Tpyowr UCIT PAH, mom 34, evin. 1, 2022 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022

DOI: 10.15514/ISPRAS-2022-34(1)-1

Elicitation of functional requirements from the
application programming interface documentation
for functional testing

VE.A. Gerlits, ORCID: 0000-0002-1747-075X <gerlits@jispras.ru>
'D.S. Kildishev, ORCID: 0000-0002-1000-0165 <kildishev@ispras.ru>
1:234 4. V. Khoroshilov, ORCID: 0000-0002-6512-4632 <khoroshilov@jispras.ru>

! Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia,
2 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia
3 National Research University, Higher School of Economics
20, Myasnitskaya Ulitsa, Moscow, 101978, Russia
4 Moscow Institute of Physics and Technology (MIPT)
141700, Russia, Moscow region, Dolgoprudny, Campus per., 9

Abstract. We address a common problem in this paper. The only available documentation for a computer
program consists of a user API documentation while we need to identify functional requirements and build test
suite to test them. We describe a technique for functional requirements elicitation from the user API
documentation. Requirements management tool Requality is exploited in this technique. The tool has been used
in several industrial software verification projects.

Keywords: requirements elicitation; requirements extraction; API documentation; Requality; requirements
management; functional requirements; requirements markup; requirements catalog.

For citation: Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the
application programming interface documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol.
34, issue 1, 2022, pp. 7-22. DOI: 10.15514/ISPRAS-2022-34(1)-1

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

BobisiBneHue (pyHKLMOHaNbHbIX TP€OOBaHUIM B AOKYMeHTaLum
nporpaMMHoOro uHrepdenca npunoxeHma gna PyHKUMOHaNbLHOro
TeCTUpPOBaHUA

VE.A. T'epruy, ORCID: 0000-0002-1747-075X <gerlits@ispras.ru>
' J1.C. Kunvouwes, ORCID: 0000-0002-1000-0165 <kildishev@ispras.ru>
1234 4.B. Xopowwunos, ORCID: 0000-0002-6512-4632 <khoroshilov@ispras.ru>

! Unemumym cucmemnozo npozpammuposanus um. B.I1. Heannuxosa PAH,
109004, Poccus, e. Mockea, yn. A. Comncenuypina, 0. 25
2 Mockoeckuii 2ocyoapcmeenbiii yrusepcumem umenu M.B. Jlomonocosa,
119991, Poccus, Mocksa, Jlenunckue copul, 0. 1
3 HUY Bvicwias wikona 5KOHOMUKU,
101978, Poccus, e. Mocksa, yn. Msacnuykast, 0. 20
4 Mockoeckuii (husuxo-mexnuueckuti uHcmumym,
141701, Poccus, Mockoeckas obracms, 2. /loneonpyousiti, Mncmumymcexuii nep., 9

AnHoranusi. Hacrosimas paboTa MOCBSILIEHa PELICHHIO CIEAYIOLIEH AO0CTaTOYHO PacHpoOCTPAHEHHON
npobnembl. EAMHCTBEHHOM CyIIECTBYIOIIEH NOKYMEHTALMEH INPOrpaMMbl SBISETCS MOJIb30BATENIbCKAS
JOKyMEHTAlus, OIMCHIBAIONIasi IporpaMMublii uHTepdeiic. Tpebyercs BBIIBHTE (YHKIHMOHAIBHBIE
TpeboBaHus K QyHKIMAM U3 IPOrpaMMHOro HHTepQeiica u paspaborats Habop TecToB. B paboTe Mbl onucanu
METOJI, PyKOBOJCTBYSCH KOTOPHIM, MOKHO BBISIBUTH (DyHKIHOHAJbHbIE TPEOOBAHHSA B IIOIH30BATEIHCKON
JIOKYMEHTALIMU IPOrpaMMHOTr0 HHTepdeiica npuiaoxeHus. st aBToMaTU3aluK 3TOr0 METO/1a Mbl UCIIOJIb3yeM
UHCTPYMEHT JUIi ynpaBieHus TpeboBaHmsmu Requality. MHcTpyMeHT ObLI HCIIONB30BaH B HECKONIBKUX
UHIYCTPHANBHBIX MPOEKTAX 110 BepH(HKAINK IPOrPaMMHOTO 00ecTIeUeHH L.

KaroueBble cJjioBa: BbissBIeHME TpeOOBaHMI; U3BICUEHHE TpeOOBaHUM; BblAENEHHE TPeOOBaHMIA,
nporpaMMHbIH  uHTepdeiic npunoxenus; Requality; ympasnenue TpeOoBaHusAMY; —(yHKIHOHATIBHbIC
TpeGoBaHNUs; pa3MeTKa TpeOOBaHMM; KaTalor TpeOOBaHHUN.

st uurupoBanus: Iepmun E.A., Kunpaumes J[.C., Xopoumio A.B. BelsBieHue (yHKIMOHAIBHBIX
TpeGOBaHMII B [JOKYMEHTALMH IMPOrPaMMHOr0 HHTepdeiica mNpuiIokeHUss sl  (YHKIHOHAIBHOTO
tectupoBanus. Tpyxst UCIT PAH, tom 34, Bem. 1, 2022 1., ctp. 7-22. DOL: 10.15514/ISPRAS-2022-34(1)-1

1. Introduction

Many computer programs provide an application programming interface (API). These are operating
systems, software libraries and even social networks, messengers and online services.

