Tpyowt UCIT PAH, mom 34, eown. 2, 2022 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022

DOI: 10.15514/ISPRAS-2022-34(2)-2

An algorithm of test generation from functional
specification using Open IE model and clustering

K.S. Kobyshev, ORCID: 0000-0002-1120-9569 <kobyshev2.ks@edu.spbstu.ru>
S.A4. Molodyakov, ORCID: 0000-0003-2191-9449 <molodyakov_sa@spbstu.ru>
Peter the Great Saint Petersburg Polytechnic University,

29, Politechnicheskaya st., St. Petersburg, 195251, Russia

Abstract. Automated test coverage is a widespread practice in long-live software development projects for
now. According to the test development approach, each automated test should reuse functions implemented in
test framework. The provided research is aimed at improving the test framework development approach using
natural language processing methods. The algorithm includes the following steps: preparation of test scenarios;
transformation of scenario paragraphs to syntax tree using pretrained OpenlE model; test steps comparison with
test framework interfaces using GloVe model; transformation of the given semantic tree to the Kotlin language
code. The paper contains the description of a prototype of the system automatically generating Kotlin language
tests from natural language specification.

Keywords: automatic test; computational linguistics; relation extraction; open information extraction;
dependency tree parsing; natural language processing; clustering; E2E test; GloVe; Kotlin

For citation: Kobyshev K.S., Molodyakov S.A. An algorithm of test generation from functional specification
using Open IE model and clustering. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022, pp. 17-24. DOIL:
10.15514/ISPRAS-2022-34(2)-2

Anroputm reHepaumm TecToB 13 hyHKLUMOHaNbLHON cneuuduKaumm ¢
ncnonb3oBaHnem mogenu Open IE n knactepusauyun

K.C. Kobwiues, ORCID: 0000-0002-1120-9569 <kobyshev2.ks@edu.spbstu.ru>
C.A. Monoosikoe, ORCID: 0000-0003-2191-9449 <molodyakov_sa@spbstu.ru>
Canxm-Ilemepoypecxuii Ilonumexnuyeckuti ynugepcumem Ilempa Benukoeo,
Poccus, 195251, Canxm-Ilemep6ype, [lorumexnuueckas ya., 29

AHHOTauMsl. ABTOMAaTH3MPOBAaHHOE TECTOBOE MOKPBHITHE HA JAHHBIH MOMEHT SIBISIETCS IIHPOKO
pacIpoOCTPaHEHHOH NpPAKTHKONH B JOJTOCPOYHBIX MPOEKTaX paspabOTKH MPOrpaMMHOrO OOECHeYeHUs.
CornacHO MOAXOAy K pa3pabOTKe TECTOB, KAXKABI AaBTOMATH3UPOBAHHBI TECT MO/DKEH IOBTOPHO
HCIIONB30BaTh (DYHKIMH, PEaNH30BaHHbIC B TECTOBOM cpefe. IIpeacTaBieHHOe HCCIeI0BAHNE HALIPABICHO Ha
COBEPIICHCTBOBAHME IIOAXOAa K pa3pabOTKe TECTOBOHl CPebl C MCIOJIB30BAaHHEM METOJ0B 00paboTKH
€CTCCTBCHHOI'O s3bIKa. AﬂFOpMTM BKIIIOYACT CJICAYIONIME OJSTallbl: IMOATOTOBKA TECTOBBIX CICHAPUEB,
npeobpa3oBaHue a03aleB CLEHApUs B CHHTAKCHYECKOE JIEPEBO C MCIOJIB30BAHHEM MPEBAPUTEIILHO
o0yuennoit mogenn OpenlE; cpaBHeHHe IIaroB TeCTHPOBaHMs ¢ HHTepdeiicamu TecToBOro (peiiMBopka ¢
ucnosbzoBanueM moaenu GloVe; npeoOpazoBaHue 3aJaHHOTO CEMAaHTHYECKOro JepeBa B koA si3bika Kotlin.
Cratrbsi COAEPXKUT OIMKMCAHUE MPOTOTUIIA CUCTEMBI aBTOMATHYECKOM TeHepaluy A3bIKoBbIX TecToB Kotlin u3
crenu(UKaUK Ha €CTECTBEHHOM SI3bIKE.

