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1. Introduction 
Presently, Big Data frameworks are widely used to process information in various domains, from 
modern industrial enterprise [1] to social networks analysis [2]. Big data includes big datasets with 
numeric and categorical data, text information, images, and video data. Information in the form of 
graphs is traditionally used in computer science. In particular, thesauri and ontologies are used to 
process knowledge and texts, but such models cannot yet be classified as big data. Probably, it is 
appropriate to speak about the appearance of problems of processing Big Graphs, first of all, in 
connection with the appearance of knowledge graphs. 
The problem of processing Big Graphs can be solved in various ways, for example, by creating 
specialized high-performance hardware for processing graphs [3, 4]. However, the most common 
way for Big Graphs processing is to use specialized Big Data frameworks for Big Graphs processing. 
The dominant graph model in such frameworks is usually a flat graph model or property graph model 
(which is, in fact, the multigraph model). Here, by a flat graph, we mean a graph in which a directed 
or undirected edge connects exactly two vertices. However, the flat graph model is not flexible 
enough and may not be a convenient solution for modeling complex data domains with hierarchical 
relationships. For example, complex technical products' assembly sequence problem requires not a 
flat graph but a hypergraph model [5]. 
One of the existing extensions of the traditional graph model is the metagraph model. The metagraph 
model consists of a metagraph data model and a metagraph agent model aimed to process metagraph 
data. In this article, we present the implementation of the metagraph agent model using Big Data 
processing capabilities. 
The article is organized as follows. In sections 2 and 3, the metagraph data model and the metagraph 
agent model are formally defined. In section 4, the metagraph representation using the flat graph 
model is discussed. In section 5, the flat graph and metagraph Big Data processing are described. In 
section 6, the metagraph processing using metagraph agents is discussed, including the experimental 
subsection. 

2. The Metagraph Data Model 
Metagraph is a kind of complex network model proposed by A. Basu and R. Blanning in their book 
[6] and then adapted for information systems description in our paper [7]. According to [7]: 

, , ,MG V MV E=  (1) 
where MG – metagraph; V – set of metagraph vertices; MV – set of metagraph metavertices; E – set 
of metagraph edges. 
Metagraph vertex is described by a set of attributes: 

{ } ,, Vvatrv iki ∈=  (2) 
where vi – metagraph vertex; atrk – attribute. 
Metagraph edge is described by a set of attributes, the source and destination vertices, and edge 
direction flag: 

{ } ,|,,,,, falsetrueeoEeatreovve ikESi =∈=  (3) 
where ei – metagraph edge; vS – source vertex (metavertex) of the edge; vE – destination vertex 
(metavertex) of the edge; eo – edge direction flag (eo=true – directed edge, eo=false – undirected 
edge); atrk – attribute. 
The metagraph fragment: 

{ } , ( ),i j jMG ev ev V E MV= ∈ ∪ ∪  (4) 
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where MGi – metagraph fragment; evj – an element that belongs to the union of vertices, edges, and 
metavertices. 
The metagraph metavertex: 

{ } , , ,i k j imv atr MG mv MV= ∈
 (5) 

where mvi – metagraph metavertex belongs to a set of metagraph metavertices MV; atrk – attribute, 
MGj – metagraph fragment. 
Thus, metavertex, in addition to the attributes, includes a fragment of the metagraph. The presence 
of private attributes and connections for metavertex is a distinguishing feature of metagraph. It 
makes the definition of metagraph holonic – metavertex may include a number of lower-level 
elements and, in turn, may be included in a number of higher-level elements. 

 

Fig. 1.  The example of the metagraph data model 
The example of the data metagraph (shown in fig. 1) contains three metavertices: mv1, mv2, and mv3. 
Metavertex mv1 contains vertices v1, v2, v3 and connecting them edges e1, e2, e3. Metavertex mv2 
contains vertices v4, v5, and connecting them edge e6. Edges e4, e5 are examples of edges connecting 
vertices v2-v4 and v3-v5 that are contained in different metavertices mv1 and mv2. Edge e7 is an 
example of the edge connecting metavertices mv1 and mv2. Edge e8 is an example of the edge 
connecting vertex v2 and metavertex mv2. Metavertex mv3 contains metavertex mv2, vertices v2, v3, 
and edge e2 from metavertex mv1 and also edges e4, e5, e8, showing the holonic nature of the 
metagraph structure. 

