Tpyowt UCII PAH, mom 34, eown. 1, 2022 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022

DOI: 10.15514/ISPRAS-2022-34(1)-5

Parallelism reduction method in the high-level VLSI
synthesis implementation

12 D.S. Romanova, ORCID: 0000-0002-9020-4802<daryaooo@mail.ru>
' 0.V. Nepomnyashchiy, ORCID: 0000-0002-2459-6414 <2955005@gmail.com>
VIN. Ryzhenko, ORCID: 0000-0002-3069-9102 <rodgi.krs@gmail.com>
3 A.I Legalov, ORCID: 0000-0002-5487-0699 <legalov@mail.ru>
' N.Y. Sirotinina, ORCID: 0000-0001-8816-4226 <nsirotinina@sfu-kras.ru>

! Siberian Federal University,
79, Svobodny pr.79, 660041, Krasnoyarsk, Russia
2 Krasnoyarsk State Agrarian University
Mira pr. 90, 660049, Krasnoyarsk, Russia
3 National Research University - Higher School of Economics
Mpyasnitskaya str.20, 101000, Moscow, Russia

Abstract. In the article the problems and solutions in the field of ensuring architectural independence and
implementation of digital integrated circuits end-to-end design processes are considered. The method and
language of parallel programming for functional flow synthesis of design solutions is presented. During the
method implementation, the tasks of reducing parallelism and estimating the occupied resources were
highlighted. The main feature of the developed method is the introduction of the additional meta-layer into the
synthesis process. Algorithms for the parallelism reduction have been developed. The results of software tools
development for design support and practical VLSI projects are presented.

Keywords: integrated circuit; algorithm; program; parallel computing model; high-level synthesis; functional-
stream language

For citation: Romanova D.S., Nepomnyashchiy O.V., Ryzhenko LN., Legalov A.L, Sirotinina N.Y.
Parallelism reduction method in the high-level VLSI synthesis implementation. Trudy ISP RAN/Proc. ISP
RAS, vol. 34, issue 1, 2022, pp. 59-72. DOI: 10.15514/ISPRAS—-2022-34(1)-5

Acknowledgements. The article is based on the materials of the report at the Seventh International Conference
«Actual Problems of System and Software Engineering» (APSSE 2021).

59

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

MeTopn peaykumMm napannenusma B npouecce BbICOKOYPOBHEro
CUHTe3a LM poBLIX MHTErpanbHbIX CXeM

12 11.C. Pomanosa, ORCID: 0000-0002-9020-4802<daryaooo@mail.ru>
' O.B. Henomnswuii, ORCID: 0000-0002-2459-6414 <2955005@gmail.com>
' U.H. Poioicenxo, ORCID: 0000-0002-3069-9102 <rodgi.krs@gmail.con™>
3 A.H. Jlecanos, ORCID: 0000-0002-5487-0699 <legalov@mail.ru>
' H.I0. Cupomununa, ORCID: 0000-0001-8816-4226 <nsirotinina@sfu-kras.ru>

' Cubupcruii pedepanvuwiii ynueepcumen,
660041, Poccus, e. Kpacnosipck, np. Ceoboonuwiil, 79
2 Kpacnospckuil 20cy0apcmeeHHblil azpapHblil YHUEePCUmen
660049, Poccus, 2. Kpacnosipck, np. Mupa, 90
3 Hayuonanohwlil ucciedoeamenscKutl ynugepcument « Bolcuias wKoaa s3K0HOMUKU»
101000, Poccus, e. Mockea, yn. Macnuykas, 0. 20

AHHoTanus. PaccMoTpeHs! po0OiIeMbl U peleHus B 001aCTH 00€CIIeueHUs apXUTEKTYPHOI HE3aBUCUMOCTH U
OpraHM3alUy IIPOIecca CKBO3HOTO MPOSKTHPOBAHMS NU(POBBIX HHTEIPANBHBIX cXeM. IIpencraBien MeTon u
SI3BIK TIAPAJIIENBHOTO MPOrPaMMUPOBAHKS A1 (QYHKIIHOHAIBHO IIOTOKOBOTO CHHTE3a MPOCKTHBIX PEIICHHIL.
Ilpu peamuszanuu MeTona BBIAEICHBI 3aJa4d PeAyKIUM Napaiieln3Ma H OIEHKH 3aHHMAaeMBIX PECypCOB.
Tpemnoxen cnocod cBepTKH, Oa3UPYIOLMICS HAa BBEICHHHU JONOIHUTENILHOI0, META-CII0S B IIPOLIECC CUHTE3A.
Pa3paboraH NpHHIUI M alTOPHTMBI PEIyKIMY Iapajuienn3Ma. IIpencTaBieHs pe3ynbTaTsl pa3paboTKu
MPOrPaMMHOTO MHCTPYMEHTApHUs MOANEP)KKHM HPOEKTUPOBAHMS H PEATH30BAHHBIC HA IPAKTHKE NPOCKTHI
CBUC.