KilloueBble €JI0Ba: aBTOMAaTHYECKMH TECT;, KOMITbIOTEPHAs JIMHIBHCTHKA; H3BICYCHHE OTHOIICHUH;
H3BJICUCHUE OTKPBITOM MHpopManmu; pa3dop aepeBa 3aBHCUMOCTEH; 00pabOTKa €CTECTBEHHOrO S3bIKA;
kiacrepusanus; E2E-rect; GloVe; Kotlin

17

Kobyshev K.S., Molodyakov S.A. An algorithm of test generation from functional specification using Open IE model and clustering. Trudy
ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022, pp. 17-24

Jas nutupoBanns: Ko6emues K.C., Mononsikos C.A. AIropuT™ IreHepaluy TECTOB U3 (yHKIHMOHAIBHOU
cnetudukanuy ¢ ucnonbzoBanueM mojenn Open IE u kiacrepusanuu. Tpynst ICIT PAH, tom 34, Beim. 2,
2022 r., ctp. 17-24. DOI: 10.15514/ISPRAS-2022-34(2)-2

1. Introduction

Automated test coverage is a widespread practice in long-live software development projects for
now. The coverage can be implemented on different levels of testing pyramid: unit tests, integration
tests, API (Application programming interface) tests, E2E (End-to-End) tests [1]. The practice of
test coverage allows us to decrease complexity of code refactoring process, also tests can be used as
primary code documentation according to the Test-Driven Development methodology [2].

Also, there is another popular approach of test framework development. This approach complements
the automated test coverage approach. According to the test development approach, each automated
test should reuse functions implemented in test framework [3]. Therefore, after implementation of
test framework, we have a clear architecture of test infrastructure without code duplication and with
reusable test steps and objects.

The provided research is aimed at improving the test framework development approach, at reducing
labor costs of this approach using natural language processing methods. We consider the existing
test automation approaches, define their shortcomings and analyze how these shortcomings can be
addressed.

2. Problems of existing testing automation approaches

When a programming system is quite complex, usually, analysts prepare a document describing the
system behavior called a functional specification. Usually, in case of complex and long living
projects, the functionality should be delivered by short release cycles, a program build should be
delivered immediately after functionality implementation. In this case it is necessary to check not
only the new functionality, but also existing earlier. In other words, it is necessary to complete the
automated regression testing in such cases. Consider the testing automation methods presented in
Table 1 and define their disadvantages.

Table 1. Existing approaches characteristics

Approach Formal Neural
Classic | BDD | verification | Network
Characteristic methods training
Test structuredness - ++ ++ -
Analyst participation -- ++ ++ +

Source code

. . ++ ++ - ++
complexity resistance
Reliability + + ++ -
Automation -- - + T+

According to the classic testing automation approach, analyst should prepare a functional
specification that is used for automatic test preparation by QA engineers (Quality Assurance
engineer). Automatic tests are prepared manually. This method forces analyst and QA engineers to
work separately. Participation of analysts is minimal and interaction between analysts and QA
engineers is done over the document — functional specification. Also, QA engineers are responsible
of test framework structure support. This approach excludes the full automation of test preparation.
The BDD approach (Behavior-Driven Development) is based on test framework interfaces
preparation by analyst with using of domain-oriented language [4]. Analysts prepare structure of test
framework and QA engineers implements the test framework. This approach allows to achieve the
high level of test structuredness. This approach like the classic approach, excludes the full
automation of test preparation.

