
Труды ИСП РАН, том 34, вып. 1, 2022 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022

23

DOI: 10.15514/ISPRAS-2022-34(1)-2

Requirements traceability as the basis for
designing a functional and logical architecture of a

software system

1,2 B.A. Pozin, ORCID: 0000-0002-0012-2230 < bpozin@ec-leasing.ru >
3 G.N. Tsiperman, ORCID: 0000-0001-7740-5629 <gntsip@gmail.com>

1 National Research University Higher School of Economics,
20, Myasnitskaya Ulitsa, Moscow, 101978, Russia

2 EC-leasing,
125 Varshavskoye shosse, Moscow, 117405, Russia

3 National University of Science and Technology "MISIS"
Leninskiy Prospekt 4, Moscow, 119049, Russia

Abstract. The paper deals with the formation and transformation of stakeholder requirements for the
information system throughout the entire life cycle. It is shown how the seamless architecture provides
traceability of requirements from the level of the business process, to the functional and logical architectures
of systems, to the selection of criteria and identification of microservices. It is shown how maintaining the
traceability of requirements in the presence of business, functional and logical architecture models can reduce
the cost of planning complex functional and load testing of systems, as well as ensure the interaction of
operation, maintenance services and contractors that form the entire system, maintain its integrity during the
life cycle.

Keywords: information system; requirements engineering; requirements traceability; adaptive clustering
method; seamless design; microservice criteria; business architecture; functional architecture

For citation: Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and
logical architecture of a software system. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34.
DOI: 10.15514/ISPRAS–2022–34(1)–2

Acknowledgements. The article is based on the materials of the report at the Seventh International Conference
«Actual Problems of System and Software Engineering» (APSSE 2021).

Прослеживаемость требований как основа проектирования
функционально-логической архитектуры программной системы

1,2 Б.А. Позин, ORCID: 0000-0002-0012-2230< bpozin@ec-leasing.ru >
3 Г.Н. Циперман, ORCID: 0000-0001-7740-5629 <gntsip@gmail.com>

1 НИУ Высшая школа экономики,
101978, Россия, г. Москва, ул. Мясницкая, д. 20

2 ЕС-лизинг
117587, Россия, г. Москва, Варшавское шоссе, д. 125, стр.1

3 Национальный исследовательский технологический университет «МИСИС»
119049, Москва, Ленинский пр-кт, д. 4, стр. 1

Аннотация. В статье рассматриваются вопросы формирования и трансформации требований
заинтересованных сторон к информационной системе на протяжении всего жизненного цикла.

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

24

Показано, как бесшовная архитектура обеспечивает прослеживаемость требований от уровня бизнес-
процесса к функциональной и логической архитектурам систем, к выбору критериев и идентификации
микросервисов. Показано, как поддержка прослеживаемости требований при наличии моделей бизнес-
архитектуры, функциональной и логической архитектур позволяет снизить затраты на планирование
комплексного функционального и нагрузочного тестирования систем, а также обеспечить
взаимодействие служб эксплуатации, сопровождения и подрядчиков, формирующих систему в целом,
сохранять ее целостность в течение всего жизненного цикла.

Ключевые слова: информационная система; разработка требований; прослеживаемость требований;
метод адаптивной кластеризации; бесшовный дизайн; критерии микросервиса; бизнес-архитектура;
функциональная архитектура

Для цитирования: Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа
проектирования функционально-логической архитектуры программной системы. Труды ИСП РАН, том
34, вып. 1, 2022 г., стр. 23-34. DOI: 10.15514/ISPRAS–2022–34(1)–2

Благодарности. Статья подготовлена по материалам доклада на Седьмой Международной
конференции «Актуальные проблемы системной и программной инженерии» (АПСПИ 2021).

