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Abstract. In the article the problems and solutions in the field of ensuring architectural independence and 
implementation of digital integrated circuits end-to-end design processes are considered. The method and 
language of parallel programming for functional flow synthesis of design solutions is presented. During the 
method implementation, the tasks of reducing parallelism and estimating the occupied resources were 
highlighted. The main feature of the developed method is the introduction of the additional meta-layer into the 
synthesis process. Algorithms for the parallelism reduction have been developed. The results of software tools 
development for design support and practical VLSI projects are presented. 
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Аннотация. Рассмотрены проблемы и решения в области обеспечения архитектурной независимости и 
организации процесса сквозного проектирования цифровых интегральных схем. Представлен метод и 
язык параллельного программирования для функционально потокового синтеза проектных решений. 
При реализации метода выделены задачи редукции параллелизма и оценки занимаемых ресурсов. 
Предложен способ свертки, базирующийся на введении дополнительного, мета-слоя в процесс синтеза. 
Разработан принцип и алгоритмы редукции параллелизма. Представлены результаты разработки 
программного инструментария поддержки проектирования и реализованные на практике проекты 
СБИС.  
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1. Introduction  
The current level of digital integrated circuits (IC) development is characterized by constantly 
increasing requirements for the systemic organization of the entire design flow. One of the most 
important tasks is to reduce the time to get the final result. The main reasons for slowing down the 
design flow are iterative operations that lead to returning to previous stages. The elimination of 
iterative operations provides an “end-to-end design flow” resulting in lower financial costs and 
increased product competitiveness. Another urgent task is to ensure the architectural independence 
of the product being developed, in other words, design solutions portability between the target 
platforms of the IC. Portability allows the developer to optout of being tied to the target 
implementation platform that provides more efficient solutions for key product specifications such 
as speed, chip area, etc. 
An integrated circuit is, in fact, a system for parallel processing of information flows. At the final 
stages of the synthesis, the architecture and operation algorithm of the IC are presented in hardware 
description languages. Therefore, efficient solutions for ensuring architectural independence can be 
found in the area of portable parallel programs. In turn, end-to-end design can be ensured through 
the use of a parallel computing model of the functional flow and the presentation of the original 
algorithms in the form of acyclic structures [5, 10, 12, 13]. 
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2. Related work 
A key feature of well-known research in this area is the use of a functional-flow parallel computing 
model and language for the initial description of algorithms for the operation of IC. 
Currently, there is a steady tendency to increase the abstraction of the initial algorithms from the 
final implementation of the project. At the same time, methods for describing the IC architecture 
develop in several ways. The most common is the introduction of constructs for high-level 
description into existing hardware description languages (HDL) [1]. Such solutions led to the 
emergence of the SystemVerilog language based on the classic Verilog [1]. But even in this case, 
the level of abstraction from the specific architecture of the target chip is not fully provided. 
There are a number of solutions based on the use of adapted imperative high-level programming 
languages (primarily C and C ++) as hardware description languages, for instance, SystemC [2], 
Handel-C [3], and Impulse-C [4]. However, these languages were created to solve narrow problems, 
for example, to implement streaming applications or to support alternative programming models, so 
they do not provide architectural independence of the designed solutions. They are predominantly 
sequential languages; therefore, they do not support parallelism, which is necessary for describing 
parallel processes occurring in the IC. 
Of particular interest is the COLAMO programming language [5], which is a high-level language 
with an implicit description of parallelism. Parallelization is achieved by declaring variable access 
types and indexing array elements, which is typical for data flow languages. Currently, this language 
is used for programming reconfigurable computing systems. It allows developing parallel 
application programs with high specific performance [5]. However, this language is focused on 
solving applied problems in the field of high performance computing for multichip systems. 
The most effective solutions are obtained using functional languages that have a more powerful 
abstraction mechanism and a developed type system. The initial IC operating algorithms described 
in similar languages are easier to transform and verify [6]. For example, the languages Hydra [7] 
and uFP [8] use flows to describe signals and recursive expressions to provide schema 
transformations. Lava, like Hydra, is a built-in subset of Haskell. It possesses powerful circuit design 
tools derived from its predecessor. At the same time, Lava is simpler and more convenient to use 
due to the extended type system for describing hardware. However, the mechanism of "lazy" 