API is usually specified in a user API documentation. This kind of documentation commonly
includes overall description of the computer program, its subsystems and classes, describes class
attributes and methods (functions) including attribute types, possible attribute values, method
signatures, types of return values and behavior of methods and functions.

The behavior of functions is usually written in a natural language. Unlike the requirements
specification the function description in the API documentation is often incomplete and even may
include conflicting and ambiguous statements. The reason is that the API documentation is intended
for the needs of users while the requirements specification is intended for the needs of software
developers who need carefully written complete set of requirements. In addition, the requirements
specification document is often reviewed, verified and corrected during the software development
life cycle.

In this paper, we suppose the only written source of the requirements is the user API documentation.
The task is to create functional tests for a subset of functions from this API. This situation is quite
common in practice. In our experience, a high quality functional requirements specification is
usually available if it is required by a standard like DO-178C [1] or an error in the software under
development can lead to significant losses (consequences).

8



Tepnn E.A., Knnbauies J1.C., Xopoumosa A.B. BeisiBienue GyHKIMOHATBHBIX TPeOOBaHHIT B JOKYMEHTALIHH IPOrPaMMHOr0 HHTep(eiica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

Software test engineers often design tests by reading and analyzing the APl documentation text and
do not explicitly build a requirements catalog over the APl documentation. This approach can
sometimes be justified, for instance, when smoke tests are to be developed. However, a high quality
functional testing implies assessment of test completeness. A common test adequacy criterion for
functional testing is the percentage of the requirements verified by the tests. Every test should
somehow be traced to the requirements it verifies to be able to calculate the test coverage. As the
behavior of functions is described in the user API documentation in plain text, an additional layer of
requirements is needed in which every requirement is isolated explicitly and has a unique identifier
[2]. This layer of requirements over the user APl documentation is usually called the requirements
catalog.

In addition, standard ISO/IEC/IEEE 29148-2018 [3] defines key requirements characteristics. Some
of these characteristics are difficult to check in plain texts. These are completeness, verifiability and
traceability.

In this paper, we publish a technique to build a catalog of functional requirements over the API
documentation. Functional requirements are not explicitly listed in the API documentation as it is in
the functional requirements specification. Therefore, our technique aims at elicitation of functional
requirements from the API documentation. As we already explained the API documentation may
contain ambiguous and conflicting statements and other problems typical for plain texts. We address
these challenges in our technique.

This paper is structured as follows. We explain our reasons to perform this study in section 2. The
goal of this study and the reachability criterion for the goal are expressed in section 3. In section 4,
we represent our technique for functional requirements elicitation. This technique has been
elaborated during a series of industrial projects on software requirements elicitation. We briefly
mention these projects in section 5. We overview investigations related to our study and show the
novelty of our study in section 6. We explain why we reach the goal of this study with our technique
and come to some conclusions in section 7. Section 8§ contains a reference list.

2. Motivation

To our mind, challenges associated with elicitation of functional requirements from the API
documentation may be overcome by applying:

e a proper requirements elicitation process;

e effective solutions for technical and scientific problems;

e automation of labor intensive tasks.

We address all these aspects in this paper. We present a requirements elicitation process elaborated
during a number of industrial projects. We also offer solutions to some markup issues of API
documentation text. We automate routine and labor intensive tasks with our requirements
management solution Requality [4].

Industrial requirements management tools [5] like Requality usually come along with a requirements
management process [6]. These processes do not usually address the problem of requirements
elicitation from written sources. We cover this gap with this paper presenting a requirements
elicitation process for API documentation and similar documents like API-related standards.

3. Problem statement

Suppose we have an API documentation. One should extract functional requirements from this

documentation, build a catalog of functional requirements and supplement the catalog with new

requirements obtained from other sources.

A proper requirements elicitation technique should meet the following requirements:

1) The technique should construct a functional requirements catalog in which every requirement
has the unique identifier.

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

2) The technique should support traceability of requirements to text fragments that represent those
requirements in the API documentation.
Such a traceability relation can be used to estimate coverage of the documentation text by
the requirements markup.
3) The technique should tolerate possible changes in the API documentation text.
Problems are often discovered in the documentation during requirements analysis. The
author of the documentation fixes them and issues a corrected version of the documentation
text. Some text fragments may be changed due to fixes. These changed text fragments
might already be traced to existing requirements in the previous version of the
documentation. In this case, we should transfer the existing mapping of requirements to
text fragments onto the next (fixed) version of the documentation.
4) The technique should assist in requirements refinement which is the primary way to improve
understanding of the system under test.
5) The technique should assist in building a complete set of requirements for functions, subsystems
and the whole system.
6) The technique should not rely on a particular natural language.

4. Requirements elicitation technique
In this section, we describe different aspects of our technique for functional requirements elicitation.

4.1 Demo example

All examples in this paper refer to function select from POSIX [7] standard. This function waits
until an event is registered for one of the file descriptors provided. There are three types of events:
e afile descriptor is ready for reading;

e afile descriptor is ready for writing;

e an error is registered for a file descriptor.

