrix is filled according to the rule (4), considering that graphs G
and Q on this stage only contain those hyperedges that are presented in the current groups:
m; = {1| vertex(pcy)=vertex(po;) & deg(pc;)>deg(po)) &
& Vedge(poi) Jedge(pa)) [edge(pa)) = edge(poi)] & “)
& Vedge(pa) Jedge(po) [edge(pa) = edge(poi)] },
vertex(p) is a vertex which contains a pole p, edge(p) is an edge which is incident to a pole p, deg(p)
is a degree of a pole (a number of ordinary links incident to a pole).
Listing 2 illustrates how an isomorphic subgraph for the proposed graph structure can be found.
Vectors VCorr, WCorr and PolCorr contain pairs of corresponding elements of the graphs.
FindIsomorphism method is presented above and is assumed to have a possibility to continue the

169

Suvorov N.M., Lyadova L.N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

Puc. 4. Bepxnuit yposens epagpa G
Fig. 4. First level of the graph G

The found correspondences between vertices of Q and G can be presented as a set {(v1',v2), (v3', v3),
(v2', v4), (v4,v5)}. If a subgraph is found, the algorithm moves to the next level, where the
corresponding hyperedges and their poles are compared.
All the candidate hyperedges are grouped by their incidence with each other depending on the poles
which they consist of. For instance, hyperedges w1' and w2' are presented as a single group because
of the pole p3' which both of them own. Thus, a corresponding pair (w3, w4) is also presented as a
single group. All these groups are compared for exact isomorphism on the layer of poles and ordinary
links. Fig. 5 demonstrates this layer for a pair of candidate groups (w1', w2') and (w3, w4). All these
hyperedges are decomposed and only their poles and links are considered on this stage. As these
graphs are identical, the found correspondences between poles of incident hyperedges of graphs O
and G can be presented as a set {(p3', p9), (p4', p11), (p2', p7), (p1', p4)}.

. pil__ DL~
s [Z | N
/ y | \ 7
{wk Ty : v
\ ® & k 4 /‘pl A 4

(a) D of wa & w3 ®) ion of wi' & w2

Puc. 5. Conocmasaenue 2uneppebep (w3, wd) u (wl', w2')

Fig. 5. Comparison of hyperedges (w3, w4) and (wl', w2')
If a validation on this hyperedge group is succeeded, the algorithm moves to the next group of
hyperedges and validate them, until all the hyperedges are traversed. If a validation fails, the
algorithm moves to the upper level and tries to find new pairs of vertices and hyperedges and validate
them.
Lastly, the algorithm verifies that for every pole of the pattern graph only one pole of the source
graph has been found. Otherwise, the found subgraph is considered as not isomorphic and the search
continues.

4. Backtracking Graph Matching Algorithm based on the Multilayer Approach

The algorithm presented in this section uses as a basis a backtracking algorithm presented in [19].
This algorithm traverses a search tree using DFS until an isomorphic subgraph is found. If a pair of
corresponding elements cannot be found at a certain step, a transition to an earlier step is carried out.

168

Suvorov N.M., Lyadova L:N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

search from the position where the last candidate was found. For this purpose, the last argument for
vertices and hyperedges isomorphism search is given to the algorithm (VCorr and WCorr
respectively). GroupBylncidence combines the given hyperedges into groups, which represent
incident edges.

Function FindHPGraphIsomorphism(G, Q):
VCorr = [IV(Q)WP(Q)], WCorr = [|W(Q)|]; PolCorr = [|Pol(Q)I|];
do:
VCorr = FindIsomorphism(G, Q, V(Q)WP(Q), VCorr);
if (VCorr = @):
continue;
do:
WCorr = FindIsomorphism(G, Q, W(Q), VCorr, WCorr);
if (WCorr = & & |W(Q)| > 0):
break;
incidentHyperedges = GroupByIncidence(WCorr, G, Q);
for VY (W’g, W’¢) € incidentHyperedges:
polWCorr = FindIsomorphism(G, Q, Pol(W’y), VCorr, WCorr);
if (!PolCorr.TryAppend(polWCorr)):
PolCorr = O&;
break;
if (PolCorr # @ or |W(Q)| = 0):
unlinkedCorr = MatchUnlinked(G, Q, PolCorr, VCorr, WCorr);
GenerateAnswer (PolCorr, unlinkedCorr, VCorr, WCorr);
while (PolCorr = O@);
while (VCorr # @ & PolCorr = Q);

