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Annoranus. OfHMM U3 KIIOYEBBIX AaCIEKTOB KOPPEKTHOCTH IIOACHCTEMBI MAaMSTH MHUKPOIpoLeccopa
SIBISIETCS. e (D)YHKIHOHUPOBAHKE B COOTBETCTBHHU C IIPOTOKOJIOM KOTEPEHTHOCTH MaMsTH. B 1aHHOI craThe
[PE/CTAaBICH MOJAXOA K TEHEepallMi TECTOBBIX INPOrpaMM Juisi BepU(DHKAIMH KOrE€PEHTHOCTH MaMsATH
MHKPOIPOIIECCOPOB  cemelicTBa "DnbOpyc". PaccMoTpeHbl TpeOOBaHMS K TECTOBBIM IIPOrpaMmam
KOrepeHTHOCTH mnamsiTH. IIpencraBieHa CTpyKTypa KapThl NaMsTH, O3BOJIONIAss T'MOKO OIHCHIBATH
HCHONb3yeMBble B TECTOBBIX IpOrpaMMax O0JacTH NMaMATH M THIBI oOpameHnii k HuM. OmucaH MeTon
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I@HEepaLUN TECTOBBIX IIPOrPaMM Ha OCHOBE KapThl MamsTh. [IpeiioxkeH criocod aBToMaTHYeCKOi reHeparin
kapt namsiti. CreHeprpOBaHHBIC TECTOBBIC POrPAMMBI HCIOIB30BAINCH NIPH IPOBEACHUH BepUDHUKALINK HA
RTL-moznensix u npororunax Ha 6ase ITJIUC.

KiioueBble cJoBa: cucTeMHass BepuHKaiys; BepuHKalUs KOTEPEHTHOCTH IIAMSTH;, TeHeparys
TICeBJOCTyYaifHBIX TECTOB; DIBOpYC.

Jst uuTupoBanus: Aragonos B.A., ®poros I1.B., Memko A.H. [Toaxo k reHepauu TECTOBBIX IPOrpaMm
JUIsL BepU(UKAINK KOTEPEHTHOCTH MaMATH MUKpoIpoueccopoB «msopyc». Tpynst UCIT PAH, Tom 34, BbII.
2,2022r., ctp. 7-16. DOL: 10.15514/ISPRAS-2022-34(2)-1

1. Introduction

Memory subsystems of modern microprocessors provide support for various address spaces with
address translation and include various levels of cache memory, means of ensuring data coherence,
numerous buffers and switches [1]. To ensure the consistency of states of caches, the computing
nodes of the system are combined into a single system and exchange messages in accordance with
a cache coherence protocol [2]. All this determines high combinatorial complexity of verification
[3], which sharply restricts the use of formal methods to individual bottlenecks or devices.

To increase the probability of reproducing various dynamic situations that occur when many devices
are functioning simultaneously in the system, increasing the number of tests is necessary. In order
to automate the development of test scenarios and their implementations in the form of ready-made
test programs, automatic test generation is actively used. In this case, the source code of the test
program is generated randomly, considering the specified parameters [3]. Parameterization allows
fitting tests to reproduce certain situations with certain sets of random parameters [4]. The selection
of test generation control parameters is performed at the development stage of each tool separately
and is determined by the test generation algorithm.

Currently, MCST JSC is designing multi-core microprocessors with general-purpose cores of
“Elbrus” architecture version 6. The development of “Elbrus” architecture has led to significant
additions to the instruction set architecture and changes in the operation of devices included in the
memory subsystem. In particular, the transition to a new coherence protocol affected the
functionality of existing memory accesses. This led to inapplicability of the existing test generation
algorithm to verify the memory subsystem of the developing microprocessors. For these reasons,
development of a new algorithm for generating memory coherence tests and its implementation in
the form of a pseudo-random Assembly test generator was required. This article discusses a new
approach that is the basis for solving this problem.

2. “Elbrus” architecture overview

“Elbrus” architecture introduces a set of memory types determining the system behavior of memory

accesses. The system behavior of memory access is characterized by a combination of specified

properties. Each memory type describes a unique combination of these properties.

