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1. Introduction

The type system sets the basis for the reliable programming language and allows programmers to
effectively express software design solutions using the power of the particular programming
language raising the productivity of the software development process.
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The modern tendency of convergence of different programming paradigms (merging procedural
programming, structured programming, object-oriented programming, functional programming, and
concurrent programming) forces the type system to support this.

In this paper, a highly condensed overview of the type system is presented and a programming
language called SLang is used for the illustration of concepts. Necessary syntax constructs will be
presented using simple notation based on conventions, where [term] means optional, {term} may be
repeated zero or more times, term1 | term2 is the selection of term1 or term?2, bold font is used to
highlight keyword or special symbols.

Next is to define the notion of type as an important characteristic of every object during execution
time (runtime). The type fixes the number of operations and their properties (signatures) as well as
the size of memory required to store the object (number, valid values, and types of object attributes).
So, a type is an abstraction used to describe the structure and behavior of objects.

Authors rely on concepts that are well-known by a broad audience of programmers and terms like
class or variable will be used without formal definitions. Some definitions will be given right now
to simplify the understanding of examples.

The unit is a named set of members, where a member can be a routine or an attribute. Routines stand
for actions while attributes stand for data. If a routine returns some value as a result of its execution,
we call it a function otherwise a procedure. If an attribute can change its value during the program
execution, we call it a variable attribute (or simply variable) otherwise we call it a constant attribute
(or simply constant or immutable attribute). Unit is very similar to class and the difference is that
the unit incorporates characteristics of classes and modules (The term module is used like it was
introduced in Ada (package) [2], Modula-2 (module) [4] — a generally available collection of data
and routines with initialization) in one concept and the foundation for types.

So, the most important type is the unit-based type, and let’s review units first.

2. Units

Any unit is a named collection of attributes or members. Such a definition sets away routines because
they can be treated as constant attributes of routine type initialized with the routine signature and
body. Units have other characteristics related to inheritance and usage; they will be explored below.
Every unit defines a type, and the name of the unit will be used as a type name. Such type is a unit-
based type. The formal definition of the unit is
UnitDeclaration:
[final] [ref|val|concurrent|abstract|extend]
unit Identifier [AliasName] [FormalGenerics]

[InheritDirective] [UseDirective]

{
MemberSelection |
InheritedMemberOverriding |
InitProcedureInheritance |
ConstObjectsDeclaration |
MemberDeclaration

}

[InvariantBlock]

end

Unit is a central component and has a lot of elements. For the purpose of the paper, only
ConstObjectsDeclaration and MemberDeclaration will be reviewed.

Specifiers indicate some characteristics of the unit and objects which can be built based on this unit-
based type.

As a unit may inherit members from other units’ final specifier prevents further inheritance from
this unit.
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ref | val specifies the default form of objects which will be created using this unit as a type. The
example below explains the difference. All objects of type Integer are to be values but not references
to the integer number.
val unit Integer ... end
i: Integer is 5
Here, i is a value object. is works as a combination of entity declaration with initialization.
ir: ref Integer is 5
Here, ir is a reference object.
The default kind of object is a reference one. It’s important to note that ref | val specifiers apply both
to units and for particular objects and attributes. The unit-based type itself is not related to the form
of objects of this type.
The concurrent specifier indicates that objects of this unit will be processed (executed) by a
processing element that is different from the one which is used for all objects which are not marked
as concurrent. The processing element is a general term for a physical processor, thread, process,
remote server, or whatever computing machine. The mapping between the concurrent unit and actual
physical executors is to be done outside of the programming language and it is not described here.
concurrent unit Philosopher

// There are 5 of them

// eating spaghetti...
end
If we like to ensure that there will be no objects created for the unit, it is to be marked as abstract.
Of course, if there are some abstract routines within the body of the unit it is not possible to create
an object of this unit type. So, it is not mandatory to mark such units as abstract as the compiler
knows this, but if one likes to prevent objects creation for some units with having all routines as
non-abstract then marking the unit abstract will allow to make it. Example:
abstract unit AnArray[G]
The extend specifier allows to extend already compiled unit with new members. For example:
Source #1 has
unit A

foo do ... end
end
Source #2 has

extend unit A
goo do ... end
end

Source #3 has

a Is new A

a.foo

a.goo

Here, the second call to routine goo is valid if and only if the A unit extension was provided. In other
words, sources #1, #2, and #3 will be compiled separately, but a compilation of Source #2 relies on
the interface from Source #1, and a compilation of #Source 3 relies on interfaces of #1 and #2
sources.

