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Abstract. Automated test coverage is a widespread practice in long-live software development projects for 
now. According to the test development approach, each automated test should reuse functions implemented in 
test framework. The provided research is aimed at improving the test framework development approach using 
natural language processing methods. The algorithm includes the following steps: preparation of test scenarios; 
transformation of scenario paragraphs to syntax tree using pretrained OpenIE model; test steps comparison with 
test framework interfaces using GloVe model; transformation of the given semantic tree to the Kotlin language 
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tests from natural language specification.  
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Аннотация. Автоматизированное тестовое покрытие на данный момент является широко 
распространенной практикой в долгосрочных проектах разработки программного обеспечения. 
Согласно подходу к разработке тестов, каждый автоматизированный тест должен повторно 
использовать функции, реализованные в тестовой среде. Представленное исследование направлено на 
совершенствование подхода к разработке тестовой среды с использованием методов обработки 
естественного языка. Алгоритм включает следующие этапы: подготовка тестовых сценариев; 
преобразование абзацев сценария в синтаксическое дерево с использованием предварительно 
обученной модели OpenIE; сравнение шагов тестирования с интерфейсами тестового фреймворка с 
использованием модели GloVe; преобразование заданного семантического дерева в код языка Kotlin. 
Статья содержит описание прототипа системы автоматической генерации языковых тестов Kotlin из 
спецификации на естественном языке. 

Ключевые слова: автоматический тест; компьютерная лингвистика; извлечение отношений; 
извлечение открытой информации; разбор дерева зависимостей; обработка естественного языка; 
кластеризация; E2E-тест; GloVe; Kotlin 
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1. Introduction 
Automated test coverage is a widespread practice in long-live software development projects for 
now. The coverage can be implemented on different levels of testing pyramid: unit tests, integration 
tests, API (Application programming interface) tests, E2E (End-to-End) tests [1]. The practice of 
test coverage allows us to decrease complexity of code refactoring process, also tests can be used as 
primary code documentation according to the Test-Driven Development methodology [2].  
Also, there is another popular approach of test framework development. This approach complements 
the automated test coverage approach. According to the test development approach, each automated 
test should reuse functions implemented in test framework [3]. Therefore, after implementation of 
test framework, we have a clear architecture of test infrastructure without code duplication and with 
reusable test steps and objects. 
The provided research is aimed at improving the test framework development approach, at reducing 
labor costs of this approach using natural language processing methods. We consider the existing 
test automation approaches, define their shortcomings and analyze how these shortcomings can be 
addressed. 

2. Problems of existing testing automation approaches 
When a programming system is quite complex, usually, analysts prepare a document describing the 
system behavior called a functional specification. Usually, in case of complex and long living 
projects, the functionality should be delivered by short release cycles, a program build should be 
delivered immediately after functionality implementation. In this case it is necessary to check not 
only the new functionality, but also existing earlier. In other words, it is necessary to complete the 
automated regression testing in such cases. Consider the testing automation methods presented in 
Table 1 and define their disadvantages. 
Table 1. Existing approaches characteristics 

Approach 
 
Characteristic 

Classic BDD 
Formal 

verification 
methods 

Neural 
Network 
training 

Test structuredness - ++ ++ -- 
Analyst participation -- ++ ++ + 

Source code 
complexity resistance ++ ++ -- ++ 

Reliability + + ++ -- 
Automation -- -- + ++ 

According to the classic testing automation approach, analyst should prepare a functional 
specification that is used for automatic test preparation by QA engineers (Quality Assurance 
engineer). Automatic tests are prepared manually. This method forces analyst and QA engineers to 
work separately. Participation of analysts is minimal and interaction between analysts and QA 
engineers is done over the document – functional specification. Also, QA engineers are responsible 
of test framework structure support. This approach excludes the full automation of test preparation. 
The BDD approach (Behavior-Driven Development) is based on test framework interfaces 
preparation by analyst with using of domain-oriented language [4]. Analysts prepare structure of test 
framework and QA engineers implements the test framework. This approach allows to achieve the 
high level of test structuredness. This approach like the classic approach, excludes the full 
automation of test preparation. 
A set of formal verification methods allows us to check completely the program correctness 
according to functional specification requirements, made with, for example, language of temporal 
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logic [5]. The performance of verification process significantly degrades with increasing of 
cyclomatic complexity of program source code. The formal verification process is a check of all 
possible program states, which can cause the “combinatorial explosion”. Therefore, the formal 
verification usually applied for prototype of program instead of the source program. 
Also, there is an approach based on the training of neural network [6]. Authors proposed to train 
neural network by random input data for program and given from its output data. This approach does 
not take in account analyst participation and testing is based on already prepared program. But this 
approach cannot guarantee the reliability because it is impossible to make the completely correct 
trained neural network model. Also, it is impossible to continue the model training with new 
program changes. 
So, the following problems were found out during the existing methods analysis: 
• Chaotic state, low level of test structuredness. 
• Analysts work separately from QA engineers, absence of correct unified understanding of 

expected system behavior. Their work can be done only through documents, functional 
specification, consisted of non-strict natural language texts. 

