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Abstract. Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical tasks.
However, porting programs to graphics accelerators is not an easy task. Sometimes the transfer of programs to
such accelerators is carried out by almost completely rewriting them (for example, when using the OpenCL
technology). This raises the daunting task of maintaining two independent source codes. However, CUDA
graphics accelerators, thanks to technology developed by NVIDIA, allow you to have a single source code for
both conventional processors (CPUs) and CUDA. The machine code generated when compiling this single text
depends on which compiler it is compiled with (the usual one, such as gcc, icc and msve, or the compiler for
CUDA, nvcc). However, in this single source code, you need to somehow tell the compiler which parts of this
code to parallelize on shared memory. For the CPU, this is usually done using OpenMP and special pragmas to
the compiler. For CUDA, parallelization is done in a completely different way. The use of the functional
programming library developed by the authors allows you to hide the use of one or another parallelization
mechanism on shared memory within the library and make the user source code completely independent of the
computing device used (CPU or CUDA). This article shows how this can be done.
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Annoranus. Cospemennsle rpadudeckue yckopurenu (GPU) mO3BOISIOT CyIIECTBEHHO YCKOPUTH
BBINOJIHEHNE YHCIEHHBIX 3agad. OJHAKO INepeHoC INporpaMM Ha TIpaduyuecKHe YCKOPHTENH SBISETCS
HenpocToi 3aaavelt. IHOr1a mepeHoc mporpaMm Ha Takue YCKOPUTEIH OCYIIECTBISACTCS MMyTEM NMPAKTUUECKH
MOJIHOTO ¥X IIepPeNHChIBaHus (HAIpUMep, Ipyu ucronb3oBanuu TexHonoruu OpenCL). Ilpu sToM Bo3HHKaeT
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HEmpocTas 3aj1aya MOAAEP)KKH JBYX HE3aBHCHMBIX MCXOIHBIX KOJI0B. OnHaKo, rpaduueckue yCKOPHTEIN
CUDA, 6narozaps paspaborannoii komnanueir NVIDIA TexHOm0rnu, No3BossitoT UMETh €ANHBIN UCXOAHBII
Koj Kak Juisi oObryHbIX mpoueccopoB (CPU), tak m must CUDA. MamuHHbBIH KOJ, T€HEpUpYeMbId HpH
KOMITIJISIIIUH 3TOT'0 €AUHOTO TEeKCTA, 3aBHCHUT OT TOr0, KAKUM KOMITHJIITOPOM OH KOMIIMIHPYETCs (OOBIMHBIM,
TaKUM, KaK gcc, icc U msve, win kommuiastopom uist CUDA, nvee). OnHako, B 3TOM €IMHOM HCXOIHOM KOJIe
HYXKHO KaKHM-TO 00pa30oM yKa3aTh KOMIIIIIATOPY, KaKHe YacTU 3TOr0 KoJa HY)KHO paclapajulellHBaTh Ha
o6weit namsary. s CPU 3t0 00b1uHO Aenaercs ¢ nomoisio OpenMP 1 cienuanbHbIX IparM KOMIMWIATOPY.
Jlns CUDA pacnapajuienuBaHue JeIaeTcs COBEPIISHHO Ho-ApyroMy. IIpumenenye pa3paboTaHHOIl aBTopamMu
61bnmnoTekn (QyHKIIMOHATBHOTO MPOrPaMMMPOBAHUS MO3BOJSET CKPBITh HCIOIb30BAHHE TOIO MIIH HHOTO
MeXaHU3Ma paclapajulelUBaHUs Ha oOmell maMiTH BHYTpH OHOIMOTEKH ¥ CHENaTh I0JIb30BaTeNbCKHIL
HCXOJHBIH KOJ| INOJHOCTBIO HE3aBHCHUMBIM OT HCHOJIB3YEMOro BbIYMCIUTENbHOro ycrpoiicrBa (CPU mm
CUDA). B Hacrosiel ctatbe oKa3bIBaeTCs, Kak 3TO MOXKHO C/IeNIaTh.

