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Baaropapuoctu. CraTbs NOAroTOBIEHAa IO MarepuanaMm jgokinaza Ha CexbMoll MexayHapoaHOH
KOH(pEepeHINH «AKTyanbHbIe IIPOoOJIeMbl CHCTEMHOM M IPOrpaMMHOit nrkeHepum» (ATICITH 2021).

1. Introduction

Presently, Big Data frameworks are widely used to process information in various domains, from
modern industrial enterprise [1] to social networks analysis [2]. Big data includes big datasets with
numeric and categorical data, text information, images, and video data. Information in the form of
graphs is traditionally used in computer science. In particular, thesauri and ontologies are used to
process knowledge and texts, but such models cannot yet be classified as big data. Probably, it is
appropriate to speak about the appearance of problems of processing Big Graphs, first of all, in
connection with the appearance of knowledge graphs.

The problem of processing Big Graphs can be solved in various ways, for example, by creating
specialized high-performance hardware for processing graphs [3, 4]. However, the most common
way for Big Graphs processing is to use specialized Big Data frameworks for Big Graphs processing.
The dominant graph model in such frameworks is usually a flat graph model or property graph model
(which is, in fact, the multigraph model). Here, by a flat graph, we mean a graph in which a directed
or undirected edge connects exactly two vertices. However, the flat graph model is not flexible
enough and may not be a convenient solution for modeling complex data domains with hierarchical
relationships. For example, complex technical products' assembly sequence problem requires not a
flat graph but a hypergraph model [5].

One of the existing extensions of the traditional graph model is the metagraph model. The metagraph
model consists of a metagraph data model and a metagraph agent model aimed to process metagraph
data. In this article, we present the implementation of the metagraph agent model using Big Data
processing capabilities.

The article is organized as follows. In sections 2 and 3, the metagraph data model and the metagraph
agent model are formally defined. In section 4, the metagraph representation using the flat graph
model is discussed. In section 5, the flat graph and metagraph Big Data processing are described. In
section 6, the metagraph processing using metagraph agents is discussed, including the experimental
subsection.

2. The Metagraph Data Model
Metagraph is a kind of complex network model proposed by A. Basu and R. Blanning in their book
[6] and then adapted for information systems description in our paper [7]. According to [7]:

MG =(V, MV ,E), )
where MG — metagraph; V' — set of metagraph vertices; MV — set of metagraph metavertices; E — set
of metagraph edges.

Metagraph vertex is described by a set of attributes:

v, = {atrk }, v,el, 2)
where v; — metagraph vertex; atry — attribute.

Metagraph edge is described by a set of attributes, the source and destination vertices, and edge
direction flag:

e, = <vS,vE,eo,{atrk }>, e, € E,eo = true | false, 3)
where e; — metagraph edge; vs — source vertex (metavertex) of the edge; vy — destination vertex
(metavertex) of the edge; eo — edge direction flag (eo=true — directed edge, eo=false — undirected
edge); atry — attribute.

The metagraph fragment:
MG, ={ev,}.ev,e W VEUMY), “)
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where MG; — metagraph fragment; ev; — an element that belongs to the union of vertices, edges, and
metavertices.

The metagraph metavertex:
mv, =<{atrk},MGj>,mv[e MV, 5)

where mv; — metagraph metavertex belongs to a set of metagraph metavertices MV atry — attribute,
MG; — metagraph fragment.

Thus, metavertex, in addition to the attributes, includes a fragment of the metagraph. The presence
of private attributes and connections for metavertex is a distinguishing feature of metagraph. It
makes the definition of metagraph holonic — metavertex may include a number of lower-level
elements and, in turn, may be included in a number of higher-level elements.

Fig. 1. The example of the metagraph data model

The example of the data metagraph (shown in fig. 1) contains three metavertices: mv;, mv,, and mvs.
Metavertex mv; contains vertices v, v, vz and connecting them edges e;, ez, es. Metavertex mv;
contains vertices vy, vs, and connecting them edge es. Edges ey, es5 are examples of edges connecting
vertices v>-v4 and vs-vs that are contained in different metavertices mv; and mv,. Edge e; is an
example of the edge connecting metavertices mv; and mv,. Edge es is an example of the edge
connecting vertex v, and metavertex mv,. Metavertex mv; contains metavertex mv,, vertices vz, v3,
and edge e, from metavertex mv; and also edges es, es, es showing the holonic nature of the
metagraph structure.