3. The Metagraph Agent Model 
The metagraph model is aimed for complex data description. But it is not aimed for data 
transformation. To solve this issue, the metagraph agent (agMG) aimed for data transformation is 
proposed. There are two kinds of metagraph agents: the metagraph function agent (agF) and the 
metagraph rule agent (agR). Thus agMG = agF | agR. 
The metagraph function agent serves as a function with input and output parameters in the form of 
metagraph: 

,,, ASTMGMGag OUTIN
F =  (6) 

where agF – metagraph function agent; MGIN – input parameter metagraph; MGOUT – output 
parameter metagraph; AST – abstract syntax tree of metagraph function agent in the form of 
metagraph. 
The metagraph rule agent is rule-based: 

{ }, , , , : ,R ST MG
i i jag MG R AG R r r MG OP= = →  (7) 

where agR – metagraph rule agent; MG – working metagraph, a metagraph on the basis of which the 
rules of the agent are performed; R – set of rules ri; AGST – start condition (metagraph fragment for 
start rule check or start rule); MGj – a metagraph fragment on the basis of which the rule is 
performed; OPMG – set of actions performed on metagraph. 
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The antecedent of the rule is a condition over a metagraph fragment. The consequent of a rule is a 
set of actions performed on metagraph. Rules can be divided into open and closed. 
The consequent of the open rule is not permitted to change the metagraph fragment occurring in the 
rule antecedent. In this case, the input and output metagraph fragments may be separated. The open 
rule is similar to the template that generates the output metagraph based on the input metagraph. 
The consequent of the closed rule is permitted to change the metagraph fragment occurring in the 
rule antecedent. The metagraph fragment changing in rule consequent causes to trigger the 
antecedents of other rules bound to the same metagraph fragment. But incorrectly designed closed 
rules system can cause an infinite loop of metagraph rule agents. 
Thus, the metagraph rule agent can generate the output metagraph based on the input metagraph 
(using open rules) or can modify the single metagraph (using closed rules). 

 
Fig. 2.  The example of the metagraph rule agent 

The example of a metagraph rule agent is shown in fig. 2. The metagraph rule agent «metagraph 
rule agent 1» is represented as metagraph metavertex. According to the definition, it is bound to the 
working metagraph MG1 – a metagraph on the basis of which the rules of the agent are performed. 
This binding is shown with edge e4. 
The metagraph rule agent description contains inner metavertices corresponds to agent rules (rule 1 
… rule N). Each rule metavertex contains antecedent and consequent inner vertices. For the given 
an example, mv2 metavertex bound with the antecedent, which is shown with edge e2, and mv3 
metavertex bound with consequent, which is shown with edge e3. Antecedent conditions and 
consequent actions are defined in the form of attributes bound to antecedent and corresponding 
consequent vertices. 
The start condition is given in the form of the attribute «start=true.» If the start condition is defined 
as a start metagraph fragment, then the edge bound start metagraph fragment to agent metavertex 
(edge e1 in given an example) is annotated with the attribute «start=true.» If the start condition is 
defined as a start rule, then the rule metavertex is annotated with the attribute «start=true» (rule 1 
in given an example). Fig. 2 shows both cases corresponding to the start metagraph fragment and to 
the start rule. 
The distinguishing feature of a metagraph agent is its homoiconicity which means that it can be a 
data structure for itself. This is due to the fact that according to the definition, a metagraph agent 
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may be represented as a set of metagraph fragments, and this set can be combined in a single 
metagraph. Thus, a metagraph agent can change the structure of other metagraph agents. 