1. Introduction
Due to increasing complexity of software systems, an increasing number of stakeholders (customers,
users, developers, administrators, maintenance staff) are involved in ensuring their life cycle. This
leads to the need to ensure the transfer of knowledge about requirements to the software system and
the system itself between stakeholders. The key task of this process is to provide an understanding
of how the original business requirements are translated into functional and non-functional
requirements, requirements for the deployment and maintenance of the system.
For understanding, it is necessary to provide a model representation of the system architecture at
various levels of abstraction, where the initial requirements are determined based on the stakeholders
needs at the business level, and then consistently (seamlessly), without loss or distortion, are
converted into requirements for the software system.
Thus, three main tasks are formulating that arise at different stages of the system life cycle (creation,
commissioning and maintenance), the solution of which will be considered in this work:

 Adequate implementation and completeness of the functionality of the system, which is
validated by the end user, easily understood by him.

 Deployment, i.e., adaptability to easy deployment by the operating unit of the owner of the
system, while maintaining an understanding of which business automation functions or entities
are located on each element of the deployment.

 Maintenance, i.e., ease of understanding of the logical architecture of the system by the end
user and the ability to set tasks for changes to counterparties.

The solution of these problems will be considered as the evolution of the requirements for the
system: their definition, transformation and modification. In [1], the need to obtain a coherence set
of requirements that provides two-way traceability between the requirements for system functions
and the sources of these requirements based on the attribution of requirements.
In this paper, the method of adaptive clustering (ACM) of information systems (IS) is used as a tool
for managing a set of requirements for the system that is consistent at all levels of abstraction [2].
CM is a top-down design method, where detailed architectural models are built on the basis of
decomposition of the higher abstraction level models elements, ensuring their seamless connection.
Seamless connection is a connection in which the process of decomposition does not violate the
traceability of transitions between elements of architectural models.

Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа проектирования функционально-логической архитектуры
программной системы. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 23-34

25

2. Formulation of the problem
To describe the functional requirements for a software system, it is customary to use particularly
Use Case diagrams, which provide a good definition of the requirements for the system functions,
linking them to specific business needs Use Case diagrams use knowledge about the business
process implicitly, reflecting on a variety of formalized use cases, existing separately from them,
without giving a complete picture of the possibilities of automating the business process.
To ensure the completeness of the definition of business requirements, it is necessary to obtain such
requirements directly from the business process model, at the level of the business architecture. This
is how the initial business requirements for the system are determined in the ACM method [2], in
which UML activity diagrams and business process decomposition techniques are used to describe
them.
At the next level of architecture (functional architecture), the requirements for the functions of the
system are determined based on the business requirements accepted by the stakeholders. The
functional architecture models the interaction of the system with users, as well as with other external
agents. The functional architecture forms the appearance of the system based on the representation
of the compositions of the system's dialogues, defines the requirements for the dialogues and
specifies the interfaces with external systems.
The modern practice of designing a functional architecture of a system involves a heuristic transition
between architectural models of various levels of abstraction: a more detailed functional architecture
is built in such a way that technical solutions meet business requirements as much as possible. In
doing so, the architect uses his experience and knowledge to build a detailed model, and then proves
(or considers it obvious) that the resulting model satisfies the requirements arising from a more
abstract architecture.
As a result, there is no obvious transition from the requirements for automated functions defined
during the business architecture stage to the requirements for system functions defined by the
functional architecture. This means that there is a technological gap («seam») between architectures
of different levels of abstraction. The presence of a seam does not allow tracing the relationship
between the requirements for the system functions and the requirements for the functions of the
business process that need to be automated.
At the logical architecture level, the technological gap does not allow to transparently identify which
microservices implement specific business needs [3] declared in the system, do not provide an
opportunity at the business architecture or functional architecture level to define the bounded context
and microservice aggregates [4], to give “physical meaning" to the components of the microservice
architecture, thereby concretizing the system deployment plan that is understandable to the system
owner. In this case, the traceability of the initial requirements in the logical architecture of the system
is violated.
Finally, the technological gap does not allow to correctly build a comprehensive testing plan for the
system, and also complicates the process of localizing errors and making changes to the current
implementation of the system.
Summarizing, we can formulate the following problems that this work is devoted to:
1) The emergence of technological gaps (seams) between the levels of decomposition and the need

to form and use rules for eliminating seams to ensure a traceable functional decomposition of
business requirements for the system.