Function select is a complex one. The main reason is that the function handles different file types
differently. There are three main file types:

e regular files;

e sockets;

e terminals and pseudo terminals.

In this paper, we assume for simplicity that select function is applied to regular files only.

4.2. Requirements catalog structure

Let us build our requirements catalog in the form of a #ree [8] in which:

e vertices are requirements;

e an arc between two incident requirements represents the refinement relation, i.e. the
requirement having the higher depth refines an aspect of the requirement having the lower
depth.

Before inserting a new requirement into the requirements catalog the following characteristics

should be checked [3]:

e the new requirement is interpreted unambiguously;

e the new requirement does not contradict the existing requirements;

e the new requirement cannot be logically deduced from the existing requirements;

e the new requirement has already been implemented or is going to be implemented and meets
the actual system or user need;

e the new requirement defines a single aspect of a function, subsystem or system.



Teprnn E.A., Kunbanies J1.C., Xopoumosa A.B. BeisiBienue GpyHKIMOHATBHBIX TPeOOBaHHIT B JOKYMEHTALIMH IPOrPaMMHOr0 HHTep(eiica
TPUIIOKEHHS I QyHKIHOHaNIbHOTO TecTupoBanus. Tpyowt MCIT PAH, Tom 34, Bemn. 1, 2022 1., cTp. 7-22

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

Proving each characteristic is a challenge but it is often not necessary. For instance, a requirement
can be considered unambiguous if all team members interpret the requirement in the same way. A
meeting [9] of all team members can be appointed to address this issue.

If one of the above conditions is not met, we should correct the new requirement or the requirements
catalog or both. Thus, by adding a new requirement to the requirements catalog we either:

e refine another requirement;

e or improve completeness of requirements.

¥ ©  Requirements

v - POSIX
¥ . SYSTEM INTERFACES
¥ @s SELECT

v .- ERRORS
EBADF
» . EFAULT

EINTR

> - EINVAL

v . RETURN VALUE
BY_TIMEOUT_RETURNED_ZERO
ERROR_MINUS_ONE
SUCCESS_NON_NEGATIVE

Fig. 1. A fragment of a requirements catalog

The requirement analyst assigns mnemonic names to the requirements while Requality requirements

management tool automatically generates unique identifiers for them. The path from the root of the

requirements catalog to a requirement may be used as a unique link to the requirement. Such a link
is often used to trace a test to the requirement verified by the test. For instance, the unique link to
requirement EBADF on fig. 1 is the following: /Requirements/SELECT/ERRORS/EBADF.

The structure of the requirements catalog usually reproduces the structure of the API documentation

up to a certain level. For instance:

1) The root requirement formulates the main task, goal or mission of the computer program.

2) The root requirements for the subsystems or main components of the computer program reside
on the first level of the requirements tree (catalog) and formulate the main task or goal of the
corresponding subsystem or component.

3) The root requirements for the classes and global functions (C programming language) reside on
the second level and formulate the main task or goal of the corresponding class or function.

4) The root requirements for the methods of classes reside on the third level. Functional
requirements for the global functions start to appear on third level too.

5) Functional requirements for the class methods begin on the fourth level.

Description of individual functions in the API documentation is often generated from structured

source code comments, e.g. written with Javadoc, Doxygen and etc. Structured nature of source code

comments leads to some structure in the description of functions in the API documentation. The
structural description of functions in documentation, in turn, is projected onto the requirements
catalog. For instance, description of select function in POSIX [7] contains the following structure
of headings: NAME, SYNOPSIS, DESCRIPTION, RETURN VALUE, ERRORS. Sections NAME and

SYNOPSIS do not contain any functional requirements. Sections RETURN VALUE and ERRORS

describe the return value of the function and possible error codes respectively. The corresponding

headings become child requirements of requirement SELECT.

11

4.3. Requirements text structure
Each requirement should have a textual description:

e anon-empty set of text fragments from the documentation;

e or a manually written text by a template.

Text fragment is a continuous word sequence in a document. Using Requality one can mark text
fragments in a document and then link them to a requirement. It is possible to switch between text
fragments and corresponding requirements with a single mouse click. There is, for example, the
following text fragment in the description of function select: if function select ends by time limit then
return (. We assign this text fragment to requirement BY TIMEOUT_RETURNED_ZERO. An
additional manual description of the requirement is not mandatory because the text fragment
describes the requirement properly.

Requirements have built-in attributes in Requality, e.g. a mnemonic name, a manual description, as
well as user defined attributes. If needed, we write manual descriptions for functional requirements
according to the following template [10]:

The function/subsystem/system MUST [actions set], [if/while/until CONDITION]. Actions can be:

e amodification of the internal state of the computer program;

e or return of a specific value from the function;

e oran exception.

Conditions are usually made up of logical predicates and logical operations like conjunction,
disjunction and negation.

Here is an example. A manual description for requirement ERRORS can be as follows: Function
select MUST write the unique error code into variable [errno] if an error happened.

A condition is skipped if actions are unconditional. If the subject of the actions is obvious then the
phrase Function/subsystem/system MUST may also be omitted.

All requirements without text fragments from the API documentation (but with manual descriptions)
are considered to come from other sources like an interview with developers or completeness
analysis of requirements.

