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Abstract. The work is devoted to the study of automation tools for managing stateful applications in the
Kubernetes environment, particularly object storage systems. A review of existing management tools capable
solving the set tasks is made. A comparative description of the considered tools based on review is given and a
tool is selected that meets the introduced criteria: popularity, support form Kubernetes, reactivity of developed
operator, additional features, and others. An approach to automatic object storage management using the
Operator SDK and Custom Resource Definition is suggested. As a result of comprehensive comparative
analysis of tools Kubebuilder, Juju, Metacontroller, Kudo and Operator SDK, the last one was chosen as a base
of approach implementation. The architecture of the system for managing a containerized version of storage
systems based on the Kubernetes platform and integrating the operator with a user monitoring system is
proposed. The described approach is implemented in a software tool — an operator of the object data storage
system resource. The paper describes the details of software implementation, the structure of the storage custom
resource descriptor, and methods for testing the end system. As a result, an object storage management system
based on the Kubernetes platform was created, which made it possible to reduce both labor costs for supporting
and maintaining the system, and it’s cost by reducing dependence on hardware. Moreover, described approach
corresponds to such features of modern object storages as multi-tier, erasure coding support, geo-replication,
cluster topology that is quite innovative among existing automated storage management approaches on
Kubernetes platforms.
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AHHoTanus. JlaHHas pa0ora IIOCBAILEHA MCCIEJOBAHUIO CPEACTB  aBTOMATU3aLUM  YIPABICHUS
IPHIOKEHUAMH C COXpaHEHHEM COCTOSHHSA B cpene Kubernetes, B yacTHOCTH OOBEKTHBIMH CHCTEMaMHU
XpaHeHUs NaHHBIX. [Ipom3BenéH 0030p CyIIECTBYIOMINX HHCTPYMEHTOB YIPABICHHS, CIIOCOOHBIX PEHINTHh
MIOCTaBJICHHBIE 33/1a4k, HA OCHOBE KOTOPOr'O JIJaHA CPABHUTENIbHASL XapaKTEPUCTHKA PACCMOTPEHHBIX CPE/ICTB
U BbIOpaH WHCTPYMEHT, YAOBJIETBOPSIOWMII BBEeAEHHBIM KputTepusM. Ilo pesyibraTaM CpaBHUTEIBHOTO
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aHaJIM3a IPEJICTaBIIeH IOAX0]] aBTOMATHIECKOT0 YIIPaBIeHUs 00BbEKTHBIM XPaHIIUIIEM ¢ momMomisio Operator
SDK u Custom Resource Definition. IIpeanokeHa  apXUTEKTypa CHCTEMbI  YIpPaBICHHS
KoHTelHepu3upoBanHoi Bepcuedd CXJ] Ha rmuardpopme Kubernetes u umHTErpamum omeparopa ¢
M0JIb30BATENILCKONH CUCTEMOM MOHMTOpUHra. OINHMCaHHBIA MOAXOJ PealM30BaH B IPOrPaMMHOM CPEJICTBE -
omeparope pecypca OOBEKTHOH CHCTEMBI XpaHCHHs J@HHbIX. B pabore omMCaHBI JETAlM pealn3alin
[IPOrPaMMHOTO 00ECIICYEHHsI, CTPYKTYpa JACCKPUNTOPA MOJIB30BATENBCKOTO PECYPCa XPAHMIIUINA U METOMBI
TECTUPOBAaHUsl KOHEUHOU cucTeMbl. B pesyibrare Obula 1oryueHa cucreMa ynpasieHus oobekTHoit CXJI Ha
miatopme Kubernetes, 4To MO3BOJIMIIO COKPATHUTh KaK TPYJ03aTPaThl MO COJACPKAHUIO M OOCITYKHBAHHIO
CHCTEMBI, TaK 1 €€ CTOMMOCTB 3a CYET YMEHBIICHHS 3aBUCHMOCTH OT aIlIIapaTHOTO 00ECIeYCHHSI.

