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Abstract. Software model checkers enable automatic detection of violations of specified requirements in 
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capabilities as well as restrictions that prevent their large-scale usage on practice. 
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Аннотация. Инструменты верификации моделей программ позволяют автоматически искать 
нарушения специфицированных требований в программах, а также доказывать их корректность 
формально при выполнении определенных условий. Данные инструменты развивались достаточно 
активно два последних десятилетия. За это время они были успешно использованы в ходе верификации 
нескольких промышленных проектов, в первую очередь ядра и драйверов различных операционных 
систем. Данная статья рассматривает интерфейс инструментов верификации моделей программ, их 
уникальные возможности, а также ограничения, которые затрудняют их широкомасштабное 
практическое применение. 
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1. Introduction 

Software model checking helps to find violations of specified requirements in programs non-
interactively and prove program correctness formally under certain assumptions. These capabilities 
are highly demanded by the industry since conventional quality assurance approaches either fail to 
reveal all faults in programs under verification [1] or their usage needs enormous efforts [2, 3]. 
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Developers of software model checkers (they will be also called verification tools below) have been 
forming an active community since the appearance of first such tools at the beginning of the century. 
One of the most important steps in this direction was the organization of a series of annual 
competitions on software verification (SV-COMP). The first competition in 2012 attracted about a 
dozen of developer teams from leading universities and research centers from all over the world [4]. 
Since then, the number of participants has been growing steadily and already 27 teams participated 
in SV-COMP 2021 [5]. 

Fig. 1. Verification tool interface and basic workflow 

Fig. 1 illustrates an interface and a basic workflow of a verification tool. The interface is specified 
in detail in SV-COMP rules [6]. Though, it changes from year to year but highly likely most major 
decisions have been done already. The verification tool gets as an input a so-called verification task 
that consists of a program representation, e.g. files with program sources or LLVM bitcode, and a 
properties specification. The former is based on the source code of the target program and the latter 
allows to specify requirements to check. The verification tool builds a program model on the base 
of the program representation and checks it against the properties specification. This is performed 
fully automatically. 
As a result the verification tool provides a verdict that answers the following question: «Does the 
program satisfy the specification?» In case of successful verification, it also outputs a witness in 
addition to the verdict. Witnesses are machine-readable files containing parts of formal evidences 
that can be validated automatically or studied manually to confirm or to reject verification results. 
If the verification tool cannot provide a definite answer, say, because it depletes allotted 
computational resources such as CPU time or memory, then it gets terminated and the verdict is set 
to unknown. 
Following sections consider particular aspects of the verification tool interface, capabilities and 
restrictions of verification tools as well as extra features required for application of them to industrial 
programs. 

2. Supported Programs 
Verification tools support verification of software developed in various programming languages. 
This paper considers verification of C programs exclusively since they are quite widespread among 
industrial programs requiring a very high level of quality. 
According to SV-COMP rules a verification task should contain a single C source file. This file 
should be prepared in advance so that verification tools can take it as input without any additional 
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processing. Since industrial programs usually contain many source files, users should preprocess 
and merge them beforehand. Most programs interact with their environment including users, 
libraries, other programs, hardware and so on. This interaction should be incorporated into the C 
source file of the verification task since verification tools operate non-interactively, they do not 
communicate to program environments and they dislike undefined behavior. SV-COMP rules do not 
consider how this can be achieved. This topic will be considered further in Section 6. 
Programs developed in GNU C constitute the lion share of the SV-COMP benchmark suite with the 
combined size of approximately 100 MLOC of preprocessed code. Thus, many verification tools 
that participate in SV-COMP have a high-quality support for GNU C programs, though some 
specific extensions, e.g. attributes, can be unsupported. Support for other compiler extensions 
depends on used front-ends primarily. 
On average verification tasks are 3 KLOC in size. That's why users can hardly expect that they will 
be able to use verification tools out of the box for industrial programs that contain hundreds and 
thousands of KLOC. The SV-COMP community does not provide users with ideas and auxiliary 
tools to tackle the given issue. In following sections performance and scalability of verification tools 
will be considered in more details. 
Many industrial C programs use various parallel programming means. This paper treats just 
multithreading. Accurate verification of multithreaded programs is a much harder task in comparison 
with verification of sequential programs. Later a special attention will be paid to the given issue. 