As in many other OO-languages, Final will not work together with abstract as it is out of sense
to create a unit when it is not possible to create objects of this unit and unit descendants are prohibited
as well.

After the unit name aliasing name can be put (Al iasName). It can be used to give an alternative
name for the unit-based type. Some programmers do not like Integer they prefer int or INTEGER
val unit Integer alias Int

As we follow the style guideline that unit names should start with the capital letter.

15

Aliasing is a part of the type system. Although it does not create a new type it affects type
equivalence. It also allows to create unique names, to use short names instead of long ones. So, alias
declaration can be put at the global level of the source like in the following example:

alias StandardlinputOutput as 10
10.print (“Hello world!\n”)

However, the name Standardinp Sta utOutput still stays as a valid name of the unit. So, unit-
based types ndard InputOutput and 10 refer to the same type.

FormalGenerics is an optional parametrization of the unit with some unit-based type, or value, or
routine. For such kind of parametrization, the term genericity is used. The notation uses square
brackets.

abstract unit AnArray[G]

where G is the name of the type which is to be provided to get particular instantiation of the unit-
based type.

abstract unit OneDimentionalArray
[G extend Any init()]

G can be constrained meaning that any type which is used for instantiation is to be conformant to the
type specified as a constraint. In case of the example above it should be a descendant of Any. Ifit’s
necessary to create objects of the formal generic type, we need to know which initialization
procedure (constructor) to be used — in this example requirement for the instantiating type is to have
an initialization procedure without arguments.

unit Array [G extend Any init(),N: Integer]
extend OneDimentionalArray[G]

Here we have two generic parameters and the second one is the constant of the type which is
specified.

InheritDirective specifies from which units this unit inherits members. Here it is essential just
to mention that inheritance is multiple and does not use the subobject concept. Every unit member
is inherited on its own. The keyword extend (which is well-known by many programmers) is used
to highlight the set of parent (base) units. The example above in the section on generics shows that
unit Array inherits all members from the unit OneDimentionalArray.

UseDirective. The idea of a module as a container of functionality seems to be similar to that of
[1]. However, there are some other differences between classes and modules. The key point is that
based on the class one may create an unlimited number of objects while for the module there will be
just one object created and properly initialized. Modules are created and initialized implicitly while
object creation is a special statement or expression. So, it implies that a unit may be used as a module
if and only if it has no initialization procedure or at least one initialization procedure with no
arguments. The example below highlights that

alias StandardlnputOutput as 10
10.print(“Hello world!\n”)

Here, 10 is the name of the module which is created and initialized at some moment of the program
execution (actually, two options are possible — to create all module objects at the program start or
right before the first access to the module members).

io is new 10.init(10.TextMode)

Here, 10 is an object which is initialized with the creation of a new object of type 10

iol is new 10.init(10.GraphicalMode)

An unlimited number of objects like 101 can be created, initialized, and used when uint is used as a
type.

io.print(“Hello world!I\n”)

In this example, 10 is a global module which is available across all components of the program, but
if we like to have a module dedicated to the unit hierarchy (current unit and all its descendants
(derived units)) then we can specify it using UseDirective syntax like this

unit A use B ... end
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So, inside of A all calls of the form B.foo() are calls to the functionality fo the module B.

If access to the global unit B is required, then it is possible to give a local name for the B which is
used as a module for A unit hierarchy like this

unit A use B as BB ... end

So, inside of A all calls of the form B.foo() are calls to the functionality of the global module B,
and calls like BB. foo() are calls to the local module.

Next is the MemberDeclaration section of the unit declaration.