4. The Metagraph Representation Using Flat Graph Model 
To build systems using the metagraph model, it is necessary to determine the method of physical 
representation of the metagraph for persistent storage and for processing in Big Data platforms. We 
considered various options: relational representation, representation with multiple documents 
(nested or separate), representation via a flat graph. The term “flat graph” is also used for planar 
graphs. By flat graph we mean simple graph, as an opposite to graph with nested vertices 
(metagraph). We conducted a comparative analysis of different representation options. Features of 
different options and experiments to compare performance are described in our paper [8]. 
Experiments have shown that the representation of the metagraph via a flat graph is the most 
preferable. 
In such representation, each vertex, metavertex, and the edge of the graph are represented with a 
separate vertex of the flat graph. The example is shown in fig. 3. 

 
Fig. 3. The metagraph representation via a flat graph 

Such a representation is, on the one hand, more intuitive. On the other hand, it allows us to efficiently 
process the metagraph using methods for working with flat graphs from graph DBMS (optimized 
graph queries) and Big Data graph platforms (distributed graph processing models). 

5. The Flat Graph and Metagraph Big Data Processing 

5.1 The Overview of a Metagraph Processing System 
Consider a possible structure of a system for processing data in metagraph form. The system consists 
of two main components (shown in fig. 4): a storage module and a processing module. 

 
Fig. 4. The structure of the metagraph processing framework 

Since we are using a graph representation, it is advisable to use a graph DBMS for storage. We 
assume that the conversion of the metagraph to a flat graph occurs at the writing stage to the storage 
in the flattening module. The processing is conducted on a Big Data platform running distributed 
across multiple machines. 
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The system works as follows. Firstly, a request comes from the user in the form of calling the system 
API or in some formal language. The query processing module determines if the query is a simple 
data query, and in this case, it returns data from storage. If the query requires calculation on 
metagraph, it occurs in the Big Data graph framework (which is shown in fig. 5). Metagraph is 
loaded from persistent storage (e.g., the Neo4j graph DBMS) into the Big Data processing platform 
(Apache Spark) into the RAM of the cluster nodes. Next, the request is processed with the tools of 
the graph processing platform. Then the problem is solved on a graph representation of the 
metagraph, and the result of a solution is displayed to the user. 

 
Fig. 5. The operation of the metagraph processing framework 

5.2 Graph Processing Models 
Modern Graph Big Data frameworks use different approaches to graph processing. Though these 
approaches share basic principles (like vertex-centric processing), but there are some differences 
between them. Below we briefly describe some popular models and consider their usage for 
metagraph processing. 

5.2.1 Pregel model  
Pregel model [9] was originally introduced by Google and is implemented in multiple graph 
frameworks (Apache Spark GraphX [10], Apache Giraph [11], Flink Gelly [12]). Pregel model (and 
other vertex-oriented approaches) were designed specifically to deal with graph data. Standard Big 
Data approaches, like Map Reduce, are not well suited for graph data structure and graph problems. 
Map Reduse requires passing the entire state of the graph from one stage to the next - in general 
requiring much more communication and associated serialization overhead. Abstraction from graph 
physical distribution (given by messaging system) also simplifies the algorithms. As we use graph 
representation of metagraph, it seems reasonable to use graph-specific approaches. 
Graph processing in Pregel consists of a sequence of synchronous iterations. During each iteration, 
for each vertex of the graph, a user-defined function is executed, which modifies the value of the 
vertex in a certain way. Then the vertex sends messages to neighbors’ vertices. The next iteration 
begins only when all vertices have been processed. 

 
Fig. 6. The example metagraph for the Pregel model 

This model is the most general and flexible, but it has a significant drawback in the restrictions on 
the synchronism of iterations. In real-world graphs (like social graphs), vertex degrees often follow 
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power-law distribution [13], which means that most of the graph vertices have a low degree, and 
there are a few vertices with a much higher degree. For graph representation of real-world 
metagraphs, we may expect the same distribution because graph metavertices have not only 
neighbors but also sub-vertices. If the graph has a significant number of high-degree vertices (which 
are metavertices of metagraph), Pregel iterations will be filled unevenly since the metavertices will 
receive and send more messages. For example, consider the simple metagraph in fig. 6 (on the left 
side, we show the original metagraph, on the right side corresponding flat graph representation).  
During the Pregel step of some algorithms, vertices send values to each other. Note that we presume 
that edge-vertices like EMV1-V3 are not processed as separate vertices and blindly transfer messages. 
Still, in general, it is up to the implementation of a specific algorithm. Metavertex MV1 sends its 
value to neighbor V3 and subvertices V1 and V2 and receives their values. It sends and receives three 
times more messages than other vertices. As the next iteration will start only when metavertex is 
processed, all other vertices stay idle. If a metagraph has relatively large metavertices, it may become 
a performance issue.  

