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Abstract. Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical tasks. 
However, porting programs to graphics accelerators is not an easy task. Sometimes the transfer of programs to 
such accelerators is carried out by almost completely rewriting them (for example, when using the OpenCL 
technology). This raises the daunting task of maintaining two independent source codes. However, CUDA 
graphics accelerators, thanks to technology developed by NVIDIA, allow you to have a single source code for 
both conventional processors (CPUs) and CUDA. The machine code generated when compiling this single text 
depends on which compiler it is compiled with (the usual one, such as gcc, icc and msvc, or the compiler for 
CUDA, nvcc). However, in this single source code, you need to somehow tell the compiler which parts of this 
code to parallelize on shared memory. For the CPU, this is usually done using OpenMP and special pragmas to 
the compiler. For CUDA, parallelization is done in a completely different way. The use of the functional 
programming library developed by the authors allows you to hide the use of one or another parallelization 
mechanism on shared memory within the library and make the user source code completely independent of the 
computing device used (CPU or CUDA). This article shows how this can be done. 

Keywords: C ++; functional programming library; CUDA; OpenMP; OpenCL; OpenACC 

For citation: Krasnov M.M., Feodoritova O.B. Using the functional programming library for solving numerical 
problems on graphics accelerators with CUDA technology. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 5, 
2021, pp. 167-180. DOI: 10.15514/ISPRAS–2021–33(5)–10  

Использование библиотеки функционального 
программирования для решения численных задач на 

графических ускорителях с технологией CUDA 

1,2М.М. Краснов, ORCID: 0000-0001-7988-6323 <kmm@kiam.ru> 
1О.Б. Феодоритова, ORCID: 0000-0002-2792-9376 <feodor@kiam.ru> 

1Институт прикладной математики им. М.В. Келдыша РАН, 
125047, Москва, Миусская пл., д.4 

2 Московский физико-технический институт, 
141701, Россия, Долгопрудный, Институтский пер., д. 9 

Аннотация. Современные графические ускорители (GPU) позволяют существенно ускорить 
выполнение численных задач. Однако перенос программ на графические ускорители является 
непростой задачей. Иногда перенос программ на такие ускорители осуществляется путём практически 
полного их переписывания (например, при использовании технологии OpenCL). При этом возникает 
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непростая задача поддержки двух независимых исходных кодов. Однако, графические ускорители 
CUDA, благодаря разработанной компанией NVIDIA технологии, позволяют иметь единый исходный 
код как для обычных процессоров (CPU), так и для CUDA. Машинный код, генерируемый при 
компиляции этого единого текста, зависит от того, каким компилятором он компилируется (обычным, 
таким, как gcc, icc и msvc, или компилятором для CUDA, nvcc). Однако, в этом едином исходном коде 
нужно каким-то образом указать компилятору, какие части этого кода нужно распараллеливать на 
общей памяти. Для CPU это обычно делается с помощью OpenMP и специальных прагм компилятору. 
Для CUDA распараллеливание делается совершенно по-другому. Применение разработанной авторами 
библиотеки функционального программирования позволяет скрыть использование того или иного 
механизма распараллеливания на общей памяти внутри библиотеки и сделать пользовательский 
исходный код полностью независимым от используемого вычислительного устройства (CPU или 
CUDA). В настоящей статье показывается, как это можно сделать. 
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1. Introduction 
In recent years, graphics accelerators (GPUs), used as computing devices for numerical calculations, 
have become increasingly widespread. Such accelerators are installed on many computing clusters, 
in particular, in the TOP500 list of the most productive supercomputers from June 2021, in the top 
ten, six use graphics accelerators from NVIDIA [1]. The speed of numerical calculations on such 
accelerators can be many times higher than on a CPU (according to the authors' experience, the 
acceleration can reach 10-20 times). Therefore, the transfer of programs implementing numerical 
methods to graphics accelerators is an extremely urgent task. 
However, porting an existing program to a GPU is not an easy task. Perhaps the ideal option is to 
write the program right away so that it can execute on any computer. In any case, the first question 
that arises is what kind of GPU technology to use? At the moment there are at least three main 
technologies - OpenCL (open standard for heterogeneous systems) [2], OpenACC [3] and CUDA - 
developed by NVIDIA for its graphics accelerators [4]. Each of these technologies has advantages 
and disadvantages. The main advantage of OpenCL is its open standard. A program using OpenCL 
will run on any computing device that supports this standard, including NVIDIA and AMD GPUs, 
Intel Xeon Phi processors with Intel MIC technology, and even conventional CPUs. The main 
disadvantage of this technology is that the source code of the program appears in two copies: for the 
CPU, which is compiled by a regular compiler and is part of the main program, and the text for 
OpenCL is in separate files, and when changing algorithms, you must make changes in both places. 
The advantages and disadvantages of CUDA technology are a mirror image of the disadvantages 
and advantages of OpenCL. CUDA only runs on NVIDIA GPUs. On the other hand, in CUDA we 
have a single source code that is precompiled as a part of the main program (including the code that 
will be executed on the GPU). The main disadvantage of the OpenACC technology is that it is not 
yet widespread enough. Compilers that supports this technology are not installed on all clusters with 
graphics accelerators. 
We choose CUDA technology. Our main argument is that in (our) real life we are faced exclusively 
with devices from NVIDIA. GPUs from AMD and Intel Xeon Phi processors are quite exotic, and 
although we have met them, they are really irrelevant. Therefore, the disadvantages of CUDA is not 
a disadvantage for us, but its advantages remains. 
The next problem is that parallelization on shared memory on the CPU and on CUDA is done in 
completely different ways. If we want to get a single text that should be compiled for both CPU and 
CUDA, then in those places where parallelization should be, we will have to write different code 
(for example, using the #ifdef construction), which is inconvenient. Then the idea arose to use a 
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library of functional programming for the C++ language previously written by one of the authors of 
the article [5]. When using this library, all the specifics of the computing device (CPU or CUDA) 
can be placed inside the library, and the user source code will remain platform independent. 
This article consists of three main parts: a short introduction to functional programming (as long as 
needed to understand the rest of the text), a short description of the funcprog functional programming 
library, and a description of the use of this library for solving numerical problems. A short working 
example is also given. 