2.1 Unit members

There are 3 kinds of unit members — unit routines (procedures or function), unit attributes (data
fields), and unit initialization procedures. By default, all unit members are visible for unit
descendants and clients and this visibility implies an ability to call routines and read the attributes
while clients are not able to change the value of attributes and override routines. Of course, there
should be a mechanism to change the visibility of the particular unit member or a group of members.
One may limit visibility in the following ways

unit A

rtnl do end

// Routine “rtnl’ is visible for all
// descendants and clients

{} rtn2: T do end
// Routine “rtn2” is visible for all
// descendants only

{this} rtn3 do end
// Routine “rtn3” is visible only for
// the current unit A

{B, C} rtn4 do end
// Routine “rtn4” is visible for all
// descendants and clients B and C

{}: 7/ Group of members with the
// same visibility

attrl: T1
var attr2: T2
end

end

One may notice that the second attribute is marked with the var specifier while the first one has
nothing. By default, all attributes are in fact constants with initialization. So adding var, it will be
possible to change the value of this attribute and its content at any time during program execution.
The concept of ‘constantness’ (immutability) will be explored later but now let's review initialization
procedures.

2.2 Unit initialization procedures

When an object is being created there should be a way to put it into a consistent stage that fully
matches its invariant. That is why an initialization procedure is needed (a constructor or a creation
procedure in other programming languages) as the only task it has is to initialize all attributes of the
unit. The straightforward choice for the name was “init” and as the name of the initialization
procedure is known it can be skipped when a new object is being created, as well the empty
parenthesis if init has not arguments. So, here is a reduced example of the initialization procedure
of unit Boolean
val unit Boolean
init do
data = Oxb
17

end
{} var data:
Bit[Platform.BooleanBitsCount]

end // Boolean
Variable attribute data that is not visible to the clients of Boolean is initialized with zero,
interpreted as false. So, here is implicit magic (no defaults) — all units including basic ones explicitly
define initial values for all their attributes.
b is new Boolean
This means that object b is created with the value false. This is a short cut for the declaration like
this
b: Boolean is new Boolean.init()
A unit may have several init procedures and the programmer can select the one which is required
for the particular case.
unit A

init (al: T1; a2: T2) do end

{} init (a: A) do end

foo do

a is new A(this)

end
end
In this example, a is a local attribute of routine foo, created by new and initialized with the
second init procedure which is available only for this unit.
al is new A.init(hew T1, new T2)
a2 1s new A(new T1, new T2)
As init name is known it can be skipped while creating new objects. Outside of unit A only one
initialization procedure is visible and has to be used while creating new objects.

2.3 Unit invariant

Unit invariant is a set of predicates that state when objects of this unit type and its descendants be
consistent. It is a requirement to objects consistency — that is why the keyword require is being
used to highlight that.
abstract unit Numeric

one: as this abstract

zero: as this abstract

// Declarations of * and +

// are skipped

require
this = this * one
zero = this * zero
this = this + zero

end // Numeric

Every numeric object of a type which is a descendant of Numeric should implement concepts of
one (1) and zero (0) and should be consistent with the invariant stated in Numeric. So, if some
operation is applied to an object of some type then after completing the operation the unit invariant
is to be checked to ensure that object is still in the consistent state and ready again to perform new
operations.

2.4 Unit setters and getters

As all visible unit attributes are directly accessible for clients and descendants — their names are
effective getters. For setters, it is rather convenient to use syntax like a.b := expr instead of
a.b.set_b(expr), but semantically they have the same meaning — we need to call some procedure
which will set the value of some unit attribute to a proper state. So, the straightforward approach is
to use := as the name of the setter and associate it with the attribute declaration.

unit A
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var attrl: T1 :=
alias setAttrl (other: T2) do...end
end
In unit A, the variable attr] has a setter with an argument of type T2 and this setter has an additional
name setAttril.

After that, objects can be defined and setter used. Both last statements do the same — they set attribute
a to the same value.

a is new A

a.attrl = new T2

a.setAttrl (new T2)

3. Immutability

As a: Type is a declaration of a constant attribute, a similar scheme is applied for routine
arguments. It implies that it is not possible to assign new values to formal arguments. Other
implications of the constantness status of an attribute that it is not possible to change the state of an
object. It implies that any call to routines which change such state are statically detected by the
compiler and a proper error message is generated. So, if an attribute is marked as var attribute —
assignment to this attribute and any correct routine call will be a valid action. If no mark in place or
attribute is marked as rigid, then the attribute can only be initialized once, and then it will keep its
value. In the case of rigid, the whole object tree accessible from this object is immutable. So,
rigid implies deep constantness of an attribute while no mark means shallow constantness.

As data attributes can be of two kinds — reference and value, the semantic of the assignment
statement is a bit different. There are four possible cases

refl := ref2

// Copy ref2 into refl.