Memory access instructions are represented by instructions of store and load types. The size of the

addressing memory fragment and the source/destination register format are determined by the

memory access instruction format. “Elbrus” architecture uses an operation code extension — memory

address specificator (MAS) for each memory access instruction. MAS defines the additional specific

properties of the memory access, the method for storing data in different cache levels and affects the

memory type. Thus, the set of memory accesses types is determined by the following formula:
TSCIXFxM (@D

where:

T — set of memory accesses types,

I — set of memory access instruction types,

F — set of memory access instruction formats,
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M — set of MAS.

According to the generally accepted classification “Elbrus” is a VLIW (Very Long Instruction
Word) architecture [5]. Each VLIW contains a set of instructions. Instructions placed in the same
VLIW are executed in parallel.

In “Elbrus” architecture VLIW consists of 6 instruction channels. The sets of instructions supported
by each channel are different. Memory access instructions are supported by only 4 instruction
channels. However, store instructions are supported by only 2 of these channels. The use of certain
memory access types is moreover supported by only certain channels. Due to architectural
restrictions, the placement of several instructions in the same VLIW is limited.

Modern “Elbrus” microprocessors are Systems-on-a-Chip (SoC) with multiple unified general-
purpose cores. The unified general-purpose core includes private level 1 instruction cache (L1I),
level 1 data cache (L1D) and level 2 cache (L2). SoC of various configurations are being developed.
The number of unified general-purpose cores, the presence of shared level 3 cache (L3), the number
of interprocessor communication channels (IPCC), the number of memory controllers and other
options are defined by the SoC configuration. Multiple microprocessors can be combined in a
multiprocessor system with coherent shared memory based on ccNUMA principle by IPCC.
Among the innovations of “Elbrus” instruction set version 6 can be noted: the introduction of
additional memory access properties, the transition to new memory types, the introduction of
additional MAS with extended caching hints and the elimination of Input-Output memory space
coherence support. In addition, hardware innovations include the transition to unified general-
purpose cores, cache memory policies modification and optimization for unaligned memory
accesses. The coherence protocol has also been significantly changed.

3. Test requirements

The following requirements for generated tests were formed.

Since “Elbrus” microprocessors contain multiple cores and can be combined in a variety of
multiprocessor configurations, memory coherence tests should be designed for verification of
multiprocessor systems. Before the execution of a test sequence, the system under test should be
initialized. In order to check different operating modes of memory subsystem devices and cover
more dynamic situations, the implementation of pseudo-random initialization of memory subsystem
devices settings within acceptable limits is necessary. The system initialization procedure should
end with a cores synchronization procedure to ensure that all of the cores of the system under test
are ready for execution of a test sequence.

The existing test development environment provides a unified parameterized system initialization
program and implementations of commonly used test procedures, such as cores synchronization and
exit code output to the using test bench. Using the test development environment is a great way to
simplify test development.

After the execution of the system initialization procedure each core executes a test sequence of
instructions. In the case of memory subsystem verification tests, the test sequence should contain
memory access instructions of various memory access types and perform the operation of cores with
shared memory. In order to check the functionality of individual cache memories, the organization
of memory access sequences at addresses that lead to cache lines eviction is necessary. To test the
memory coherence mechanisms, a stream of parallel requests to the same cache memory lines from
different cores should be formed. In addition, the generation of VLIWs with various combinations
of memory access instructions needs to be supported in order to check the VLIWs execution.

The test sequence of instructions for each core should end with a self-check procedure that checks
the correctness of register values and data in the tested memory areas. This approach allows using
tests to verify RTL models, FPGA-based prototypes [6], and to test manufactured chips. The
intention is to use a self-checking code generator for the self-check procedures generation. This tool
is based on the functional model of the system under test and allows to generate the code for
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comparing registers with the reference values obtained as a result of the test execution by the
functional model [7][8].

Debugging of generated tests is supposed to be performed using a functional model of the system
under test and a trace comparator. The results of the test execution on the functional model and RTL
model are the executed instructions traces. Firstly, to achieve a successful test execution on the
functional model is necessary. This is followed by debugging the test on the RTL model. To speed
up the search for differences between the functional model and RTL model executed instruction
traces the trace comparator should be used. Due to the unavailability of the execution instruction
trace, debugging tests on the FPGA-based prototype is difficult. For this reason, the test exit code
should localize the failed self-check code statement. The reasons for the test fail can be both the test
errors and the system under test errors.

4. Shared memory interaction

The operation of multiple cores with shared memory allows using memory coherence maintain
mechanisms and detecting errors in their implementations. There are two ways of sharing memory:
true sharing and false sharing. Both of them are presented on fig. 1.