It is sometimes better to represent requirements in the form of tables, images and models. Requality
supports tables and arbitrary images in manual descriptions of requirements.

4.4. Heuristic technique

We formulate a set of heuristics in this section that make a requirements elicitation technique

effective. We tried to implement them in our technique.

1) Attempts to achieve the best possible requirements quality characteristics are often irrational.
The quality of requirements should be enough to achieve the planned testing quality defined in
the completeness criterion.

2) The API documentation is not supposed to contain the complete set of functional requirements.
Therefore, the authors of the documentation, designers, developers and test engineers become
an important source of functional requirements. They help to elicit and improve the requirements
catalog [11].

3) The use of special requirements management tools like Requality greatly facilitates and
simplifies the requirements elicitation process and the maintenance of large requirements
catalogs.

4) Improvement of the API documentation is required to improve the quality of the requirements
extracted from that documentation.

5) Representation of some requirements in a more suitable form rather than textual one and visual
modeling of unclear requirements help to improve the requirements quality [7]. Effective non-
textual requirements representations include tables and formulas. Data flow diagrams [12],



Tepnn E.A., Knnbauies J1.C., Xopoumosa A.B. BeisiBienue GyHKIMOHATBHBIX TPeOOBaHHIT B JOKYMEHTALIHH IPOrPaMMHOr0 HHTep(eiica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

UML action diagrams, UML state diagrams, decision tables [13] and other models [14] can be
used to model different aspects of requirements.

6) A group work on a complex problem like requirements elicitation is efficient since it implies
mutual assistance and participation of engineers having complementary qualifications.
However, an excessive team may have a negative impact on the efficiency of requirements
elicitation.

7) The use of a task management system, bug tracking system and a version control system helps
to support controllable, goal-oriented, responsible interaction of team members and to meet
project deadlines.

4.5. Roles of participants
The process of requirements elicitation is a process of organized and controlled interaction of
participants:
1) Requirement analyst (analyst):
o helps technical project manager to assign priorities to functions;
o extracts functional requirements from the API documentation;
o supplements the requirements catalog with requirements from other sources;
o reveals issues in the requirements catalog and fixes them;
o fixes issues in the requirements catalog reported by other participants;
o reveals issues in the API documentation;

o participates in requirements verification procedures.
2) Author of the API documentation:

o creates the API documentation;

o reveals issues in the API documentation;

o fixes issues in the API documentation;

o asan important source of functional requirements provides them to the analyst;

o participates in requirements verification procedures.
3) Test engineer:
o formulates a test completeness criterion;
o ftraces tests to requirements;
o as an important source of functional requirements provides them to the analyst;
o reports issues found in the requirements catalog during testing;
o helps technical project manager to assign priorities to functions;
o participates in requirements verification procedures.
4) Developer of the computer program (developer):
o asan important source of functional requirements provides them to the analyst;
o answers to the questions about the implementation of the computer program;
o helps technical project manager to assign priorities to functions;

o participates in requirements verification procedures.
5) Technical project manager (manager):

o ensures the requirements elicitation process to meet its deadline;
o assigns priorities to functions;

o organizes productive interaction of all team members;

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

o helps other participants to solve various issues they find it difficult to solve by oneself.
All participants use a version control system to track changes in the API documentation and
requirements catalog as well as to assign release versions to them. All issues discovered in the API
documentation and requirements catalog are trucked in a bug tracking system. We track all tasks
(as opposed to issues) in a task management system. Typical tasks are the following: markup
requirements for a function, verify completeness of the set of requirements for a function, assign
priorities to functions.

4.6. Requirements elicitation process

4.6.1 Preparatory stage

At first, the analyst structures functions provided for testing by dividing them into subsets. A subset
may contain interface functions to a single subsystem or functions performing related operations
like send and receive, write and read.

Then the analyst looks up the pages in the API documentation describing each subset of functions
generally and each function individually in details, i.e. the analyst constructs the appropriate
relations between subsets of functions and documentation pages and between individual functions
and documentation pages. The analyst supplements this relation during the whole requirements
elicitation process.

Then the manager, the analyst and the test engineer assign priorities to the subsets of functions and
to the individual functions as well. Priorities depend on different factors: relative complexity of
functions, the size of the describing documentation text, restrictions imposed by the terms of
reference document, available human and time resources, etc. Priorities are not static and are subject
to change during the requirements elicitation process.

The participants of the requirements elicitation process track the progress of all activities using a
task management system or a bug tracking system. They assign priorities to the tasks taking into
account the priorities of the interface functions that are being worked on.

4.6.2 Requirements markup

The analyst marks up requirements in the documentation respecting the priorities of the interface
functions. This process is accompanied by a number of problems.

Does the fragment of text describe a requirement? One can focus on the keywords that may
indicate the presence of a requirement in a sentence [15]. For example, POSIX [7] standard requires
to use the verb must in requirement statements: Upon successful completion of the function, pselect
() and select () must return the total number of bits specified in bitmasks.

In general, a requirement cannot be recognized in a given set of text fragments on the basis of syntax
rules. A functional requirement is a statement about what the computer program, a subsystem or a
function should do under a condition or unconditionally. The object of actions in a software system
is data, e.g. a return value of a function, the internal state of the computer program, an exception, a
message. Let us assume that a set of text fragments formulates one or more requirements if:

e an action is performed or a number of actions;

e the subject of the action is the computer program, a subsystem or a function;

e the object of the action is some data;

e the action should be performed under a condition or unconditionally.