// After the assignment, they both point
// to the same object.

vall := val2

// Field by field copy of the object named
// val2 into the corresponding fields of the
// object named vall.

ref -= val
// Clone the object named val and reference
// to this clone is put into ref.

val := ref

// Field by field copy all fields of the
// object pointed by ref into the

// corresponding fields in the object named
// val.

Once again: the type itself is agnostic to the kind of objects which will be created. So, ref and val
objects of the same type can be easily assigned to each other (boxing unboxing is done by the
compiler automatically). The example below illustrates this.
unit A
var attr: Type := (other: Type) do
attr := other
end
foo (arg: Type) do
// The assignment below generates
// a compile-time error as “arg’
// is a constant object.
arg.attr := Type
end
goo (var arg: Type) do
arg.attr :-= Type
// This assignment is OK, as “arg’ was
// explicitly marked as mutable.
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end
// The immutable attribute should not
// have a setter. The code below leads to
// a compile-time error.
attr2: T1 := (other: T1) do ... end
end 7/ A
One more illustration of how var works in the context of ref and val objects.
i is 6
Type of i is deduced by the compiler based on the type of constant object 6 into val Integer.
ir: ref Integer is 6
Here, ir has got an explicit type and 6 will be cloned into ref Integer. No operations that change
the contents of the object can be performed over i and i r — they are immutable. Compile-time errors
will be raised for both following statements.
ir++
i++
The following code compiles and run with no issues. ++ is the routine of unit Integer.
var j is 5
var jr: ref Integer is 5
Jt++
Jr++
So, ref and val kinds of objects are completely unrelated to the immutability status of objects and
both mechanisms give the full control over objects’ semantic. Now we have described how to define
immutable attributes but how can we properly define constants like numbers, characters, string, and
value constants of any type. This leads to the constant objects section.

4. Constant objects

4.1 Backbone - two fundamental constants

Learning computer science usually starts with two simple idioms — 0 and 1 (zero and one).
Generalizing we may state that we have two signs circle and bar and start defining everything in the
digital world combining these signs into sequences and giving a different interpretation of such
chains. Binary digit (bit) was selected as a term to represent this. So, in fact, we have defined some
unit Bit which has two constant objects of type Bit: Bit.0b0 and Bit.0bl. An example with the
part of the source code of unit Bit illustrates how these constants are defined.
val unit Bit
const 0bO, Obl
// As unit Bit has no init procedure,
// 0b0O and Obl are just two different
// objects, and 0bO and Obl are their
// names and values at the same time.
end

// Function & is fully defined in the
// source code of the unit. Both names
// & and “and” can be used.
pure & alias and (other: as this): as this
=> §f this = Ob0 do 0bO
elsif other = 0bO do 0bO else Obl
end // Bit

All other types are based on unit Bit. And has explicit source code with the implementation of all
routines (methods or member-functions). No more need to remember what functions can be applied
to ‘int” — there is a source code and as we inspect any other type basic types can be inspected too.
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4.2 Basic units — basic types

Using the same approach all basic types are being introduced. As one more example, we will use
some fragments of units Integer and Integer[BitsNumber: Integer]. It illustrates one more
concept of unit names overloading which works well within our type system.

val unit Integer
extend Integer[Platform.IntegerBitsCount]

end
That is a general Integer which uses the platform description constant, the number of bits in integer

for setup
val unit Integer[BitsNumber: Integer]

// Thus, we can instantiate this type like
// Integer[4] or Integer [16] when we need
// particular types of a particular size
// in bits

minlnteger is - (2 ™ (BitsNumber-1))
maxInteger is 2 ~ (BitsNumber-1)-1

// This is an ordered set defined as a

// range of all integer constant values

// (objects)

const_
minlnteger. .maxInteger

end
init do
data := new Bit[BitsNumber]
end
{} data: Bit[BitsNumber]
end

For types like String and Bit[N] regular expressions are being used to define all possible
constants of these types.

4.3 Constant objects — the general case

Every unit may define all known constant objects or specify the rule with help of regular expression
how all constants will be generated. Block const ... end aims to do that.
For example, Integer.1 is a valid constant object of type Integer.

To skip unit name prefix, apply use ... const — import all constants into the place where one
needs them.