• Low testing system performance when source code of checked program is complex. 
• Absence of guarantee that automatic testing system is completely correct. 
• A lot of manual work on preparation of test infrastructure. 
Consider the proposed approach, and how this approach allows us to deal with these enumerated 
shortcomings. 

3. Proposed test development automation approach 
Consider the solution proposed in the current research schematically presented in fig. 1.  

Fig. 1. The proposed solution for automatic test generation 
We proposed to organize the development process by the following way: 
• Analysts prepare natural language scenario set.  
• Natural language test scenarios are transformed to interfaces of test steps by the proposed 

automatic software tool and to tests that are using interfaces from the generated test framework.  
• QA engineer implements given test step interfaces on Kotlin programming language. 
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So, the main idea is to convert automatically non-strict natural language test scenarios to the stricter 
Kotlin programming language using existing natural language processing methods. Thanks to 
automated natural language processing of test scenarios, we achive such advantages of the 
considered BDD test automation approaches as good test structuredness, consolidated understanding 
of system behavior between analysts and test developers, high reliability of testing system. Also, we 
decreased the manual work on test infrastructure preparation with automated test scenario 
processing. All, that test developer should do is implementation of test framework interfaces. The 
structure of tests and tests themselves will be prepared automatically. 
Consider the proposed solution in detail, each step of the proposed test scenario processing 
algorithm. 

4. Test generation algorithm steps 
Consider the proposed algorithm steps schematically presented in fig. 2.  

Fig. 2. Steps of the proposed test generation algorithm 
The proposed method includes the following steps: 
1. A test scenario name is taken as a test method name. 

2. The test scenario is divided to sentences. Each sentence will be transformed to the one line of 
final code. 

3. Each sentence is transformed to the syntax tree using the pretrained OpenIE model [7]. 

4. Test step, parameter group and separate parameter names are associated with test step, parameter 
group and parameter types using GloVe model [8, 9].  

5. The given semantic tree is transformed to the Kotlin language code. 

Consider steps 3, 4, 5 in detail. 

5. Syntax tree preparation 
OpenIE model is used to build the syntax tree from test scenario sentence [7]. Before OpenIE 
processing, the text data should be prepared by the following algorithms: tokenization [10], 
lemmatization [11], part-of-speech definition [12], building the dependency tree D [13]. Triplets are 
formed with using of OpenIE according to the expression (1), where s is a subject, R is a relation, o 
is an object: 𝑇௜  ൌ  𝑠௜𝑅௜𝑜௜ ሺ1ሻ 
In some cases, an object contains a set of several interconnected natural language words. The object 
can be presented in a form of a part of dependency tree, therefore according to the expression (2): 𝑎௜ ∈ 𝐷௜ ሺ2ሻ 
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This view allows us to present the object as a hierarchic structure of different parameters, that will 
make automatic tests more descriptive. The dependency tree can be presented by expressions (3) 
and (4), where 𝑃 are tree nodes, and 𝑉 are leaves. In other words, these leaves are values 𝑉 of 
parameters 𝑃. And parameters 𝑃 can include other parameters 𝑃 or values 𝑉, so o can be presented 
in a form of hierarchic structure, so tests will contain trees of parameters 𝑃 with values 𝑉: 𝑜௜ ൌ 𝑃 ∪ 𝑉 ൌ ሺ𝑃ଵ,𝑃ଶ, … ,𝑃௞ሻ ∪ ሺ𝑉ଵ,𝑉ଶ, … ,𝑉௞ሻ ሺ3ሻ ∀𝑛,𝑃௡ ൌ ൫𝑃௫,𝑃௫ାଵ, … ,𝑃௬൯ ∪ ሺ𝑉௠,𝑉௠ାଵ, … ,𝑉௟ሻ ሺ4ሻ 
For now, when the current step is completed, found subjects, relationships, parameter sets, and 
values are not associated with any types. In the next step, they will be classified to form interfaces 
of test framework. 

6. Test element type definition 
As a result of the previous step, we got a hierarchically connected subjects s, relationships R, 
parameter sets P, values V. Each s, R, P, V is associated with some source natural language word or 
word set. Any natural language word can be presented in a form of coordinates vector in semantic 
space. Close s, R, P, V can be grouped to clusters associated with test framework interfaces.  