Jhuemune 2. T1 0 PUMMA NOUCKA U g ha ¢ HP-2pacpe
Listing 2. Pseudocode of the algorithm that finds an isomorphic subgraph in HP-graph

The main idea of this algorithm is to incrementally shorten the search field. While the search for
vertices traverses all the vertices of the original graph, the search for hyperedges only moves through
those edges that are connected with the already chosen vertices and utilizes information about their
correspondence with the vertices of the query graph. Pole matching is performed for each group of
incident hyperedges, where a sufficient quantity of combinations is pruned out by exploiting
information about the corresponding vertices and hyperedges. The algorithm also checks and
matches the unlinked poles if they exist, which can be done in linear or close to linear time as all the
corresponding vertices are already found. For simplicity, the algorithm is given for searching for the
first isomorphic subgraph but can be transformed to searching for all embeddings of a pattern.

5. Exploiting Pruning Techniques of the Existing Algorithms

To optimize algorithms certain existing techniques can be used. Adaptation of the main techniques
of the existing algorithms to the proposed graph model can prove the possibility of adapting these
algorithms as a whole and improve the efficiency of the algorithm presented above.

5.1 Ullmann Algorithm

Ullmann algorithm [19] is one of the first algorithms for subgraph matching. This algorithm uses a
backtracking algorithm presented above and at each step it performs a refinement procedure to prune
out unpromising pairs.

170

Cyopos H.M.. JIszosa JI.H. Mioroczofiiiii nofxoA i moncky msomopdiix noarpagor & HP-rpagax. Tpyde ICIT PAH, tom 33. nuin. 4,
2021 r., ctp. 163-176

This algorithm is performed at each node of the search tree. It traverses the matrix M and converts
a certain part of values from ones to zeros. The condition for preserving 1 is that if a vertex j of the
original graph is a candidate of a vertex i of the pattern graph, then each neighbor of the vertex i
must have at least one candidate among the neighbors of the vertex j. Otherwise, j cannot be a
candidate for a vertex 7.

This algorithm can be implemented for both vertex matching and pole matching to eliminate
unpromising element pairs. The refining algorithm for vertices can be presented as follows
(listing 3):

Function RefineV(G, Q, M):
do:
anyChanges = false;
for Vi € Range(|V(Q)|):
if (23F: (M = 11):
return false;
for Vj € Range(|V(G)|):
for Vx € V(Q)\{vp:} where IweW(Q) [wnve#D & wnx#D]:
if (=3yeV(G) \{vgj} where IweW(G) [wnvg #0 & wny#Dl& My, = 1):
Mij = 0;
anyChanges = true;
while (anyChanges) ;
return true;

Jluemune 3. Icesdokoo aneopumma ovucmiu 0ns eepuiun HP-epagpa
Listing 3. Pseudocode of the algorithm that runs refining for vertices of the HP-graph

The algorithm goes through all the neighbors of the current query vertex, which have at least one
common hyperedge with this vertex, and checks whether a source graph contains a corresponding
neighbor-vertex. The algorithm for poles looks similarly but poles and ordinary links are used
instead of vertices and hyperedges.

5.2 VF2 Algorithm

VF2 [20] has been proposed for performing subgraph matching on large graphs. Effective
representation of data structures and the usage of feasibility rules significantly reduces both the
average time complexity of the search and the amount of memory used.
The idea of the algorithm is to use special rules, called feasibility rules, at each node of the search
tree to evaluate the feasibility of further progress on this branch of the tree before adding a pair of
vertices to graph-candidates. There rules check consistency of graph-candidates and sufficiency of
vertices-neighbors™ quantity of the graph-candidate. If all the checks are passed, the algorithm can
move to the next level of the tree.
An approach of checking the feasibility rules can be applied on both vertex and pole layers. As a
pole layer is presented as an ordinary graph, the feasibility rules from [20] can be used without any
significant modifications. However, feasibility rules for a vertex layer have to be defined.
The first rule checks the consistency of the existent candidate graphs by checking correctness of
connections with the already added vertices. Let coreg be a list of found pair vertices for the graph
G and corep be a list of found pair vertices for the graph Q. Accordingly, let conng be a list of
vertices which already have a pair or have a connection to the current graph-candidate G'and conng
be a similar list for the graph-candidate Q". Then, the first rule can be presented as follows:
Vn'[coreg[n'|#3 & n'e Conn(G', n)]: 3m'[m'e Conn(Q', m) & coreg[m'l = n'l &
& Vm'[coreg[m|#D & m'e Conn(Q', m)]: 3n'[n'e Conn(G', n) & coreg[n'] = m'].