calculating inherent in Haskell and the sequential structure of lists impose restrictions on parallelism 
transformations and do not allow efficient automatic parallelization of programs [12]. 
The works of Donnagara [10, 11] show that the effective portability of the IC initial description can 
be implemented by using functional programming languages and presenting algorithms as data flow 
graphs. The high efficiency of this approach is proved in practice using the example of parallel 
software (PaRSEC) for high performance computing [11]. 
In this case, the solution lies in the application of a programming paradigm, which must meet the 
following conditions [10]: 
• Lack of explicit control over computations (control by data availability / readiness); 
• Data flow model; 
• Parallelism at the level of operations. 
The model that meets the listed requirements is the basis of the functional-flow parallel (FFP) 
programming languages [12]. This gives grounds to consider the FFP programming methods and 
the corresponding computation model as the most suitable for solving the problem of high-level 
architecture-independent IC synthesis. 
Among the programming languages that support the FFP model, the Pifagor language is chosen [12]. 
This language allows a developer to describe an initial algorithm without resource constrains, 
supports a data flow model and parallelism at the operation level, which is the most important for 
the architecture-independent end-to-end design of IC. In Pifagor language, architectural 
independence is achieved by describing only informational connections existed in the program. 
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Unlike Haskell, Pifagor only supports explicitly describing delayed computations. This allows 
executing alternative program fragments only when they are needed. Also, there are no loop 
operators in Pifagor. This prevents conflicts when using different data with the same fragments of a 
parallel program. In theory, this allows a program to start executing any function as soon as its input 
is ready. In practice, only resource limits are imposed on the maximum concurrency specified in the 
language. 
The authors have proposed a method for an architecture-independent high-level VLSI synthesis on 
the basis of the FFP computation model and the Pifagor language that supports it [13]. When 
implementing the method, the dynamic type system was replaced by a static one, which is supported 
in hardware description languages, delayed computations were excluded, and it was proposed a 
method to transform them in compliance with the target IC platform. Also, in the modified Pifagor 
language, a mechanism for converting recursion into an iterative scheme with a subsequent transition 
to a pipeline scheme was introduced [13]. 
The proposed method for ensuring architectural independence in the course of high-level synthesis 
assumes that a program in Pifagor is transformed into an intermediate representation in the form of 
a pair of graphs: a data–flow graph (DFG) and a control-flow graph (CFG). DFG specifies 
information connections, and presenting CFG in an explicit form allows a more detailed description 
of the computational control process. 
The DFG is shaped during the program translation, and the CFG can be elaborated both dynamically 
and statically. The last approach is used to switch from a program in Pifagor to a program for 
describing IC in an HDL language. 
The intermediate presentation of the FFP of the program during translation is developed in two 
stages. At the first stage, the initial code is translated into DFG. Then, a control-flow graph is formed 
from the obtained data-flow graph. CFG can be formed from DFG in various ways. For example, in 
accordance with the model of computation control by data flow, either it can be reduced to a 
sequential traversal of the DFG, or provide another strategy for managing computations. 
To switch to the target IC platform, the DFG is converted into a pipeline scheme. The pipeline 
computing scheme is a tiered-parallel form of DFG. 
To convert parallelism of the initial algorithm to the target IC platform taking in account the specific 
resource constraints, the following stages are performed: determining the boundaries of changing 
parallelism, an algorithm for changing parallelism, and evaluating the result based on resource 
constraints. 
The main task of the transition from the unrestricted parallelism of the FFP model to the target 
platform is reduction of parallelism. This is the key moment of all ongoing transformations in the 
architecture-independent method of VLSI synthesis. To implement the reduction mechanism, a new 
meta-layer called "HDL graph" was introduced. It is an intermediate layer for making changes to 
the FFP model. According to the authors, the term "HDL graph" most fully corresponds to the 
method of VLSI synthesis. HDL graph allows you to specify connections between elements of lists 
of connected vertices, which in turn allow performing optimization transformations by calculating 
the operation of selecting data from the list. With the help of the introduced meta-layer, when 
processing types in a statically typed model, a restriction is introduced on the dynamic resizing of 
lists during computations. 
Recursive computations often become an obstacle when porting such programs to some real 
computing platforms, since at a significant depth of recursion memory overflow can occur. The 
introduction of the HDL graph made it possible to solve this problem by transforming such 
computations into iterative ones using tail recursion and specifying the recursion depth at the 
translation stage. 