5.2.2 Signal-Collect / Scatter-Gather model  
This model used by Apache Flink Gelly also assumes vertex-level iterative processing [14]. It 
consists of two phases: signal (sending messages to other vertices) and collect (receiving messages 
and updating the vertex). 
Two modes of operation are possible. In synchronous mode, this model works similarly to the 
Pregel. In asynchronous mode, there is no barrier between iterations, and vertices function as 
independent actors. In this case, we do not get downtime for processing metavertices. However, 
such a model (depending on the problem being solved) may require local locks, which will 
complicate the algorithms. Consider the example in fig. 7. 

 
Fig. 7. The example metagraph for the Signal-Collect model 

Vertex V1 receives value from neighbor V2 (through intermediate vertex representing edge V1-V2). 
With synchronous Pregel-like approach V1 will process this value and send it further only in the next 
iteration, after MV1 processes all its messages. In asynchronous mode, it will happen before MV1 is 
processed. This approach is more error-prone to race condition-related problems, so algorithms 
should be adapted accordingly. 

5.2.3 Gather Sum Apply and closely related Gather-Apply-Scatter [15] models  
This model [15] used by PowerGraph [16], GraphLab [17], Apache Flink Gelly is also an iterative 
one. In this model, user code is launched not over the vertices but over the edges. It includes three 
phases (Gather, Sum, and Apply) which are shown in fig 8. 
The Gather phase – execution of the algorithm relative to an edge and sending messages to the 
vertices. The Gather phase produces the partial result. Sum phase – each vertex performs aggregation 
of partial results from received messages. Apply phase – updating the vertex with the result value. 
For simplicity, we show gather messages only in one direction. In the case of an undirected graph, 
there are also reverse messages. 
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Fig. 8. The example metagraph for the Gather-Sum-Apply model 

Since edges, unlike vertices, all have the same degree (equal to 2), they are processed equally. Thus, 
in this case, there is no downtime for processing metavertices. However, this model has limitations 
that can complicate the implementation of algorithms: 
1) Updating a vertex requires the aggregation of messages from different edges. The update 

function must be associative and commutative. 
2) There is no way to transfer messages between arbitrary vertices because messages are 

transmitted from edge to vertex. 
Thus, the described models have both advantages and disadvantages. Pregel model is the most 
flexible, but it may not be most efficient if the metagraph contains some very high-degree 
metavertices. The Signal-Collect model can be more performant but requires more complicated 
concurrent algorithms. The Gather Sum Apply model also deals with high-degree metavertices, but 
it has limitations on program architecture. We can also expect that the model's effectiveness may 
depend on the metagraph which is being processed and the problem being solved. 
How these three models are suitable for processing metagraphs is the subject of further detailed 
research. This article's experimental part uses the Pregel model as the most flexible of the three 
models. 

6. The Metagraph Processing Using Metagraph Agents 

6.1 Metagraph Agents in the Big Data Framework 
In our experiments, we use the Apache GraphX framework, which is an extension of Apache Spark 
for graph processing. Below we will briefly describe how the metagraph agent approach can be 
applied while using frameworks like GraphX. 
Metagraph agent is an instrument for transforming metagraphs. It includes information about 
whether it should apply to a metagraph fragment and information about how to transform a fragment. 