True sharing False sharing
Cache line l l ‘ | | | |
Core, ] | ‘I f Core;
Core; Core;

Fig. 1. Methods of memory sharing

True sharing is the operation of multiple cores with overlapping memory fragments. The
implementation of true sharing in tests is limited due to the need to ensure deterministic test
execution. To ensure determinism of the true sharing usage, synchronization of code execution by
the cores before and after each modification of the overlapping memory fragments is necessary.
Since the cores synchronization procedure requires multiple memory accesses from each of the
synchronized cores and blocks the test sequence execution, use of true sharing can lead to high
overhead costs.

False sharing is the operation of multiple cores with non-overlapping memory fragments. One of the
cores is designated for each memory fragment — the core-owner. Only the core-owner can operate
with its own memory fragments. Since cache lines change their states according to the coherence
protocol, this way of sharing memory allows loading memory coherence mechanisms without the
overhead of ensuring the determinism: multiple cores use the same cache line, however, the order
of memory accesses of the core-owner is guaranteed by the hardware according to the used memory
type and other cores do not affect the content of the memory fragment.

In comparison with true sharing, false sharing does not provide real operation with shared data.
Thus, some ways of changing the states of cache lines are not checked. In addition, using true sharing
can change the dynamics of the test execution.

For these reasons, the combination of both approaches was proposed: mainly to organize data
separation in tests by false sharing, but at the same time to implement operation with common data
in some volume. This is achieved by forming a testing sequence from a parameterized number of
sections. The full test structure is shown in fig. 2. At the beginning of each section, all of the cores
are synchronized. After synchronization procedures, a random sequence of VLIWs with different
combinations of memory access instructions is generated for each core. Within each section of the
test sequence, cache lines are split between the cores using false sharing in different ways. Therefore,
when switching between test sections occurs, some memory fragments are passed to other cores-
owners for management. Thus, the operation with shared memory fragments by several
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microprocessor cores is implemented in cores synchronization procedures and during transitions
between the test sections.

[ System initialization program ]

ol

v

Test sequence

[ Initialization ]

@ Section 1 N
[ Synchronization ]
Sequence of memory access instructions
= Cores | e Core.
2l &
4 Section N \
[ Synchronization ]
Sequence of memory access instructions
\ Cores Core. )
r 3
Self-checking code execution
Cares | ‘ Cores
A S
|
[ Print exit code and stop ]

Fig. 2. Test structure

5. Description of memory accesses
A special structure — a memory map has been developed to describe memory accesses. The memory
map contains a list of address ranges corresponding to memory fragments and maps the memory
fragments to their parameter sets:

[a,l;egm,a,ﬁ"d] ~ {1, Fie, My, ck,r,ft/ld,p}j},k =1K 2
where:

begin
an

— the address of the nth memory fragment beginning,
a™ — the address of the nth memory fragment ending,

I, — the nth set of memory access instruction types,

E, — the nth set of memory access instruction formats,

M,, — the nth set of MAS,

¢, — the nth core-owner,

731 _ the nth store-to-load ratio,
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px — the nth priority of use,
K — the number of the memory fragments in the memory map.
All addresses are presented in terms of bytes. The memory map describes non-overlapping memory

fragments:

begi begi
<af™ < @, < afM << @0 < agd 3)

Adjacent memory fragments with equivalent parameter sets are combined into a single memory
fragment in the memory map. Priorities of use memory fragments allow managing the frequency of
memory accesses to each memory fragment, as well as store-to-load ratios control the frequency of
using different types of memory accesses. This allows configuring spatio-temporal profiles of cores
with different memory areas in a flexible way [9].

The need to ensure a deterministic state of memory imposes restrictions on the combination of using
memory access types. Using coherent and non-coherent memory accesses to the memory fragments
located in the same cache line generally results in an undefined cache line memory value. For this
reason, the set of valid memory access types for each memory fragment should be selected for
deterministic reasons.

A memory map is used to describe the requests generated in a test section. For multi-section tests, a
separate memory map for each section of the test should be used. In this case, ensuring deterministic
transitions between the test sections by adding additional procedures to the test is necessary.

begin
a;

6. Code generator

The code generator implements the described in the memory maps memory accesses as a ready-

made Assembly test in accordance with the test structure presented in fig. 2.

At the beginning of the test, the code generator defines initialization parameters for the

parameterized system initialization program. Depending on the test generation parameters, default

or random settings for memory subsystem devices can be used.