A set of formal verification methods allows us to check completely the program correctness
according to functional specification requirements, made with, for example, language of temporal
18

KoGsnmes K.C., Monozsikos C.A. AJIropiT™ reHepalii TeCTOB 13 (yHKIHOHAIBHOI crienuduKarii ¢ uernonabs3osannem mozaenn Open IE u
knacrepusauun. Tpyovt UCI1 PAH, Tom 34, Beim. 2, 2022 1., cp. 17-24

logic [5]. The performance of verification process significantly degrades with increasing of
cyclomatic complexity of program source code. The formal verification process is a check of all
possible program states, which can cause the “combinatorial explosion”. Therefore, the formal
verification usually applied for prototype of program instead of the source program.
Also, there is an approach based on the training of neural network [6]. Authors proposed to train
neural network by random input data for program and given from its output data. This approach does
not take in account analyst participation and testing is based on already prepared program. But this
approach cannot guarantee the reliability because it is impossible to make the completely correct
trained neural network model. Also, it is impossible to continue the model training with new
program changes.

So, the following problems were found out during the existing methods analysis:

e Chaotic state, low level of test structuredness.

e Analysts work separately from QA engineers, absence of correct unified understanding of
expected system behavior. Their work can be done only through documents, functional
specification, consisted of non-strict natural language texts.

e Low testing system performance when source code of checked program is complex.

e Absence of guarantee that automatic testing system is completely correct.

e A lot of manual work on preparation of test infrastructure.

Consider the proposed approach, and how this approach allows us to deal with these enumerated

shortcomings.

3. Proposed test development automation approach

Consider the solution proposed in the current research schematically presented in fig. 1.

Kotlin language
autotests

Test Scenarios

Natural Language
Scenario
Il Step 1 generate

4] MNatural
3| Step 2 —load® Language
b converter

T

used | Test Step
Interfaces

fun testStep1(p1, p2) II

implements

§ Step 3
L) g

L

=

describes

generate

Test Step implementation

—develop.
Analyst
QA / Test Developer

Fig. 1. The proposed solution for automatic test generation
We proposed to organize the development process by the following way:
e Analysts prepare natural language scenario set.

e Natural language test scenarios are transformed to interfaces of test steps by the proposed
automatic software tool and to tests that are using interfaces from the generated test framework.

e QA engineer implements given test step interfaces on Kotlin programming language.
19

Kobyshev K.S., Molodyakov S.A. An algorithm of test generation from functional specification using Open IE model and clustering. Trudy
ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022, pp. 17-24

So, the main idea is to convert automatically non-strict natural language test scenarios to the stricter
Kotlin programming language using existing natural language processing methods. Thanks to
automated natural language processing of test scenarios, we achive such advantages of the
considered BDD test automation approaches as good test structuredness, consolidated understanding
of system behavior between analysts and test developers, high reliability of testing system. Also, we
decreased the manual work on test infrastructure preparation with automated test scenario
processing. All, that test developer should do is implementation of test framework interfaces. The
structure of tests and tests themselves will be prepared automatically.

Consider the proposed solution in detail, each step of the proposed test scenario processing
algorithm.

4. Test generation algorithm steps
Consider the proposed algorithm steps schematically presented in fig. 2.

Database with existing f---------e-y
Oy | 05 |
O, | & @'5 i
— R — —>
Or® &
v v

Test Scenario Paragraph @ @
Syntax Tree Syntax Tree
with categorized
parameters and test steps

Fig. 2. Steps of the proposed test generation algorithm
The proposed method includes the following steps:
1. A test scenario name is taken as a test method name.

test steps and
parameter types

2. The test scenario is divided to sentences. Each sentence will be transformed to the one line of
final code.

3. Each sentence is transformed to the syntax tree using the pretrained OpenlE model [7].

4. Test step, parameter group and separate parameter names are associated with test step, parameter
group and parameter types using GloVe model [8, 9].

5. The given semantic tree is transformed to the Kotlin language code.

Consider steps 3, 4, 5 in detail.