Романова Д.С., Непомнящий О.В., Рыженко И.Н., Легалов А.И., Сиротинина Н.Ю. Метод редукции параллелизма в процессе 
высокоуровнего синтеза цифровых интегральных схем. Труды ИСП РАН, том 34, вып. 1, 2022 г., стр. 59-72 

63 

3. Parallel conversion3.1 Parallelism reduction algorithm 
The main feature of the introduced synthesis method is the transition from parallelism induction into 
the algorithm description to reducing the initial maximum-parallel algorithm description according 
to specific resource constraints of the target platform. As shown in [10, 11], this ensures the 
portability of parallel algorithms to various platforms. The main advantage of parallelism reduction 
compared to induction is significant decreasing in the number of steps required to obtain the final 
result. When reducing a maximally parallel data flow graph, the number of maximally admissible 
transformations is set at the synthesis stage. 
In the process of synthesis, the following tasks are solved: 
• Assessment of the resources of the resulting architectural solution; 
• Evaluation of the performance of the resulting solution; 
• Calculation of the reduction factor for each class of resources; 
• Parallelism reduction of the circuit to achieve the required coefficients. 
To estimate resources, an intermediate representation of the program HDL graph is used, in which 
architecture-dependent data are already specified. An HDL graph is an acyclic graph in a tiered-
parallel form, at each node of which types and widths of data are specified [14]. The 𝑁௞ resource 
classes whereby the scheme should be evaluated are determined depending on the target platform. 
For example, the main resource classes of the FPGA platform include: 
1) Number of registers 𝑁௥; 
2) Number of logical cells 𝑁௟௖; 
3) The amount of block memory 𝑁௠ Nm; 
4) Number of arithmetic and other specialized computing units 𝑁ௗ௦௣. 
 Resources can be divided into two subsets:    
• Memory resources 𝑁௠௘௠ = ሼ𝑁௥,𝑁௠ሽ; 
• Computing resources 𝑁௖௢௠௣ = ൛𝑁௟௖ ,𝑁ௗ௦௣ൟ;  
Within the subset, there are restrictions for fungible resources. For memory resources, any data 
storage can be implemented on block memory, while its implementation on triggers has volume 
restrictions. For computational resources, it is possible to implement any computation on logical 
cells, while the type and set of operations for specialized blocks is limited. Resource estimation 
results are used to further parallelism reduction. 

3.2 Memory resources estimation 
To estimate the required memory amount, the total amount of resources can be referred to the total 
amount measured in bits (kbit). 
As an example for estimating the circuit resource, consider its HDL graph. Each k-th layer of the 
tiered-parallel form consists of a set of information inputs 𝐵௞ and a set of operations 𝑂௞. After data 
typing, each information input of HDL graph vertices has a width of 𝑊௞. Based on the input number 
and the bit width of each input of a specific graph layer, it is possible to determine the amount of 
memory required to store the result in the corresponding graph state: 
To calculate the resource, it is necessary to traverse the graph and sum up the bit widths of the inputs 
and outputs of all vertices: 𝑁𝑅 = ෍𝑁𝑅௞ . 
After an initial evaluation of the required memory resource for the initial maximum parallel 
implementation of the circuit, two options are possible: 
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The required resource is less than the available one 𝑁𝑅 <  𝑁௠/௟௖,  where 𝑁௠/௟௖  is an available 
resource; 
The required resource is greater than the available one 𝑁𝑅 ≥  𝑁௠/௟௖ 
The first option does not require the calculation of the reduction factor for memory resources𝐺௠. 
But when the scheme is changed during its reduction, for other resources, the memory resource must 
be evaluated and checked again. 
In the second case, the reduction factor 𝐺௠ is calculated using the following formula: 𝐺௠ = 𝑁𝑅𝑁௠/௟௖ 
This factor is used in the parallelism reduction algorithm of the scheme. 
In addition to the memory limitation, the memory performance limitation must also be considered. 
If the memory is built on registers/ flip-flops, his limitation does not exist, since the width of the 
data bus is equal to the amount of data. For block memory, the amount of data read per clock cycle 
is less than the amount of stored data. If resource 𝑁𝑅 exceeds the available volume of 𝑁௥ registers, 
it is necessary to calculate the total data interface to the memory and the reduction factor by the 
memory interface 𝐺௠ௗ.   