2. A brief introduction to functional programming 
In functional programming, the central object is (as the name suggests) a function. Functions are full 
participants in the computational process, the same as numbers are in ordinary calculations. This 
means that a function can be passed as a parameter to another function and can be returned as a 
result of a function. A function can be calculated, just as a number can be calculated in normal 
calculations. A simple example is a composition of two one-place functions, which returns a new 
one-place function that calls both functions in sequence. In specialized functional programming 
languages (such as Haskell), such capabilities are built into the language, while the implementation 
of function composition in C++ is a non-trivial task that requires special tweaks. Examples will be 
given in the Haskell language, since this language allows you to write many things as concisely and 
at the same time clearly. 
Functional programming has a number of features compared to imperative programming that can be 
summarized in several principles. The first and main mandatory principle, already mentioned above, 
is that a function is a full-fledged participant in the computational process and can be either passed 
as a parameter or returned as a result of a function. Among others we can mention function purity, 
immutable variables and lazy calculations. Let us shortly describe some other principles (important 
for our discussion). 
Currying. Named after the American mathematician and logician Haskell Curry (the programming 
language Haskell is also named after him). The principle of currying is that if the parameters of a 
function are not fully specified, an error does not occur, but instead a function is generated with a 
smaller number of parameters (equal to the number of missing parameters). It is implemented in 
many modern functional programming languages (in particular, in the Haskell language). Currying 
allows a function with multiple arguments to be treated as a collection of functions with one 
argument. 
η-reduction (eta reduction, or η-transformation). Suppose we want to write a function with one 
parameter, a list of numbers, that returns a list of the sines of these numbers. The text of this function 
in Haskell is obvious: 

mapsin lst = map sin lst 

It follows from the currying principle that if we omit the second parameter when calling the map 
sin lst function, that is, we write just map sin, then we will get a function with one parameter 
that takes a list of numbers as this parameter and returns a list of sines of these numbers, that is, in 
fact mapsin function. That is, mapsin is equivalent to map sin. The principle of η-reduction 
says that in such cases, the last parameter (one or more) in the function definition can be omitted. 
The definition of the mapsin function can be written shorter: mapsin = map sin. 
Functions composition. Function composition is so important in functional programming that 
Haskell makes it as simple as possible. Usually, one considers the composition of one-place 
functions (let's call them f and g), in Haskell it is written like this: 