KioueBbie ciioBa: Kubernetes; 00beKTHOE XpaHWIMILE; CHCTEMa XPAaHeHHs JaHHBIMH; OIEpaTop; custom
resource definition; koHTeitHep; opkecTparus

Jns nurupoBanusi: Cronoxenko K.M., Hukudopos MN.B., Ycrunos C.M. Iloaxox aBTOMAaTHYECKOrO
yInpasiieHust 00bEKTHBIM XpaHumieM ¢ nomolbio Operator SDK n Custom Resource Definition. Tpy st UCIT
PAH, Tom 34, Bbim. 2, 2022 1., ctp. 123-134. DOI: 10.15514/ISPRAS-2022-34(2)-10

1. Introduction

The amount of information produced by humanity and requiring storage is increasing every day - a
study [1] conducted by the consulting firm IDC (International Data Corporation), specializing in
information technology [2], showed that approximately 1.7 Mb of data is generated every second by
single human, which in absolute terms is approximately 40 zettabytes per second.

Modern personal computers allow storing up to several terabytes of data, which, on the one hand, is
a sufficient amount of memory for the average computer user, but on the other hand, a very modest
value for large companies that produce and process petabytes and even exabytes of data. Social
networks, file hosting, web applications and other programs that communicate via the Internet can
exchange even a larger amount of information that require considerable memory resources for
storage.

In addition to information carriers, modern data storage complexes should also contain computing
devices capable of performing multi-threaded continuous operations of writing, reading, deleting,
and modifying data. Along with this, data storage systems are also responsible for the security and
integrity of stored information — access to data is provided only to those users who have the
appropriate rights, and if one or more hardware storage nodes fail, the data must be restored using
the remaining copies.

All these requirements are implemented in object storages [3], a distinctive feature of which is the
storage of all data in the form of objects located at the same logical level and defined by a set of
metadata. The absence of a hierarchy in such sort of storages makes this solution infinitely scalable,
which allows deploying system on a group of independent nodes called a cluster. The object-oriented
nature of the storage system indicates lack of data unit structure, so any data format can act as a
storage object and makes this type of storage universal.

However, the above specifics of object storage systems as a software solution dictates certain
requirements for the hardware, which increases the cost of equipment and, as a result, reduces the
potential customer base of the manufactured complex.

Reducing the dependence between the hardware platform and the software of the system could be
solved by the well-known virtualization technique [4] — creating an additional software abstraction
layer between the user application and the hardware. However, until recently, existing solutions for
deploying virtual machines on a cluster were poorly aligned with the idea of horizontal scaling and
required a significant pool of resources.

Everything has been changed with the advent of containerization [4-7] - a way to allocate a
lightweight set of system resources to programs — and container orchestration systems [8-10] —
software that monitors the execution of containers on a provided set of resources and is responsible
for maintaining a certain state of the cluster.
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One of the most popular orchestration systems — Kubernetes [11-13]. It is designed to run a huge
number of programs wrapped in containers on a set of nodes united in one network, which allows
scaling the cluster vertically and horizontally without limits. One of the distinguishing features of
Kubernetes is the presence of a replication controller [14] responsible for maintaining multiple
copies of stateless containers [11, 15]. Stateless programs can be web clients that form user requests
based only on input data, and simple web servers that send responses to a request based only on its
content.

Along with stateless applications, Kubernetes terminology also defines stateful applications that are
forced to save their state as they execute. Their replication can no longer be performed by
sequentially deleting a copy of the program and recreating it in a new location. Work features of
each individual stateful application require the creation of a separate custom replication controller,
also called an operator [16,17], which monitors the state of its replica set.

Now there are many tools for creating stateful application operators in the Kubernetes environment.
Some of them, considered in this paper, have been used by stateful software developers to create
their own Kubernetes operators. Such stateful software include databases, metric collectors, machine
learning programs, logging systems, and many others.

Transferring an object storage system to the Kubernetes container platform and creating a separate
operator for monitoring the state of stateful components is an advanced and relevant direction in the
development of object storage, which reduces the cost of storage development, testing,
implementation, and maintenance, and also provides the ability to deploy the system on almost any
set of hardware resources.

In this paper, we consider an approach to automatic management of object storage based on the use
of the Operator SDK framework and Custom Resource Definition.