2) The technological gap between the business architecture and the functional architecture of the
system and how to bridge it.

3) Lack of traceability of requirements in the design of a microservice architecture, considered as
a set of units of development, deployment and maintenance.

4) The impossibility of using tracked functional models for planning complex testing of the system,
its regression testing and assessing its performance using load testing methods.

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

26

5) Impossibility to use the traceability mechanism when planning work on making changes to the
maintenance process.

3. Decomposition as a method of representing a business process model
In ACM, it is the business architecture that is the starting point for the design of IS. Business
architecture in the context of IS design is understood as a set of models of automated business
processes of an enterprise [5]. In the context of this work, a target business architecture is considered,
that is, a model of business processes taking into account the use of an information system. The task
is to determine, based on the decomposition of the business process, a complete set of business
process functions that can be automated.
Decomposition, as a method of representing a business process model, creates a classification
scheme that groups operations in accordance with a system of intermediate results of a business
process. Decomposition is not the only way to represent a business process. In the limiting case, it
can be described as a sequence of operations leading to the desired result. However, such a
description for real processes, where the number of operations is in the hundreds, is difficult to
understand and analyze.
It is operations (hereinafter we will call them "business operations") that are the ultimate goal of
decomposition and are objective in nature. Business operations are located on the leaves of the
decomposition tree, and the rest of the structure of the decomposition tree is intended to define a
complete list of business process operations.

3.1 Definition of business process decomposition
A business process is understood as a set of actions in which, on the basis of one or more types of
initial data [resources], a result is created that is valuable to the client [6]. To describe the
decomposition of a business process, the concepts of business function and business operation are
sufficient, which are based on the concept of action (A), understood as the transformation (T) of an
initial resource (Ir) into a target product (Tp).
Decomposition defines the following elements of a business architecture:
 Business function - an action to obtain an intermediate target product required to solve the task

of a business process. The business function is always decomposing.
 Business operation is an action that represents the final result of the decomposition within the

description of a business process. The result of the business operation itself is not a
decomposable target product, but an executor – a specific role function of personnel.

The transformation function T can include components that are predefined information objects (Po)
that are part of the transformation mechanism (for example, directories or values of the necessary
available constants and variables). Predefined objects are created and modified in other contexts.
Thus, the action can be defined by a four:

𝐴 ∶= (𝐼𝑟, 𝑃𝑜, 𝑇, 𝑇𝑝).

Initial resource (Ir) is an information object of the system that initiates an action:
 defines that part of the context of the current state of the system, which is necessary to obtain

the target product of this action;

 can represent one or more input information objects, which are the target products of previous
actions that initiate this action.

 Target product (Tp) is an information object of the system that represents the result of an action:
 defines a part of the context of the new state of the system, which is necessary for the further

advancement of the business process or its completion;

Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа проектирования функционально-логической архитектуры
программной системы. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 23-34

27

 can be one or more information objects that represent an intermediate result of a business
process.

Functional decomposition of an action is an operator (𝐷), defined on a set of actions (𝓐),
representing an action as a set of action elements that implement the original action:

𝐷𝐴 → (𝐴ଵ, 𝐴ଶ, … , 𝐴), 𝐴 ∈ 𝒜.

The action elements obtained as a result of the decomposition are interconnected by relations
representing the control flows that initiate the decomposition elements (Fig. 1). By the scenario of a
business function, we mean a logical composition that includes:
 business function decomposition elements (𝐴ଵ, 𝐴ଶ, … , 𝐴);

 initial and final script element from a set of decomposition elements
𝐴, 𝐴 ⊂ (𝐴ଵ, 𝐴ଶ, … , 𝐴);

 set of binary relationships between elements 𝑅(𝐴, 𝐴) ∈ (ℛ, ∅), where ℛ - is the set of
admissible connections between actions.

3.2 Coherence requirements of the decomposition model
The coherence of the decomposition model of a business process is understood as the absence of
contradictions between the elements of the model, compliance with the reality in terms of describing
business operations.