What should be done with text fragments that do not contain any requirements? Requality
marks text fragments containing requirements (assigned to a requirement node) with a color.
Unmarked text fragments have not been analyzed yet. To be able to control the completeness of
documentation markup, text fragments that have been analyzed and are known to not contain any
requirements should be separated from unmarked text fragments. Requality tool supports nodes of

14



Tepnn E.A., Knnbauies J1.C., Xopoumosa A.B. BeisiBienue GyHKIMOHATBHBIX TPeOOBaHHIT B JOKYMEHTALIHH IPOrPaMMHOr0 HHTep(eiica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

type text node (as opposed to requirement nodes). All text fragments that do not contain any
requirements are assigned to nodes of this kind and are marked with a color.

How should the analyst resolve a text problem found in the API documentation? Some
examples of text problems are the following: unclear meaning of a certain text fragment, a
contradictory statement, an ambiguous statement.

The analyst should create a task in the bug tracking system and make the author of the API
documentation responsible for it to be resolved.

Should the analyst refine context dependent text fragments? The context of text fragments can
affect their meaning. We recommend to clarify context-dependent text fragments in the requirements
catalog. Requality provides description attribute in requirement nodes for this purpose.

4.6.3 Suspension criterion for the requirements markup of a function

The requirements markup process for a function is gradually approaching a state when further
progress is either limited or difficult. The main natural reason for this is the limited function
description in the API documentation. In addition, a large number of issues may slow down the
requirements markup process for a function. An iterative markup of functions has proven to be
productive.

Criterion 4.1 (Suspension criterion for the requirements markup of a function). For every text
fragment in the function description the following should hold:

o cither the text fragment is marked up, i.e. referred to a requirement or a text node;

e or a task has been created in a bug tracking system concerning the text fragment.

The criterion can examine extra values if needed:

e the number of issues revealed in the function description;

e the amount of marked-up text;

e the amount of time spent on elicitation of requirements for the function;

e the complexity of the function expressed numerically.

4.6.4 Transfer of requirements catalog onto a new APl documentation release

While the requirements catalog is being built over a certain documentation release, the API
documentation is being naturally improved. When a new documentation release comes out, the
requirements analyst should reflect the new improvements in the requirements.

Requality helps to transfer the existing requirements catalog onto a new documentation release. Text
fragments that have not changed are mapped to the requirements catalog automatically. Other text
fragments are mapped in a semiautomatic manner.

4.6.5 Verification of requirements catalog for a function

When the function description in the documentation has been completely marked up, it is necessary
to decide whether the requirements are ready for testing or should be preliminary verified.

High complexity of a function is the key factor in favor of verification. However, complexity is
difficult to estimate. The following values can be taken into account:

e the time spent to build the requirements catalog for the function;

the number of issues in a bug tracking system related to the function;

the size of the function description in the API documentation;

the number of completed iterations of the requirements elicitation and etc.

Many existing verification techniques demonstrate effectiveness when applied to requirements:
formal inspection [16], equivalence partitioning [17], boundary value analysis [18], decision table
analysis [13], meeting [9], consultation, interview [19] and questionnaires [19] [20].

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

All issues found during verification should be tracked through the bug tracking system. We

recommend to verify requirements according to a preliminary elaborated plan which may include

the following information:

e the object of verification, i.e. the requirements for a function or a set of functions;

e the place, the date, the start and the finish times;

e alist of participants and their tasks;

e the subject of verification, i.e. the requirements properties to be verified such as uniqueness,
completeness, consistency;

e verification method.

4.6.6 Necessary conditions to stop the requirements elicitation process for a
function

The requirements analyst, software tester and developer should come to the same understanding of

the functions’ behavior. This can be achieved when they successfully complete all tasks dedicated

to the function.

Proposition 4.1 (Necessary conditions to stop the requirements elicitation process for a function):

o the markup of the function description in the API documentation should have been completed;

o all tasks in the bug tracking system directed to correction of the function description in the AP
documentation should have been completed;

e qll tasks in the bug tracking system directed to correction of the requirements catalog for the
function should have been completed;

e alltasks in the task management system directed to supplementation of the requirements catalog
for the function from other sources should have been completed;

e qll requirements verification tasks for the function in the task management system should have
been completed and the subject of the verification included:
o unambiguity of the requirements;
o the accuracy of the leaf requirements in the requirements catalog;
o consistency of the set of requirements;
o completeness of the set of requirements.

e the function has been tested and all found errors have been fixed.

4.6.7 Feedback from functional testing

API testing is always automated. Tests should be written in accordance with the functional
requirements. Tracing establishes links between tests and requirements being verified. Thus, testing
allows us to naturally confirm verify-ability of requirements.

The test engineer usually discovers many issues in the requirements during the requirements-based
test design. In addition, some inconsistencies between the requirements and the observed program’s
behavior may be due to issues in the requirements. The test engineer should create a task in the bug
tracking system for all discovered issues and make the requirements analyst responsible to resolve
requirements’ related issues.