Fig. 3. Clustering of natural language words in semantic space  
For now, there are many ways to get natural language word coordinates in semantic space. The most 
used for today models presenting word semantic coordinates are: RNNLM [14], word2vec [8], 
GloVe [15], fastText [16]. The GloVe model was used in the proposed method because this model 
takes in account in significant degree word cooccurrence frequency, that is important for our 
clustering. 
As it was discussed earlier, we got a syntax tree D and a set ሺ𝑠,𝑅,𝑃,𝑉ሻ. Also, before clustering, we 
have a set ሺ𝑠с଴,  𝑅с଴,𝑃с଴,  𝑉с଴ሻ, associated with a cluster set ሺ𝑠଴ᇱ ,𝑅଴ᇱ ,𝑃଴ᇱ ,𝑉଴ᇱ ሻ found earlier on 
clustering of previous test scenario sentence words.  
Each subset 𝑠,𝑅,𝑃,𝑉 is divided to clusters separately. Consider an example in the fig. 3 in two-
dimensional space, when clusters 𝑠ଵ௖ , 𝑠ଶ௖ already found from previous test scenario sentences and for 
now we want to parse 3 remaining sentences and define their 𝑠,𝑅,𝑃,𝑉 types or clusters. 
After parsing of three remaining sentences, as a result, algorithm extracts subjects 𝑠ଷ, 𝑠ସ, 𝑠ହ from 
these three sentences. Clusters of these subjects are defined in the following way. So, we get a point 
in the two-dimensional semantic space. If there are no clusters in radius r from the given point, then 
the cluster with radius r will be placed at this point and the point will be a cluster center. If the point 
is in the other cluster zone, then this point will be associated with that cluster. If the point is not in 
cluster, but the r-radius circle from this point intersects with any cluster, then the point will be 
associated with the closest cluster.  
We can see on the fig. 3 that clusters 𝑠ଵ௖ , 𝑠ଶ௖ were found at the beginning. Then algorithm accepted 
the point s3, that was associated with the cluster 𝑠ଷ௖, because the r-radius circle from this point is not 
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intersected with any existing r-radius clusters. The r-radius circle of point 𝑠ସ is intersected with 
cluster 𝑠ଷ௖, that is why it was associated with the cluster 𝑠ଷ௖. The point 𝑠ହ was associated with the 
cluster 𝑠ଵ௖ because it was inside of the r-radius circle of this cluster.  
The last remaining step is to get the Kotlin language code from the given semantic tree. 

7. Semantic tree transformation to the Kotlin language code 
The last step is to get the Kotlin language code from the given typed semantic tree. As a result, we 
will get an automatic test on the domain-oriented language and interfaces of the test framework. 
Consider transformation rules presented in the Table 2, where you can see examples of the parsed 
sentence in the “before” column and prepared automatic test code fragment in the “after” column.  
Table 2. Transformation rules to the Kotlin language code 

Transformation rule Before After 

Subject 
User paid free package 
User - subject 

user { 
    …paid free package... 
} 

Subject grouping 
User paid free package. 
User got payment bill. 
 

user { 
   ...paid free package,  
      got payment bill… 
} 

Relationship User paid free package 
user { 
   paid(…) 
} 

Object User paid free package 
user { 
   paid(Package(…)) 
} 

Parameter User paid free package 
user { 
   paid(Package(type=…) 
} 

Value User paid free package 
user { 
 paid(Package(type=FREE) 
} 

Test Scenario 
Payment flow: 
User paid free package. 
User got payment bill. 

@Test 
fun paymentFlow() { 
user { 
 paid(Package(type=FREE) 
 got(PaymentBill()) 
 } 
} 

The found subject is transformed to the lambda expression with context. QA engineer should 
implement the context class. If the same subject is appeared in two test scenario sentences, then 
those subject lambda expressions will be grouped to the one lambda expression. The found 
relationship is transformed to the method call, and that method should be implemented.  Parameters 
are transformed to the class field names. Values are transformed to the primitive types of the Kotlin 
language or Strings. Then all code is wrapped to the test method having the name like the test 
scenario name. 

8. Prototype of the proposed solution 
A prototype of the proposed solution was implemented on Java language. The developed system 
uses a pretrained OpenIE model in a form of Maven package manager dependency called Stanford 
NLP. A pretrained GloVe model was used. This model was given from Wikipedia of 2014 year and 
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Gigaword text corpuses. The model contains 400 thousand words and their coordinates in 100-
dimensional space and takes 822 Mb of memory. The GloVe model was stored and indexed in 
Mongo database. For now, the prototype gives true results for simple test scenarios, however, we 
found that it does not work correctly in some complex test scenarios including multiple words in 
subjects and relationships. Therefore, we need to investigate more and improve clustering stage of 
the proposed algorithm for now. 

9. Conclusion 
In the provided research we analyzed existing automated testing approaches and defined their 
disadvantaged. After the analysis we proposed solution based on natural language processing of test 
scenarios and transformation of them to the Kotlin language autotests and test framework.  
As a result of research, we implemented a prototype of the proposed algorithm on Java language in 
a form of Maven open-source library. The developed solution includes a pretrained OpenIE model 
from Stanford NLP library. A pretrained GloVe model was used to automate a search of test items 
categories. This model was given from Wikipedia of 2014 year and Gigaword text corpuses. The 
model contains 400 thousand words and their coordinates in 100-dimensional space and takes 822 
Mb of memory. The GloVe model was stored and indexed in Mongo database.  
For now, the prototype gives true results for simple test scenarios, however, we found that it does 
not work correctly in some complex test scenarios including multiple words in subjects and 
relationships. Therefore, we need to investigate more and improve clustering stage of the proposed 
algorithm for now. 
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