KiroueBbie ciioBa: HUHTETpalibHasl CX€Ma; ajropuTM; IIporpamMma; MOZEIb IlapajUI€IbHBIX BBIHHCHCHHﬁ;
BbICOKprOBHeBBIﬁ CHHTE3; (pyHKIIPIOHaHLHO-HOTOKOBLIfI S3BIK

Jas umruposanusi: Pomanosa JI.C., Henmomusiumii O.B., Peokenko U.H., Jleranos A.U., Cuporununa H.1O.
Meroa peayKuuy napaiein3mMa B IPOLECCe BHICOKOYPOBHErO CHHTE3a IM(PPOBBIX HMHTEIPAJBbHBIX CXEM.
Tpyast UCIT PAH, tom 34, Bbim. 1, 2022 1., ctp. 59-72. DOIL: 10.15514/ISPRAS-2022-34(1)-5

Baaropapuoctu. CraThs TOATOTOBIEHAa IO Marepuanam Joknaza Ha CenbMoll MexayHapoaHOit
KOH(epeHLNH «AKTyallbHbIE ITPOOJIEMBI CUCTEMHON U NporpaMMHoOi uHxeHepun» (ATICIIN 2021).

1. Introduction

The current level of digital integrated circuits (IC) development is characterized by constantly
increasing requirements for the systemic organization of the entire design flow. One of the most
important tasks is to reduce the time to get the final result. The main reasons for slowing down the
design flow are iterative operations that lead to returning to previous stages. The elimination of
iterative operations provides an “end-to-end design flow” resulting in lower financial costs and
increased product competitiveness. Another urgent task is to ensure the architectural independence
of the product being developed, in other words, design solutions portability between the target
platforms of the IC. Portability allows the developer to optout of being tied to the target
implementation platform that provides more efficient solutions for key product specifications such
as speed, chip area, etc.

An integrated circuit is, in fact, a system for parallel processing of information flows. At the final
stages of the synthesis, the architecture and operation algorithm of the IC are presented in hardware
description languages. Therefore, efficient solutions for ensuring architectural independence can be
found in the area of portable parallel programs. In turn, end-to-end design can be ensured through
the use of a parallel computing model of the functional flow and the presentation of the original
algorithms in the form of acyclic structures [5, 10, 12, 13].

60

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

2. Related work

A key feature of well-known research in this area is the use of a functional-flow parallel computing
model and language for the initial description of algorithms for the operation of IC.

Currently, there is a steady tendency to increase the abstraction of the initial algorithms from the
final implementation of the project. At the same time, methods for describing the IC architecture
develop in several ways. The most common is the introduction of constructs for high-level
description into existing hardware description languages (HDL) [1]. Such solutions led to the
emergence of the SystemVerilog language based on the classic Verilog [1]. But even in this case,
the level of abstraction from the specific architecture of the target chip is not fully provided.

There are a number of solutions based on the use of adapted imperative high-level programming
languages (primarily C and C ++) as hardware description languages, for instance, SystemC [2],
Handel-C [3], and Impulse-C [4]. However, these languages were created to solve narrow problems,
for example, to implement streaming applications or to support alternative programming models, so
they do not provide architectural independence of the designed solutions. They are predominantly
sequential languages; therefore, they do not support parallelism, which is necessary for describing
parallel processes occurring in the IC.

Of particular interest is the COLAMO programming language [5], which is a high-level language
with an implicit description of parallelism. Parallelization is achieved by declaring variable access
types and indexing array elements, which is typical for data flow languages. Currently, this language
is used for programming reconfigurable computing systems. It allows developing parallel
application programs with high specific performance [5]. However, this language is focused on
solving applied problems in the field of high performance computing for multichip systems.

The most effective solutions are obtained using functional languages that have a more powerful
abstraction mechanism and a developed type system. The initial IC operating algorithms described
in similar languages are easier to transform and verify [6]. For example, the languages Hydra [7]
and uFP [8] use flows to describe signals and recursive expressions to provide schema
transformations. Lava, like Hydra, is a built-in subset of Haskell. It possesses powerful circuit design
tools derived from its predecessor. At the same time, Lava is simpler and more convenient to use
due to the extended type system for describing hardware. However, the mechanism of "lazy"
calculating inherent in Haskell and the sequential structure of lists impose restrictions on parallelism
transformations and do not allow efficient automatic parallelization of programs [12].

The works of Donnagara [10, 11] show that the effective portability of the IC initial description can
be implemented by using functional programming languages and presenting algorithms as data flow
graphs. The high efficiency of this approach is proved in practice using the example of parallel
software (PaRSEC) for high performance computing [11].

In this case, the solution lies in the application of a programming paradigm, which must meet the
following conditions [10]:

e Lack of explicit control over computations (control by data availability / readiness);
e Data flow model;

e Parallelism at the level of operations.

The model that meets the listed requirements is the basis of the functional-flow parallel (FFP)
programming languages [12]. This gives grounds to consider the FFP programming methods and
the corresponding computation model as the most suitable for solving the problem of high-level
architecture-independent IC synthesis.

Among the programming languages that support the FFP model, the Pifagor language is chosen [12].
This language allows a developer to describe an initial algorithm without resource constrains,
supports a data flow model and parallelism at the operation level, which is the most important for
the architecture-independent end-to-end design of IC. In Pifagor language, architectural
independence is achieved by describing only informational connections existed in the program.