3.3 Algorithm for determining the reduction coefficient 
To determine the minimum required reduction factor over the memory interface, a set of stages with 
the maximum total interface implemented in registers is selected from all stages of the pipeline. To 
do this, a subset of the stages is selected from the set of pipeline stages, such that: (𝑁௠/௟௖ −  𝑁𝑅௥) > 𝑚𝑎𝑥∑𝑁𝑅 || ∑𝑁𝑅௞. 
The || sign denotes logical addition. 
The 𝐺௠ௗ factor is defined as the ratio of the total memory interface of the remaining stages to the 
total block memory interface 𝐼𝑀. 
The following algorithm is used to determine the reduction factor over the memory interface: 
To select a subset of the pipeline stages such that the sum of resources 𝑁𝑅௞ of the selected stages 
will be less than 𝑁𝑅௥ and selected values sum 𝑁𝑅௞ will be maximum; 
To calculate the memory resource implemented on block/sequential memory:  𝑁𝑅௠ = 𝑁𝑅 −∑𝑁𝑅௞, 
where 𝑘 belongs to a subset of the pipeline stages selected at step 1. 
Calculate the coefficient 𝐺௠ௗ:  𝐺௠ௗ = 1 + 𝐼𝑛𝑡(𝑁𝑅௠ 𝐼𝑀⁄ ), 
where 𝐼𝑛𝑡 is rounding to an integer value. 
As an example, the calculation of a 4-point FFT (Fast Fourier Transform) will be considered, where 
the discrete Fourier transform is calculated by the formula: 𝑐௡ = ଵ௡ ∑ 𝑆௝௡ିଵ௝ ∗ 𝑊௡ି ௞௝ + ଵ௡ ∑ 𝑆௝௡ିଵ௝ ∗ 𝑊௡௞௝. 
The input data type is signed 16-bit. 
The Data-Flow graph after transformation into HDL graph and reduction to a tier-parallel form 
(TPF) is shown in fig. 1. 
The value of recourses 𝑁𝑅௞ for each stage of the pipeline is calculated as follows: 𝑁𝑅ଵ =  10 ∗ 2 ∗ 16 =  320;  𝑁𝑅ଶ =  16 ∗ 4 + 8 ∗ 32 =  320;  𝑁𝑅ଷ =  16 ∗ 4 + 4 ∗ 33 =  196;  𝑁𝑅ସ = 33 ∗ 4 + 4 ∗ 34 =  268.  
Total resource value is: 
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𝑁𝑅 =  1104 𝑏𝑖𝑡𝑠. 

Fig. 1. HDL graph of the maximum parallel form of 4-point FFT 
Let’s consider two architectures, A1 and A2. Value 𝑁௠/௟௖    for both architectures is 1536 bits. In the 
A1 architecture, the entire memory resource is in registers. For such architecture, the 4-point FFT 
scheme in maximum parallel form is implemented unchanged, as in fig. 2. 

 
Fig. 2. HDL graph after reduction 

In the A2 architecture, the register resource is 512 bits, and 1024 bits are presented in the form of 
block memory with a data interface of 36 bits. The total block memory interface value 𝐼𝑀 is 36 bits. 
In accordance with the algorithm for calculating 𝐺௠ௗ, a subset of stages that are implemented in 
registers and have a maximum interface is selected. In this example, it can be either stage 1 or stage 
2. 
In this case, value 𝑁𝑅௠ will be calculated as follows: 𝑁𝑅௠ = 𝑁𝑅 − 𝑁𝑅ଵ = 1104 –  320 =  784 bits.  
The value of the reduction factor by the memory interface will be: 𝐺௠ௗ = ଻଼ସଷ଺ = 22.. 
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In this case, the data feed period becomes equal to 𝐺௠ௗ and pipeline stages 2, 3, 4 or 1,3,4 are 
implemented sequentially, since the result is written to one memory block. The scheme obtained as 
a result of the reduction with the corresponding ratio 𝐺௠ௗ is shown in fig. 2. 
The values c1-c12, d1-d8 and S0-S3 are calculated in this scheme sequentially. Since stages 2, 3 of the 
original scheme after reduction require 22 cycles to execute, stage 1 can also be increased to 22 
cycles without affecting the overall performance of the system, which will lead to a proportional 
decrease in the computational resource of stage 1. 