Fig. 1. The first level of a coherent business process decomposition

Two types of coherence are defined:

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

28

 Functional coherence. Assumes that the action goals of the decomposition elements correspond
to the action goals of the decomposed element. To achieve functional consistency, it is
necessary to ensure [7]:
o a) continuity of decomposition - compliance with the sequence of transitions between the

levels of the decomposition tree;
o b) absence of defects - each lower level must reveal the previous one completely, without

missing a single element;
o c) lack of redundancy - it is unacceptable to add during division something that is not in the

original.

 Information (product) coherence. As an action, the business function converts the Ir to Tp using
the required predefined information objects. The business function decomposition elements,
organized into a business function script, should collectively perform the same transformation:
the Ir at the entrance to the business function decomposition script must match the Ir of the
decomposed business function, and the final of the script must have a Tp that matches the Tp
of decomposed business function (see fig. 1). Within the script, there must be decomposition
elements using the predefined information objects defined for the business function being
decomposed. In the scenario itself, new information objects can arise corresponding to the Ir
and Tp of the decomposition elements, and additional predefined information objects can also
be used.

Decomposition of a business process allows you to cluster a subject area, dividing it into subdomains
corresponding to business functions, with well-defined functional and informational boundaries.
Each subdomain represents a bounded context [4], which can be used as the basis for defining a
development task for a development team when implementing a microservice architecture of a
software system.

4. Formation of microservices

4.1 The task of identifying microservices
In [3], the principle of organizing microservices is declared: the division into services in accordance
with the needs of the business. This means that the identification of microservices must be done at
the level of the business architecture, i.e., the microservice must have a "physical" meaning. At the
level of the architectural (logical) model, there must be an element that defines the boundaries of
what we mean by a microservice.
Approaches to the identification of microservices ([8], [9]) mainly dealt with the issues of clustering
the IS code according to the criteria of strong and weak connectivity, while simultaneously clarifying
the principles that the identified microservices should comply with. The resulting technologies give
unstable good results.
The main task for the solution of which the microservice architecture was created is the struggle
with the complexity of the development, deployment and maintenance of IS. However, no less
important, in our opinion, is the link between the requirements for the system and the system
architecture. The key element in this is the concept of a business operation: each business operation
must correspond to a microservice that implements its functionality. The input and output of the
microservice is determined by the respective Ir and Tp of the business operation. Such a
microservice as an architectural element, in our opinion, should correspond to a deployment unit,
which will allow tracing in which microservices of the developed and deployed system a particular
business operation is implemented, as well as checking the composition of the implemented
information context.
This approach requires clustering the functionality and, accordingly, the subject area of the system
into maximally independent elements, each of which defines its own limited development context.

Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа проектирования функционально-логической архитектуры
программной системы. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 23-34

29

This bounded context is determined by the business function. At the same time, there is sufficient
freedom in choosing a development unit: the closer a business function is to the root of the
decomposition tree, the greater the amount of development it defines.
The independence of development and maintenance objects implies a minimal connection between
such objects both in terms of interaction and in terms of using common code: a quick response to
changing requirements for one microservice does not imply an order to change the code in another
microservice.
With this approach, the criteria for identifying microservices is determined only by business needs,
and not by the needs of optimization of development. This is quite consistent with the concept of
development and maintenance outlined in [3].

4.2 Criteria for identifying microservices
To determine the criteria for identifying microservices, it is appropriate to give the following
analogy. Imagine a car manufacturing industry. Each final product (car) is the result of industry
cooperation of various kinds of enterprises that produce both components for assembling a car and
the necessary resources. Each enterprise forms its own production infrastructure for the
corresponding type of product and, to a reasonable extent, minimizes dependence on related
enterprises that are part of the cooperation.
The consistency of the components of the final product is ensured by the necessary standards and
contracts between enterprises for the supply of the corresponding component or resource. The
contract with the enterprise fixes the terms of delivery of the manufactured product, determined by
its name and code within the framework of cooperation.
By this analogy, a microservice is understood as an enterprise included in a cooperation and
responsible for the production of one product, and the basis for defining a microservice is a business
operation since it meets two main criteria:
 Single Responsibility Principle (SRP) – a business operation is performed under the