Kimouessie ciioBa: C++; oubamnorexa GpyHkiuonanbHoro nporpammuposanust; CUDA; OpenMP; OpenCL

Jas murupoBanus: Kpacnos M.M., ®eonopurosa O.b. Hcnonbs3oBanue GuONHOTEKH (yHKIHOHATEHOIO
IPOrpaMMUPOBAHUS JUISL PELICHNs YHCICHHBIX 3a1ad Ha rpadudecKux yckopuremsix ¢ texHonorueir CUDA.
Tpyast UCIT PAH, tom 33, Bein. 5, 2021 r., ctp. 167-180 (Ha anrnuiickom s3eike). DOIL: 10.15514/ISPRAS—
2021-33(5)-10

1. Introduction

In recent years, graphics accelerators (GPUs), used as computing devices for numerical calculations,
have become increasingly widespread. Such accelerators are installed on many computing clusters,
in particular, in the TOP500 list of the most productive supercomputers from June 2021, in the top
ten, six use graphics accelerators from NVIDIA [1]. The speed of numerical calculations on such
accelerators can be many times higher than on a CPU (according to the authors' experience, the
acceleration can reach 10-20 times). Therefore, the transfer of programs implementing numerical
methods to graphics accelerators is an extremely urgent task.

However, porting an existing program to a GPU is not an easy task. Perhaps the ideal option is to
write the program right away so that it can execute on any computer. In any case, the first question
that arises is what kind of GPU technology to use? At the moment there are at least three main
technologies - OpenCL (open standard for heterogeneous systems) [2], OpenACC [3] and CUDA -
developed by NVIDIA for its graphics accelerators [4]. Each of these technologies has advantages
and disadvantages. The main advantage of OpenCL is its open standard. A program using OpenCL
will run on any computing device that supports this standard, including NVIDIA and AMD GPUs,
Intel Xeon Phi processors with Intel MIC technology, and even conventional CPUs. The main
disadvantage of this technology is that the source code of the program appears in two copies: for the
CPU, which is compiled by a regular compiler and is part of the main program, and the text for
OpenCL is in separate files, and when changing algorithms, you must make changes in both places.
The advantages and disadvantages of CUDA technology are a mirror image of the disadvantages
and advantages of OpenCL. CUDA only runs on NVIDIA GPUs. On the other hand, in CUDA we
have a single source code that is precompiled as a part of the main program (including the code that
will be executed on the GPU). The main disadvantage of the OpenACC technology is that it is not
yet widespread enough. Compilers that supports this technology are not installed on all clusters with
graphics accelerators.

We choose CUDA technology. Our main argument is that in (our) real life we are faced exclusively
with devices from NVIDIA. GPUs from AMD and Intel Xeon Phi processors are quite exotic, and
although we have met them, they are really irrelevant. Therefore, the disadvantages of CUDA is not
a disadvantage for us, but its advantages remains.

The next problem is that parallelization on shared memory on the CPU and on CUDA is done in
completely different ways. If we want to get a single text that should be compiled for both CPU and
CUDA, then in those places where parallelization should be, we will have to write different code
(for example, using the #ifdef construction), which is inconvenient. Then the idea arose to use a
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library of functional programming for the C++ language previously written by one of the authors of
the article [5]. When using this library, all the specifics of the computing device (CPU or CUDA)
can be placed inside the library, and the user source code will remain platform independent.

This article consists of three main parts: a short introduction to functional programming (as long as
needed to understand the rest of the text), a short description of the funcprog functional programming
library, and a description of the use of this library for solving numerical problems. A short working
example is also given.

2. A brief introduction to functional programming

In functional programming, the central object is (as the name suggests) a function. Functions are full
participants in the computational process, the same as numbers are in ordinary calculations. This
means that a function can be passed as a parameter to another function and can be returned as a
result of a function. A function can be calculated, just as a number can be calculated in normal
calculations. A simple example is a composition of two one-place functions, which returns a new
one-place function that calls both functions in sequence. In specialized functional programming
languages (such as Haskell), such capabilities are built into the language, while the implementation
of function composition in C++ is a non-trivial task that requires special tweaks. Examples will be
given in the Haskell language, since this language allows you to write many things as concisely and
at the same time clearly.

Functional programming has a number of features compared to imperative programming that can be
summarized in several principles. The first and main mandatory principle, already mentioned above,
is that a function is a full-fledged participant in the computational process and can be either passed
as a parameter or returned as a result of a function. Among others we can mention function purity,
immutable variables and lazy calculations. Let us shortly describe some other principles (important
for our discussion).