3.4 Estimation of the required computing resources 
The total number of layers (stages of the pipeline) is M. At each j-th layer of the graph, a certain set 
of operations is implemented: 𝑂௝ , where 𝑗 = 1, … ,𝑘. 
For the entire HDL graph, the number of each operation:  𝐹௞  = ∑ 𝑂௞௝ெ௝ୀ଴ . 
Let 𝐿௞ be the total number of different types of operations, where 𝑘 = 0, … , 𝐿.  The type of operation 
here means the type of arithmetic / logical, etc. operations along with the indication of the data width. 
For example, adding 16-bit data, comparing 20-bit data, etc. 
After calculating the total number of operations of each type based on the available a specific 
architecture resource, it is necessary to assess the degree of parallelism with which it is possible to 
implement the scheme. 
It is supposed that the amount of resource for each specific type of operation is known. Let 𝑌 be the 
type of resource (logical cells, specialized arithmetic blocks DSP, etc.), 𝑉(𝑌)௞ will be the amount 
of resource of type 𝑌 required to implement an operation of type 𝑘. Then the total resource of type 𝑌 for all operations in the HDL graph will be: 𝑉(𝑌)  = ∑ 𝑉𝑌௞௅௞ୀ଴ ∗ 𝐹௞. 
For each class of computing resources, the reduction factor 𝐺௬ can be calculated as the ratio of the 
total required resource to the resource of the target architecture, rounded to the nearest larger integer: 𝐺௬ = 𝐼𝑛𝑡൫𝑉(𝑌) 𝑁௬⁄ ൯. 
So, the final reduction factor for computing resources is determined as the maximum among all 
reduction factors: 𝐺௖௔௟௖ =  𝑚𝑎𝑥{𝐺௬} 
This algorithm is considered using the example of the graph diagram shown in fig. 2. The total 
number of pipeline stages for a given graph is 4. The number of operation types 𝐿 will be 5: 16-bit 
multiplication (𝑘 =  0), addition and subtraction of 33 and 16 bits (𝑘 =  1.2), addition of 34-bit 
data, and subtraction of 33-bit data (𝑘 =  3.4). The number of operations on the layers of thegraph 
will be: 𝑂ଵ =  {8, 0, 0, 0, 0}; 𝑂ଶ =  {0, 2, 2, 0, 0}; 𝑂ଷ =  {0, 0, 0, 4, 4}; 𝑂ସ =  {0, 0, 0, 0, 0}; 
The number of each operation of the 𝑘-th type: 𝐹଴  =  8,  𝐹ଵ  =  2,  𝐹ଶ  =  2,  𝐹ଷ  =  4, 𝐹ସ  =  4. 
Let there be architecture with two types of resources for implementation of computations: logical 
cells (𝑌 =  0) and DSP sections (𝑌 =  1). The following resource values for each type of operation 
are taken: 
For logic cells: 𝑉(0)଴ = 0, 𝑉(0)ଵ = 5, 𝑉(0)ଶ = 5,  𝑉(0)ଷ = 10,  𝑉(0)ସ = 10. 
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For DSP sections: 𝑉(1)଴ = 1,𝑉(1)ଵ = 0, 𝑉(1)ଶ = 0,𝑉(1)ଷ = 0,  𝑉(1)ସ = 0. 
The total resource for each type for all operations in the graph will be: 𝑉(0)  =  ∑ 𝑉𝑌௞௅௞ୀ଴ ∗ 𝐹௞ = 0 ∗ 8 + 5 ∗ 2 + 5 ∗ 2 + 4 ∗ 10 + 4 ∗ 10 = 100, 
V(1) = ∑ 𝑉𝑌௞௅௞ୀ଴ ∗ 𝐹௞ = 1 ∗ 8 + 0 ∗ 2 + 0 ∗ 2 + 0 ∗ 10 + 0 ∗ 10 = 8 
The architecture where the number of DSPs is 𝑁ଵ  =  2, the number of logical cells is 𝑁଴  =  200 is 
considered. According to it, the reduction factor for each type of resource is: 𝐺଴ = 𝐼𝑛𝑡 ቆ𝑉(0)𝐺଴ ቇ = 100200 = =  0.5; 