responsibility of a specific role function of personnel to change the state of one Tp.
 Common Closure Principle (CCP) – The non-decomposable result of a business operation is

represented by a single information aggregate (Tp).
 The proposed criteria for identifying microservices [10] as deployment units can be formulated

as follows:
 When creating an IS, it is difficult to predict which parts of the system will change more often

and which less often as a result of operation. To ensure the independence of changes to
microservices during operation, the SRP principle can be applied, according to which a
microservice should have one responsibility and be associated with one role of an IS user, since
the main reason for changes is users.

 Microservice is a software component responsible for changing the state of one specific type
of object during its life cycle. In this case, the type of object is an aggregate [4]: a cluster of
related objects, which are considered as a whole for the purpose of changing data. External
references are limited to one member of the aggregate, designated as the root. This is in line
with the CCP principle.

In [8], 16 criteria for the identification of microservices were proposed, concerning, in addition to
CCP and SRP, also the issues of determining the development boundaries. Based on a catalog of
such criteria, the required system specification artifacts are identified, which can be processed in a
structured, semi-automated manner to propose service decomposition that promotes weak
communication between services and a high degree of consistency within them. At the same time,
the criteria included in the catalog are determined only because, according to the authors, the
methods of forming aggregates and defining bounded contexts in the requirements are not known.

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

30

5. Seamless transition between business and functional architectures

5.1 Operational Service

The business architecture defines the functional requirements of stakeholders to IS. Business
operations are the places where user interactions with the system occur, and therefore the description
of business operations allows you to determine the functions that should be automated (automated
functions). The set of these functions, defined for a business operation, constitutes the content of the
business operation service (hereinafter referred to as the operational service). Operational services
are generated for each business operation that includes automated functions. They are architectural
elements that are abstract in nature, do not imply any implementation and are intended only to
explicitly define the functions to be automated (fig. 2).
An operational service defines the boundary between the business architecture and the functional
architecture of the IS. It formalizes the requirements for the automation of business operations and
serves as the basis for the formation of technical specifications for the creation or development of
IS.

Fig. 2. Business operations, operational services and automated functions (fragment of the diagram)

5.2 Transition to functional architecture

Functional architecture is understood as an architectural representation that includes architectural
models of the structure and composition of functional components of the IS that provide access to
the "internal" functions of the IS that implement automated functions. In other words, the functional
architecture models the interaction of the IS with users, as well as with other external agents. The
functional architecture forms the appearance of the IS based on the presentation of the compositions
of the system's dialogues, defines the requirements for the dialogues and specifies the interfaces with
external systems.
The operational service is the connecting element that defines the seamless connection between the
business architecture and the functional architecture: the operational service is decomposed into IS
dialogs, the composition of which forms the operational service scenario. Automated functions of a
business operation are implemented in dialogs [2].

Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа проектирования функционально-логической архитектуры
программной системы. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 23-34

31

Fig. 3. Seamless transition to functional architecture

In the example (fig. 3), the operational service SPTC01.03 is decomposed into two dialogs
D01.03.01 and D01.03.03, which form the service script. The informational coherence of the
operational service script with the decomposed service is determined by the fact that the information
object "Vehicle owner ID" is passed to the script input, and the "Registration documents" is sent to
the output. For dialog D01.03.03, the predefined information object "Required documents" is
specified, which is a directory of documents required for registration of vehicles.

Fig. 4. Description of the dialog: form and view functions

A system dialogue is understood as any act of interaction between agents that causes a change in the
state of the IS by launching the corresponding software components [11]. Thus, the dialogue is
understood in a broad sense - it is not only the interaction of the user with the system, but also the
exchange of messages between any specified IS objects. Dialogues are described [2]:

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

32

 form (if it is a dialogue between the user and the system);
 functions of the IS presentation level (view functions), i.e., functions that provide access to the

implementation of automated functions;

 various constraints (preconditions, postconditions, error handling, etc.), which are also
considered as view functions (fig. 4).