2. Related works

One of the main components of the developed approach for managing object storage in the
Kubernetes environment is an operator — a kind of user resource controller. Developing an operator
from a scratch, just like its further maintenance as a product, is a time-consuming and expensive
process, which is a consequence of both the complexity of the internal structure of Kubernetes
controllers and the rather frequent change of Kubernetes API versions.

In this regard, many tools have been created for your own Kubernetes custom resource operators’
implementation. Some of these tools are described below.

Kubebuilder is a command line utility, providing functions for extending the Kubernetes cluster
API. The main purpose of the program is to create custom resources [17] and controllers for their
monitoring. The utility is implemented and builds controller code in Golang, the native language of
the Kubernetes infrastructure. The distinctive features of the Kubebuilder project include the ability
to include the configuration and the versioning of the resource being defined.

An alternative to Kubebuilder is the Operator SDK, an open-source toolkit whose main purpose is
to build Kubernetes operators. The set includes the operator-sdk utility, which provides a list of
commands for generating an operator template for any type of custom resource. The operator itself
can be implemented both in Golang (using scripts from the Kubebuilder library) and using Ansible
playbooks - configuration management scripts - or Helm charts. In addition, the Operator SDK
allows you to connect the developed operator to the Operator Lifecycle Manager - a separate
operator lifecycle management program, whose tasks include monitoring the use of system
resources, saving metadata about a specific version of the operator, simplifying the deployment,
deletion and testing of the custom operator.

Another tool for creating Kubernetes operators is Juju [18]. In Juju terminology, user resource
controllers are called «charms» [19]. Python is the preferred language for implementing charms, but
other scripting languages can be used that include libraries for interacting with Juju. Along with the
«juju» and «charm» command line utilities, the Juju package also downloads the Charmed Operator
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Lifecycle Manager, similar to the Operator Lifecycle Manager from the Operator Framework. But
unlike the second program, the controller supplied by Juju is the software required to run on the
cluster in parallel with user statements, which negatively affects the performance and complexity of
system developed.

You can also use Metacontroller [20], a Kubernetes API extension developed by Google, to create
custom operators. The tool provides the ability to create bundles of controllers and stateful web
applications through a web-hook. These applications implement custom resource management logic
and can be written in any language capable of handling JSON-like objects, such as Jsonnet or
Python. Google's suggestion is a declarative way to create a Kubernetes operator, which simplifies
the development process, but increases the load on the cluster due to the deployment of additional
entities.

For a completely declarative way to create Kubernetes operators, you can apply KUDO (Kubernetes
Universal Declarative Operator) — kubectl Kubernetes CLI plugin. Statements developed with
KUDO manage user resources by defining tasks and plans in statement descriptors in YAML format.
The undoubted advantage is the ease of creating controllers, however, the declarative method of
setting operators reduces the ability to manage resources - KUDO allows you to deploy complex
stateful applications but is not able to respond to changes in the cluster.

A full comparison of the considered tools is presented in Table 1.

Table 1. Comparison of Operator development tools

Criteria \ Tool name Kubebuilder O;)SeDrz;(tor Juju Metacontroller KUDO
Popularity (thousands of 90 18 100 1610 6360 611
Google search results)
Requires additional

- - + + -
controller level
Support from k8s + + - + -
Additional opportunities + + - - -
Operator reactivity + + + + -

During the comparison, the Operator SDK was chosen as the tool for creating the Kubernetes object
storage operator, as it meets our requirements more than others.

3. Proposed Approach description

3.1. Approach features

The software of modern object data storage systems is a combination of several services that
implement various functions. Among them are software components for accounting for user roles
of the storage system, providing access to one or more interfaces of various levels, distributing data
between several geographically separated clusters, and many others.

The main service of the system is the storage service, a component responsible directly for encoding
and saving user data. Encoding is understood as the splitting of the input stored information into
several sets of transformed data, from which it is possible to restore the original information. The
number of sets and the type of transformation depend on the selected data encoding scheme. The
key feature of this procedure is the guarantee that when the received data sets are placed on different
nodes and one or more of them fails, the system is able to restore all information on the remaining
sets, after some time recode the data and save them on the working nodes.