𝐺ଵ = 𝐼𝑛𝑡 ቆ𝑉(1)𝐺ଵ ቇ =  82  =  4. 
The value of the reduction factor for computing resources 𝐺௖௔௟௖ is: 𝐺௖௔௟௖ = max{0.5, 4} = 4. 
After reducing each stage with a factor of 4, the delay of each stage will increase to 4 clock cycles, 
while the resource will also decrease by 4 times. The resulting circuit is shown in fig. 3. 
Note that changing the computational resource may change the memory resource. 

 
Fig. 3.  Scheme of HDL graph after reduction by Gcalc 

3.5 Generalized Parallelism Conversion Algorithm 
Let the ratio of the resource required to implement the circuit in the original maximally parallel form 
to the available resource be denoted as 𝑅. It is assumed that the available resource is the smallest of 
the resources. There are three options for transforming the original maximum parallel scheme can 
be distinguished depending on the available resource of the target platform. 
The first option: if 𝑅 >  1, a reduction in parallelism is required. 
In this case it is possible to increase performance by placing several circuits in parallel: 𝑆 = 𝐼𝑛𝑡(1 𝑅)⁄ . 
Consider a reduction algorithm using the reduction coefficients described in subsections 3.2-3.4. 
1) Calculating the reduction factors 𝐺௠ and 𝐺௖௔௟௖; 
2) Choosing the maximum coefficient  𝐺௠௔௫ = max (𝐺௠,𝐺௖௔௟௖); 
3) Reducing the parallelism of the circuit to 𝐺௠௔௫; 
4) Recalculating the coefficients 𝐺௠ and 𝐺௖௔௟௖ for the modified 

circuit; 
5) If they are less than 1, the algorithm is finalized; 
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6) If some operations can be implemented using a different type of 
resources, change these operations to another type of resources 
without changing the 𝑅 coefficient and recalculate the 𝐺௠ and 𝐺௖௔௟௖  coefficients; 

7) If any of the coefficients are greater than 1: 𝐺௠௔௫ = 1 + 𝐺௠௔௫ and 
return to step 3. 

A sequential increase in the reduction factor allows selecting the minimum possible ratio to meet 
the resource requirements and at the same time achieve maximum performance (the minimum 
possible reduction in performance relative to the initial maximum parallel version). 
Second option: when R < 1 2ൗ , an increase in the number of circuits is possible. 

The third option: when 1 2ൗ < 𝑅 <  1  the resource is enough to accommodate 1 maximum parallel 
version of the circuit. 
In the second and third options, no conversions of the maximally parallel circuit are required. 

4. Results 
In the framework of the research, the authors have implemented a set of software tools that perform 
the following functions: 
• Transformation of the source code in the FFP language into an intermediate representation in 

the form of an DFG and CFG; 
• Optimization transformations that increase the efficiency of FFP programs; 
• Debugging and analysis of FFP code at runtime, including finding errors and tracing; 
• Compilation of the intermediate representation of FFP programs into the description of VLSI 

in HDL languages [15]. 
Fig. 4 shows the architecture of the developed design support tools based on the proposed high-level 
synthesis method 