3. The Metagraph Agent Model

The metagraph model is aimed for complex data description. But it is not aimed for data
transformation. To solve this issue, the metagraph agent (ag") aimed for data transformation is
proposed. There are two kinds of metagraph agents: the metagraph function agent (ag”) and the
metagraph rule agent (ag®). Thus ag¥® = ag” | ag®.
The metagraph function agent serves as a function with input and output parameters in the form of
metagraph:

ag” =(MG,,,MG,,;, AST), )

where ag’ — metagraph function agent; MG,y — input parameter metagraph; MGouyr — output
parameter metagraph; AST — abstract syntax tree of metagraph function agent in the form of
metagraph.
The metagraph rule agent is rule-based:

ag" =(MG,R,AG""),R={r}.r,: MG, > OP™, (7

where ag® — metagraph rule agent; MG — working metagraph, a metagraph on the basis of which the
rules of the agent are performed; R — set of rules r;; AGST — start condition (metagraph fragment for
start rule check or start rule); MG; — a metagraph fragment on the basis of which the rule is
performed; OPMC — set of actions performed on metagraph.
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The antecedent of the rule is a condition over a metagraph fragment. The consequent of a rule is a
set of actions performed on metagraph. Rules can be divided into open and closed.

The consequent of the open rule is not permitted to change the metagraph fragment occurring in the
rule antecedent. In this case, the input and output metagraph fragments may be separated. The open
rule is similar to the template that generates the output metagraph based on the input metagraph.
The consequent of the closed rule is permitted to change the metagraph fragment occurring in the
rule antecedent. The metagraph fragment changing in rule consequent causes to trigger the
antecedents of other rules bound to the same metagraph fragment. But incorrectly designed closed
rules system can cause an infinite loop of metagraph rule agents.

Thus, the metagraph rule agent can generate the output metagraph based on the input metagraph
(using open rules) or can modify the single metagraph (using closed rules).

mv;

€3

mv,

e
start=tru(ﬂ/ ‘.

start=true
conditions

metagraph rule agent 1

Fig. 2. The example of the metagraph rule agent
The example of a metagraph rule agent is shown in fig. 2. The metagraph rule agent «metagraph
rule agent 1» is represented as metagraph metavertex. According to the definition, it is bound to the
working metagraph MG; — a metagraph on the basis of which the rules of the agent are performed.
This binding is shown with edge e,.
The metagraph rule agent description contains inner metavertices corresponds to agent rules (rule 1
... rule N). Each rule metavertex contains antecedent and consequent inner vertices. For the given
an example, mv; metavertex bound with the antecedent, which is shown with edge e;, and mv;
metavertex bound with consequent, which is shown with edge e;. Antecedent conditions and
consequent actions are defined in the form of attributes bound to antecedent and corresponding
consequent vertices.
The start condition is given in the form of the attribute «start=true.» If the start condition is defined
as a start metagraph fragment, then the edge bound start metagraph fragment to agent metavertex
(edge e; in given an example) is annotated with the attribute «start=true.» If the start condition is
defined as a start rule, then the rule metavertex is annotated with the attribute «start=true» (rule 1
in given an example). Fig. 2 shows both cases corresponding to the start metagraph fragment and to
the start rule.
The distinguishing feature of a metagraph agent is its homoiconicity which means that it can be a
data structure for itself. This is due to the fact that according to the definition, a metagraph agent
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may be represented as a set of metagraph fragments, and this set can be combined in a single
metagraph. Thus, a metagraph agent can change the structure of other metagraph agents.

4. The Metagraph Representation Using Flat Graph Model

To build systems using the metagraph model, it is necessary to determine the method of physical
representation of the metagraph for persistent storage and for processing in Big Data platforms. We
considered various options: relational representation, representation with multiple documents
(nested or separate), representation via a flat graph. The term “flat graph” is also used for planar
graphs. By flat graph we mean simple graph, as an opposite to graph with nested vertices
(metagraph). We conducted a comparative analysis of different representation options. Features of
different options and experiments to compare performance are described in our paper [8].
Experiments have shown that the representation of the metagraph via a flat graph is the most
preferable.