The test sequence is executed in a loop. The number of iterations of the loop is parameterized. Due

to the operation of the cache memory, different dynamics of the test program execution at different

iterations is achieved. Consequently, with a slight increase in the size of the test, the execution time

and the number of situations being tested can be increased many times. This is convenient when

performing a test on an FPGA-based prototype, where the test load time is significant.

Memory access instructions are generated based on the memory map of the current test section. The

algorithm for generating a test sequence using a memory map runs independently for each core. To

check the correctness of the store-to-load bypass in the L1D cache, random generation of the load

instruction corresponding to the previous store instruction by address, format and MAS is provided.

Random generation of “wait” instructions is also implemented. For core c the algorithm consists of

the following steps:

1) Retrieving the set A of memory fragments owned by core c;

2) Anempty VLIW creating;

3) Constructing a memory fragments probability distribution based on the priorities of use p* for
memory fragments a € A;

4) Ifbypass-load is scheduled to be inserted into this VLIW, restore the memory access type t, the
memory access address @ and go to step 13;

5) With specified probability of wait instruction generation randomly choose an instruction from
the set of acceptable wait instructions and go to step 14;

6) Random choice of the memory fragment a,, € A according to the constructed memory

fragments probability distribution;

7) Constructing a store-to-load probability distribution based on the store-to-load ratio r,flt/ i
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8) Random choice of the instruction type i € I,,, according to the constructed store-to-load
probability distribution;

9) Retrieving the set F,  F,, of suitable memory access instruction formats f: size(f) <
size(ay,), Vf € Fy;

10) Retrieving the set T,, of suitable memory access types using (2) in accordance with the
requirements of the instruction set architecture:

T, SiXE, XM, 4)

11) Random choice of a memory access type t € Ty,;

12) Random choice of the memory access address 3 € a, considering the memory access alignment
and the borders of a,,;

13) Selecting the data register for the generated memory access instruction;

14) Placing the generated instruction in the current VLIW or in a new empty VLIW if the placing
in the current VLIW is impossible;

15) If i is store, with the specified probability of store-to-load bypassing save the memory access
address 3, the memory access type t and randomly choose the VLIW to bypass-load insertion
based on the specified VLIW skipping range;

16) Repeating steps 4-16 until the specified number of memory access instructions is reached.
The register and memory random values initialization code is placed in the beginning of the first
section of the test for each core. In this case, a prohibition is introduced on the generation of load
instructions, only uninitialized memory fragments are written with store instructions of the
maximum possible format.
The mode of generation of unaligned addresses is optional, its use is determined by the generation
parameters of the test.
Code generation for each test section is performed independently using different memory maps. The
code generator ensures the correctness of the transition between test sections. If the memory access
types of a cache line are changed from coherent to non-coherent, the cache line should be flushed
out of all the caches when switching between the test sections. Before starting a new test section,
the code generator places the cores synchronization procedure and a sequence of cache line flush
instructions for such cache lines. Changing the memory access types of a cache line from non-
coherent to coherent does not violate determinism; therefore, no additional code is generated in this
case. As a result of using this approach, the functionality of evicting the specified cache lines is
additionally checked.
The final step of the test is checking whether the register and memory values match the reference
values. The self-checking code is generated independently for each core. The memory map of the
last section of the test is used as a description of requests. In this way, each core checks its own
memory fragments. If a discrepancy between the test data and the reference data is detected, the test
execution is terminated with the output of diagnostic information to the user (exit code or debug
printing when executed on an FPGA-based prototype).

7. Automation of the memory maps formation

Memory maps are a large and detailed description of memory accesses. Manual compilation of
memory maps requires high labor costs. In practice, describing memory requests in high detail, up
to fragments, is not always necessary. In order to minimize the effort involved in creating memory
maps for large memory areas with the same allowed memory access types, this process has been
automated.

The user is given the opportunity to describe memory maps at a more general level: the description
is made for arbitrary memory areas. In accordance with each memory area Ay the parameter set are
placed:

13

Ag = {Iy, Fy, My, Ck'Sk'T;t/ld,P;é},k =1K (5)
where:
I, — the nth set of memory access instruction types,
F, — the nth set of memory access instruction formats,
M,, — the nth set of MAS,
C,, — the nth set of cores-owners,

Sy — the nth set of memory fragment sizes,

st/ld
7St/

| — the nth store-to-load ratio,

ps — the nth priority of use,

K — the number of described memory areas.