(f . g) x = f (g x) 
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3. Functors, Applicatives, and Monads 
Functors. Suppose we have some container that stores a number of values, for example, a list or an 
object or the Maybe class. Now let us set the task: apply a regular one-place function (for example, 
sin) to the values in the container. You know how to do this with lists – use the map function. 
However, how do you do this with the Maybe type, and in general, how do you do it with data in an 
arbitrary container? The universal approach is to entrust this responsible business to the container 
itself. For this, Haskell defines a special Functor class, in which the fmap function is declared: 

class Functor f where 
  fmap :: (a -> b) -> f a -> f b 
  (<$>) = fmap 

The operator <$> is an infix synonym of the fmap function. This is a statement for applying a 
function to a functor. It is similar to the operator for applying a function to an ordinary value ($). 
The fmap function prototype can be written in another equivalent form (this follows from the right-
associativity of the right arrow): 

fmap :: (a -> b) -> (f a -> f b) 

Thus, fmap can be thought of as a one-parameter function that takes a function that takes and returns 
normal values, and converts it into a function that takes and returns functors. Any data type can be 
declared a functor by implementing an instance of the Functor class and the fmap function for 
it. Any functor implementation must satisfy two functor laws: 

1. fmap id = id                   -- 1st law 
2. fmap (g . f) = fmap g . fmap f -- 2nd law 

Here id is a function that returns its argument: id x = x. The first law says that applying the id 
function to a functor should not change the functor, just as applying this function to an ordinary 
value does not change it. The second law is the distribution law of the functor operation with respect 
to the composition of functions. 
Applicatives. If the task is to apply a function with two arguments to two containers (for example, 
to sum two lists), then the functionality of the Functor class will not be enough. To solve this 
problem, another class is intended – an applicative functor (applicative). Here is the definition of the 
Applicative class: 

class Functor f => Applicative f where 
  pure  :: a->f a 
  (<*>) :: f (a -> b) -> f a -> f b 
  liftA2 :: (a->b->c)->f a->f b->f c 
  liftA2 f x y = f <$> x <*> y 

Thus, in each applicative, two main operations must be implemented: the pure function, which puts 
an ordinary value in the «pure» applicative, and the operator (<*>), which takes the function placed 
in the applicative as the first parameter, and the value, placed in the same applicative, as the second 
parameter and returning the result in the same applicative. 
If we look at the prototype and implementation of the liftA2 function, we can see that it passes a 
function with two parameters to the operator (<$>), which takes a function with one parameter. 
However, there is no contradiction here, since we can write a function with the prototype a->b->c 
as follows: a->(b->c), that is, as a function with one parameter that returns a function. Then the 
operator (<$>) will just return to us the function b->c, placed in the functor, which is then passed 
to the operator (<*>). By analogy with the fmap function, we can write the prototype of the liftA2 
function like this: 
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liftA2 :: (a->b->c)->(f a->f b->f c) 

that is, think of it as a function with one argument, taking a function that works with ordinary values 
and returns a function that works with functors, «lifting» a function with two arguments (hence its 
name) into the applicative. By analogy with the liftA2 function, you can write a function that 
«lifts» a function with three (and any other number) arguments into the applicative: 

liftA3 :: Applicative f => 
  (a->b->c->d)->f a->f b->f c->f d 
liftA3 f x y z = f <$> x <*> y <*> z 

Any implementation of the applicative must satisfy the applicative laws: 

pure id <*> v = v               -- Identity 
pure f <*> pure x = pure (f x)  -- Homomorphism 
u <*> pure y = pure ($ y) <*> u -- Interchange 
-- Composition: 
pure (.) <*> u <*> v <*> x = u <*> (v <*> x) 

Monads. Let's write the «safe» functions safe_sqrt and safe_log: 

safe_sqrt :: (Ord a, Floating a) => a -> Maybe a 
safe_sqrt x=if x<0 then Nothing else Just(sqrt x) 
safe_log :: (Ord a, Floating a) => a -> Maybe a 
safe_log x=if x<=0 then Nothing else Just(log x) 

These functions return the result of Maybe data type, which has two constructors, Nothing with 
no arguments and Just with exactly one argument. Returning Nothing means an error condition 
(the function's argument is out the scope of its definition) and Just – normal result. Now suppose 
we want to calculate the square root of the logarithm of a number. For both operations, we have 
«safe» functions. How do we now apply the safe_sqrt function to the result of the safe_log 
function? The functionality of functor and applicative is not enough for this. Monads serve this 
purpose. Monads can be viewed as a further continuation of the applicative; they are intended for 
building chains of monad calculations. Each monad has two main functions: mreturn (return 
in Haskell) and mbind (operator >>= in Haskell). The mreturn function is similar to the pure 
function for applicatives (in fact, for most monads, mreturn is defined as pure), and the mbind 
operation has the following definition: 

(>>=) :: (Monad m) -> m a -> (a -> m b) -> m b 

It takes as parameters a monad and a function that takes an ordinary (non-monad) value and returns 
a monad value (possibly of a different type, but in the same monad). We will call such functions 
monadic. The safe_log and safe_sqrt functions are examples of monadic functions. 