Currying. Named after the American mathematician and logician Haskell Curry (the programming
language Haskell is also named after him). The principle of currying is that if the parameters of a
function are not fully specified, an error does not occur, but instead a function is generated with a
smaller number of parameters (equal to the number of missing parameters). It is implemented in
many modern functional programming languages (in particular, in the Haskell language). Currying
allows a function with multiple arguments to be treated as a collection of functions with one
argument.

n-reduction (eta reduction, or n-transformation). Suppose we want to write a function with one
parameter, a list of numbers, that returns a list of the sines of these numbers. The text of this function
in Haskell is obvious:
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3. Functors, Applicatives, and Monads

Functors. Suppose we have some container that stores a number of values, for example, a list or an
object or the Maybe class. Now let us set the task: apply a regular one-place function (for example,
sin) to the values in the container. You know how to do this with lists — use the map function.
However, how do you do this with the Maybe type, and in general, how do you do it with data in an
arbitrary container? The universal approach is to entrust this responsible business to the container
itself. For this, Haskell defines a special Functor class, in which the fmap function is declared:

class Functor f where
fmap :: (a -=> b) -> f a ->fb
(<$>) = fmap

The operator <$> is an infix synonym of the fmap function. This is a statement for applying a
function to a functor. It is similar to the operator for applying a function to an ordinary value ($).
The fmap function prototype can be written in another equivalent form (this follows from the right-
associativity of the right arrow):

fmap :: (a -> b) -> (£ a -> £ b)

Thus, fmap can be thought of as a one-parameter function that takes a function that takes and returns
normal values, and converts it into a function that takes and returns functors. Any data type can be
declared a functor by implementing an instance of the Functor class and the fmap function for
it. Any functor implementation must satisty two functor laws:

1. fmap id = id -- 1lst law
2. fmap (g . f) = fmap g . fmap f -- 2nd law

Here id is a function that returns its argument: id x = x. The first law says that applying the id
function to a functor should not change the functor, just as applying this function to an ordinary
value does not change it. The second law is the distribution law of the functor operation with respect
to the composition of functions.

Applicatives. If the task is to apply a function with two arguments to two containers (for example,
to sum two lists), then the functionality of the Functor class will not be enough. To solve this
problem, another class is intended — an applicative functor (applicative). Here is the definition of the
Applicative class:

mapsin lst = map sin 1lst

It follows from the currying principle that if we omit the second parameter when calling the map
sin 1st function, that is, we write just map sin, then we will get a function with one parameter
that takes a list of numbers as this parameter and returns a list of sines of these numbers, that is, in
fact mapsin function. That is, mapsin is equivalent to map sin. The principle of n-reduction
says that in such cases, the last parameter (one or more) in the function definition can be omitted.
The definition of the mapsin function can be written shorter: mapsin = map sin.

Functions composition. Function composition is so important in functional programming that
Haskell makes it as simple as possible. Usually, one considers the composition of one-place
functions (let's call them £ and g), in Haskell it is written like this:

class Functor f => Applicative f where

pure :: a—->f a
(<*>) :: £ (a > b) -=> f a->fb
1iftA2 :: (a->b->c)->f a->f b->f c

1iftA2 £ x y = £ <$> x <*> y

(f . g) x =£f (g x)

169

Thus, in each applicative, two main operations must be implemented: the pure function, which puts
an ordinary value in the «pure» applicative, and the operator (<*>), which takes the function placed
in the applicative as the first parameter, and the value, placed in the same applicative, as the second
parameter and returning the result in the same applicative.

If we look at the prototype and implementation of the 11 ftA2 function, we can see that it passes a
function with two parameters to the operator (<$>), which takes a function with one parameter.
However, there is no contradiction here, since we can write a function with the prototype a->b->c
as follows: a-> (b->c), that is, as a function with one parameter that returns a function. Then the
operator (<$>) will just return to us the function b->c, placed in the functor, which is then passed
to the operator (<*>). By analogy with the fmap function, we can write the prototype of the 1i fta2
function like this:
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1iftA2 :: (a->b->c)->(f a->f b->f c)

that is, think of it as a function with one argument, taking a function that works with ordinary values
and returns a function that works with functors, «lifting» a function with two arguments (hence its
name) into the applicative. By analogy with the 1iftA2 function, you can write a function that
«lifts» a function with three (and any other number) arguments into the applicative:

In other words, the mreturn and mbind functions must be defined so that, firstly, the mreturn
function is the unit element (left and right) of the monad composition (the first two laws), and,
secondly, the monad composition must be associative (the third law). Now the square root of the
logarithm can be calculated like this:

1iftA3 :: Applicative f =>
(a->b->c->d) ->f a->f b-—>f c->f d
1iftA3 £ x y z = £ <$> x <*> y <*> z

safe_log 5 >>= safe_sqgrt -- Just 1.26863624
safe_log (-5) >>= safe_sqrt -- Nothing
safe log 0.5 >>= safe sqrt -- Nothing

Any implementation of the applicative must satisfy the applicative laws:

pure id <*> v = v -— Identity
pure f <*> pure x = pure (f x) -- Homomorphism
u <*> pure y = pure ($ y) <*> u -- Interchange
-- Composition:

pure (.) <*> u <*> v <*> x = u <*> (v <*> x)

Monads. Let's write the «safe» functions safe sqrt and safe log:

safe sqrt :: (Ord a, Floating a) => a -> Maybe a
safe sqrt x=if x<0 then Nothing else Just(sqrt x)
safe log :: (Ord a, Floating a) => a -> Maybe a

safe log x=if x<=0 then Nothing else Just(log x)

These functions return the result of Maybe data type, which has two constructors, Nothing with
no arguments and Just with exactly one argument. Returning Nothing means an error condition
(the function's argument is out the scope of its definition) and Just — normal result. Now suppose
we want to calculate the square root of the logarithm of a number. For both operations, we have
«safe» functions. How do we now apply the safe sqrt function to the result of the safe log
function? The functionality of functor and applicative is not enough for this. Monads serve this
purpose. Monads can be viewed as a further continuation of the applicative; they are intended for
building chains of monad calculations. Each monad has two main functions: mreturn (return
in Haskell) and mbind (operator >>= in Haskell). The mreturn function is similar to the pure
function for applicatives (in fact, for most monads, mreturn is defined as pure), and the mbind
operation has the following definition:

If an error occurs somewhere in the chain of calculations, then a quick exit from the entire chain
occurs, the rest of the functions are not actually calculated. Keep in mind that the Maybe data type
is declared as a functor, an applicative and a monad.

4. Functional programming library

4.1 General description of the library

When implementing the functional programming library for the C++ language named funcprog, the
task was to write a library with which one could write in C++ in a style close to the style of the
Haskell language.

The important question is what is a function in terms of this library? In the original version of the
library, a function was understood as an object of the std: : function class. This option does not
suit us now, since we want the function to be executed on a graphics accelerator, and an object of
the std::function class can be executed only on the CPU (in particular, because its
implementation uses virtual functions that are not portable to the GPU). It cannot be an ordinary
function either, since it (its address) cannot be passed as a parameter from the CPU to CUDA. It was
decided to consider any functional object (having a functional operator ()) as a function, in particular,
it can be a C++ lambda expression. However, in order for this object to be passed to CUDA, this
functional operator must be marked with the _ device  keyword. The disadvantage of this
approach is that the metadata of the function includes not only its prototype (parameter types and
return value), but also the implementation (object class) — this is the price for the possibility of
porting to CUDA. This is how the function is implemented:

(>>=) :: (Monad m) -=> ma -> (a -=> mb) ->mb

It takes as parameters a monad and a function that takes an ordinary (non-monad) value and returns
a monad value (possibly of a different type, but in the same monad). We will call such functions
monadic. The safe logand safe sqrt functions are examples of monadic functions.

The mreturn and mbind functions must obey three monad laws. In order to formulate them, we
introduce the operation of monad composition (mcompose or the operator >=> («fish» operator)
in the Haskell language). It is defined as follows:

template<typename FuncType, typename FuncImpl> struct function2;

template<typename Ret, typename... Args, typename FuncImpl>
struct function2<Ret (Args...), FuncImpl> {

using result type = Ret;

function2 (FuncImpl const& impl) : impl (impl) {}

result type operator () (Args... args) const

{ return impl(args...); }

private: FuncImpl const impl;2
}i

(>=>) :: £ >=> g = \x => (f x >>= q)

Both operands of a monad composition and its result are monadic functions. Consequently, monadic
composition can be viewed as a group operation in the space of such functions. In terms of this group
operation, monad laws are formulated as follows:

You can see that, unlike the std: : function class, two template parameters are passed to the
function2 class. To simplify the work with such functions, there is a helper function
(underscore). Here's how it is defined:

1. mreturn >=> f ==
2. f >=> mreturn ==
3. (f >=> g) >=> h == £ >=> (g >=> h)

171

template<typename FuncImpl, typename Ret,

typename... Args>
struct function2_ type {

using type = function2<Ret (Args...), FuncImpl>;
bi

template<class F> // Common case for functors & lambdas
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struct function2 type : function2 type<decltype (&F::operator())>{};

template<class Cls, typename Ret, typename... Args>
struct function2 type<Ret (Cls::*) (Args...)>
function2 type <Cls, Ret, Args...>{};

template<class Cls, typename Ret, typename... Args>
struct function2 type<Ret (Cls::*) (Args...) const>
function2 type <Cls, Ret, Args...>{};

template<typename F>
using function2 type t =
typename function2 type<F>::type;

template<typename F>
function2 type t<F> (F f){ return f; }

The specializations of the Functor, Applicative and Monad classes are written for this
_Maybe class:

template<> struct Functor< Maybe>{

}i

Let's give a short example of working with this library:

double d=(_([] (double x){ return x*x; }) &
_([] (double x){ return x+1; })) (5); //36

In this example, we create two functions (using the _ function), compose them (using the &
operator), and call the resulting composite function with the parameter 5. As a result, we get the
number 36.

The funcprog library implements function currying quite fully. To do this, the library implements
an operator for applying an argument to a function using the left shift operator <<. This creates a
new function with one less parameter. In particular, if the original function had a single parameter,
then a function with no parameters will be created.

4.2 Implementation of functors, applicatives and monads

The implementation of functors, applicatives and monads in the funcprog library is somewhat
similar to the implementation of these concepts in the Haskell language. Any class can be declared
as a functor, an applicative, or a monad. For this, it is enough to implement the specialization of
classes Functor, Applicative and Monad, respectively, for this class. No changes are required
to the class itself.

Any functor or monad is a type with one parameter. In C++, parameterized types are implemented
using class templates. Let us look at the definition of a functor using the Maybe class as an example.
It is defined like this:

template<typename A> struct Maybe;

A class template is not a type and cannot be passed as a parameter to a template of another class.
Therefore, another class (without a template) is defined with the name Maybe (with an underscore
in front). This is a real class, it can be passed as a template parameter:

struct _Maybe {};

The Maybe class template inherits from this class:

template<typename A>
struct Maybe : std::optional<A>, Maybe, {

X
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Inside the specialization of the Functor class, you need to define a static function fmap. The
specializations of the Applicative and Monad classes are defined similarly. For the applicative,
the methods are called pure and apply, and for the monad their names are mreturn and mbind.
When implementing static methods of these classes, one should not forget about the functor,
applicative and monad laws.

Note also that the funcprog library uses the division operator as a functor operator (fmap), and
multiplication as an applicative operator (apply).

5. Using the library for numerical methods

When solving numerical problems (for example, problems of gas dynamics or heat conduction), a
certain grid (regular or, more often, irregular) is constructed in the region to be solved. On some
elements of this grid (for example, nodes or cells), a so-called grid function is created, in which
some physical quantities in grid elements are stored. As a rule, there are two grid functions — at the
previous time step and at the current one. The main cycle of the program runs over time; at each
time step, the values at the current step are calculated based on the values at the previous step. This
cycle is always performed sequentially. At the end of a step, the computed new values are copied
from the grid function for the current step to the grid function for the previous step (sometimes these
grid functions are simply swapped). Inside the body of the main loop, there is a loop (one or more)
over the grid function, in which new values of physical variables are calculated for each value of the
grid function index. If the method is explicit (in which the new values of the physical variables
depend only on the old ones and do not depend on new values in the neighboring grid elements),
then the values in different grid elements can be calculated independently of each other, in particular,
these calculations can be carried out in parallel. Thus, inner loops can (and should) be parallelized
on shared memory. When calculating on a CPU, parallelization of loops is done, as a rule, using
OpenMP. When calculating on CUDA, the parallelization methods are different from OpenMP. To
hide the parallelization method from the applied mathematician who implements the numerical
method, it is proposed to use the funcprog functional programming library as described below.