Test development and analysis of the discovered issues highly improve the test engineer’s
understanding of the function’s behavior. Therefore, the analyst should engage the test engineer in
requirements verification and supplementation procedures. This will help to ensure the completeness
of the requirements catalog and improve the overall quality of the requirements.



Tepnn E.A., Knnbauies J1.C., Xopoumosa A.B. BeisiBienue GyHKIMOHATBHBIX TPeOOBaHHIT B JOKYMEHTALIHH IPOrPaMMHOr0 HHTep(eiica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

4.6.8 Necessary conditions to stop the requirements elicitation process

The whole requirements elicitation process finishes when all participants have successfully

completed their tasks.

Proposition 4.2 (Necessary conditions to stop the requirements elicitation process):

e the markup of the API documentation or its target part should have been completed;

o all tasks in the bug tracking system directed to correction of the API documentation should have
been completed;

e all tasks in the bug tracking system directed to correction of the requirements catalog should
have been completed;

o alltasks in the task management system directed to supplementation of the requirements catalog
from other sources should have been completed;

e all requirements verification tasks in the task management system should have been completed;

o all target API functions should have been tested and all found errors have been fixed.

5. Approbation

Our technique for functional requirements elicitation has evolved during a number of industrial
projects. Those projects have been performed by the authors of this study and other researchers from
the software engineering department of ISPRAS [21].

The technique has recently been used for requirements elicitation on input-output multiplexing
functions from POSIX [7] standard:

e poll;
o select;
e pselect.

The above functions were implemented in a real time operating system. The API of the operating
system was described in an API documentation. A requirements catalog consisting of 317 functional
requirements has been built as a result of a multi-iterative requirements elicitation process. Dozens
of errors were found in the API documentation including:

e incompleteness of information;

e inaccuracy of statements;

e conflicts with POSIX [7] standard.

We have also used Requality to build requirement catalogs for some parts of the following standards
and specifications:

e ARINC 653 [22];

e TTCN-3 interface specifications;

e several RFCs including RFC 826, RFC 760 and RFC 768.

6. Related work

One way or another, individual ideas or solutions expressed in this paper might already be published

in books or applied in practice. However, we couldn’t find any requirements elicitation techniques

characterized as ours:

e the method is aimed at a specific type of documentation, i.e. the user API documentation;

e the method uses feedback from functional testing to enhance the quality of requirements;

e the method is effective in practice due to the use of a specialized software tools like Requality
requirements management tool.

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

Our research group developed requirements management tool Requality. We know for sure there
are no publications concerning techniques for requirements elicitation on the basis of this software
tool. We fill this gap by publishing this study.

There are several alternative industrial tools [5]. Most of them are used in requirements development
from scratch. They assist in building requirements catalogs and support relations between
requirements originated at different levels of the software life cycle:

e business requirements;

e system requirements;

e functional requirements.

But most of these requirements management tools cannot maintain links between documentation
fragments and related requirements as Requality does.

NLP (natural language processing) methods [23] are widely used to extract various information like
requirements from texts written in a natural language. NLP methods are usually well automated
therefore they effectively analyze big text data.

Information about hierarchy of classes and methods of these classes is extracted with NLP methods
from the API documentation in study [24]. Methods are divided into categories:

create a resource;

lock access to a resource;

modify a resource;

unlock access to a resource;

delete a resource.

Then an automaton is created for every resource on the basis of the extracted information. The
automaton is then used to reveal defects in the computer program. For instance, the use of a resource
before creating it.

Our study and work [24] are similar in that we analyze the same type of documentation, i.e. the API
documentation. The both studies have the same goal to improve the quality of computer programs.
However, the methods to reach this goal are different. We look for functional requirements. The
authors of study [24] look for defects.

NLP methods can be used to verify some characteristics of requirements. For instance, software tool
QuARS [25] can reveal ambiguity of text and subjectivity of text (not a requirement but a personal
opinion). LOLITA [26] analyzes text and incorporates it in a semantic net [27]. Then possible text
interpretations are looked up.

Complex lexis, syntax and morphology of some natural languages and many exceptions from the
language rules make it more difficult to apply NLP methods to analyze texts written in those
languages. From one hand, these complexities restrict application of NLP methods. From the other
hand, these complexities simply become responsibilities of the analyst in our technique.
Application of several requirements elicitation techniques leads to synergistic effect. The choice of
a complementary technique depends on human resources available, i.e. the number of engineers,
their experience, qualification and etc. Techniques effectively complementing our requirements
elicitation technique do not strictly relate to mark up of texts. Among them are the following
methods:

formal inspection [16];
equivalence partitioning [17];
boundary value analysis [18];
decision table analysis [13];
meeting [9];

consultation;

interview [19];
questionnaires [19] [20].

— @& O e o o o o o



Tepmun E.A., Kunsaumies J1.C., Xopomnioa A.B. BeisiBienne GpyHKIMOHaIBHBIX TPeOOBaHHI B JIOKYMEHTALMHU IPOrpaMMHOT0 HHTepdetica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

Correction of problems in the API documentation is an important part of our requirements elicitation
technique. There are methods specially designed to reveal errors in the API documentation. For
instance, texts written in a natural language are analyzed with NLP methods and source code
snippets are analyzed by a code analyzer in study [28]. Combination of two different types of
analyzes helps to find inconsistencies between a text fragment and a source code snippet.