3. Supported Requirements 

This paper focuses on verification of programs against non-functional requirements which violations 
can result in critical failures like denial of service, privilege escalation and data breaches1. For 
instance, it is vital to detect such common weaknesses of C programs as buffer overflows and null 
pointer dereferences. Other examples of non-functional requirements are rules of correct usage of 
an API, which are also often violated and which violations can be rather harmful [7]. 
Table 1. Formulas describing properties supported by verification tools 

Property Formula 

Unreachability CHECK( init(main()), LTL(G ! call(reach_error())) ) 

Memory Safety CHECK( init(main()), LTL(G valid-free) ) 
CHECK( init(main()), LTL(G valid-deref) ) 

CHECK( init(main()), LTL(G valid-memtrack) ) 
CHECK( init(main()), LTL(G valid-memcleanup) ) 

Overflow CHECK( init(main()), LTL(G ! overflow) ) 

Termination CHECK( init(main()), LTL(F end) ) 

Verification tools can check programs against safety and liveness properties. SV-COMP defines a 
common format for specifications of such properties in the form of linear temporal logic (LTL) 
formulas. Table 1 presents currently supported properties and corresponding formulas. Here 
init(main()) represents a program entry point assuming calling function main() without parameters. 
LTL operator G f means that formula f holds in every state of the program, so, for example, 
G ! overflow means that integer overflow should never happen, and G ! call(reach_error ()) means 
that the error function should not be ever called (otherwise, there may be faults in checked 
programs). If unclear, semantics of other properties and formulas can be clarified using SV-COMP 
rules. 

                                                           
1 For thorough checking of program functionality other methods, such as deductive verification, suit better. 
Similarly, for detecting non-critical non-functional requirements, e.g. coding style violations, there are other 
good methods and tools. 
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The SV-COMP community does not suggest any widely accepted means for checking those 
requirements that do not correspond explicitly to one of the supported properties. Users can either 
leverage specific capabilities provided by some verification tools, e.g. for finding data races [8], or 
weave an additional source code into a program either manually or automatically to express 
requirements using one of the supported properties. For instance, rules of correct usage of a 
particular API can be formulated as unreachability of the error function like in Fig. 2 and Fig. 3. 

/* Device driver can register just 
   one device at a time. */ 
int register_device(void) { 
    ...; 
} 
 
/* Device driver can unregister device 
   just after it registers it. */ 
void unregister_device(void) { 
    ...; 
} 

Fig. 2. Original program 

bool is_device_registered = false; 
 
int register_device(void) { 
    if (is_device_registered) 
        reach_error(); 
    is_devi)ice_registered = true; 
    ...; 
} 
 
void unregister_device(void) { 
    if (!is_device_registered) 
        reach_error(); 
    is_device_registered = false; 
    ...; 
} 

Fig. 3. Woven in program 

If one expresses weakly related requirements using the same property, it is possible to check them 
simultaneously, but this is not recommended due to the following issues. The first reason for this is 
that verification tools may build and check substantially different models. It is not an easy task how 
to distribute available computational resources between these models when they are complex 
enough. The second reason is that most verification tools stop after they find a first violation of a 
checked property. So, detecting a first fault or a false alarm can prevent finding other faults. Overall, 
it may be better to check different requirements independently. 
Verification tools can hardly check large and complicated parallel programs. Hopefully, for 
checking most of requirements it is not necessary to consider all possible interleavings of threads2. 
There are different approaches how to serialize parallel programs. Section 6 presents some related 
ideas. 

4. Verification Accuracy 
Verification tools tend to construct program models in a sound way that keeps all errors existing in 
the source code under verification. However, as a rule they make some assumptions either implicitly 
or explicitly according to specified configuration options to significantly raise their efficiency. For 
                                                           
2 Here it is assumed that the target program does not have any concurrency issues. 
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example, many verification tools can treat undefined functions, e.g. library functions, as functions 
without side effects returning any value corresponding to their return types. Often this does not affect 
verification results3, but sometimes this is not the case, e.g. when undefined functions allocate and 
initialize memory referred later. Most verification tools do not support the inline assembler. 
Verification tools implementing bounded model checking unroll loops just to a given number of 
iterations. 
All these assumptions can result in both missing faults and false alarms. Fortunately, verification 
tools can report possible verification inaccuracies while users can change corresponding 
configuration options and provide models to bypass these issues at least to some extent. 

5. Performance and Scalability 
Comprehensive verification is an extremely complicated problem. Usually, it is difficult to predict 
computational resources necessary for it since an outcome depends on many factors such as code 
complexity, requirements being checked, verification algorithms, solvers and so on. 
SV-COMP rules specify the following limits for each verification task: 15 minutes of CPU time and 
15 GB of RAM. Most successful tools can cope with programs of several dozens of KLOC in size 
within these limits but not always. Significant increase of complexity of source code parts relevant 
to checked requirements almost always results in an enormous growth of required computational 
resources and inability to proceed with the same verification scope and precision. This is 
demonstrated by three quantile plots in Fig. 4. These plots show how many verification tasks can be 
solved using an appropriate amount of CPU time. One can see that verification tools operate 
differently but none of them can solve all verification tasks within the specified time limit. 

Fig. 4. Statistics for winners of SV-COMP'20 in the «Software Systems» category 

Verification tools often implement algorithms sequentially because there is a considerable overhead 
to share complicated internal data structures. A few tools can use multi-core CPUs or distributed 
computing and there are several tools that employ GPUs. To substantially speed up solution of many 
independent verification tasks, verification tools are executed in parallel at IaaS or PaaS clouds and 
clusters. You can find more information about this in the appropriate survey [9]. 