 
Fig. 9. Metagraph agents in processing framework 

As was described in the previous section, in modern graph-oriented Big Data frameworks, usual 
execution models are vertex-oriented models. There are a driver program and multiple distributed 
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executors. In Apache Spark, the driver program transfers the required code as serialized objects or 
functions to executors. Executors run this code over parts of distributed datasets. In the case of graph 
framework, this code is run relatively to vertices of a graph. For example, in the Pregel model Spark 
GraphX driver program would distribute two functions: «vertex program» to update vertices and 
«message program» to send vertices. 
From the software implementation point of view, the metagraph agent would be an object in the 
main memory of the driver program, with methods (functions) for updating the vertex based on 
received Pregel messages and for sending messages from vertex (which is shown in fig. 9). Agent 
functions also will include rule (condition) determining whether they should be applied to a specific 
vertex. Graph processing framework (like Spark GraphX) will serialize agent functions and transfer 
them to executors. Functions of metagraph agents will be executed (if allowed by agent condition) 
over vertices of a fragment of metagraph graph representation. As metagraph agents are objects, the 
driver program can organize them in a hierarchy and update them if necessary. 

6.2 The Metagraph Single Source Shortest Path Problem 
To illustrate metagraph processing, we conducted an experiment where we choose a Single Source 
Shortest Path (SSSP) problem as a typical graph processing algorithm. The experiment was 
conducted on the Spark GraphX framework, which implements the Pregel model. 
When we apply the SSSP algorithm to a graph representation of metagraph, two main features occur. 
Firstly, we have a relation «sub vertex to metavertex.» For SSSP-problem, we can assume that the 
«parent» and «child» vertex can be accessed with some user-defined constant distance. For same-
level vertices, distance is defined by edge length, as in a simple graph case. Secondly, the graph 
representation of the metagraph contains technical vertices representing edges (see vertices e1, e2, e3 
in fig. 3). They are to be excluded from the SSSP calculation. 
The algorithm goes as follows. We initialize all vertices with an infinite distance value, except for 
starting vertex, which has zero distance. After that, we perform multiple iterations (Pregel steps). At 
each iteration, we run the same code over each vertex. Vertex sends messages over its outgoing 
edges unless finding an edge from a vertex representing the edge to its parent metavertex (see 
vertices e1 and mv1 in fig. 3). If the edge source vertex is a normal vertex, it sends the current distance 
value. If the edge source vertex is an edge-vertex, it adds the length. If the edge is an edge to parent 
metavertex, it adds user-defined distance between child and parent vertices.  
At the beginning of each iteration, vertex updates its value with a minimum of received messages 
and current value. When no messages are sent during iteration, the algorithm converges.  
In general, this algorithm resembles Pregel SSSP-algorithm for simple graphs with a few adaptations 
to metagraph physical representation. 
Testing program is written is Scala, algorithm of determining Pregel messages at each iteration is 
presented below in Python-style pseudo-code: 

messages = [] 

for edge in vertex.outgoingEdges: 

 if edge.isEdgeToParent and vertex.isEdgeVertex: 

  continue 

 if edge.isEdgeToParent: 

  distanceValue = distanceToParentVertex 

 else if vertex.isEdgeVertex: 

  distanceValue = vertex.distance + vertex.length 

 else: 

  distanceValue = vertex.distance 

 messages.append((edge.dst.id, distanceValue) 
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In terms of metagraph agents, we can say that graph is processed by a single metagraph agent with 
a closed rule. Condition of the rule's antecedent allows any fragment to be processed (as the SSSP 
algorithm has to visit all edges of the graph). Rule consequent includes sending messages to 
neighbors and updating vertex with the minimum of received distances. 
In our experiments we use synthetic generated datasets. Some real world examples for this problem 
may include processing social graph with hierarchy, where we need to know «distance» between 
people, but we have not only direct social connections, but also indirect connections based on 
hierarchy. This hierarchy would be represented by assigning people to nested metavertices of a 
metagraph, thus describing, for example, connections between people based on some organizational 
structure (possibly with overlapping metavertices). We could traverse such graph not only by direct 
«friendship» relation, but also up and down organizational structure. 