The mreturn and mbind functions must obey three monad laws. In order to formulate them, we 
introduce the operation of monad composition (mcompose or the operator >=> («fish» operator) 
in the Haskell language). It is defined as follows: 

  (>=>) :: f >=> g = \x -> (f x >>= g) 

Both operands of a monad composition and its result are monadic functions. Consequently, monadic 
composition can be viewed as a group operation in the space of such functions. In terms of this group 
operation, monad laws are formulated as follows: 

1. mreturn >=> f == f 
2. f >=> mreturn == f 
3. (f >=> g) >=> h == f >=> (g >=> h) 
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In other words, the mreturn and mbind functions must be defined so that, firstly, the mreturn 
function is the unit element (left and right) of the monad composition (the first two laws), and, 
secondly, the monad composition must be associative (the third law). Now the square root of the 
logarithm can be calculated like this: 

safe_log   5  >>= safe_sqrt -- Just 1.26863624 
safe_log (-5) >>= safe_sqrt -- Nothing 
safe_log 0.5  >>= safe_sqrt -- Nothing 

If an error occurs somewhere in the chain of calculations, then a quick exit from the entire chain 
occurs, the rest of the functions are not actually calculated. Keep in mind that the Maybe data type 
is declared as a functor, an applicative and a monad. 

4. Functional programming library 

4.1 General description of the library 
When implementing the functional programming library for the C++ language named funcprog, the 
task was to write a library with which one could write in C++ in a style close to the style of the 
Haskell language. 
The important question is what is a function in terms of this library? In the original version of the 
library, a function was understood as an object of the std::function class. This option does not 
suit us now, since we want the function to be executed on a graphics accelerator, and an object of 
the std::function class can be executed only on the CPU (in particular, because its 
implementation uses virtual functions that are not portable to the GPU). It cannot be an ordinary 
function either, since it (its address) cannot be passed as a parameter from the CPU to CUDA. It was 
decided to consider any functional object (having a functional operator ()) as a function, in particular, 
it can be a C++ lambda expression. However, in order for this object to be passed to CUDA, this 
functional operator must be marked with the __device__ keyword. The disadvantage of this 
approach is that the metadata of the function includes not only its prototype (parameter types and 
return value), but also the implementation (object class) – this is the price for the possibility of 
porting to CUDA. This is how the function is implemented: 

template<typename FuncType, typename FuncImpl> struct function2; 
 
template<typename Ret, typename... Args, typename FuncImpl> 
struct function2<Ret(Args...), FuncImpl> { 
  using result_type = Ret; 
  function2(FuncImpl const& impl) : impl(impl){} 
  result_type operator()(Args... args) const 
  { return impl(args...); } 
private: FuncImpl const impl;2 
}; 

You can see that, unlike the std::function class, two template parameters are passed to the 
function2 class. To simplify the work with such functions, there is a helper function _ 
(underscore). Here's how it is defined: 

template<typename FuncImpl, typename Ret, 
  typename... Args> 
struct function2_type_ { 
  using type = function2<Ret(Args...), FuncImpl>; 
}; 
 
template<class F>  // Common case for functors & lambdas 



Краснов М.М., Феодоритова О.Б. Использование библиотеки функционального программирования для решения численных задач 
на графических ускорителях с технологией CUDA. Труды ИСП РАН, том 33, вып. 5, 2021 г., стр. 167-180 

173 

struct function2_type : function2_type<decltype(&F::operator())>{}; 
 
template<class Cls,typename Ret,typename... Args> 
struct function2_type<Ret(Cls::*)(Args...)> : 
  function2_type_<Cls, Ret, Args...>{}; 
 
template<class Cls,typename Ret,typename... Args> 
struct function2_type<Ret(Cls::*)(Args...) const> 
  : function2_type_<Cls, Ret, Args...>{}; 
 
template<typename F> 
using function2_type_t = 
  typename function2_type<F>::type; 
 
template<typename F> 
function2_type_t<F> _(F f){ return f; } 

Let's give a short example of working with this library: 

double d=(_([](double x){ return x*x; }) & 
_([](double x){ return x+1; }))(5); //36 