5. Syntax tree preparation

OpenlE model is used to build the syntax tree from test scenario sentence [7]. Before OpenlE
processing, the text data should be prepared by the following algorithms: tokenization [10],
lemmatization [11], part-of-speech definition [12], building the dependency tree D [13]. Triplets are
formed with using of OpenlE according to the expression (1), where s is a subject, R is a relation, o
is an object:
T; = siR;0; ®
In some cases, an object contains a set of several interconnected natural language words. The object
can be presented in a form of a part of dependency tree, therefore according to the expression (2):
a; € DL' (2)

20

KoGsnmes K.C., Monozsikos C.A. AJIropiT™ reHepalii TeCTOB 13 (yHKIHOHAIBHOI crienuduKarii ¢ uernonabs3osannem mozaenn Open IE u
knacrepusauun. Tpyovt UCI1 PAH, Tom 34, Beim. 2, 2022 1., cp. 17-24

This view allows us to present the object as a hierarchic structure of different parameters, that will
make automatic tests more descriptive. The dependency tree can be presented by expressions (3)
and (4), where P are tree nodes, and V are leaves. In other words, these leaves are values V of
parameters P. And parameters P can include other parameters P or values V, so o can be presented
in a form of hierarchic structure, so tests will contain trees of parameters P with values V/:

0 =PUV = (P,Py ... P) UV, Vs e, Vi) 3)

vn, P, = (Px' Prt1s ---'Py) U (Vi Vinsr, -, V1) €]
For now, when the current step is completed, found subjects, relationships, parameter sets, and
values are not associated with any types. In the next step, they will be classified to form interfaces
of test framework.

6. Test element type definition

As a result of the previous step, we got a hierarchically connected subjects s, relationships R,
parameter sets P, values V. Each s, R, P, V' is associated with some source natural language word or
word set. Any natural language word can be presented in a form of coordinates vector in semantic
space. Close s, R, P, V can be grouped to clusters associated with test framework interfaces.

Fig. 3. Clustering of natural language words in semantic space
For now, there are many ways to get natural language word coordinates in semantic space. The most
used for today models presenting word semantic coordinates are: RNNLM [14], word2vec [8],
GloVe [15], fastText [16]. The GloVe model was used in the proposed method because this model
takes in account in significant degree word cooccurrence frequency, that is important for our
clustering.
As it was discussed earlier, we got a syntax tree D and a set (s, R, P, V). Also, before clustering, we
have a set (s, R, P0, V), associated with a cluster set (sg,Rg, Py, Vg) found earlier on
clustering of previous test scenario sentence words.
Each subset s, R, P,V is divided to clusters separately. Consider an example in the fig. 3 in two-
dimensional space, when clusters s{, s§ already found from previous test scenario sentences and for
now we want to parse 3 remaining sentences and define their s, R, P, V types or clusters.
After parsing of three remaining sentences, as a result, algorithm extracts subjects s3, S, S5 from
these three sentences, Clusters of these subjects are defined in the following way. So, we get a point
in the two-dimensional semantic space. If there are no clusters in radius r from the given point, then
the cluster with radius r will be placed at this point and the point will be a cluster center. If the point
is in the other cluster zone, then this point will be associated with that cluster. If the point is not in
cluster, but the r-radius circle from this point intersects with any cluster, then the point will be
associated with the closest cluster.
We can see on the fig. 3 that clusters s§, s5 were found at the beginning. Then algorithm accepted
the point s3, that was associated with the cluster s§, because the r-radius circle from this point is not

21

Kobyshev K.S., Molodyakov S.A. An algorithm of test generation from functional specification using Open IE model and clustering. Trudy
ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022, pp. 17-24

intersected with any existing r-radius clusters. The r-radius circle of point s, is intersected with
cluster s§, that is why it was associated with the cluster s§. The point s was associated with the
cluster s{ because it was inside of the r-radius circle of this cluster.

The last remaining step is to get the Kotlin language code from the given semantic tree.

7. Semantic tree transformation to the Kotlin language code

The last step is to get the Kotlin language code from the given typed semantic tree. As a result, we
will get an automatic test on the domain-oriented language and interfaces of the test framework.
Consider transformation rules presented in the Table 2, where you can see examples of the parsed
sentence in the “before” column and prepared automatic test code fragment in the “after” column.