In such representation, each vertex, metavertex, and the edge of the graph are represented with a
separate vertex of the flat graph. The example is shown in fig. 3.

QTVD

JORCEORE®
sorfro
(_mv;__)
Fig. 3. The metagraph representation via a flat graph
Such a representation is, on the one hand, more intuitive. On the other hand, it allows us to efficiently

process the metagraph using methods for working with flat graphs from graph DBMS (optimized
graph queries) and Big Data graph platforms (distributed graph processing models).

5. The Flat Graph and Metagraph Big Data Processing

5.1 The Overview of a Metagraph Processing System

Consider a possible structure of a system for processing data in metagraph form. The system consists
of two main components (shown in fig. 4): a storage module and a processing module.

Big Data flat graph P Query Processing
ing f  [—=Processing query— Module '\\
UUW\
Load Save Data query
Data input Useg
Save—— Flattening Module
Storage

Fig. 4. The structure of the metagraph processing framework
Since we are using a graph representation, it is advisable to use a graph DBMS for storage. We
assume that the conversion of the metagraph to a flat graph occurs at the writing stage to the storage
in the flattening module. The processing is conducted on a Big Data platform running distributed
across multiple machines.
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The system works as follows. Firstly, a request comes from the user in the form of calling the system
API or in some formal language. The query processing module determines if the query is a simple
data query, and in this case, it returns data from storage. If the query requires calculation on
metagraph, it occurs in the Big Data graph framework (which is shown in fig. 5). Metagraph is
loaded from persistent storage (e.g., the Neo4j graph DBMS) into the Big Data processing platform
(Apache Spark) into the RAM of the cluster nodes. Next, the request is processed with the tools of
the graph processing platform. Then the problem is solved on a graph representation of the
metagraph, and the result of a solution is displayed to the user.

Load from disk

:_i

Persistent Big Data framewoark, Graph processing
storage (fike. P oraghframeweds M | (e find Page
graph nnlanﬂs‘e (e.g. Apache Spark) Rank)

)

Fig. 5. The operation of the metagraph processing framework

5.2 Graph Processing Models

Modern Graph Big Data frameworks use different approaches to graph processing. Though these
approaches share basic principles (like vertex-centric processing), but there are some differences
between them. Below we briefly describe some popular models and consider their usage for
metagraph processing.

5.2.1 Pregel model

Pregel model [9] was originally introduced by Google and is implemented in multiple graph
frameworks (Apache Spark GraphX [10], Apache Giraph [11], Flink Gelly [12]). Pregel model (and
other vertex-oriented approaches) were designed specifically to deal with graph data. Standard Big
Data approaches, like Map Reduce, are not well suited for graph data structure and graph problems.
Map Reduse requires passing the entire state of the graph from one stage to the next - in general
requiring much more communication and associated serialization overhead. Abstraction from graph
physical distribution (given by messaging system) also simplifies the algorithms. As we use graph
representation of metagraph, it seems reasonable to use graph-specific approaches.

Graph processing in Pregel consists of a sequence of synchronous iterations. During each iteration,
for each vertex of the graph, a user-defined function is executed, which modifies the value of the
vertex in a certain way. Then the vertex sends messages to neighbors’ vertices. The next iteration
begins only when all vertices have been processed.