In this example, we create two functions (using the _ function), compose them (using the & 
operator), and call the resulting composite function with the parameter 5. As a result, we get the 
number 36. 
The funcprog library implements function currying quite fully. To do this, the library implements 
an operator for applying an argument to a function using the left shift operator <<. This creates a 
new function with one less parameter. In particular, if the original function had a single parameter, 
then a function with no parameters will be created. 

4.2 Implementation of functors, applicatives and monads 
The implementation of functors, applicatives and monads in the funcprog library is somewhat 
similar to the implementation of these concepts in the Haskell language. Any class can be declared 
as a functor, an applicative, or a monad. For this, it is enough to implement the specialization of 
classes Functor, Applicative and Monad, respectively, for this class. No changes are required 
to the class itself. 
Any functor or monad is a type with one parameter. In C++, parameterized types are implemented 
using class templates. Let us look at the definition of a functor using the Maybe class as an example. 
It is defined like this: 

template<typename A> struct Maybe; 

A class template is not a type and cannot be passed as a parameter to a template of another class. 
Therefore, another class (without a template) is defined with the name _Maybe (with an underscore 
in front). This is a real class, it can be passed as a template parameter: 

struct _Maybe {}; 

The Maybe class template inherits from this class: 

template<typename A> 
struct Maybe : std::optional<A>, _Maybe, { 
  ... 
}; 

Krasnov M.M., Feodoritova O.B. Using the functional programming library for solving numerical problems on graphics accelerators with 
CUDA technology. Trudy ISP RAN/Proc. ISP RAS, vol. 33, issue 5, 2021, pp. 167-180 

174 

The specializations of the Functor, Applicative and Monad classes are written for this 
_Maybe class: 

template<> struct Functor<_Maybe>{ 
  ... 
}; 

Inside the specialization of the Functor class, you need to define a static function fmap. The 
specializations of the Applicative and Monad classes are defined similarly. For the applicative, 
the methods are called pure and apply, and for the monad their names are mreturn and mbind. 
When implementing static methods of these classes, one should not forget about the functor, 
applicative and monad laws. 
Note also that the funcprog library uses the division operator as a functor operator (fmap), and 
multiplication as an applicative operator (apply). 

5. Using the library for numerical methods 
When solving numerical problems (for example, problems of gas dynamics or heat conduction), a 
certain grid (regular or, more often, irregular) is constructed in the region to be solved. On some 
elements of this grid (for example, nodes or cells), a so-called grid function is created, in which 
some physical quantities in grid elements are stored. As a rule, there are two grid functions – at the 
previous time step and at the current one. The main cycle of the program runs over time; at each 
time step, the values at the current step are calculated based on the values at the previous step. This 
cycle is always performed sequentially. At the end of a step, the computed new values are copied 
from the grid function for the current step to the grid function for the previous step (sometimes these 
grid functions are simply swapped). Inside the body of the main loop, there is a loop (one or more) 
over the grid function, in which new values of physical variables are calculated for each value of the 
grid function index. If the method is explicit (in which the new values of the physical variables 
depend only on the old ones and do not depend on new values in the neighboring grid elements), 
then the values in different grid elements can be calculated independently of each other, in particular, 
these calculations can be carried out in parallel. Thus, inner loops can (and should) be parallelized 
on shared memory. When calculating on a CPU, parallelization of loops is done, as a rule, using 
OpenMP. When calculating on CUDA, the parallelization methods are different from OpenMP. To 
hide the parallelization method from the applied mathematician who implements the numerical 
method, it is proposed to use the funcprog functional programming library as described below. 