6. Environment Modeling and Checking Program Fragments 
Libraries, user inputs, other programs, etc. constitute an environment that can influence a program 
execution. To verify the program, it is necessary to provide a model which represents certain 
assumptions about the environment: 

                                                           
3 Indeed, programs should carefully inspect return values of called functions if so since often they can 
represent error codes. 
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 The environment model should invoke a program API in a way the environment can do. 

 It should contain models of undefined functions which the program calls during execution and 
which can influence verification results for checked requirements. 

Bug finding is possible even without very accurate environment models. Still, more accurate 
environment models help to improve code coverage and reduce a false alarm rate. To achieve high-
quality verification results it is crucial to provide the precise environment model taking into account 
specifics of checked requirements and programs under verification. 
At environment modeling it is important to distinguish parallel and sequential cases. It is pretty 
natural to have a parallel environment model that can accurately reflect all possible interactions with 
the real environment. Unfortunately, as it was already mentioned, it may be too hard for verification. 
Thus, one has to provide sequential environment models and verify target programs with them. For 
instance, for libraries defining a set of functions it is possible to invoke them one by one4. For event-
driven programs one can invoke callbacks just after their registration is completed or upon 
appropriate events are triggered by target programs [10]. 
To drastically reduce consumption of computational resources and increase chances to obtain 
verification results in a reasonable time, one can verify program fragments of a moderate size 
separately. A program fragment can contain several source files of the program and libraries, or just 
particular functions from them. 
It becomes even more important to provide the appropriate environment model to avoid missing 
faults and false alarms at verification of such program fragments. Decomposing a program into 
individual C source files or even particular functions, which is an obvious way to simplify 
verification tasks, can require enormous efforts for modeling the environment. From common sense 
and from practical experience one needs to treat logically interconnected program components as 
program fragments like, say, loadable kernel modules or plugins (Table 2). Often this is a «golden 
mean» that enables obtaining useful verification results with moderate efforts for modeling the 
environment. 

Table 2. Approximate number of components in open source projects 

Project Number of components 

Linux kernel 5000 
BusyBox 300 

GTK library 200 
Apache HTTP Server 150 

VLC media player  80 

The SV-COMP community does not propose any commonly accepted means for decomposing large 
programs into fragments and for specifying the environment model. 

7. Formal Confirmation and Manual Analysis of Verification Results 
After each successful run, verification tools provide proofs (correctness witnesses) and 
counterexamples (violation witnesses) in a machine-readable format [11]. The proposed witness 
validation technique establishes confirmation of such witnesses detecting spurious ones [12, 13]. 
The technique is widely used in SV-COMP, so today all verification tools participating in the 
competition can provide witnesses. This paper considers just violation witnesses since correctness 
witnesses serve primarily for validation and cannot help expert to comprehend proofs. 
A violation witness describes a subset of paths from an entry point to a found error. By design, it 
can miss some details and even some parts of these paths. A witness validation tool considers the 

                                                           
4 The same functions can be invoked multiple times, but still sequentially. 
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violation witness in combination with a control-flow automaton extracted from the program 
representation to recheck the solution of the verification task. 
Although violation witnesses can be automatically validated, users still need to investigate them 
manually to understand reasons of faults and false alarms (false alarms can be caused by either 
imprecision of verification tools or environment models). There are some tools for visualization of 
witnesses in a more user-friendly way, but they do not help much for large programs because 
visualizations can contain too many details irrelevant for checking particular requirements. 
Moreover, experts need means for assessing verification results obtained for different versions and 
configurations of target software. 
Some verification tools, e.g. CPAchecker [14], can provide code coverage reports in addition to 
witnesses [15]. These reports are in the GCC test coverage format (GCOV). For its visualization one 
can use standard tools like LCOV [16]. 
Code coverage reports are an important artifact to establish verification in practice. They reflect 
parts of the program such as lines of code, branches and functions that are actually verified. This 
information is essential for estimating an environment model quality since neither violation nor 
correctness witnesses do not provide data on actually considered program paths. Code coverage 
reports help to understand which program entry points should be invoked additionally by 
environment models. SV-COMP does not focus on this useful artifact. 

8. Conclusion 
Verification tools participating in SV-COMP demonstrate excellent results for verification tasks 
included into the benchmark suite. Some verification tools miss a few faults and report not so many 
false alarms. This works for moderate-sized programs that are prepared in advance and checked 
against the predefined list of properties. 
Industrial C programs can contain much more source code than typical verification tasks. Also, 
during work they can extensively interact with their environments. This hinders or even makes 
impossible application of verification tools for them. Moreover, users can need to check specific 
requirements in addition to supported properties. At last, existing tools do not provide users with a 
comprehensive enough suite of means for analysis of verification results. 
To reduce efforts that are necessary for application of verification tools for large industrial C 
programs one develops tools and infrastructures around them, e.g. SDV [17], Klever [18, 19] and 
VerifierCloud [20]. They provide very different capabilities and look very diversely. Often they are 
intended just for a particular type of programs and bound with the only verification tool. Thus, large-
scale application of software model checkers still requires more research and development to cope 
with all their restrictions and get all expected benefits.  
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