value=20 value=10

ys MV1
III @ @ \:
‘\ / -
\ / P

S~ -~ [ mva }

— _ /\{:f\'r\ value=30
value=40 vy %@
7

Fig. 6. The example metagraph for the Pregel model
This model is the most general and flexible, but it has a significant drawback in the restrictions on
the synchronism of iterations. In real-world graphs (like social graphs), vertex degrees often follow
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power-law distribution [13], which means that most of the graph vertices have a low degree, and
there are a few vertices with a much higher degree. For graph representation of real-world
metagraphs, we may expect the same distribution because graph metavertices have not only
neighbors but also sub-vertices. If the graph has a significant number of high-degree vertices (which
are metavertices of metagraph), Pregel iterations will be filled unevenly since the metavertices will
receive and send more messages. For example, consider the simple metagraph in fig. 6 (on the left
side, we show the original metagraph, on the right side corresponding flat graph representation).
During the Pregel step of some algorithms, vertices send values to each other. Note that we presume
that edge-vertices like Eyyi.y3 are not processed as separate vertices and blindly transfer messages.
Still, in general, it is up to the implementation of a specific algorithm. Metavertex MV; sends its
value to neighbor V3 and subvertices V; and V> and receives their values. It sends and receives three
times more messages than other vertices. As the next iteration will start only when metavertex is
processed, all other vertices stay idle. If a metagraph has relatively large metavertices, it may become
a performance issue.

5.2.2 Signal-Collect / Scatter-Gather model

This model used by Apache Flink Gelly also assumes vertex-level iterative processing [14]. It
consists of two phases: signal (sending messages to other vertices) and collect (receiving messages
and updating the vertex).

Two modes of operation are possible. In synchronous mode, this model works similarly to the
Pregel. In asynchronous mode, there is no barrier between iterations, and vertices function as
independent actors. In this case, we do not get downtime for processing metavertices. However,
such a model (depending on the problem being solved) may require local locks, which will
complicate the algorithms. Consider the example in fig. 7.

value=20 value=10

value=30

Fig. 7. The example metagraph for the Signal-Collect model
Vertex V; receives value from neighbor V> (through intermediate vertex representing edge V1-V2).
With synchronous Pregel-like approach V; will process this value and send it further only in the next
iteration, after MV processes all its messages. In asynchronous mode, it will happen before MV is
processed. This approach is more error-prone to race condition-related problems, so algorithms
should be adapted accordingly.

5.2.3 Gather Sum Apply and closely related Gather-Apply-Scatter [15] models

This model [15] used by PowerGraph [16], GraphLab [17], Apache Flink Gelly is also an iterative
one. In this model, user code is launched not over the vertices but over the edges. It includes three
phases (Gather, Sum, and Apply) which are shown in fig 8.

The Gather phase — execution of the algorithm relative to an edge and sending messages to the
vertices. The Gather phase produces the partial result. Sum phase — each vertex performs aggregation
of partial results from received messages. Apply phase — updating the vertex with the result value.
For simplicity, we show gather messages only in one direction. In the case of an undirected graph,
there are also reverse messages.
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value=20 value=10 Gather Sum Apply

| p— 20
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—-10—» aggregate(20, 10, 30)

30

Fig. 8. The example metagraph for the Gather-Sum-Apply model
Since edges, unlike vertices, all have the same degree (equal to 2), they are processed equally. Thus,
in this case, there is no downtime for processing metavertices. However, this model has limitations
that can complicate the implementation of algorithms:
1) Updating a vertex requires the aggregation of messages from different edges. The update
function must be associative and commutative.
2) There is no way to transfer messages between arbitrary vertices because messages are
transmitted from edge to vertex.
Thus, the described models have both advantages and disadvantages. Pregel model is the most
flexible, but it may not be most efficient if the metagraph contains some very high-degree
metavertices. The Signal-Collect model can be more performant but requires more complicated
concurrent algorithms. The Gather Sum Apply model also deals with high-degree metavertices, but
it has limitations on program architecture. We can also expect that the model's effectiveness may
depend on the metagraph which is being processed and the problem being solved.
How these three models are suitable for processing metagraphs is the subject of further detailed
research. This article's experimental part uses the Pregel model as the most flexible of the three
models.

6. The Metagraph Processing Using Metagraph Agents

6.1 Metagraph Agents in the Big Data Framework

In our experiments, we use the Apache GraphX framework, which is an extension of Apache Spark
for graph processing. Below we will briefly describe how the metagraph agent approach can be
applied while using frameworks like GraphX.

Metagraph agent is an instrument for transforming metagraphs. It includes information about
whether it should apply to a metagraph fragment and information about how to transform a fragment.