6.3 Experiments 
We generated multiple metagraphs and graphs with the same number of vertices and similar 
topology for the experiments. We use normal graph processing time as a baseline to show that 
processing of metagraph can be performed in comparable time (not varying by orders of magnitude, 
which would neglect benefits of the model). Metagraph consisted of N metavertices with two 
vertices in each, with each vertex also having one outgoing edge. A simple graph consisted of 3N 
vertices with three outgoing edges each. Each vertex has three relations in both cases, and a number 
of vertices were the same (not considering edge-vertices for metagraph). Graphs were generated by 
Python scripts as CSV files and imported into the Spark GraphX framework.  
Experiments were conducted on Amazon EMR infrastructure with Spark 2.4.7 and Hadoop YARN 
2.10.1. We used Amazon EC2 m5.xlarge instances with the following configuration (per instance): 
CPU - Intel Xeon Platinum 8175M 2.5 GHz, 16 GiB memory, 64 GiB EBS Storage. CSV files with 
initial data were imported into the HDFS filesystem. 
The size of initial data (in Megabytes) for graph and metagraph with 100 000 to 10 000 000 vertices 
is shown in fig. 10. 

 
Fig. 10. Initial datasets size (MB) for different vertices counts 

At first, we conducted an SSSP calculation with one master node and two worker nodes. SSSP 
calculation time (in seconds) for graphs and metagraphs of different sizes is shown in fig. 11. 
As we can see, SSSP calculation time for metagraph is comparable to the time of processing a flat 
graph of the same size. Metagraph processing is obviously slower because graph representation of 
metagraph with N vertices and M edges will have N+M vertices in the flat graph. 
We also conducted experiments to see how SSSP execution time in the case of metagraph processing 
is affected by the level of parallelism. At first, we conducted SSSP execution with a single worker 
node and a different number of Apache Spark executors. Results for processing metagraphs with 
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1 000 000 vertices are shown in fig. 12. Simple graph processing time is also included as the 
reference point. 

 
Fig. 11. SSSP calculation time (seconds) for a metagraph and a flat graph depending on the number of 

vertices in the graph (metagraph) 

 
Fig. 12. SSSP calculation time (seconds) for metagraph and graph with 1 000 000 vertices depending on the 

number of executors 

 
Fig. 13. SSSP calculation time (seconds) for metagraph and graph with 100 000 000 vertices depending on 

the number of worker nodes 
Then we conducted an experiment with a larger dataset (metargraph and graph with 100 000 000 
vertices) and with two to eight worker nodes in a cluster (see Fig. 13). As we can see from the charts, 
with the addition of new Spark executors and with the addition of worker nodes to the cluster, SSSP 
calculation time decreases similarly for metagraph and simple graph. Thus, metagraph processing 
may be effectively parallelized using Apache Spark. 
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7. Future Work 
At the moment, we have implementation of persistent metagraph storage in graph database (Neo4j, 
ArangoDB). We also processed graph representation of metagraph in Big Data graph framework 
(Apache GraphX). Our next step will be creating a system which includes both persistent storage 
and processing framework and provides API for working with metagraph without manual processing 
of its graph representation. 

8. Conclusions 
Nowadays, Big Data frameworks are widely used for processing numeric and categorical data, text 
information, images, video data, and graph information. 
The dominant graph model in such frameworks is usually a flat graph model or property graph model 
(which is, in fact, the multigraph model). However, to describe complex situations, flat graph models 
may not be enough, and we propose using a metagraph model. 
The critical element of the metagraph model is metavertex. From the general system theory point of 
view, a metavertex is a particular case of the manifestation of the emergence principle, which means 
that a metavertex with its private attributes and connections becomes a whole that cannot be 
separated into its component parts. 
The metagraph may be represented as a multipartite flat graph. 
The system for processing data in metagraph form consists of two main components: the storage 
module and the processing module, where the processing module is based on the Big Data 
processing platform.  
The three most popular graph processing models are the Pregel model, Signal-Collect / Scatter-
Gather model, and Gather Sum Apply model. How these three models are suitable for processing 
metagraphs is the subject of further detailed research. In the experimental part, we use the Pregel 
model as the most flexible of the three models. 
The experimental part is based on the Single Source Shortest Path (SSSP) problem. The SSSP 
calculation time for the metagraph is comparable to processing a flat graph of the same size. The 
metagraph processing may be effectively parallelized using Apache Spark. 
The described metagraph approach with flat graph representation in graph processing frameworks 
seems to be an effective instrument for solving problems with processing complex data. 
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