The difference in data encoding schemes complicates the process of managing several storage
service replicas, therefore, the main difficulty in designing an automated object storage management
system is focused on the replication of this component.
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Furthermore, none of modern approaches of storage system management on virtualized deployments
included extension of Kubernetes replication controlling system in order to maintain erasure coding
schemes and geo-replication of stored data. Storage service replication fully demands on
orchestrator or simple custom controller reconciliation logic [21, 22].

The main features of the developed approach include:

e Reducing labor costs in the implementation, maintenance and operation of the system;
e Transition to implementation of storage on any provided set of computing resources;

e Abstracting from the hardware component of the system and shifting the responsibility for
scaling and replicating storage systems to the Kubernetes platform;

e  Use built-in Kubernetes resources to create our own event monitoring system.

The first three features of the approach are related to the transfer of the system to a virtual Kubernetes
platform. The system requirements for the hardware are dictated by the very platform, that takes
responsibility for connecting the nodes into a single network and deploying Kubernetes on the
resulting cluster. Also, the platform can provide a graphical user interface of various levels for
managing the network, nodes, Kubernetes resources and interacting with executable programs.
Elastic Cloud Storage (ECS) [23] from Dell Technologies was chosen as the object storage to which
the developed automation approach is applied. While vSphere from VMware and OpenShift from
RedHat were the Kubernetes platforms that should support deployment of containerized version of
object storage.

The fourth specified feature of the approach involves the use of the event resource to monitor the
state of storage systems during service procedures - cluster maintenance operations or changing
storage system parameters. Examples of service procedures include the following operations:

e Horizontal storage server expansion — increase of service replicas number,

e Vertical storage server expansion — increase of volumes number that bound to each replica,
e  Object storage version upgrade,

e Volume or disk replacement,

e Entering maintenance mode of cluster node, etc.

During each of the presented service procedures processing, the system must ensure the correct
replication of all components of the object storage and notify the user of all changes in the state of
the storage system.

(" Container platform B

Operator R

GUI s

lKubernetes @ [ Kubernetes | :
lControIPIane . APl-server | |

\_ - - - - """ """""""""= J/

Fig. 1. System architecture
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3.2. Architecture

A Kubernetes operator is required [24] to organize automatic management of object storage
components when deploying a system or performing service procedures. Its principle of work is
shown in Fig. 1.

All software components of the system are executed on the Kubernetes platform, that provides a
graphical user interface and a deployed Kubernetes orchestration system. The central element of the
orchestration system is the Control Plane. Interaction with it is carried out through the Kubernetes
API-server, which accepts requests from any client — the native CLI kubectl [13] or a program using
the k8s-client library.

The object storages deployed on the platform, on the one hand, are a set of Kubernetes services,
each of which requires the creation of a collection of Kubernetes resources, such as volumes, pods,
cluster-roles, replica sets [11] and others. Control plane manages all these resources according to
Y AML descriptors containing a description of the desired state of the resource.

On the other hand, object stores are resources themselves that are a user-defined extension of the
Kubernetes API. Each storage instance, like any resource, is described by its own descriptor. But
since the resource is user-defined, its descriptor is called Custom Resource Definition [17], and its
management is carried out by a custom controller named operator.

Object storage is managed by the operator upon the occurrence of certain events associated with a
change in the state of nodes, volumes, or storage descriptors. These events are triggered by the
launch of service procedures that are initiated by the user using the platform's graphical interface.
The operator manages the Kubernetes resources of the storage system components by generating
requests to the Kubernetes API server [11].

The collaboration of the operator and the Kubernetes control plane maintains the correct operation
of the storage system, which is accessed by the user through any provided storage interface (HTTP,
S3, etc.)

3.3. Operator and monitoring system interaction

Event Kubernetes-resource [11] allows you to monitor the status of other cluster resources.
Generation of events during the operator's work can be useful both for tracking the current state of
the storage system by the end user, and for implementing a reaction to some errors that occur during
object storage management.

If some error occurs during the execution of any service procedure, it is not enough to inform the
user about it. Depending on its severity, the system should give recommendations for its elimination,
ask for help from the system administrator or even from the support engineer responsible for the
implementation and maintenance of the software product.