Serialized agent
Driver program functions Executors

Memory Memory

/

) Metagraph fragment
Agent objects

—

Fig. 9. Metagraph agents in processing framework
As was described in the previous section, in modern graph-oriented Big Data frameworks, usual
execution models are vertex-oriented models. There are a driver program and multiple distributed
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executors. In Apache Spark, the driver program transfers the required code as serialized objects or
functions to executors. Executors run this code over parts of distributed datasets. In the case of graph
framework, this code is run relatively to vertices of a graph. For example, in the Pregel model Spark
GraphX driver program would distribute two functions: «vertex program» to update vertices and
«message programy to send vertices.

From the software implementation point of view, the metagraph agent would be an object in the
main memory of the driver program, with methods (functions) for updating the vertex based on
received Pregel messages and for sending messages from vertex (which is shown in fig. 9). Agent
functions also will include rule (condition) determining whether they should be applied to a specific
vertex. Graph processing framework (like Spark GraphX) will serialize agent functions and transfer
them to executors. Functions of metagraph agents will be executed (if allowed by agent condition)
over vertices of a fragment of metagraph graph representation. As metagraph agents are objects, the
driver program can organize them in a hierarchy and update them if necessary.

6.2 The Metagraph Single Source Shortest Path Problem

To illustrate metagraph processing, we conducted an experiment where we choose a Single Source
Shortest Path (SSSP) problem as a typical graph processing algorithm. The experiment was
conducted on the Spark GraphX framework, which implements the Pregel model.
When we apply the SSSP algorithm to a graph representation of metagraph, two main features occur.
Firstly, we have a relation «sub vertex to metavertex.» For SSSP-problem, we can assume that the
«parent» and «child» vertex can be accessed with some user-defined constant distance. For same-
level vertices, distance is defined by edge length, as in a simple graph case. Secondly, the graph
representation of the metagraph contains technical vertices representing edges (see vertices ey, e, €3
in fig. 3). They are to be excluded from the SSSP calculation.
The algorithm goes as follows. We initialize all vertices with an infinite distance value, except for
starting vertex, which has zero distance. After that, we perform multiple iterations (Pregel steps). At
each iteration, we run the same code over each vertex. Vertex sends messages over its outgoing
edges unless finding an edge from a vertex representing the edge to its parent metavertex (see
vertices e; and mv; in fig. 3). If the edge source vertex is a normal vertex, it sends the current distance
value. If the edge source vertex is an edge-vertex, it adds the length. If the edge is an edge to parent
metavertex, it adds user-defined distance between child and parent vertices.
At the beginning of each iteration, vertex updates its value with a minimum of received messages
and current value. When no messages are sent during iteration, the algorithm converges.
In general, this algorithm resembles Pregel SSSP-algorithm for simple graphs with a few adaptations
to metagraph physical representation.
Testing program is written is Scala, algorithm of determining Pregel messages at each iteration is
presented below in Python-style pseudo-code:
messages = []
for edge in vertex.outgoingEdges:
if edge.isEdgeToParent and vertex.isEdgeVertex:
continue
if edge.isEdgeToParent :
distanceValue = distanceToParentVertex
else if vertex.isEdgeVertex:
distanceValue = vertex.distance + vertex.length
else:
distanceValue = vertex.distance
messages.append ( (edge.dst.id, distanceValue)
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In terms of metagraph agents, we can say that graph is processed by a single metagraph agent with
a closed rule. Condition of the rule's antecedent allows any fragment to be processed (as the SSSP
algorithm has to visit all edges of the graph). Rule consequent includes sending messages to
neighbors and updating vertex with the minimum of received distances.

In our experiments we use synthetic generated datasets. Some real world examples for this problem
may include processing social graph with hierarchy, where we need to know «distance» between
people, but we have not only direct social connections, but also indirect connections based on
hierarchy. This hierarchy would be represented by assigning people to nested metavertices of a
metagraph, thus describing, for example, connections between people based on some organizational
structure (possibly with overlapping metavertices). We could traverse such graph not only by direct
«friendship» relation, but also up and down organizational structure.