As an example of constants import, we may consider unit Any which resides at the top of all units
(like class Object in Java)
unit Any
use const Integer, Real, Boolean,
Character, String,
Bit[2**Integer.MaxInteger]

All constant objects from basic units are imported into Any and respectively to all other units
allowing usage of these constants without respective unit name prefix.

Below is an example of weekdays which shows that constant objects replace enumeration types.
unit WeekDay
const
Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday
end
end
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use const WeekDay
This imports all constant from unit WeekDay into this script code. First, call procedure foo with the
parameter Monday.
foo(Monday)
Here is the declaration of foo. It contains an example of pattern matching inside.
foo (day: WeekDay) do
if day is
Monday .. Friday:
StandardlO.print(“Go to the office”)
Saturday, Sunday:
StandardlO.print(“Do what you like!”)
end
end
The last synthetic example shows the exact meaning of constant objects. Some unit A is declared. It
defines three constant objects and uses all three initialization procedures for their creation. After the
unit code, the small script shows how type A can be used.
unit A
const
al.init,
a2.init (new T),
a3.init (new T1, new T2)
end
init do end
init(arg: T) do end
init(argl: T1; arg2: T2) do end
end
x is A.al
Here, x is defined as a valid constant object and initialized with the value of the constant object from
A.
var y is A.a2
However, the attempt to declare a variable and initialize it with the const object will lead to a
compile-time error.

5. Types

As mentioned before, there are 8 kinds of proposed types — unit-based type, anchored type, multi-
type, detachable type, tuple type, range type, routine type, and unit type. Every type has an explicit
description — type declaration.

5.1 Unit-based types

Unit-based type is the most commonly used kind of type. Every new unit declaration defines a new
type. Such unit declaration explicitly defines all attributes and all routines of this unit — fixing the
set of operations over objects of this type and size of objects of this type in memory. Units are a
more general form of classes and modules. Units may inherit like classes and may be used like
modules (provide a single object, supplier of functionality). All examples above used unit-based

types.

5.2 Anchored types

Anchored type is the type, which is the same as another entity has. Such kind of types was introduced
in Eiffel [3]. It works as an automatic overriding while inheriting and allows not to repeat the exact
type name. Example

b: as a
So, b is defined as having type the same as a has.
x: as this
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Here, X has a type similar to the current unit. In descendants type of X automatically changes.

5.3 Multi-types (ADT product)

Multi-type states that objects of this type can be one of the types specified in the type declaration.
So, the set of operations which can be applied to such objects is an intersection of operation from all
types included in the multi-type declaration. So, it allows producing code, which works with objects
of already compiled units with no need for inheritance. In the example below, C may be assigned
with objects of types A or B.

| B

c: A
C = new A
C = new B

c.foo(expression)
Both types A and B must have a routine foo with the proper signature for the expressionto be
compatible with both signatures. The exact definition of type compatibility will be given later.

5.4 Detachable types

Detachable type in the form of ?UnitBasedType allows to declare attributes with no initial value
and such attributes can be initialized later with objects of UnitBasedType or its descendants and
dynamic type check has to be applied to deal with such objects (call member-routines or read
member-attributes). Example
d: ?A
if d is A do

d.foo

2d
end
d is declared as having no value. So, d cannot be used unless its type is checked at runtime. Inside
of the do block (then part) of the if statement d has the type of A till the first assignment to it or
detachment ?d.

5.5 Tuple types (ADT sum)

Tuple type defines a group of entities of potentially different types specified in the type declaration.
The number of entities is part of the type declaration. It is possible to name these tuple fields with
identifiers for access by name. The example below introduces e as a group of values. Its type is a
tuple with three types in the specified order and e is initialized with tuple value.
e: (Integer, Real, String) is
(5, 6.6, “Hello world!”)

Next is the square equation solution, which uses tuple to get the result. Type of object (x1, Xx2) is
(Real, Real). Function SolveSquareEquation returns a tuple in which has named fields in it.
Both ways to call it are presented below.
SolveSquareEquation (a, b, c: Real):

(rl: Real; r2: Real) do ... end
(x1, x2) is SolveSquareEquation(1.0,2.0,3.0)
roots is SolveSquareEquation (3.0, 2.0, 4.0)
x1 #s roots.rl // First root
x2 #s roots.r2 // Second root
Important comment: array is a kind of tuple when all elements have the same static type. That is
another reason why access to array elements uses the syntax similar to access to tuple elements by
index.