5.1 Grid Expressions and Grid Functions

Let us introduce the concept of a grid expression. This is an object defined on all grid elements, that
is, for any object that is a grid expression, you can find out what its value is for any grid index. A
special case of a grid expression is a grid function, which simply stores its values in memory and
returns them, if necessary. For grid expressions, a template is defined for the grid expression
class, from which all grid expression classes must inherit (in particular, the grid function class
also inherits from the grid expression class). Thus, the phrase «an object is a grid expression»
means that the class of this object is inherited from the grid expression class. This inheritance
uses the Curiously Recurring Template Pattern (CRTP) [6], in which the final class is passed to the
base class as a template parameter. You can read about this pattern and other metaprogramming
methods in books [7,8]. You can also read about expression templates in [9].

Any grid expression can be assigned to a grid function. This assignment operator iterates over all
the indices of the grid function to which the grid expression is assigned. For each index it queries
the grid expression for its value and assigns this value to the grid function at the given index. This
assignment operator implies that values for different indices can be computed independently of each
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other, and therefore can be computed in parallel. It is in this assignment operator that the very inner
loop over the elements of the grid function is executed. This assignment operator, depending on
which compiler the program is compiled with, chooses the method of parallelization of this loop. If
it is a compiler for CUDA (the preprocessor variable  CUDACC___is defined), then parallelization
is carried out using CUDA, otherwise — using OpenMP. Thus, the parallelization method is hidden
from the application programmer inside this assignment operator. Let us show how this assignment
operator is implemented for the CPU:
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for(size t i = 0; 1 < N; ++1i)
f new[i] = calculate(f old[i]);

Here calculate is a function that calculates a new value in a cell from the old one. The old value
in the cell is passed to it as a parameter. In the new approach, we want to be able to write in this
case:

f new = (calculate) / f old;

template<class GEXP>
void operator=(grid_expression (GEXP, typename GEXP::proxy type) consté&
gexp0) {

GEXP const& gexp = gexpO();
#pragma omp parallel for

for(size t 1 = 0; i < size(); ++1i)

(*this) [1] = gexp[i];

}

If the calculations require several more grid functions (let's call them £2 and £3), then instead of

for(size t 1 = 0; 1 < N; ++1)
f new[i] = calculate(f old[i], f2[i], £3[i]);

we can write:

f new = (calculate) / f old * f2 * £3;

There is one more aspect to mention when talking about grid functions. A GPU can work only with
its own memory, which means that when working on a GPU, the grid function must request memory
for its data in the CUDA memory. There are no problems with this either. Grid functions are
designed in such a way that, when compiled on CUDA, they request memory in CUDA, otherwise,
in CPU memory.

5.2 Proxy objects

The grid expression class template is defined as follows:

that is, we applied the functor property for the first grid function, and the applicative for the
subsequent ones. If we want to pass to the function some additional constant value (independent of
the loop index), then we could write instead of:

for(size t 1 = 0; 1 < N; ++1i)
f new[i] = calculate(f old[i], some value);

something like:

f new = _(calculate) / f old * pure(some value);

1. template<class E, class _Proxy = E>
2. struct grid expression;

Here E is the final class and _Proxy is the proxy class. By default (if not specified), the proxy class
is the same as the final class. It is needed to create a copy of an object. The only way to transfer
parameters from the main processor memory to the CUDA memory is by value transfer (that is, a
copy of the parameter is made). Transfer by address and reference is not possible. Only variables of
simple types (numbers and pointers) and class objects containing only simple types can be passed
by value. In addition, these objects must not contain virtual methods, and the methods called on
them must be accessible from CUDA. Not all objects meet all these requirements. If such an object
still needs to be transferred from the CPU to CUDA, then a proxy object can be created for it that
meets the listed requirements and stores all the basic data from the main object. There is another
reason why it is not always possible to store references and pointers to objects, even on the CPU.
The fact is that in complex expressions temporary unnamed variables may appear that do not have
permanent memory, and references and pointers to which cannot be saved. Such objects must be
copied. You cannot always copy objects either, since there are «large» objects (for example, data
vectors) that, when copied, make a copy of this data. The general rule is as follows. If the object is
«small» and does not have virtual methods, then it can be copied, and the proxy class is not needed,
otherwise such a class is needed.