A method for requirements elicitation from the user documentation for a legacy system is proposed
in study [29]. The extracted requirements are then used to create a functional specification document
for a new system similar to the legacy system. Text structure, key words, lexical, syntactical and
other text characteristics are used to extract key features of the system, functional requirements, use
cases and nonfunctional requirements.

7. Conclusion

In this paper, we propose a technique for functional requirements elicitation from the user API
documentation. By means of this technique the requirements analyst can create a catalog of
functional requirements suitable for functional testing.

The requirements catalog is a tree in which every requirement has a unique identifier. This tree
structure assists in functional requirements refinement and usually reproduces the structure of the
API documentation up to a certain level.

Markup of all documentation text with requirements is a necessary condition for a requirements set
to be complete. Our requirements management tool Requality maintains links between
documentation fragments and related requirements helping us to transfer the requirements catalog
onto upcoming documentation versions.

We support requirements obtained from non-written sources, e.g. provided by team members or as
a result of a requirements analysis. We write down them in a natural language by a template and
replenish the requirements catalog with them.

An acceptable quality of requirements is obtained due to systematic verification procedures,
feedback from functional testing and team collaboration through a version control system, a bug
tracking system and a task management system.

References / Cnucok nutepartypbl

[1] DO-178C. Software Considerations in Airborne Systems and Equipment Certification. RTCA SC-205 and
EUROCAE WG-12 Std., 01 2012.

[2] V.V.Kulyamin, N.V. Pakulin et al. Formalization of requirements in practice. Preprints of the Institute for
System Programming of the Russian Academy of Sciences, Preprint 13, 2006, 70 p. (in Russian) / B.B.
Kymsavun, H.B. Tlakynua u np. ®opmanmsanust TpeboBanmii Ha mpakrtuke. IIpenpuntsr MHCTHTYTa
cuctemuoro nporpammupoBanus PAH, Ipenpunt 13, 2006 r., 70 cTp.

[3] ISO/IEC/IEEE International Standard - Systems and software engineering — Life cycle processes —
Requirements engineering, ISO and IEC and IEEE Std., 11 2018.

[4] D. Kildishev and A. Khoroshilov. Developing requirements management tool for safety-critical systems.
In Proceedings of the International Conference on Actual Problems of Systems and Software Engineering,
2019, pp. 50-57.

[5] N. Gorelits, D. Kildishev, and A. Khoroshilov. Requirement management for safety-critical systems.
Overview of solutions. Trudy ISP RAN/Proc. ISP RAS, vol. 31, issue 1, 2019. pp. 25-48 (in Russian).
DOI: 10.15514/ISPRAS-2019-31(1)-2 / H.K. I'openun, 1.C Kunpauies, A.B. Xopommios. YpasieHnue
TpeOOBaHUAMH K OTBETCTBEHHBIM crcteMaM. O030p pemenuit. Tpynst UCIT PAH, Tom 31, Bbim. 1, 2019
r., cTp. 25-48.

[6] P. Zielczynski. Requirements Management Using IBM Rational RequisitePro. IBM Press, 2007, 360 p.

[7] Portable Operating System Interface, ISO and IEC and JTC 1/SC 22 Std., Rev. 9945:2009, 09 2009.

[8] A. Khoroshilov and D. Kildishev. Formalizing metamodel of requirements management system. Trudy
ISP RAN/Proc. ISP RAS, vol. 30, issue 5, 2018, pp. 163-176. DOI: 10.15514/ISPRAS-2018-30(5)-10.

Gerlits E.A., Kildishev D.S., Khoroshilov A.V. Elicitation of functional requirements from the application programming interface
documentation for functional testing. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 7-22

[9] R. Ocker, J. Fjermestad et al. Effects of four modes of group communication on the outcomes of software
requirements determination. Journal of Management Information Systems, vol. 15, issue 6, 1998, pp. 99-
118.

[10] K. Wiegers and J. Beatty. Software Requirements. Microsoft Press, 2013, 672 p.

[11] Z. Zhang. Effective requirements development — A comparison of requirements elicitation techniques. In
Proc. of the International Conference on Software Quality Management, 2007, pp. 225-240.

[12] T. DeMarco. Structure Analysis and System Specification. In Pioneers and Their Contributions to
Software Engineering, Springer, 1979, pp. 255-288.

[13] R. Shiffman and R. Greenes. Improving clinical guidelines with logic and decision-table techniques:
Application to hepatitis immunization recommendations. Medical Decision Making, vol. 14, no. 3, 1994,
pp. 245-254.

[14] J. Beatty and A. Chen. Visual models for software requirements. Microsoft Press, 2012, 480 p.

[15] N. Niu and S. Easterbrook. Extracting and modeling product line functional requirements. In Proc. of the
16th IEEE International Requirements Engineering Conference, 2008, pp. 155-164.

[16] M. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal,
vol. 15, no. 3, 1976, pp. 182-211

[17] D. Richardson and L. Clarke. A partition analysis method to increase program reliability. In Proc. of the
Sth International Conference on Software Engineering, 1981, pp. 244-253.

[18] S. Reid. An empirical analysis of equivalence partitioning, boundary value analysis and random testing.
in Proc. of the Fourth International Software Metrics Symposium, 1997, pp. 64-73.