Table 2. Transformation rules to the Kotlin language code

Transformation rule Before After
. user {
Subject User paid 'free package .paid free package...
User - subject }
. user {
. . User paid free packe.lge. .. .paid free package,
Subject grouping User got payment bill. got payment bill..
}
user {
Relationship User paid free package paid(..)
}
user {
Object User paid free package paid(Package (..))
}
user {
Parameter User paid free package paid(Package (type=..)
}
user {
Value User paid free package paid(Package (type=FREE)
}
@Test
fun paymentFlow () {
Payment flow: user {
Test Scenario User paid free package. paid(Package (type=FREE)
User got payment bill. got (PaymentBill ())
}

The found subject is transformed to the lambda expression with context. QA engineer should
implement the context class. If the same subject is appeared in two test scenario sentences, then
those subject lambda expressions will be grouped to the one lambda expression. The found
relationship is transformed to the method call, and that method should be implemented. Parameters
are transformed to the class field names. Values are transformed to the primitive types of the Kotlin
language or Strings. Then all code is wrapped to the test method having the name like the test
scenario name.

8. Prototype of the proposed solution

A prototype of the proposed solution was implemented on Java language. The developed system
uses a pretrained OpenlE model in a form of Maven package manager dependency called Stanford
NLP. A pretrained GloVe model was used. This model was given from Wikipedia of 2014 year and
22

KoGsnmes K.C., Monozsikos C.A. AJIropiT™ reHepalii TeCTOB 13 (yHKIMOHAIBHOI crienuduKarii ¢ uernonas3oannem mozean Open IE u
knacrepusauun. Tpyovt UCI1 PAH, Tom 34, Beim. 2, 2022 1., cp. 17-24

Gigaword text corpuses. The model contains 400 thousand words and their coordinates in 100-
dimensional space and takes 822 Mb of memory. The GloVe model was stored and indexed in
Mongo database. For now, the prototype gives true results for simple test scenarios, however, we
found that it does not work correctly in some complex test scenarios including multiple words in
subjects and relationships. Therefore, we need to investigate more and improve clustering stage of
the proposed algorithm for now.

9. Conclusion

In the provided research we analyzed existing automated testing approaches and defined their
disadvantaged. After the analysis we proposed solution based on natural language processing of test
scenarios and transformation of them to the Kotlin language autotests and test framework.

As aresult of research, we implemented a prototype of the proposed algorithm on Java language in
a form of Maven open-source library. The developed solution includes a pretrained OpenlE model
from Stanford NLP library. A pretrained GloVe model was used to automate a search of test items
categories. This model was given from Wikipedia of 2014 year and Gigaword text corpuses. The
model contains 400 thousand words and their coordinates in 100-dimensional space and takes 822
Mb of memory. The GloVe model was stored and indexed in Mongo database.

For now, the prototype gives true results for simple test scenarios, however, we found that it does
not work correctly in some complex test scenarios including multiple words in subjects and
relationships. Therefore, we need to investigate more and improve clustering stage of the proposed
algorithm for now.

References / Cnucok nutepatypbl

[1] N. Radziwill, G. Freeman Gr. Reframing the Test Pyramid for Digitally Transformed Organizations.
Software Quality Professional, vol. 22, issue 4, 2020, pp. 18-25.

[2] I Karac and B. Turhan. What Do We (Really) Know about Test-Driven Development? IEEE Software,
vol. 35 issue 4, 2018, pp. 81-85.

[3] M.F. Fontoura. A systematic approach for framework development. PhD thesis, Pontifical Catholic
University of Rio de Janeiro, 1999.

[4] M. Irshad, R. Britto and K. Petersen. Adapting Behavior Driven Development (BDD) for large-scale
software systems. Journal of Systems and Software, vol. 177, 2021, article no, 110944, 20 p.

[S] W. Wasira. Existing Tools for Formal Verification and Formal Methods. 2020. DOI:
10.13140/RG.2.2.12162.22721.

[6] A.D. Danilov and V.M. Mugatina. Verification and testing of complex software products based on neural
network models. VSTU Bulletin, vol. 12, no. 6, 2016, pp. 62-67 (in Russian) / A./Jl. Jauunos, B.M.
MyraTuna. Bepudukarus 1 TeCTHpOBaHHE CIOKHBIX IPOrPAMMHBIX IIPOIyKTOB HAa OCHOBE HEHPOCETEBBIX
Mojieneil. BectHuk BopoHeKCKOro rocyjapcTBEHHOTO TEXHHYECKOTO YHHBEpcUTeTa, ToM 12, no. 6, 2016
T, cTp. 62-67.