5.3 Grid Expressions as Functors, Applicatives, and Monads

Grid expressions can be thought of as containers (this is especially true for grid functions). In
funcprog library, the containers (e.g. lists and the Maybe class) are functors, applicatives, and
monads. This makes it possible to apply ordinary functions to the values stored in them (a property
of a functor). We will also make the grid expression a functor, applicative, and monad so that
functions can be applied to grid expressions as well. To understand how this can be done, consider
a typical loop that calculates the new value of the grid function from the old one:
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Thus, the result of applying a function to a grid expression (or to several grid expressions in the case
of an applicative) must also be a grid expression, that is, it can be queried for a value by index (the
[1 operator must be implemented). Grid expressions, in addition to grid functions, are also the
results of applying functions to grid expressions as to functors and applicatives. In addition, the sum
and difference of two grid expressions, and the product and quotient of the grid expression and
numbers, are also grid expressions.

Now let £ be the function to be applied and gexp the grid expression.

Functor. For a functor, we give the following definition (in pseudo-Haskell):

(fmap f gexp) [1] = f gexp[i]

Theorem 1 (on the functor). The fmap function defined above is functorial.
Proof. Let us rewrite the first functor law completely (without n-reduction)

fmap id gexp = id gexp

or (by the definition of the 1d function):

fmap id gexp = gexp

Further,

(fmap id gexp) [i] = -- defenition of fmap
id gexpl[i] = -- definition of id
gexp[i]

that is, indeed, fmap id gexp = gexp. The first law is proven. Let us rewrite the second functor
law without n-reduction:

fmap (g . f) gexp = (fmap g . fmap f) gexp
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Then
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(fmap (g . f) gexp) [i] = -- definition of fmap
(g . f) gexp[i] = -- definition of function composition
g (f gexp[i])

The second law is proved. The third law (Interchange):

On the other side:

((fmap g . fmap f) gexp) [i] = —-- definition of function composition
(fmap g (fmap f gexp)) [i] = -- def. of fmap
g (fmap f gexp) [i] = -- def. of fmap
g (f gexp[i])

That is, indeed,

(apply u (pure y))[i] = -- definition of apply
uli] (pure y)[i] = -- definition of pure
uli] vy
On the other side:
(apply (pure ($ y)) u)[i] = -- def of apply
(pure ($ y)) [i] uli] = -- def of pure
($ y) uli] = -- def of function application

uli] y

fmap (g . f) gexp = (fmap g . fmap f) gexp

The third law is proved. The forth law (Composition):

The theorem is proved. The definition of the Functor is correct. O
Applicative. The pure function takes on some value and «brings» it into the applicative. In our

case, makes a grid expression out of'it. Let us define its operator [] so that it returns the same value
for any index:

(pure val) [1] = val

The apply function (an analogue of the operator <*> in Haskell and the operator * in the funcprog
library) in our case accepts two grid expressions: the first (let us call it gexp f) returns functions,
and the second (let's call it gexp) — some values (parameters of these functions). We define the grid
expression of the apply function as follows:

(apply (apply (apply (pure (.)) u) v) x)[i] = -- definition of apply
(apply (apply (pure (.)) u) v)[i] x[i] = -- definitiono apply
(apply (pure (.)) u)[i] v[i] x[1i] = -- definition of apply
(pure (.))[1] uli] v[i] x[i] = -- def of pure
(.) uli] v[i] x[i] = -- rewrite function composition in infix form
(ufi] . v[i]) x[i] = -- definition of function composition
ufi] (v[i] x[i])

On the other side:

(apply u (apply v x))[i] = -- def of apply
ul[i] (apply v x)[1i] = -- def of apply
ufi] (v[i] x[i])

(apply gexp f gexp) [1] = gexp f[i] gexpl[i]

Theorem 2 (on the applicative). The pure and apply functions defined above satisfy applicative
laws.