No restrictions are imposed. The resulting parameter set of overlapping memory areas is a union of
the overlapping memory areas parameter sets. All conflicts will be resolved automatically. If the
conflicts cannot be resolved, test generation ends with an error message.

Then the symbol A is used for the described memory areas set. The algorithm for generating a
memory map consists of the following steps:

1) Splitting of the memory area set A into K fragments A, € 4,k = 1, K of cache line size and

alignment with the parameter set inheritance as {I~k f,: M; Z’; 3’; rks t/ ld, p~“};

2) Analysis of the MAS sets My, k = 1, K for simultaneous presence of coherent and non-coherent
types of MAS in M, sets;

3) Elimination of coherent or non-coherent types of MAS in a random way for each M,, set, which
contains coherent and non-coherent MAS simultaneously;

4) Splitting the fragments Ay, k = 1,K into fragments a¥ € A,,n = 1, N(k) of S sizes in a
random way, where N (k) is a resulting number of memory fragments aX in Ay;

5) Mapping the memory map parameter set {Iy, Fy, My, é;ljc,rks t/ ld,p~}c‘} with random core-owner
Goxe € Cy to each memory fragment a¥.

The result of this algorithm is a memory map that describes the memory requests for a test section.
The memory maps are generated independently for each section of the test using the presented
algorithm. Ensuring true sharing of memory and variations in request types used in different sections
of the test is achieved due to the randomness of the memory map generation algorithm. The code
generator provides determinism support during transitions between the test sections.

To check the functionality of individual caches, memory areas are selected based on the organization
of the target cache. Requests to lines with the same indexes lead to evictions from the cache memory,
and the number of lines used must exceed the associativity of the target cache memory. To automate
the compilation of memory areas aimed at creating evictions in various cache memory levels, a
memory areas generator has been developed. The memory areas generator allows generating a
memory area that corresponds to a given number of lines of the target cache level with the same
indexes and different tags.

8. Results

A method for describing memory accesses using a memory map was developed. The test generator
of self-checking Assembly tests for memory coherence verification of “Elbrus” architecture
microprocessors implementing the memory accesses described in the memory maps was developed
in C++.

The memory areas generator and the memory maps generator have been developed for the
convenience of creating memory maps that are used for checking the functionality of individual
cache memories. Automating the formation of memory maps allows reducing the volume and
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complexity of describing the memory maps. In this case, the user can simultaneously use an arbitrary
number of memory areas generators and manually specify memory areas. Moreover, the parameters
for generating memory maps can be set separately for each obtained memory area. The
implementation of the described tools for automating generation of memory maps does not lead to
the loss of the ability to describe requests at the fragment level, but in some cases significantly
simplifies the process of configuring the test generator.
Currently, the developed test generator is used for verification of RTL models and FPGA-based
prototypes of developing microprocessors with general-purpose cores of “Elbrus” architecture
version 6. As a result of using the test generator, 74 logical errors were detected in the following
hardware units: L1D-cache, L2-cache, L3-cache, Translation Lookaside Buffer (TLB), Memory
Access Unit (MAU), On-Chip Network (OCN), Home Memory Unit (HMU), Memory Controller
(MC), EFUSE. In addition, 3 malfunctions were found in the hardware of the FPGA-based
prototype. These malfunctions are not errors of the original design and are specific only to the
implementation of the FPGA-based prototype. Logical errors were manifested in the following
manner: data corruption, deadlock, RTL assertion failure (available only in RTL-simulation).
Conducting verification on the FPGA-based prototype allows using tests with a large number of the
test sequence iterations (> 100) and, therefore, obtaining a variety of the test sequence execution
dynamics, which is difficult to achieve with RTL-simulation. For this reason, some logical errors
were found only during verification on the FPGA-based prototype. Detailed statistics on detected
logical errors are presented in Table 1.
The plan for further development of the test generator consists of work in the following areas:

e  Test scenarios development;

e  Support for virtual addressing;

e Development of algorithms for verification of memory consistency.

Table 1. Statistics on detected logical errors

Unit Number of logical errors
Detected on the FPGA-based prototype Total

L1D-cache 2 19
L2-cache 1 10
L3-cache 2 10
TLB 0 5
MAU 0 13
OCN 0 4
HMU 0 6
MC 1 6
EFUSE 0 1
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