171

Cysopos HM., Jlsziosa JI.H. Muorocsiojiiblii TOZIXo K NOHCKY 30MopdHEIX moarpahon B HP-rpagpax. Tpyou JICIT PAH, Tow 33, Bhim. 4,
2021 r.. cTp. 163-176

Taba. 1. CroxcHocns anzopumma noucka ¢ 6036pamot
Table 1. Complexity of the backtracking algorithm

Algorithm Best Case ‘Worst Case
Isomorphic Vertices Matching O(N?) O(NxN!)
Isomorphic Hyperedges Matching O(N?) O(NxN!)
Isomorphic Poles Matching O(N?) O(NxN!)

The evaluation of the backtracking algorithms based on the Ullmann refinement is presented in
Table 2. As the algorithm of hyperedge matching does not implement this technique, its complexity
stays the same.

Taba. 2. Croxcnocms anzopumma Vasmana

Table 2. Complexity of the Ullmann algorithm

Algorithm Best Case ‘Worst Case
Isomorphic Vertices Matching O(N) O(N*%N1)
Isomorphic Hyperedges Matching O(N?) O(NxN!)
Isomorphic Poles Matching O(N) O(N*<N")

The evaluation of the algorithms based on the VF2 approach is demonstrated in Table 3. The
modification of the GetdllCandidatePairs procedure according to rules (2-4) slightly increases the
worst-case complexity from NxN! to N*<N! and the best-case complexity from N? to N° but
significantly shortens the search field.

Taba. 3. Crnoxcnocms ancopumma VF2

Table 3. Complexity of the VF2 algorithm

Algorithm Best Case Worst Case
Isomorphic Vertices Matching O(N) O(N**N1)
Isomorphic Hyperedges Matching O(N) O(N**N!)
Isomorphic Poles Matching O(N) O(N**N!)

7. Conclusion

This paper proposed a solution to the problem of identifying isomorphic subgraphs in HP-graphs.
The proposed approach is based on implementing matching on different graph layers of the graph
model and incrementally shortening the search field at each layer.

The designed algorithms for subgraph matching based on the multilayer approach and evaluations
of their complexity are presented above. The proposed approach incrementally decreases the search
field of the algorithm and helps to decrease its overall complexity. The usage of pruning rules of the
existing algorithms can eliminate unpromising candidates at each stage of the proposed algorithm
and thus, significantly shorten the size of the search tree.

It is planned to evaluate actual time complexity of these algorithms on various data sets and develop
a visual modeling system using the proposed approach to subgraph matching.

References / Cnucok nutepartypbl

[1]. Koznov D.V. Methodology and tools for domain-specific modeling. Doctor Degree thesis. Saint-
Petersburg, 2016, 430 p. (in Russian) / Kosnos JI.B. MeTogomorus ¥ MHCTPYMEHTapHii MPEIMETHO-
OpHEHT 0 MO, . Muccepraumst foktopa Texumyeckux Hayk. CI16., 2016 r., 430 cp.
A formalism for describing software systems and computational processes for cyclic parallel processing
of real time data. Information and control systems, 2006, no. 2, pp. 8-13 (in Russian) / Ctpyuxos U.B.
D Ut mporp CUCTEM U BBIMUCIUTEILHBIX MPOLECCOB LIMKIMYECKOH
mapanenbHON 06paboTKN AaHHBIX 0 Wno - CHCTEMBI, BBITL.
2, 2006, ctp. 8-13.

[2].

173

Suvorov N.M., Lyadova L.N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

Conn(G, v) is a set of vertices of the candidate-graph G, which are connected to the vertex v.

Let PC define a set of vertices that can be connected to the vertex u, but the graph G does not include
them; then it can be represented as follows:

PC(G, u) = {v|veConn(G, u) & coreg[v]=D & conng[v]#J}.
Thus, a new rule, which compares numbers of newly added connections to graphs, appears:
[PC(G, m)| = |PC(Q", m)|.
The last rule performs a two-look-ahead in the searching process. Let N be a set of vertices which
are connected to the target vertex but are not connected to the graph-candidate:

NG, u) = {v|v €Conn(G, u) & conng[v] = J}.
Then, the last rule is presented by the condition:
IN(G", w)| > IN(Q',).
The algorithm for traversing vertices can be presented as follows (listing 4):