61

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

Unlike Haskell, Pifagor only supports explicitly describing delayed computations. This allows
executing alternative program fragments only when they are needed. Also, there are no loop
operators in Pifagor. This prevents conflicts when using different data with the same fragments of a
parallel program. In theory, this allows a program to start executing any function as soon as its input
is ready. In practice, only resource limits are imposed on the maximum concurrency specified in the
language.

The authors have proposed a method for an architecture-independent high-level VLSI synthesis on
the basis of the FFP computation model and the Pifagor language that supports it [13]. When
implementing the method, the dynamic type system was replaced by a static one, which is supported
in hardware description languages, delayed computations were excluded, and it was proposed a
method to transform them in compliance with the target IC platform. Also, in the modified Pifagor
language, a mechanism for converting recursion into an iterative scheme with a subsequent transition
to a pipeline scheme was introduced [13].

The proposed method for ensuring architectural independence in the course of high-level synthesis
assumes that a program in Pifagor is transformed into an intermediate representation in the form of
a pair of graphs: a data—flow graph (DFG) and a control-flow graph (CFG). DFG specifies
information connections, and presenting CFG in an explicit form allows a more detailed description
of the computational control process.

The DFG is shaped during the program translation, and the CFG can be elaborated both dynamically
and statically. The last approach is used to switch from a program in Pifagor to a program for
describing IC in an HDL language.

The intermediate presentation of the FFP of the program during translation is developed in two
stages. At the first stage, the initial code is translated into DFG. Then, a control-flow graph is formed
from the obtained data-flow graph. CFG can be formed from DFG in various ways. For example, in
accordance with the model of computation control by data flow, either it can be reduced to a
sequential traversal of the DFG, or provide another strategy for managing computations.

To switch to the target IC platform, the DFG is converted into a pipeline scheme. The pipeline
computing scheme is a tiered-parallel form of DFG.

To convert parallelism of the initial algorithm to the target IC platform taking in account the specific
resource constraints, the following stages are performed: determining the boundaries of changing
parallelism, an algorithm for changing parallelism, and evaluating the result based on resource
constraints.

The main task of the transition from the unrestricted parallelism of the FFP model to the target
platform is reduction of parallelism. This is the key moment of all ongoing transformations in the
architecture-independent method of VLSI synthesis. To implement the reduction mechanism, a new
meta-layer called "HDL graph" was introduced. It is an intermediate layer for making changes to
the FFP model. According to the authors, the term "HDL graph" most fully corresponds to the
method of VLSI synthesis. HDL graph allows you to specify connections between elements of lists
of connected vertices, which in turn allow performing optimization transformations by calculating
the operation of selecting data from the list. With the help of the introduced meta-layer, when
processing types in a statically typed model, a restriction is introduced on the dynamic resizing of
lists during computations.

Recursive computations often become an obstacle when porting such programs to some real
computing platforms, since at a significant depth of recursion memory overflow can occur. The
introduction of the HDL graph made it possible to solve this problem by transforming such
computations into iterative ones using tail recursion and specifying the recursion depth at the
translation stage.

62

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

3. Parallel conversion3.1 Parallelism reduction algorithm

The main feature of the introduced synthesis method is the transition from parallelism induction into
the algorithm description to reducing the initial maximum-parallel algorithm description according
to specific resource constraints of the target platform. As shown in [10, 11], this ensures the
portability of parallel algorithms to various platforms. The main advantage of parallelism reduction
compared to induction is significant decreasing in the number of steps required to obtain the final
result. When reducing a maximally parallel data flow graph, the number of maximally admissible
transformations is set at the synthesis stage.

In the process of synthesis, the following tasks are solved:

e Assessment of the resources of the resulting architectural solution;
e Evaluation of the performance of the resulting solution;

e Calculation of the reduction factor for each class of resources;

e Parallelism reduction of the circuit to achieve the required coefficients.

To estimate resources, an intermediate representation of the program HDL graph is used, in which
architecture-dependent data are already specified. An HDL graph is an acyclic graph in a tiered-
parallel form, at each node of which types and widths of data are specified [14]. The N, resource
classes whereby the scheme should be evaluated are determined depending on the target platform.

For example, the main resource classes of the FPGA platform include:
1) Number of registers N,;

2) Number of logical cells Ny;

3) The amount of block memory N, Nm;

4) Number of arithmetic and other specialized computing units Ngg.
Resources can be divided into two subsets:

e Memory resources Ny = {Ny, Npp}s

e Computing resources Neomp = {Nie, Nasp };

Within the subset, there are restrictions for fungible resources. For memory resources, any data
storage can be implemented on block memory, while its implementation on triggers has volume
restrictions. For computational resources, it is possible to implement any computation on logical
cells, while the type and set of operations for specialized blocks is limited. Resource estimation
results are used to further parallelism reduction.