Since a business operation corresponds to a microservice, then, ultimately, it is the implementation
of the operational service that determines its functional and informational boundaries, as well as the
interfaces between the IS microservices.

6. Complex system testing
The described approach, based on creating a seamless decomposition from a business process model
to a microservice that implements a business operation, while maintaining the traceability of system
requirements, makes it possible to build plans for complex testing of systems, including integrated
complex testing, on a single basis.
Static complex testing to verify the implementation of system functionality can be planned based on
business function models as a basis for designing complex tests, and detailed development of test
cases and database tables - based on the analysis of business operation models, taking into account
business function scenarios.
A static complex plan [12] is easy to document: based on a business function scenario, it is easy to
develop and document test quality criteria. This allows not only to generate tests for a single run,
but also, taking into account the traceability of requirements, to accumulate tests for regression
complex testing, taking into account the achievable degree of coverage of business function
scenarios with complex tests.
Dynamic (load) complex testing also requires planning and building (as rule with the participation
of stakeholders) dynamic load testing scenarios [12]. For each scenario of carrying out load testing
of the system, the formation of a load model is carried out on the basis of scenarios of business
functions, taking into account the assessment of the frequency (or probability) of using each business
function in the process of functioning of the system being validated on a model or perspective load.
In this case, load flows are determined from the standpoint of business rules - scenarios for the
implementation of business functions, and the load model is formed taking into account the
frequency of calls of end users and other actors to business operations of the system.

7. Planning for change
The planning of functional changes that are supposed to be introduced into the system, when using
the current models of all the described levels, is greatly simplified. When shaping changes in the
business process model, even a not very deep analysis allows you to understand which business
functions from the existing ones will be affected by the changes or what new business functions will
need to be implemented. In both cases, changing the boundaries of the system is explicitly reflected
in the business function models and their scenarios.
Likewise, the analysis shows which business operations are subject to change or creation. In this
case, the control of the integrity of changes is carried out according to the available documents
describing the corresponding models, taking into account the traceability of requirements. Based on
the lists of business operations subject to change, an appropriate list of microservices to be changed
is determined. Thus, the volume of changes can be quickly assessed down to specific software and
information components. The same mechanism allows you to estimate the labor intensity of
preparing tests for static complex testing.

Позин Б.А., Циперман Г.Н. Прослеживаемость требований как основа проектирования функционально-логической архитектуры
программной системы. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 23-34

33

8. Conclusion
Integration processes are extremely important for complex custom software systems with a lifetime
of 10 years or more. The correct formulation of such processes in the life cycle of the system can
significantly reduce the costs of creating, maintaining and developing such systems and significantly
affect their integrity and quality. The key issue in solving the issues of ensuring the integrity of
systems is to ensure the traceability of requirements at the levels of business processes, the formation
of functional and logical architectures of systems up to the selection of criteria and identification of
microservices.
The paper shows how to provide a functional decomposition of business requirements, describing it
in the UML language, correctly identifying the structured elements of the decomposition. Such a
structured approach provides up to the logical architecture model to ensure the preservation of the
traceability property of requirements, makes it possible to completely get rid of" seams " not only
during the design and development of the system, but also during its operation, maintenance and
development. The result of such work makes it possible to support the processes of system operation,
its maintenance and development, to provide a fairly simple way to manage the configuration of the
system being operated by the personnel of the organization that owns the system.
It is shown how maintaining the traceability of requirements in the presence of business, functional
and logical architecture models can reduce the cost of planning complex functional and load testing
of systems, as well as ensure the interaction of operation, maintenance services and contractors that
form the entire system, maintain its integrity during the life cycle. This interaction using the models
described in the work allows you to quickly localize the errors that have appeared and identify
microservices that are subject to changes, as well as identify requirements that are violated and
require more accurate implementation – starting with business requirements.

References / Список литературы
[1] V.K. Batovrin, B.A. Pozin. Requirements Engineering at a Modern Industrial Enterprise. Software

Engineering, vol. 10, no. 3, 2019, pp. 114-124 (in Russian) / В.К. Батоврин, Б.А. Позин. Инженерия
требований на современном промышленном предприятии. Программная инженерия, том 10, no. 3,
2019 г., стр. 114–124.