To implement the described logic, a Kubernetes event monitoring system is required - an
intermediate layer between the events generated by the system components and all the specified
actors.

The general scheme of interaction between the operator and the monitoring system is shown in Fig.
2.

Operator Event notification systems
T T

]
Kubernetes events’ Joul
Events monitoring system

Fig. 2. Operator and monitoring system integration
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4. Implementation

4.1. Object storage descriptor design

To organize the processing of all components of the object data storage system by the operator as a
single whole, it is necessary to implement a custom resource definition (CRD) containing the
settings of all services presented in a containerized form.

Like all Kubernetes descriptors, the storage CRD contains the following sections:

e Used Kubernetes API version (apiVersion),
e Kubernetes resource kind,

e Resource metadata,

e Resource specification (spec),

e Its current status.

Since the storage descriptor is a custom resource definition, an extension of the standard Kubernetes
API, then apiextensions.k8s.io/v1 acts as the CRD version, and CustomResourceDefinition as the
resource type. Metadata includes resource name, entity creation time, various labels and annotations.
The specification of a resource is its main characteristic since it contains all the desired settings for
both the resource itself and all its components. For instance, for the minimal executable unit of a
Kubernetes cluster — a pod — the specification contains the launch parameters of all containers,
associated volumes, the name of the node on which the pod want to be running, and other
information. Object storage, on the other hand, consists of dozens of components, for each of which
it is necessary to define a service, a replica set, a set of stateful pods (statefulset) [11], or some other
resources and their characteristics. Therefore, the storage CRD specification is the largest part of the
descriptor.

CRD status contains current information about the state of the resource, that allows you to compare
it with the desired state. The distinctive parameters stored in this section of the descriptor of our
storage system are:

e Phase that reflects storage current state,

e Components’ subsection containing brief information about the current state of all storage
components,

e Conditions [25] - a special extension of the resource status that allows you to track the time,
cause and status of transitions between resource phases,

e Additional information used by the operator in the course of managing the storage resource,
such as information about the nodes that are in maintenance state.

4.2. Reconcile loop implementation

Custom resource processing is implemented in software using the Operator SDK. As mentioned
earlier, the package includes the operator-sdk utility, which is used to create, build, run and test the
custom resource operator.

The basis of the program is the reconcile loop [24], during which the operator reads the descriptor
of the controlled resource and performs actions that bring it to a state corresponding to the
specification. In fact, this is the main task of the controller. The cycle runs at a certain interval (for
example, once a minute) and checks whether the state of the storage components corresponds to the
status of the cluster or the ongoing service procedure. Fig. 3 shows the general scheme for processing
a user resource in a loop.
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Fig. 3. Storage resource Reconcile loop

The storage processing logic encapsulated in Operator allows us to track the state of the storage
system using a phase — a capacious description of the current status of the storage system. The
behavior of our user resource can be described by the storage resource state machine, presented on

Fig. 4:

Initialized H Started H Provisioned ]

[——

Updating
topology

Yy

Upgrading

/

[ Disk Failure ] [Maimenence]

Fig. 4. Storage resource Reconcile loop

4.3. Monitoring system integration

In addition to the current storage phase, the end user can monitor the flow of service procedures and
their impact on the operation of object storage components using events. Developed separately from
the operator, the event monitoring system allows you to define the severity, the resource and
application involved, as well as the cause and message of the event.

If the severity of the event is higher than normal (warning or error), the system generates an issue,
which, depending on the settings, can be resolved by the user himself or sent for investigation to the
software product support service.
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5. Results

5.1. Testing methods

Testing of the implemented system is carried out at different levels - at the level of the operator code
and at the level of the entire system.

To test the functional changes of the operator unit and integration tests were created using the
Gomega and Ginkgo frameworks, the main scenarios of which include checking the correct
processing of the storage descriptor during various service procedures.

Operator testing as part of the operation of the entire object storage management system at the
Kubernetes cluster level is performed using the Jenkins automatic CI/CD pipeline, which downloads
software dependencies and the Operator SDK, code syntax analysis, executes tests, builds the image
and uploads it to the registry. A pipeline is also implemented that allows you to deploy an entire
storage management system on a provided virtual or bare-metal cluster. The resulting system is
ready for all kinds of end-2-end tests.