3.2 Memory resources estimation

To estimate the required memory amount, the total amount of resources can be referred to the total
amount measured in bits (kbit).
As an example for estimating the circuit resource, consider its HDL graph. Each k-th layer of the
tiered-parallel form consists of a set of information inputs B, and a set of operations O,,. After data
typing, each information input of HDL graph vertices has a width of W,,. Based on the input number
and the bit width of each input of a specific graph layer, it is possible to determine the amount of
memory required to store the result in the corresponding graph state:
To calculate the resource, it is necessary to traverse the graph and sum up the bit widths of the inputs
and outputs of all vertices:

NR = Z NR,.

After an initial evaluation of the required memory resource for the initial maximum parallel
implementation of the circuit, two options are possible:

63

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

The required resource is less than the available one NR < Ny, where Ny, is an available
resource;
The required resource is greater than the available one NR = Ny, ;.

The first option does not require the calculation of the reduction factor for memory resourcesG,,.
But when the scheme is changed during its reduction, for other resources, the memory resource must
be evaluated and checked again.
In the second case, the reduction factor G, is calculated using the following formula:

NR

Nm/lc

This factor is used in the parallelism reduction algorithm of the scheme.

In addition to the memory limitation, the memory performance limitation must also be considered.
If the memory is built on registers/ flip-flops, his limitation does not exist, since the width of the
data bus is equal to the amount of data. For block memory, the amount of data read per clock cycle
is less than the amount of stored data. If resource NR exceeds the available volume of N, registers,
it is necessary to calculate the total data interface to the memory and the reduction factor by the
memory interface G-

G =

3.3 Algorithm for determining the reduction coefficient

To determine the minimum required reduction factor over the memory interface, a set of stages with
the maximum total interface implemented in registers is selected from all stages of the pipeline. To
do this, a subset of the stages is selected from the set of pipeline stages, such that:

(Nmjic — NR,) > max ¥, NR || ¥ NR;.
The || sign denotes logical addition.
The G,,4 factor is defined as the ratio of the total memory interface of the remaining stages to the
total block memory interface IM.
The following algorithm is used to determine the reduction factor over the memory interface:
To select a subset of the pipeline stages such that the sum of resources NR; of the selected stages
will be less than NR,. and selected values sum NR), will be maximum;
To calculate the memory resource implemented on block/sequential memory:
NR,, = NR — Y NR,,
where k belongs to a subset of the pipeline stages selected at step 1.
Calculate the coefficient G,,4:
Gma = 1+ Int(NR,,/IM),
where Int is rounding to an integer value.
As an example, the calculation of a 4-point FFT (Fast Fourier Transform) will be considered, where
the discrete Fourier transform is calculated by the formula:
G = 2T W IR e
The input data type is signed 16-bit.
The Data-Flow graph after transformation into HDL graph and reduction to a tier-parallel form
(TPF) is shown in fig. 1.
The value of recourses NR), for each stage of the pipeline is calculated as follows:
NR; = 10*x2*16 = 320;

NR, = 16 x4 + 832 = 320;
NR; = 16 x4+ 433 = 196;
NR, =33%4+4x34 = 268.

Total resource value is:
64

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

NR = 1104 bits.

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

int16 inets intl6 intl6 intls tntl6

\ ' ' \ v
[mewimeisi] [onmibimisa | [erasmisit | [o res] | J
s ()) . wil (1) O

]

Fig. 1. HDL graph of the maximum parallel form of 4-point FFT
Let’s consider two architectures, Al and A2. Value Ny, ;. for both architectures is 1536 bits. In the
ATl architecture, the entire memory resource is in registers. For such architecture, the 4-point FFT
scheme in maximum parallel form is implemented unchanged, as in fig. 2.

intlé bmeis nelé intlé ntls ntré tmelé mis mtls tmei6

¥ ¥ 3

Y ¥ ¥
[imetwimotga | [omgwipamigsy | | metwibimisa | | gl meis | | [P SedamiFal)] Iuﬂs‘uws‘su | IM:“!I‘!W | [omwamisan | | meowsimisan | lﬂ_‘]’tﬁ_‘_’ﬂ

10 clock cycles

22 clock cycles

Fig. 2. HDL graph after reduction

In the A2 architecture, the register resource is 512 bits, and 1024 bits are presented in the form of
block memory with a data interface of 36 bits. The total block memory interface value IM is 36 bits.
In accordance with the algorithm for calculating G4, a subset of stages that are implemented in
registers and have a maximum interface is selected. In this example, it can be either stage 1 or stage
2.
In this case, value NR,, will be calculated as follows:

NR,, = NR — NR, = 1104 - 320 = 784 bits.
The value of the reduction factor by the memory interface will be:

784
Gma =52 = 22.

65

In this case, the data feed period becomes equal to G,,; and pipeline stages 2, 3, 4 or 1,3,4 are
implemented sequentially, since the result is written to one memory block. The scheme obtained as
a result of the reduction with the corresponding ratio G,,4 is shown in fig. 2.

The values c¢i-c12, di-dg and So-Ss are calculated in this scheme sequentially. Since stages 2, 3 of the
original scheme after reduction require 22 cycles to execute, stage 1 can also be increased to 22
cycles without affecting the overall performance of the system, which will lead to a proportional
decrease in the computational resource of stage 1.