5.1 Grid Expressions and Grid Functions 
Let us introduce the concept of a grid expression. This is an object defined on all grid elements, that 
is, for any object that is a grid expression, you can find out what its value is for any grid index. A 
special case of a grid expression is a grid function, which simply stores its values in memory and 
returns them, if necessary. For grid expressions, a template is defined for the grid_expression 
class, from which all grid expression classes must inherit (in particular, the grid_function class 
also inherits from the grid_expression class). Thus, the phrase «an object is a grid expression» 
means that the class of this object is inherited from the grid_expression class. This inheritance 
uses the Curiously Recurring Template Pattern (CRTP) [6], in which the final class is passed to the 
base class as a template parameter. You can read about this pattern and other metaprogramming 
methods in books [7,8]. You can also read about expression templates in [9]. 
Any grid expression can be assigned to a grid function. This assignment operator iterates over all 
the indices of the grid function to which the grid expression is assigned. For each index it queries 
the grid expression for its value and assigns this value to the grid function at the given index. This 
assignment operator implies that values for different indices can be computed independently of each 
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other, and therefore can be computed in parallel. It is in this assignment operator that the very inner 
loop over the elements of the grid function is executed. This assignment operator, depending on 
which compiler the program is compiled with, chooses the method of parallelization of this loop. If 
it is a compiler for CUDA (the preprocessor variable __CUDACC__ is defined), then parallelization 
is carried out using CUDA, otherwise – using OpenMP. Thus, the parallelization method is hidden 
from the application programmer inside this assignment operator. Let us show how this assignment 
operator is implemented for the CPU: 

template<class GEXP> 
void operator=(grid_expression(GEXP, typename GEXP::proxy_type) const& 
gexp0){ 
  GEXP const& gexp = gexp0(); 
#pragma omp parallel for 
  for(size_t i = 0; i < size(); ++i) 
    (*this)[i] = gexp[i]; 
} 

There is one more aspect to mention when talking about grid functions. A GPU can work only with 
its own memory, which means that when working on a GPU, the grid function must request memory 
for its data in the CUDA memory. There are no problems with this either. Grid functions are 
designed in such a way that, when compiled on CUDA, they request memory in CUDA, otherwise, 
in CPU memory. 

5.2 Proxy objects 
The grid_expression class template is defined as follows: 

1. template<class E, class _Proxy = E> 
2. struct grid_expression; 

Here E is the final class and _Proxy is the proxy class. By default (if not specified), the proxy class 
is the same as the final class. It is needed to create a copy of an object. The only way to transfer 
parameters from the main processor memory to the CUDA memory is by value transfer (that is, a 
copy of the parameter is made). Transfer by address and reference is not possible. Only variables of 
simple types (numbers and pointers) and class objects containing only simple types can be passed 
by value. In addition, these objects must not contain virtual methods, and the methods called on 
them must be accessible from CUDA. Not all objects meet all these requirements. If such an object 
still needs to be transferred from the CPU to CUDA, then a proxy object can be created for it that 
meets the listed requirements and stores all the basic data from the main object. There is another 
reason why it is not always possible to store references and pointers to objects, even on the CPU. 
The fact is that in complex expressions temporary unnamed variables may appear that do not have 
permanent memory, and references and pointers to which cannot be saved. Such objects must be 
copied. You cannot always copy objects either, since there are «large» objects (for example, data 
vectors) that, when copied, make a copy of this data. The general rule is as follows. If the object is 
«small» and does not have virtual methods, then it can be copied, and the proxy class is not needed, 
otherwise such a class is needed. 

5.3 Grid Expressions as Functors, Applicatives, and Monads 
Grid expressions can be thought of as containers (this is especially true for grid functions). In 
funcprog library, the containers (e.g. lists and the Maybe class) are functors, applicatives, and 
monads. This makes it possible to apply ordinary functions to the values stored in them (a property 
of a functor). We will also make the grid expression a functor, applicative, and monad so that 
functions can be applied to grid expressions as well. To understand how this can be done, consider 
a typical loop that calculates the new value of the grid function from the old one: 
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for(size_t i = 0; i < N; ++i) 
  f_new[i] = calculate(f_old[i]); 

Here calculate is a function that calculates a new value in a cell from the old one. The old value 
in the cell is passed to it as a parameter. In the new approach, we want to be able to write in this 
case: 

f_new = _(calculate) / f_old; 

If the calculations require several more grid functions (let's call them f2 and f3), then instead of 

for(size_t i = 0; i < N; ++i) 
  f_new[i] = calculate(f_old[i], f2[i], f3[i]); 

we can write: 

f_new = _(calculate) / f_old * f2 * f3; 

that is, we applied the functor property for the first grid function, and the applicative for the 
subsequent ones. If we want to pass to the function some additional constant value (independent of 
the loop index), then we could write instead of: 

for(size_t i = 0; i < N; ++i) 
  f_new[i] = calculate(f_old[i], some_value); 

something like: 

f_new = _(calculate) / f_old * pure(some_value); 