Procedure RecurseV(G, Q, vectors):
if (Vitem € vectors.coreplitem*@]):
polesy = Recurseli(vectors.cores, vectors.corep, &, G, Q);
if (polesg # D) :
GenerateAnswer (polesp) ;
else:
vectors = RestoreVectors(vectors);

else:
P = GetAllCandidatePairs (vectors);
for Vp € P:

if (CheckVFisibilityRules(p, vectors, G, Q):
vectors = UpdateVectors(vectors, G, Q);
RecurseV(G, Q, vectors);

vectors = RestoreVectors(vectors);

TTucmune 4. T1c P 0b6xo00a eepuun HP-epacpa na ocrose anzopumma VF2
Listing 4. Pseudocode of the algorithm that traverses vertices of the HP-graph based on the VF2 algorithm

5.3 Graph Pattern Modification Algorithms

The usage of algorithms such as TurboISO [23], CFL-Match [24] and other ones, that change a
graph pattern, is complicated in the presented multilayer approach because these algorithms are
made specifically for ordinary graphs. Their usage on the layer of vertices and hyperedges is a
subject for the future research as it requires reformulation of their main aspects and ideas.
Nevertheless, all these algorithms can be successfully used on the layer of poles and links and can
find an isomorphic subgraph in the single-layer approach.

6. Complexity of the Algorithms

The presented algorithms can decrease the complexity of subgraph search by implementing
matching on different graph layers. The search field shortens at each stage whereas the usage of
pruning rules can also eliminate unpromising combinations of elements. Table I shows
computational complexity of the backtracking algorithm at its main stages.

172

Suvorov N.M., Lyadova L:N. A Multilayer Approach to Subgraph Matching in HP-graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 4,
2021, pp. 163-176

[3]. Courcelle B. Recognizable Sets of Graphs, Hypergraphs and Relational Structures: A Survey. Lecture

Notes in Computer Science, vol. 3340, 2005, pp. 1-11.

Power J., Tourlas K. Abstraction in Reasoning about Higraph-Based Systems. Lecture Notes in Computer

Science, vol. 2620, 2003, pp. 392-408.

Sukhov A.O. Development of tools for creating visual subject-oriented languages. PhD thesis, Moscow,

2013, 256 p. (in Russian) / Cyxoe A.O. Pa3paGoTka HHCTPYMEHTAIBHBIX CPEACTB CO31aHMs BU3YATBHBIX

MPEIMETHO-OPMCHTHPOBAHHBIX A3BIKOB. JlHCcepTalss KaHAnAaTa (PH3HKO-MATEMATHUCCKHBX HayK. M.,

2013 . 256 cTp.

[6]. Mikov A.L Performance evaluation: textbook. Krasnodar, Kuban State University, 2013, 89 p.

[7]. Suvorov N.M., Lyadova L.N. HP-Graph as a Basis of a DSM Platform Visual Model Editor. Suvorov

N.M., Lyadova L.N. HP-Graph as a Basis of a DSM Platform Visual Model Editor. Trudy ISP RAN/Proc.
ISP RAS, vol. 32, issue 2, 2020. pp. 149-160. DOI: 10.15514/ISPRAS-2020-32(2)-12.

[8]. Parra F. Dean T. Survey of Graph Rewriting applied to Model Transformations. In Proc. of the 2nd

International Conference on Model-Driven Engineering and Software Development, 2014, pp. 431-441.

Ehrig H., Ehrig K., Prange U., Taentzer G. Fundamentals of Algebraic Graph Transformation. Springer

2006, 403 p.

[10]. Yan X., Yu P.S., Han J. Graph Indexing: A Frequent Structure-based Approach. In Proc. of the ACM
SIGMOD International Conference on Management of Data, 2004, pp. 335-346.

[11]. Fan W. Graph pattern matching revised for social network analysis. In Proc. of the 15th International
Conference on Database Theory, 2012, pp. 8-21.

[12]. Liu C., Lio B., Kropatsch W, eds. Advances in Graph-based Pattern Recognition. Pattern Recognition
Letters, vol. 87,2017, 230 p.

[4].

[s].

[9].

[13]. Przulj N., Comneil D.G., Jurisica I. Efficient Estimation of Graphlet Freq Distributions in Protein—
protein Interaction Networks. Bioinformatics, vol. 22, no. 8, 2006, pp. 974-980.
[14]. Han M., Kim H. et al Efficient Subgraph Matchi Har izing Dynamic Pr ing, Adaptive

Matching Order, and Failing Set Together. In Proc. of the ACM SIGMOD International Conference on
Management of Data, 2019, pp. 1429-1446.