[2] G. Tsiperman. Seamless design of information system architecture based on adaptive clustering method.
Proceedings of the 6th International Conference Actual Problems of System and Software Engineering
(APSSE 2019), CEUR Workshops, vol. 2514, 2019, pp. 38-44.

[3] James Lewis, Martin Fowler. Microservices. A definition of this new architectural term. 25 March 2014.
Available at: https://martinfowler.com/articles/microservices.html.

[4] Eric Evans. Domain-Driven Design Reference. Definitions and Pattern Summaries. Dog Ear Publishing,
LLC, 2014, 88 p.

[5] ISO/IEC/IEEE FDIS 29148:2017 Systems and software engineering. Life cycle processes. Requirements
engineering. Available at: https://www.iso.org/standard/72089.html.

[6] Michael Hammer, James Champy. Reengineering the Corporation. A manifesto for business revolution,
Harper Collins Inc., 1993, 272 p.

[7] I.G. Fedorov. A principles of a process model decomposition. Applied informatics, vol. 11, no. 5(65), pp.
19-30 (in Russian), 2016 / И.Г. Фёдоров. Принципы декомпозиции модели процесса. Прикладная
информатика, том 11, no. 5(65), 2016, стр. 19-30.

[8] Michael Gysel, Lukas Kölbener et al. Service Cutter: A Systematic Approach to Service Decomposition.
Lecture Notes in Computer Science, vol. 9846, 2016, pp. 185-200.

[9] Shanshan Li, He Zhang et al. A dataflow-driven approach to identifying microservices from monolithic
applications. The Journal of Systems and Software, vol. 157, 2019, article no. 110380.

[10] C. Richardson. Microservices Patterns: Microservices Patterns: With examples in Java. Manning, 2019,
520 p.

[11] I. Graham. Object-Oriented Methods. Principles and Practice, Third Edition, Addison-Wesley, 2001. 864
p.

[12] B. Pozin, I. Galakhov. Experience in automated functional and load testing in the life cycle of the mission-
critical system Baltic Journal of Modern Computing, vol. 8, no. 2, 2020, pp. 241-258.

Pozin B.A., Tsiperman G.N. Requirements traceability as the basis for designing a functional and logical architecture of a software system.
Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 23-34

34

Information about authors / Информация об авторах
Boris Aronovich POZIN – Doctor of Technical Sciences, Professor of HSE University, CTO of EC-
leasing Co. Expert in Software Engineering field, ESSENCE, Software Systems Performance and
Integration Testing, Life Cycle Supporting Systems development, implementation and automation.
Author of over 200 publications.
Борис Аронович ПОЗИН – доктор технических наук, профессор НИУ ВШЭ, технический
директор ЗАО «ЭК-лизинг». Эксперт в области программной инженерии, ESSENCE,
тестирования производительности и интеграции программных систем, разработки,
внедрения и автоматизации систем поддержки жизненного цикла. Автор более 200
публикаций.
Grigory Naumovich TSIPERMAN – Information system analysis and design expert. Worked in a
number of Russian IT companies. Currently, an independent expert. Being Lead Architect and
Technical Supervisor, implemented a number of projects of corporate systems, public administration
projects, including the Russian system of execution, production, and issuance of biometric citizen
passports. The scope of scientific interest includes the development of information systems and
knowledge bases, and project management. The author of over 30 scientific publications.
Григорий Наумович ЦИПЕРМАН – специалист по анализу и проектированию
информационных систем. Работал в ряде российских ИТ-компаний. В настоящее время
независимый эксперт. В качестве ведущего архитектора и технического руководителя
реализовал ряд проектов корпоративных систем, проектов государственного управления, в
том числе российской системы оформления, производства и выдачи биометрических
паспортов граждан. В сферу научных интересов входит разработка информационных систем
и баз знаний, управление проектами. Автор более 30 научных публикаций.