Thus, the result of applying a function to a grid expression (or to several grid expressions in the case 
of an applicative) must also be a grid expression, that is, it can be queried for a value by index (the 
[] operator must be implemented). Grid expressions, in addition to grid functions, are also the 
results of applying functions to grid expressions as to functors and applicatives. In addition, the sum 
and difference of two grid expressions, and the product and quotient of the grid expression and 
numbers, are also grid expressions. 
Now let f be the function to be applied and gexp the grid expression. 
Functor. For a functor, we give the following definition (in pseudo-Haskell): 

(fmap f gexp)[i] = f gexp[i] 

Theorem 1 (on the functor). The fmap function defined above is functorial. 
Proof. Let us rewrite the first functor law completely (without η-reduction) 

fmap id gexp = id gexp 

or (by the definition of the id function): 

fmap id gexp = gexp 

Further, 

(fmap id gexp)[i] = -- defenition of fmap 
  id gexp[i] =      -- definition of id 
  gexp[i] 

that is, indeed, fmap id gexp = gexp. The first law is proven. Let us rewrite the second functor 
law without η-reduction: 

fmap (g . f) gexp = (fmap g . fmap f) gexp 
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Then 

(fmap (g . f) gexp)[i] = -- definition of fmap 
  (g . f) gexp[i] = -- definition of function composition 
  g (f gexp[i]) 

On the other side: 

((fmap g . fmap f) gexp)[i] = -- definition of function composition 
  (fmap g (fmap f gexp))[i] = -- def. of fmap 
  g (fmap f gexp)[i] =        -- def. of fmap 
  g (f gexp[i]) 

That is, indeed, 

fmap (g . f) gexp = (fmap g . fmap f) gexp 

The theorem is proved. The definition of the Functor is correct. □ 
Applicative. The pure function takes on some value and «brings» it into the applicative. In our 
case, makes a grid expression out of it. Let us define its operator [] so that it returns the same value 
for any index: 

(pure val)[i] = val 

The apply function (an analogue of the operator <*> in Haskell and the operator * in the funcprog 
library) in our case accepts two grid expressions: the first (let us call it gexp_f) returns functions, 
and the second (let's call it gexp) – some values (parameters of these functions). We define the grid 
expression of the apply function as follows: 

(apply gexp_f gexp)[i] = gexp_f[i] gexp[i] 

Theorem 2 (on the applicative). The pure and apply functions defined above satisfy applicative 
laws. 
Proof. Let us rewrite the applicative laws using the apply function: 

apply (pure id) eobj = eobj          -- Identity 
apply (pure f) (pure x) = pure (f x) -- Homomorphism 
apply u (pure y) = apply (pure ($ y)) u -- Interchange 
apply (apply (apply (pure (.)) u) v) x = apply u (apply v x) -- 
Composition 

The first law (Identity): 

(apply (pure id) eobj)[i] = -- def of apply 
  (pure id)[i] eobj[i] =    -- def of pure 
  id eobj[i] =              -- def of id 
  eobj[i] 

i.e. apply (pure id) eobj = eobj. The first law is proved. The second (Homomorphism): 

(apply (pure f) (pure x))[i] = -- def of apply 
  (pure f)[i] (pure x)[i] =    -- def of pure (2 times) 
  f x 

On the other side: 

(pure (f x))[i] = -- definition of pure 
  f x 
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The second law is proved. The third law (Interchange): 

(apply u (pure y))[i] = -- definition of apply 
  u[i] (pure y)[i] =    -- definition of pure 
  u[i] y 

On the other side: 

(apply (pure ($ y)) u)[i] = -- def of apply 
  (pure ($ y))[i] u[i] =    -- def of pure 
  ($ y) u[i] =              -- def of function application 
  u[i] y 

The third law is proved. The forth law (Composition): 

(apply (apply (apply (pure (.)) u) v) x)[i] = -- definition of apply 
  (apply (apply (pure (.)) u) v)[i] x[i] = -- definitiono apply 
  (apply (pure (.)) u)[i] v[i] x[i] = -- definition of apply 
  (pure (.))[i] u[i] v[i] x[i] = -- def of pure 
  (.) u[i] v[i] x[i] = -- rewrite function composition in infix form 
  (u[i] . v[i]) x[i] = -- definition of function composition 
  u[i] (v[i] x[i]) 