To monitor the absence of a decrease in the efficiency of the object storage during system
development, a cluster is regularly allocated for load testing: various service procedures are
alternately performed for several days. At the same time, object storages constantly take on the load
— the main operations are:

e creation and deletion of user with different roles,

e creation and deletion of namespaces,

e creation and deletion of buckets,

e write, read, modify and delete files to/from buckets,

o file metadata search.

To monitor the state of the storage during testing, the Grafana metrics collection and visualization
tool is used [26]. The main metrics collected include the execution time of REST requests, the
percentage of unsuccessful requests, network bandwidth, etc.

5.2. Comparison to classic approach

The main purpose of the developed object storage management system on the Kubernetes platform
is to increase the degree of automation of storage management when changing the configuration of
both the physical cluster and the storage system itself. To demonstrate the reduction in labor intensity
of storage management, a comparison was made of the time to remove a disk from a cluster between
a manual approach and the proposed automated approach.

The list of actions for an engineer when removing a disk as part of a classic deployment of object
storage without the use of container technologies includes points, presented below.

1. Simulation of disk outage on HAL level.

2. Waiting for data recovery with rest storage replicas.
3. Logic disk replacement from cluster with fabric CLIL.
4. File system deletion.

5. Partition table formatting.

6. Disk wipe.

To remove a disk in the developed system, you must perform the following operations in the Ul of
the container platform:
1. Annotate unhealthy disk or volume.
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2. Wait Service procedure to finish.

The average disk replacement time for the classical approach is ~3 hours, and for the automated one
it is approximately 1 hour. In total, we have a gain in time of about three times.

6. Conclusion

Work on operator of the object data storage system helped us to reach following important results.
Firstly, an approach of automated object storage management system was introduced. Distinctive
feature of the approach is Kubernetes platform. Operator is used as a crucial element of the system
as it performs CRUD operations on Kubernetes resources to manage components of storage that is
presented by its own Custom Resource Definition.

Secondly, the operator of the object data storage system developed within the framework of this
project was successfully implemented into the storage management system on the container
platform. The operator not only manages the storage components during service procedures, but also
generates a set of Kubernetes events displayed in the platform Ul and informing the user about the
general state of the storage.

Operator was implemented based on comprehensive analysis of existing solutions: different tools to
develop operator of custom Kubernetes resources were studied that helped us to form knowledge
about different ways to build custom controllers and to choose Operator SDK as the base of operator
development framework according to its benefits.

Finally, resulting system was compared with storage build using classic approach, that let us to see
such qualitative changes as possibility to run new solution on wide specter of container platforms,
use different tools made in Kubernetes infrastructure to improve storage system and reduce of cost
of outcome product as the responsibility of deployment, replication and low-level system
management lies on orchestrator.

Manufactured software solution has shown increase in performance and more wide set of
functionalities in comparison to classic object storage system, and was applied to real enterprise
object storage system.

On the basis of results further directions of project development were suggested:

e new automation pipelines,
e use of new Operator Framework features,
e multiple Service Procedure support,

e introducing new CRD for service procedures.

One of them is the development of new automation pipelines for configurable regression testing.
The Robot Framework and Jenkins capabilities allow us to add settings to run a specific set of end-
2-end tests for each service procedure. On the one hand, this would reduce the load on the clusters
allocated for testing, and on the other hand, it would cover many previously untested use cases.
Operator Framework was also improved and issued several versions, which now allows us to add to
the project such tools as collecting metrics for the operator and all resource controllers included in
it. Analysis of the measured parameters will help us to find solutions to improve the performance
and speed of the software and reduce the consumption of cluster resources.

Moreover, one of the directions of future work on the operator is the support of several parallel
processed service procedures. Modifications in the operator code and specification of the storage
resource would allow, for example, updating the storage system version and simultaneously deleting
one of the cluster disks.

Furthermore, development of additional components of storage management system showed us that
they also need some operator-side management during service procedure handling. Introducing new
service procedure CRD would simplify monitoring of different service procedures that affect not
only storage services, but also components of the management system.
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