[7]1 G. Angeli, M. Premkumar, C. Manning. Leveraging Linguistic Structure for Open Domain Information
Extraction. In Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing, 2015, pp. 344-354.

[8] L. Ma and Y. Zhang. Using Word2Vec to process big text data. 2015 IEEE International Conference on
Big Data, 2015, pp. 2895-2897.

[9] A.D.Kovalev, L.V. Nikiforov, P.D. Drobincev. Automated approach to semantic search through software
documentation based on Doc2Vec algorithm. Information and control systems, no. 1, 2021, pp. 17-27 (in
Russian) / A.Jl. Kosanes, U.B. Hukucdopos, II.J]. [lpoOGuHIEeB. ABTOMAaTH3HPOBAHHBIA MOAXOL K
CEeMaHTHYECKOMY IIOMCKY M0 HpOrpaMMHOHM JIOKyMEHTallMd Ha OcHoBe airopurma Doc2Vec.
MHdopManmoHHO-yIpaBIsIonme cuctemMsl, no. 1, 2021 r., pp. 17-27.

[10] R.M. Garcia-Teruel, H. Simon-Moreno. The digital tokenization of property rights. A comparative
perspective. Computer Law & Security Review, vol. 41, issue 2, 2021, pp. 1-16.

[11]B. Vimala, E. Lloyd-Yemoh. Stemming and Lemmatization: A Comparison of Retrieval Performances.
Lecture Notes on Software Engineering, vol. 2, no. 3, 2014, pp. 262-267.

23

Kobyshev K.S., Molodyakov S.A. An algorithm of test generation from functional specification using Open IE model and clustering. Trudy
ISP RAN/Proc. ISP RAS, vol. 34, issue 2, 2022, pp. 17-24

[12] S. Chotirat, P. Meesad. Part-of-Speech tagging enhancement to natural language processing for Thai wh-
question classification with deep learning. Heliyon, vol. 7, issue 10, 2020, article no. e08216, 13 p.

[13] R. Zmigrod, T. Vieira, R. Cotterell. On Finding the K-best Non-Projective Dependency Trees. In Proc. of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, 2021, pp. 1324-1337.

[14] G. Lecorve, P. Motlicek. Conversion of Recurrent Neural Network Language Models to Weighted Finite
State Transducers for Automatic Speech Recognition. In Proc. of the 13th Annual Conference of the
International Speech Communication Association, 2012, 4 p.

[15] J. Pennington, R. Socher, C. Manning. Glove: Global Vectors for Word Representation. In Proc. of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532-1543.

[16] LN. Khasanah. Sentiment Classification Using Fast Text Embedding and Deep Learning Model. Procedia
Computer Science, vol. 189, 2021, pp. 343-350.

Information about authors / Unchopmaumsa 06 aBTopax

Kirill Sergeevich KOBYSHEV — postgraduate student at High School of Software Engineering.
Research interests: computational linguistics, natural language processing.

Kupusn Cepreesnu KOBBIIIEB — acniupanT Beiciieli mkossl mporpaMMHoii uikenepun. O0iacth
HayYHBIX HHTEPECOB: KOMIBIOTEPHAS JTHHTBUCTHKA, 00pabOTKa €CTECTBEHHOTO S3BIKA.

Sergey Aleksandrovich MOLODY AKOV — Doctor of Technical Sciences, Professor of High School
of Software Engineering. Research interests: image recognition, digital signal processing, video
processors.

Cepreii Anexcannposud MOJIOJSKOB — noxtop TexHU4eCKUX HayK, podeccop Briciie mKob
mporpaMMHON HMHXeHepud. OOIacTb HayuHBIX MHTEPECOB: paclO3HaBaHHE H300pakeHUl,
nudposast 00paboTKa CUTHANOB, BUAEOIPOLECCOPBL.

24