3.4 Estimation of the required computing resources
The total number of layers (stages of the pipeline) is M. At each j-th layer of the graph, a certain set
of operations is implemented: O; , where j = 1, ..., k.
For the entire HDL graph, the number of each operation:

Fe =3¥1L,0;.
Let Ly, be the total number of different types of operations, where k = 0, ..., L. The type of operation
here means the type of arithmetic / logical, etc. operations along with the indication of the data width.
For example, adding 16-bit data, comparing 20-bit data, etc.
After calculating the total number of operations of each type based on the available a specific
architecture resource, it is necessary to assess the degree of parallelism with which it is possible to
implement the scheme.
It is supposed that the amount of resource for each specific type of operation is known. Let Y be the
type of resource (logical cells, specialized arithmetic blocks DSP, etc.), V(Y); will be the amount
of resource of type Y required to implement an operation of type k. Then the total resource of type
Y for all operations in the HDL graph will be:

V(Y) = ko VYi * F.

For each class of computing resources, the reduction factor G, can be calculated as the ratio of the
total required resource to the resource of the target architecture, rounded to the nearest larger integer:
Gy, = Int(V(Y)/Ny).

So, the final reduction factor for computing resources is determined as the maximum among all

reduction factors:

Geqic = max{Gy}
This algorithm is considered using the example of the graph diagram shown in fig. 2. The total
number of pipeline stages for a given graph is 4. The number of operation types L will be 5: 16-bit
multiplication (k = 0), addition and subtraction of 33 and 16 bits (k = 1.2), addition of 34-bit

data, and subtraction of 33-bit data (k = 3.4). The number of operations on the layers of thegraph
will be:

0, = {8,0,0,0,0};
0, = {0,2,2,0,0};
05 = {0,0,0,4,4};
0, = {0,0,0,0,0};

The number of each operation of the k-th type:

Fhb=8F =2,F,=2F =4F =4

Let there be architecture with two types of resources for implementation of computations: logical
cells (Y = 0) and DSP sections (Y = 1). The following resource values for each type of operation
are taken:

For logic cells:

V(0)o =0, V(0); =5,

V(0), =5, V(0); = 10, V(0), = 10.
66

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

For DSP sections:
V(1) =1V(1); =0,
V(1),=0,V(1); =0, V(1),=0.
The total resource for each type for all operations in the graph will be:
V() = YL VY *F,=0%8+5%2+5%2+4%10+4*10 = 100,
V(=Y _ VY *F,=1x8+0%2+0+2+0x10+0+10=18
The architecture where the number of DSPs is N; = 2, the number of logical cells is N, = 200 is
considered. According to it, the reduction factor for each type of resource is:

c It<V(O)> 100 05
0 Go 200
V(1)\ 8
G, =Int =- =4
! n<61> 2

The value of the reduction factor for computing resources G iS:
Geqie = max{0.5,4} = 4.
After reducing each stage with a factor of 4, the delay of each stage will increase to 4 clock cycles,
while the resource will also decrease by 4 times. The resulting circuit is shown in fig. 3.
Note that changing the computational resource may change the memory resource.

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

inilé inilé imilé intlé intlé intlé intlé inilé imtlé intl6

v + * L *

*
[Foswen | [| [] [] [] [] []] |

4 clock cycles

I oS bm{ 5.}

Fig. 3. Scheme of HDL graph after reduction by Gealc

3.5 Generalized Parallelism Conversion Algorithm

Let the ratio of the resource required to implement the circuit in the original maximally parallel form
to the available resource be denoted as R. It is assumed that the available resource is the smallest of
the resources. There are three options for transforming the original maximum parallel scheme can
be distinguished depending on the available resource of the target platform.

The first option: if R > 1, a reduction in parallelism is required.
In this case it is possible to increase performance by placing several circuits in parallel:
S = Int(1/R).
Consider a reduction algorithm using the reduction coefficients described in subsections 3.2-3.4.
Calculating the reduction factors G, and G.gc;

Reducing the parallelism of the circuit to Gpgxi

MR

)
) Choosing the maximum coefficient Gpge = max (Gy, Geare)i
)
)

Recalculating the coefficients G, and Gg for the modified
circuit;
5) If they are less than 1, the algorithm is finalized;

67

6) If some operations can be implemented using a different type of
resources, change these operations to another type of resources
without changing the R coefficient and recalculate the G, and
Geqic coefficients;

7) If any of the coefficients are greater than 1: Gpgxe =1+ Gpay and
return to step 3.

A sequential increase in the reduction factor allows selecting the minimum possible ratio to meet
the resource requirements and at the same time achieve maximum performance (the minimum
possible reduction in performance relative to the initial maximum parallel version).

Second option: when R < 1/ 2, an increase in the number of circuits is possible.
The third option: when 1/ 2 <R < 1 the resource is enough to accommodate 1 maximum parallel

version of the circuit.
In the second and third options, no conversions of the maximally parallel circuit are required.

4. Results

In the framework of the research, the authors have implemented a set of software tools that perform
the following functions:

e Transformation of the source code in the FFP language into an intermediate representation in
the form of an DFG and CFG;

e Optimization transformations that increase the efficiency of FFP programs;
e Debugging and analysis of FFP code at runtime, including finding errors and tracing;

e Compilation of the intermediate representation of FFP programs into the description of VLSI
in HDL languages [15].