 
Fig. 4. Architecture of design support tools 

The interpreter provides executing the program developed in the FFP language. The input data for 
the interpreter is the data flow and control graph, as well as the argument of the top-level function. 
The argument is presented in the format of the DFG description, for this it is processed by the 
translator. 
The optimizer also uses the input intermediate representation and performs optimization of the DFG, 
the result is saved as an intermediate representation of the DFG. 
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Optimizing transformations carried out at this stage include: 
A. Removing unused code; 
B. Optimizing repetitive calculations; 
C. Direct function substitution; 
D. Removing duplicate code; 
E. Optimizing based on equivalent transformations of the FFP algebra of the model. 
The translator checks the syntax of programs developed in the Pifagor functional data flow parallel 
programming language and converts the program into its intermediate representation in the form of 
DFG and CFG [16]. It transforms a functional-flow description into a description at the level of 
combinational logical circuits. The translator includes a debugger, a DFG generator, and a CFG 
generator. The result of the translator's functioning is a set of debugged functions implemented in 
the Verilog / VHDL languages. 
The developed software package also includes a parallelism reduction preprocessor and resource 
estimation preprocessor. The parallelism reduction preprocessor automatically converts the 
parallelism of programs intended for translation into an HDL language, taking into account resource 
restrictions. The preprocessor gets an intermediate representation of the IC operating algorithm in 
FFP language in the form of a typed data flow graph (HDL graph) and resource constraints of the 
target platform obtained using the resource constraints preprocessor. The result of the operation of 
the parallelism reduction preprocessor is the data flow graph, transformed taking into account 
resource constraints. The resulting representation is used by the circuit synthesizer to obtain a 
description of the IC in HDL languages. 
Translators have been developed for the Verilog and VHDL languages [17]. The program 
implements checking the initial description for suitability for synthesis, assembling the initial 
description from a set of functions, assigning data types in the original description and synthesizing 
the output circuit description in Verilog / VHDL languages. 
A set of software tools functions as part of an integrated development environment and allows a 
developer to form a set of debugged functions for their implementation in the form of a IC. The shell 
provides information resources for organizing the entire process of high-level VLSI synthesis based 
on the FFP approach. 
By means of the developed tools, a number of scientific and technical solutions have been obtained: 
a set of complex functional blocks of a single-chip driver of the on-board network of a spacecraft 
[18], VLSI of the DSP unit based on the BMK K5540TN014A from the MRK06 navigation device 
[19] and others. 

5. Conclusion 
The review of recent languages and methods for designing logical circuits made it possible to 
substantiate the choice of the functional-flow parallel computing model and the Pifagor parallel 
programming language for the development of an architecture-independent method for synthesizing 
integrated circuits. 
In the process of developing the proposed method for synthesizing IC based on a modified FFP 
model, a parallelism transformation method was proposed, which consists in reducing the maximum 
parallelism of the IC operating algorithm when switching to specific target architecture. This 
approach provides portability of parallel architectures to different platforms. 
The parallelism transformation includes resource estimation, calculating the parallelism reduction 
factor for each resource class, and reducing circuit parallelism to achieve the required characteristics 
of a specific target platform. 
The presented reduction methods make it possible to change the parallelism of the initial algorithm 
description and provide the implementation of the transfer mechanism to different architectures with 
different resource constraints. 
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The proposed method, in contrast to the parallelism induction methods, reduces the complexity of 
the transfer process by reducing the enumeration of the number of implementation options obtained 
in the synthesis process, taking into account resource constraints. At the same time, resource 
estimation methods at the high-level stage require accounting for overheads when changing 
parallelism to more sequential schemes. For this case, it is necessary to increase the accuracy of the 
estimate. For this, neural networks and machine learning methods can be used, which, based on the 
parameters of the circuit evaluation at a high-level stage, can predict the values of the circuit 
parameters with the required accuracy after implementation at a low level. 
Direct calculation of resource required to implement the developed circuit is complicated due to the 
many transformations that occur during the synthesis and implementation at the low-level stage. The 
implementation of accurate methods for assessing the resource will further reduce the number of 
circuit options considered in the synthesis process under resource restrictions. 
On the basis of the proposed methods of parallelism reduction and resource estimation, a number of 
tools have been implemented, such as a translator of an architecture-independent description of 
automaton and combinational schemes, resource estimation and parallelism reduction preprocessors. 
Preprocessors calculate and quantify the required circuit resource for selected types of unit blocks 
(cells, memory, triggers, LUTs, etc.) on supported target platforms. 
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