[19] S. Sharma and S. Pandey. Article: Revisiting requirements elicitation techniques. International Journal of
Computer Applications, vol. 75, no. 12, 2013, pp. 35-39.

[20] S. Kimani, E. Panizzi et al. Digital Library Requirements: A Questionnaire-Based Study. In Handbook of
Research on Digital Libraries: Design, Development, and Impact. Information Science Reference, 2009,
pp. 287-297.

[21] Open-Source Projects. Available: https://forge.ispras.ru/projects

[22] S. Santos, J. Rufino et al. A portable ARINC 653 standard interface. In Proc. of the 2008 IEEE/AIAA 27th
Digital Avionics Systems Conference, 2008, pp. 1.E.2-1-1.E.2-7.

[23] J. Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019, 536 p.

[24] H. Zhong, L. Zhang et al. Inferring specifications for resources from natural language api documentation.
In Proc. of the 2009 IEEE/ACM International Conference on Automated Software Engineering, 2009, pp.
307-318.

[25] G. Lami. Quars: A tool for analyzing requirement. Technical report CMU/SEI-2005-TR-014 ESC-TR-
2005-014, Carnegie Mellon University, Software Engineering Institute, 2005.

[26] L. Mich. Nl-oops: From natural language to object oriented requirements using the natural language
processing system Lolita. Natural Language Engineering, vol. 2, no. 2, 1996, pp. 161-187.

[27] L. Schubert, R. Goebel, and N. Cercone. The structure and organization of a semantic net for
comprehension and inference. In Associative Networks. Academic Press, 1979, pp. 121-175.

[28] H. Zhong and Z. Su. Detecting api documentation errors. In Proc. of the 2013 ACM SIGPLAN
International Conference on Object-Oriented Programming Systems, Languages and Applications, 2013,
pp. 803-816.

[29] 1. John and J. Dérr. Elicitation of requirements from user documentation. In Proc. of the Ninth International
Workshop on Requirements Engineering: Foundation for Software Quality, 2003.

Information about authors / UHdpopmauums 06 aBTOpax

Evgeny Anatolyevich GERLITS — researcher at the Software Engineering Department of the
Institute for System Programming of the RAS. Main research interests: software dynamic
verification, software testing, software quality assurance, static and dynamic program analysis.
EBrennit  AnaronseBud ['EPJIML] — Hayunslit coTpyaHuk MHCTMTYyTa  CHCTEMHOTO
nporpammupoBanus. Cdepa HaydyHBIX HHTEpPECOB: METOIbl JAMHAMHUYECKOH BepudHKaruu
OporpaMM, METOJAbl TECTHUPOBAHUS U OOECIeueHMS KadyecTBa IPOrPAMMHOIO oOOecHedeHHs,
CTaTUYECKHH U JUHAMHYECKHUI aHAIIU3 IPOrPAMM.

Denis Stepanovich KILDISHEYV is a junior researcher of the Software Engineering Department. His
research interests include requirements management tool development.

20



Tepmun E.A., Kunsaumies J1.C., Xopomnioa A.B. BeisiBienne GpyHKIMOHaIBHBIX TPeOOBaHHI B JIOKYMEHTALMHU IPOrpaMMHOT0 HHTepdetica
TIPUIIOKEHHS I QyHKIMOHaNIbHOTO TectupoBanus. Tpyowt MUCIT PAH, Tom 34, Bem. 1, 2022 1., cTp. 7-22

Hennc Cremanosmuy KWJIBJAUIIEB sBnsiercs MuammmM HaydHBIM COTPYIHHKOM OT/IENa
TEXHOJIOTHII porpaMMHpoBaHust. Ero Hay4yHbIe MHTEpECH BKIIOYAIOT Pa3pabOTKy MHCTPYMEHTA
yIpaBJIeHHs TPEOOBAHHUSIMH.

Alexey Vladimirovich KHOROSHILOV — Ph.D. in Physics and Mathematics, Leading Researcher,
Director of the Linux OS Verification Center at ISP RAS, Associate Professor of System
Programming Departments at Moscow State University, the Higher School of Economics, and
Moscow Institute of Physics and Technology. Main research interests: design and development
methods for critical systems, formal methods of software engineering, verification and validation
methods, model-based testing, requirements analysis methods, Linux operating system.

Anexceit Bnagumuposrny XOPOIINJIOB — kanauaat Qpu3uko-MaTeMaTH4eCKUX HayK, BEIyIIUHA
Hay4HBIA COTpyaHUK, aupekrop Llentpa Bepudpukanmu OC Linux B UCIT PAH, nouent xadeap
cucremHoro nporpammupoBanust MI'Y, BIID u MOTU. OcHOBHBIE HAyYHBIE HHTEPECHI: METOIBI
MPOEKTHPOBaHMS M Pa3pabOTKH OTBETCTBEHHBIX CHCTEM, (OpMalbHBIE METOIBI MPOrPaMMHOMN
WHXKEHEPHUH, METOMBI BepU(HKAIIMH W BATUIAINK, TECTHPOBAHHE Ha OCHOBE MOJENEH, METOIIBI
aHanu3a TpeOOBaHUi, onepanrnonHas cucrema Linux.

21