Fig. 4 shows the architecture of the developed design support tools based on the proposed high-level

synthesis method

FFP Program
CFG

(Verifier) CSvmheslzel HDL_) C Optimizer)
]
.

HOL- graph
A

il
Parallelism reduction
Preorocessor

Code on Verilog/ VHDL

Fig. 4. Architecture of design support tools

The interpreter provides executing the program developed in the FFP language. The input data for
the interpreter is the data flow and control graph, as well as the argument of the top-level function.
The argument is presented in the format of the DFG description, for this it is processed by the
translator.

The optimizer also uses the input intermediate representation and performs optimization of the DFG,
the result is saved as an intermediate representation of the DFG.

68

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

Optimizing transformations carried out at this stage include:

Removing unused code;

Optimizing repetitive calculations;

Direct function substitution;

Removing duplicate code;

Optimizing based on equivalent transformations of the FFP algebra of the model.

The translator checks the syntax of programs developed in the Pifagor functional data flow parallel
programming language and converts the program into its intermediate representation in the form of
DFG and CFG [16]. It transforms a functional-flow description into a description at the level of
combinational logical circuits. The translator includes a debugger, a DFG generator, and a CFG
generator. The result of the translator's functioning is a set of debugged functions implemented in
the Verilog / VHDL languages.

The developed software package also includes a parallelism reduction preprocessor and resource
estimation preprocessor. The parallelism reduction preprocessor automatically converts the
parallelism of programs intended for translation into an HDL language, taking into account resource
restrictions. The preprocessor gets an intermediate representation of the IC operating algorithm in
FFP language in the form of a typed data flow graph (HDL graph) and resource constraints of the
target platform obtained using the resource constraints preprocessor. The result of the operation of
the parallelism reduction preprocessor is the data flow graph, transformed taking into account
resource constraints. The resulting representation is used by the circuit synthesizer to obtain a
description of the IC in HDL languages.

Translators have been developed for the Verilog and VHDL languages [17]. The program
implements checking the initial description for suitability for synthesis, assembling the initial
description from a set of functions, assigning data types in the original description and synthesizing
the output circuit description in Verilog / VHDL languages.

A set of software tools functions as part of an integrated development environment and allows a
developer to form a set of debugged functions for their implementation in the form of a IC. The shell
provides information resources for organizing the entire process of high-level VLSI synthesis based
on the FFP approach.

By means of the developed tools, a number of scientific and technical solutions have been obtained:
a set of complex functional blocks of a single-chip driver of the on-board network of a spacecraft
[18], VLSI of the DSP unit based on the BMK K5540TNO14A from the MRKO06 navigation device
[19] and others.

moOwp

5. Conclusion

The review of recent languages and methods for designing logical circuits made it possible to
substantiate the choice of the functional-flow parallel computing model and the Pifagor parallel
programming language for the development of an architecture-independent method for synthesizing
integrated circuits.

In the process of developing the proposed method for synthesizing IC based on a modified FFP
model, a parallelism transformation method was proposed, which consists in reducing the maximum
parallelism of the IC operating algorithm when switching to specific target architecture. This
approach provides portability of parallel architectures to different platforms.

The parallelism transformation includes resource estimation, calculating the parallelism reduction
factor for each resource class, and reducing circuit parallelism to achieve the required characteristics
of a specific target platform.

The presented reduction methods make it possible to change the parallelism of the initial algorithm
description and provide the implementation of the transfer mechanism to different architectures with
different resource constraints.

69

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

The proposed method, in contrast to the parallelism induction methods, reduces the complexity of
the transfer process by reducing the enumeration of the number of implementation options obtained
in the synthesis process, taking into account resource constraints. At the same time, resource
estimation methods at the high-level stage require accounting for overheads when changing
parallelism to more sequential schemes. For this case, it is necessary to increase the accuracy of the
estimate. For this, neural networks and machine learning methods can be used, which, based on the
parameters of the circuit evaluation at a high-level stage, can predict the values of the circuit
parameters with the required accuracy after implementation at a low level.

Direct calculation of resource required to implement the developed circuit is complicated due to the
many transformations that occur during the synthesis and implementation at the low-level stage. The
implementation of accurate methods for assessing the resource will further reduce the number of
circuit options considered in the synthesis process under resource restrictions.

On the basis of the proposed methods of parallelism reduction and resource estimation, a number of
tools have been implemented, such as a translator of an architecture-independent description of
automaton and combinational schemes, resource estimation and parallelism reduction preprocessors.
Preprocessors calculate and quantify the required circuit resource for selected types of unit blocks
(cells, memory, triggers, LUTs, etc.) on supported target platforms.

References / Cnucok nutepartypbl

[1] IEEE Std 1800-2012: IEEE Standard for SystemVerilog-Unified Hardware Design, Specification, and
Verification Language, 2013.

[2] V.A. Alekhin. SystemC. Simulation of electronic systems. Goryachaya liniya — Telecom, 2018, 320 p. (in
Russian) / Anexun B.A. SystemC. MonenupoBanue JIeKTPOHHBIX cucTeM. [opsiaast munus — Tenexom,
2018, 320 ctp.