On the other side: 

(apply u (apply v x))[i] = -- def of apply 
  u[i] (apply v x)[i] =    -- def of apply 
  u[i] (v[i] x[i]) 

The forth law is proved. The theorem is proved. The definition of the Applicative is correct. □ 
Monad. The monad function mreturn is defined in the same way as the pure function: 

(mreturn val)[i] = val 

The monad function mbind takes a monad and a function that takes an ordinary (non-monad) value 
and returns a monad. Let us define the mbind function for grid expressions as follows: 

(mbind gexp f)[i] = (f gexp[i])[i] 

Theorem 3 (on the monad). The mreturn and mbind functions defined above obey monadic laws. 
Proof. Let us rewrite the monad laws in terms of the mreturn and mbind functions: 

1. mbind (mreturn x) f = f x 
2. mbind eobj mreturn = eobj 
3. mbind (mbind eobj f) g = 
  mbind eobj (\x -> mbind (f x) g) 

The first law: 

(mbind (mreturn x) f)[i] = -- def of mbind 
  (f (mreturn x)[i])[i] =  -- def of mreturn 
  (f x)[i] 

The first law is proved. The second law: 

(mbind eobj mreturn)[i] = -- def of mbind 
  (mreturn eobj[i])[i] =  -- def of mreturn 
  eobj[i] 

The second law is proved. The third law: 
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(mbind (mbind eobj f) g)[i] = -- def of mbind 
  (g (mbind eobj f)[i])[i] =  -- def of mbind 
  (g (f eobj[i])[i])[i] 

On the other side: 

(mbind eobj (\x -> mbind (f x) g))[i] = -- definition of mbind 
  ((\x -> mbind (f x) g) eobj[i])[i] = -- beta-reduction, substitute 
eobj[i] instead of x 
  (mbind (f eobj[i]) g)[i] = -- def of mbind 
  (g (f eobj[i])[i])[i] 

The result is the same. The third law is proved. The theorem is proved. The definition of the Monad 
is correct. □ 

5.4 Grid Expressions as Functors, Applicatives, and Monads 
Here is an example program that calculates the axpy function from the BLAS library: 

#include <iostream> 
#include <funcprog_data.hpp> 
 
template<typename T> 
void axpy(T a, math_vector<T> const& x, math_vector<T> &y){ 
  mv(y) = _([] __DEVICE __HOST 
    (T a, T xi, T &yi, size_t /*i*/){ 
    yi += a * xi; 
  }) / p(a) * mv(x); 
} 
int main(){ 
  size_t const N = 10; 
  math_vector<double> x(N, 2), y(N, 3); 
  axpy(5., x, y); 
  std::cout << y[0] << std::endl; // 13 
  return 0; 
} 

This program compiles without any modifications for CPU and for CUDA. First, two data vectors 
of length 10 (x and y) are created and initialized with initial values. On the CPU, the math_vector 
class is equivalent to the std::vector class, and for CUDA it is equivalent to the 
thrust::device_vector class. The mv function turns the math_vector into a grid function, and 
the p function calls the pure function from the grid expression applicative. The assignment operator 
in the axpy function starts a loop over the grid function y, assigning to each of its elements the 
corresponding element of the grid expression on the right side of the assignment operator. This loop 
for the CPU is parallelized using OpenMP, and for CUDA – using CUDA. All the specifics of this 
parallelization are hidden from the application programmer in this assignment operator inside the 
library. 

7. Conclusion 
Declarative programming languages, which include functional languages, allow, in contrast to 
imperative languages (such as C++), to concisely and at the same time clearly enough to write down 
the desired result without going into implementation details. The specific implementation can be 
hidden in the language and depend on the current software and hardware environment. The C++ 
language turned out to be powerful enough to allow the implementation of a functional programming 
library in it, allowing you to write programs in a style close to the style of purely functional 
languages such as Haskell. Such concepts from the world of functional programming as functors 
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and monads, implemented in the functional programming library, turned out to be a very convenient 
tool for transferring numerical problems to CUDA graphics accelerators. Grid expressions were 
defined as functors, applicatives, and monads, allowing functions to be applied to the values stored 
in them. More information about the C++ language can be found in the sources [10-14]. 
We are currently using the proposed approach for creating generic code that simulates compressible 
multicomponent viscous heat-conducting medium. The program is under testing. 
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