6.3 Experiments

We generated multiple metagraphs and graphs with the same number of vertices and similar
topology for the experiments. We use normal graph processing time as a baseline to show that
processing of metagraph can be performed in comparable time (not varying by orders of magnitude,
which would neglect benefits of the model). Metagraph consisted of N metavertices with two
vertices in each, with each vertex also having one outgoing edge. A simple graph consisted of 3N
vertices with three outgoing edges each. Each vertex has three relations in both cases, and a number
of vertices were the same (not considering edge-vertices for metagraph). Graphs were generated by
Python scripts as CSV files and imported into the Spark GraphX framework.

Experiments were conducted on Amazon EMR infrastructure with Spark 2.4.7 and Hadoop YARN
2.10.1. We used Amazon EC2 mS5.xlarge instances with the following configuration (per instance):
CPU - Intel Xeon Platinum 8175M 2.5 GHz, 16 GiB memory, 64 GiB EBS Storage. CSV files with
initial data were imported into the HDFS filesystem.

The size of initial data (in Megabytes) for graph and metagraph with 100 000 to 10 000 000 vertices
is shown in fig. 10.

900
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®m metagraph size, MB = graph size, MB

Fig. 10. Initial datasets size (MB) for different vertices counts

At first, we conducted an SSSP calculation with one master node and two worker nodes. SSSP
calculation time (in seconds) for graphs and metagraphs of different sizes is shown in fig. 11.

As we can see, SSSP calculation time for metagraph is comparable to the time of processing a flat
graph of the same size. Metagraph processing is obviously slower because graph representation of
metagraph with N vertices and M edges will have N+M vertices in the flat graph.

We also conducted experiments to see how SSSP execution time in the case of metagraph processing
is affected by the level of parallelism. At first, we conducted SSSP execution with a single worker
node and a different number of Apache Spark executors. Results for processing metagraphs with
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1 000 000 vertices are shown in fig. 12. Simple graph processing time is also included as the
reference point.
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Fig. 11. SSSP calculation time (seconds) for a metagraph and a flat graph depending on the number of
vertices in the graph (metagraph)
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Fig. 12. SSSP calculation time (seconds) for metagraph and graph with 1 000 000 vertices depending on the
number of executors
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Fig. 13. SSSP calculation time (seconds) for metagraph and graph with 100 000 000 vertices depending on
the number of worker nodes
Then we conducted an experiment with a larger dataset (metargraph and graph with 100 000 000
vertices) and with two to eight worker nodes in a cluster (see Fig. 13). As we can see from the charts,
with the addition of new Spark executors and with the addition of worker nodes to the cluster, SSSP
calculation time decreases similarly for metagraph and simple graph. Thus, metagraph processing
may be effectively parallelized using Apache Spark.
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7. Future Work

At the moment, we have implementation of persistent metagraph storage in graph database (Neo4j,
ArangoDB). We also processed graph representation of metagraph in Big Data graph framework
(Apache GraphX). Our next step will be creating a system which includes both persistent storage
and processing framework and provides API for working with metagraph without manual processing
of its graph representation.

8. Conclusions

Nowadays, Big Data frameworks are widely used for processing numeric and categorical data, text
information, images, video data, and graph information.

The dominant graph model in such frameworks is usually a flat graph model or property graph model
(which is, in fact, the multigraph model). However, to describe complex situations, flat graph models
may not be enough, and we propose using a metagraph model.

The critical element of the metagraph model is metavertex. From the general system theory point of
view, a metavertex is a particular case of the manifestation of the emergence principle, which means
that a metavertex with its private attributes and connections becomes a whole that cannot be
separated into its component parts.

The metagraph may be represented as a multipartite flat graph.

The system for processing data in metagraph form consists of two main components: the storage
module and the processing module, where the processing module is based on the Big Data
processing platform.

The three most popular graph processing models are the Pregel model, Signal-Collect / Scatter-
Gather model, and Gather Sum Apply model. How these three models are suitable for processing
metagraphs is the subject of further detailed research. In the experimental part, we use the Pregel
model as the most flexible of the three models.

The experimental part is based on the Single Source Shortest Path (SSSP) problem. The SSSP
calculation time for the metagraph is comparable to processing a flat graph of the same size. The
metagraph processing may be effectively parallelized using Apache Spark.

The described metagraph approach with flat graph representation in graph processing frameworks
seems to be an effective instrument for solving problems with processing complex data.
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