[15]. Carletti V., Foggia P. et al. Challenging the Time Complexity of Exact Subgraph Isomorphism for Huge
and Dense Graphs with VF3. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
40, no. 4, 2018, pp. 804-818.

[16]. Ren X., Wang J. Exploiting Vertex Relationships in Speending up Subgraph Isomorphism over Large
Graphs. Proceedings of the VLDB Endowment, vol. 8, no. 5, 2015, pp. 617-628.

[17]. Lee J., Han W. et ak. An In-depth Comparison of Subgraph Isomorphism Algorithms in Graph Databases.
In: Proceedings if the VLDB Endowment, vol. 6, no. 2, 2012, pp. 133-144.

[18]. Seriy A.P., Lyadova L.N. An App: h to Graph Matching in the Ci of Model Transformations.
In Proc. of the 7th Spri Young R hers” Colloquium on Software Engineering. 2013, pp.
41-46.

[19]. Ullmann J.R. An Algorithm for Subgraph Isomorphism. Journal of the ACM, vol. 23, no. 1, 1976, pp. 31-
42

[20]. Cordella L.P., Foggia P. et al. (Sub)Graph Isomorphism Algorithm for Matching Large Graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, 2004, pp. 1367-1372.

[21]. Carletti V., Foggia P., Vento M. VF2 Plus: An Improved version of VF2 for Biological Graphs. Lecture
Notes in Computer Science, vol. 9069, 2015, pp. 168-177.

[22]. Carletti V., Foggia P. et al. Challenging the time complexity of exact subgraph isomorphism for huge and
dense graphs with VF3. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4,
2018, pp. 804-818.

[23]. Han W., TurboISO: Towards UltraFast and Robust Subgraph Isomorphism Search in Large Graph
Databases. In Proc. of the ACM SIGMOD International Conference on Management of Data, 2013, pp.
337-348.

[24]. BiF.,ChangL., Lin X., Qin L., Zhang W. Efficient Subgraph Matching by Postponing Cartesian Products.
In Proc. of the ACM SIGMOD International Conference on Management of Data, 2016, pp. 1199-1214.

[25]. Shang H., Zhang Y., Lin X., Yu J.X. Taming verification hardness: an efficient algorithm for testing
subgraph isomorphism. Proceedings if the VLDB Endowment, vol. 1, no. 1, 2008, pp. 364-375.

[26]. Zhao P., Han J. On graph query optimization in large networks. Proceedings if the VLDB Endowment,
vol. 3, 2010, pp. 340-351.

174

Cyopos H.M.. JIszosa JI.H. Mioroczofiiiii nofxoA i moncky msomopdiix noarpagor & HP-rpagax. Tpyde ICIT PAH, tom 33. nuin. 4,
2021 r., ctp. 163-176

Information about authors / Undopmaumsa 06 aBTopax

Nikolai Mikhailovich SUVOROV - student. His research interests include language-oriented
programming, modeling, language toolkits.

Hukonait Mnxaiinosuu CYBOPOB — crynent Gakanaspuata HUY BIIID-Ilepmb. Hayunbie
HMHTEPEChl BKJIIOYAIOT A3BIKOBO-OPHEHTUPOBAHHOE MPOTPaMMHPOBAHHE, MOMAEIMPOBAHHE,
SA3BIKOBBIE MHCTPYMEHTAPUH.

Lyudmila Nickolaevna LYADOVA — Candidate of Physical and Mathematical Sciences, associate
professor of the Department of Information Technology in Business of the HSE (Perm). Research
interests: modeling languages, modeling tools, domain specific modeling, language toolkits,
semantic modeling.

Jropvuna Hukonaesna JUITIOBA — kanmupat Gpu3nKo-MaTeMaTHYECKHX HAYK, JOLEHT, JOLEHT
kadenpel HHOOPMALMOHHBIX TexHonoruii B Ousnece HUY BIID (Ilepmb). Cdepa HaydHbIX
HMHTEPECOB: SI3bIKH MOJEINPOBAHMS, CPEACTBA MOAENMPOBAHHSA, MPEAMETHO-OPHEHTHPOBAHHOE
MOJE/NPOBAHHE, I3bIKOBbIE HHCTPYMEHTAPHH, CeMaHTHYECKOE MO/ POBAHHE.

175