Proof. Let us rewrite the applicative laws using the apply function:

The forth law is proved. The theorem is proved. The definition of the Applicative is correct. O
Monad. The monad function mreturn is defined in the same way as the pure function:

(mreturn val) [1] = val

apply (pure id) eobj = eobj -- Identity

apply (pure f) (pure x) = pure (f x) -- Homomorphism

apply u (pure y) = apply (pure ($ y)) u -- Interchange

apply (apply (apply (pure (.)) u) v) x = apply u (apply v x) --
Composition

The monad function mbind takes a monad and a function that takes an ordinary (non-monad) value
and returns a monad. Let us define the mbind function for grid expressions as follows:

(mbind gexp f) [i] = (f gexpl[i]) [i]

The first law (Identity):

Theorem 3 (on the monad). The mreturn and mbind functions defined above obey monadic laws.
Proof. Let us rewrite the monad laws in terms of the mreturn and mbind functions:

(apply (pure id) eobj) [i] = -- def of apply
(pure id) [i] eobj[i] = -- def of pure
id eobj[i] = -- def of id
eobj[1i]

1. mbind (mreturn x) f = f x
2. mbind eobj mreturn = eobj
3. mbind (mbind eobj f) g =
mbind eobj (\x -> mbind (f x) qg)

i.e. apply (pure id) eobj = eobj. The first law is proved. The second (Homomorphism):

The first law:

(mbind (mreturn x) f)[i] = -- def of mbind
(f (mreturn x) [1])[i] = -- def of mreturn
(f x)[1]

The first law is proved. The second law:

(apply (pure f) (pure x))[i] = -- def of apply
(pure f)[i] (pure x)[i] = -- def of pure (2 times)
f x

On the other side:

(pure (f x))[i] = -- definition of pure
f x

(mbind eobj mreturn) [i] = -- def of mbind
(mreturn eobj[i]) [1] = -- def of mreturn
eobj[1i]
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The second law is proved. The third law:
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(mbind (mbind eobj f) g)[i] = -- def of mbind
(g (mbind eobj f)[i])[i] = -- def of mbind
(g (f eobj[il]) [i]) [1]

On the other side:

(mbind eobj (\x -> mbind (f x) g))[i] = -- definition of mbind

((\x => mbind (f x) g) eobj[i])[i] = -- beta-reduction, substitute
eobj[i] instead of x

(mbind (f eobj[i]) g)[i] = -- def of mbind

(g (f eobjli])[i]) [i]

The result is the same. The third law is proved. The theorem is proved. The definition of the Monad
is correct. O

5.4 Grid Expressions as Functors, Applicatives, and Monads
Here is an example program that calculates the axpy function from the BLAS library:

> <iostream>
> <funcprog_data.hpp>

template<typename T>
void axpy(T a, math vector<T> consté& x, math vector<T> &y) {
mv(y) = ([] _ DEVICE _ HOST
(T a, T xi, T &yi, size t /*i*/){
yi += a * xi;
1)/ p(a) * mv(x);
}
int main () {
size t const N = 10;
math vector<double> x (N, 2), y(N, 3);
axpy (5., %, y);
std::cout << y[0] << std::endl; // 13
return 0;

}

This program compiles without any modifications for CPU and for CUDA. First, two data vectors
of length 10 (x and y) are created and initialized with initial values. On the CPU, the math vector
class is equivalent to the std::vector class, and for CUDA it is equivalent to the
thrust::device vector class. The mv function turns the math vector into a grid function, and
the p function calls the pure function from the grid expression applicative. The assignment operator
in the axpy function starts a loop over the grid function y, assigning to each of its elements the
corresponding element of the grid expression on the right side of the assignment operator. This loop
for the CPU is parallelized using OpenMP, and for CUDA — using CUDA. All the specifics of this
parallelization are hidden from the application programmer in this assignment operator inside the
library.

7. Conclusion

Declarative programming languages, which include functional languages, allow, in contrast to
imperative languages (such as C++), to concisely and at the same time clearly enough to write down
the desired result without going into implementation details. The specific implementation can be
hidden in the language and depend on the current software and hardware environment. The C++
language turned out to be powerful enough to allow the implementation of a functional programming
library in it, allowing you to write programs in a style close to the style of purely functional
languages such as Haskell. Such concepts from the world of functional programming as functors
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and monads, implemented in the functional programming library, turned out to be a very convenient
tool for transferring numerical problems to CUDA graphics accelerators. Grid expressions were
defined as functors, applicatives, and monads, allowing functions to be applied to the values stored
in them. More information about the C++ language can be found in the sources [10-14].

We are currently using the proposed approach for creating generic code that simulates compressible
multicomponent viscous heat-conducting medium. The program is under testing.
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