[3] Vivado Design Suite User Guide. High-Level Synthesis. UG902—Xilinx—2015. URL:
http://www xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug902-vivado-high-level-
synthesis.pdf

[4] Handel-C Language Reference Manual. Celoxica Limited, 2005, 26 p.

[5] LI Levin, V.A. Gudkov. Extension of high level language COLAMO for reconfigurable computer systems
programming on the level of FPGA logic cells. Herald of computer and information technologies, no. 12,
2010, pp.10-17 (in Russian) / 1.1 JIeBun, B.A. I'ynkoB. Pacumpenue s3bika Beicokoro yposass COLAMO
TS TIPOrPaMMHPOBAHHS PEKOHMHUIYPHPYEMbIX BHIYUCITHTENBHBIX CHCTEM HA YPOBHE JIOTHYECKHX SYECK
TUIMC. BecTHHK KOMITBIOTEPHBIX M HH(GOPMALMOHHBIX TeXHOJIOrHi. no. 12,2010 r., crp. 10-17.

[6] J. Sérot, G. Michaelson. Compiling Hume down to gates. In Draft Proc. of the 11th International
Symposium on Trends in Functional Programming, 2011, pp, 191-226.

[7]1 J. O’Donnell, M.R. Barbacci, and C.J. Koomen. Hardware description with recursion equations. In Proc.
of the 8th International Symposium on Computer Hardware Description Languages and Their Applications
(CHDL ’87), 1987, pp. 363-382.

[8] M. Sheeran. uFP, a language for VLSI design. In Proc. of the Conference Record of the ACM Symposium
on LISP and Functional Programming (LISP *84), 1984, pp. 104-112.

[9] P.James-Roxby, S. Singh. Lava and JBits: From HDL to bitstream in seconds. In Proc. of the 9th IEEE
Symposium on Field-Programmable Custom Computing Machines, 2001, pp. 91-100.

[10] J. Dongarra, G. Bosilca et al. PARSEC: A programming paradigm exploiting heterogeneity for enhancing
scalability. IEEE Computing in Science and Engineering, vol. 6, no. 15, 2013, pp. 36-45.

[11]J. Dongarra, A. Danalis et al. PTG: An Abstraction for Unhindered Parallelism. In Proc. of the Fourth
International Workshop on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing, 2014, pp. 21-30.

[12] Al Legalov. A functional language for creating architecture-independent parallel programs.
Computational technologies, vol. 10, no. 1, 2005, pp. 71-89 (in Russian) / A.M. Jleranos.
OyHKINOHANBHBIA A3bIK IS CO3JAHHS APXMTEKTYPHO-HE3aBUCHUMbIX IMapaUICIbHBIX IMPOTPAMM.
Beruucnurensabie TexHonoruu, Tom 10, no. 1, 2005 r., ctp. 71-89.

[13] O.V. Nepomnyashchy, A.L. Legalov et al. Methods and algorithms for a high-level synthesis of the very-
large-scale integration. WSEAS Transactions on Computers, vol. 15, 2016, pp. 239-247.

70

Pomanosa JI.C., Henomusimii O.B., Peikenko M.H., Jleranos A.M., Cupornnnna H.FO. Metox pemykuuyn napamiennsma B Iporecce
BBICOKOYPOBHETO CHHTE3a IM(POBBIX MHTErPpalbHbIX cXeM. Tpyost UCII PAH, Tom 34, Beim. 1, 2022 1., cTp. 59-72

[14] H.J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer, 1982, 288 p. / T
Hycc6aymep. Beictpoe npeobpazoBanue Oypbe U alIropuT™Mbl BBIYUCICHHUS CBEPTOK. Paano u cBsizp, 1985
r., 248 crp.

[15] O. V. Nepomnyashchiy, I. N. Ryzhenko et al. The VLSI High-Level Synthesis for Building Onboard
Spacecraft Control Systems. In Proc. of the Scientific-Practical Conference "Research and Development
—2016", 2017, pp. 229-238.

[16] O.V. Nepomnyashchy, I.N. Ryzhenko et al. Translator of architecture-independent description of automata
and combinational circuits. Certificate of state registration of software for computers No. 2021610682,
02/01/2021 (in Russian) / O.B. Hemommsmuii, 1.H. Peokenko m np. TpaHcniaTop apXHTeKTypHO-
HE3aBHCHUMOTO OIHCAHMS aBTOMATHBIX U KOMOHHAIIMOHHBIX cXeM. CBHIETENbCTBO O TOCYJapCTBEHHOI
peructpaunu I10 st O9BM Ne 2021610682, 01.02.2021.

[17] A.A. Komarov, LLN. Ryzhenko, O.V. Nepomnyashchy Program for synthesizing circuit descriptions in
HDL hardware description languages from the Pifagor functional-parallel programming language.
Certificate of state registration of software for computers No. 2015619175, 08/26/2015 (in Russian) / A.A.
Komapos, 11.H. Peixenko, O.B. Henomusuuii. [IporpaMma cuHTe3a ONUCAHUS CXEM Ha sI3bIKaX ONUCAHUS
ammapatypsl HDL ¢ s3blka (yHKIHOHAIBHO-HapallIeNnbHOro mporpammuposanus —«lludaropy.
CBuzieTenbeTBO 0 rocynaperseHnoil perucrparmu [0 s OBM Ne 2015619175, 26.08.2015.

[18] O.V. Nepomnyashchy, A.A. Komarov et al. Program for the driver of the onboard network of the
spacecraft. Certificate of state registration of software for computers No. 2015616896, 06/26/2015 (in
Russian) / O.B. Hemomusimmii, A.A. Komapos u nip. IIporpamma npaiiBepa 60pTOBOI CeTH KOCMHYECKOIO
ammapata. CBHIETeNbCTBO 0 rocynapcTBeHHoH peructpanuu 110 mmss O9BM Ne2015616896, 25.06.2015.

[19] O.V. Nepomnyashchy, A.A. Komarov, I.N. Ryzhenko Complex-functional block of the lowering adder-
limiter. Certificate of state registration of software for computers No. 2016619714, 08/26/2016 (in
Russian) / O.B. Henomusmmii, A.A. Komapo, M.H. Peikenko. CioxHO-(YHKIHOHAIBHBIA OJI0K
MIOHMIKAIONIET0 CyMMAaTopa-orpaHnunTens. CBUIETENBCTBO O TOCYIapcTBeHHON peructpamuu 10 st
OBM Ne 2016619714, 26.08.2016.

Information about authors / UHcpopmaumsa o6 aBTopax

Darya Sergeevha ROMANOVA - post-graduate student of the Department of Computer
Engineering of the Siberian Federal University, assistant of the Department of IT&MOIS of the
Krasnoyarsk State Agrarian University. Research interests: parallel algorithms, high-performance
systems.

Hapes CepreeBna POMAHOBA — acnupanTt kadeapsl BBIYHCIUTENBHONW TeXHUKH CHOMpPCKOTO
(benepanbHOTO YHHUBEPCUTETA, ACCHCTEHT Kadeaps NTuMOUC Kpacnosipckoro
rOCYIapCTBEHHOro arpapHoro ynuBepcutera. Cdepbl HaydHBIX HHTEPECOB: MapauiebHbIC
QJITOPUTMBI, BEICOKOIIPON3BOIUTEILHBIE CHCTEMBIL.

Oleg Vladimirovich NEPOMNYASHCHIY - Professor, Ph.D. in technical sciences, Head of the
Computer Science Department at the Siberian Federal University. Research interests:
microprocessor systems, high-level analysis and synthesis of complex single-chip systems.

Ouner Bnagumuposuy HETIOMHSILIUI — npodeccop, KaHAMAAT TEXHUUECKHX HAYK, 3aBETYONIHE
Kapeqpoi BEMUCTUTENBHON TexXHUKH. OONacTh HAayYHBIX HHTEPECOB: MHKPOIPOLIECCOPHBIC
CHCTEMBI, BBICOKOYPOBHEBBII aHAIN3 U CHHTE3 CIIOKHBIX OHOKPHUCTAIBHBIX CHCTEM.

Igor Nikolayevich RYZHENKO is an Assistant Professor at the Computer Science Department.
Research interests: VLSI high-level synthesis technologies, digital signal processing.

Hrops Huxomaesnu PBIDKEHKO sBnsiercsi accucTeHTOM Kadeapbl BBIYHCIUTEIBHONW TEXHHKH.
Cctepsl HayyHBIX HMHTEPECOB: TEXHOJOTMH BBICOKOypoBHeBoro cuHTe3a CBUC, mmbposas
00paboTKa CUTHAJIOB.

Alexander Ivanovich LEGALOV — Doctor of Technical Sciences, Professor of the Faculty of
Computer Science. His research interests include programming technologies, evolutionary software
development, architecture-independent parallel programming.

Anexcannp Msanosuu JIEI'AJIOB — nokTop TeXHHYECKHX HayK, Hpodeccop dakynbreTa
KOMIIBIOTEpPHBIX HayK. Ero Hay4Hble MHTEpeChl BKJIIOYAIOT TEXHOJOTMH IIPOrPaMMHPOBAHUS,

71

Romanova D.S., Nepomnyashchiy O.V., Ryzhenko I.N., Legalov A.L, Sirotinina N.Y. Parallelism reduction method in the high-level VLSI
synthesis implementation. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 1, 2022, pp. 59-72

SBOIIOIMOHHAsT ~ pa3pabOTKa MPOTPAMMHOTO OOECTIEYeHHs, apXHUTEKTypHO-HE3aBHCHMOE
TIapaiebHOe TPOTPaMMUPOBAHHE.

Natalya Yurievna SIROTININA — Ph.D. in technical sciences, Associate Professor, Department of
Computer Science. Her research interests include neural networks and parallel programming.
Hatanes IOpseBna CHUPOTHMHMHA - kaHamaaT TEXHHYECKHMX HAyK, JAOLEHT Kadeapsl
«BpruncnurenbHas TexHuKa». Ee Hay4dHbIe MHTEPEChl BKIIOYAIOT HEI{POHHbIE CETH U MapauleIbHOe
IPOrpaMMHpPOBaHUE.

72