5.6 Range types

The range type explicitly defines a set of possible values objects of this type may have. There are
two kinds of this type presented below.
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f: 1..6
T can store Integer values between 1 and 6.
g: 1131517

g can have odd integer values between 1 and 7. ¥ and g have different types, so any attempts to
assign will lead to compile-time errors. Both assignments below are wrong.

f:=9g

g:=Ff

5.7 Routine types

The routine type defines objects which are routines and it means that activation (call or application)
of the routine associated with the object can be done later. Routines are treated as first-class citizens.
The example below defines procedure foo, which can be called with the routine object which has
the routine type — a function with 2 arguments of types Typel and Type2 returning objects of type
Type3. The body of 0O contains a call to routine passed as an argument.
foo(h: rtn (Typel, Type2): Type3) do

x is h (new Typel, new Type2)
end
foo can be called providing the inline routine object.
foo(rtn (Typel; Type2): Type3 do

return new Type3 end)

5.8 Unit types

The unit type defines objects which define types as first-class citizens. One can declare an attribute
of type unit and provide a full description of this unit at some time and then use the name of this
attribute as a type for declaration of other entities.
TypeO is new unit
foo do end
init do end
var attr: X
end
Attribute TypeO has a type equal to the unit type deduced by the compiler. This unit type is
characterized by members: routine foo, initialization procedure, and a mutable attribute attr.
Typel: unit is unit
foo do ... end
end
Attribute Typel is defined as having type unit initialized by inline unit declaration. Also, it is
possible to specify the unit interface of interest and then dynamically assign conforming types to
this variable. The order of unit members is not essential; that is the difference from tuples.
Type2: unit
fl: T1
f2: T2
ri(T1,72)
r2(T1): 12
initQ
end is new unit
r1(T1, T2) do end
r2(T1): T2 do end
init() do end
end
Here, the type of Type2 is limited with some interface specified as unit type. So any type which
conforms to the interface can be assigned to Type2. The initialization part should not repeat the
attributes specified in the type description, but new ones may be added and all routines should get
their bodies.
Type3: ?unit foo(), init() end
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Type3 attribute is not initialized but we know its interface. Now we can use new types for ordinary
attributes declarations.
a0 s new TypeO.init()
a0.foo
al is new Typel
al.foo
a2 is new Type2.init(Q)
a2.rli(new T1l, new T2)
a3: Type3 is new TypeO.init O
a3.foo
What else can be done with attributes of the unit type? By default, assignment works for them and
they can be used for declarations. Of course, conformance rules are to be adjusted for such types.
But it is possible to build such a unit type during the program execution like as follows:
Type4 is new unit end
Type4.add(rtn foo () do end, var x: Integer)
Typed.add (y: Real; init do end)
As we have no exact static information about the nature of Type4, we have to dynamically test it. If
it has proper init procedure or require routine with necessary signature and then call.
if Type4 is unit init () end do
a4 is new Typed.init O
if a4 is unit foo () end do
a4.foo OO
end
end
Among basic units, there is a special one that defines the unit type. The code of procedure add shows
how it is possible to deal with unlimited number of arguments.
unit unit
add (members: ()) do
while member in members do
Runtime.addMemberToUnit (this, member)
end
end
end
One more aspect of such types is using them within the generics approach. Instead of parametrization
by a constant of an enumerated type, one can provide an expression. See an example below
var vl is new Array[String, 5]
v1 will be an array of strings with five elements properly initialized by Array init procedure.
var v2 is new Array[String, 6]
v2 will be an array of strings with six elements properly initialized by the Array init procedure.
vl = v2
v2 = vl
Both assignments are valid as v1 and v2 have the same type Array[String; N: Integer].

var v3 is
new Array[String,StandardlO.readinteger()]

The actual type of generic instantiation attribute v3 will be identified during execution.

vl = v3

v3 1= v2

However, both assignments are valid as vl and v2 have the same type Array[String; N:
Integer]. So, type compatibility is very essential.

6. Type compatibility

It is essential to define well when assignments are valid and when overriding is valid while
inheriting. The latter is described by the signature conformance while the assignment is driven by
the following rule. The type of the expression on the right side of the assignment should either
conform to the type of the writable on the left side or have a proper conversion routine in place. So,
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type A is compatible with type B if A conforms to B or objects of type A can be converted into the
objects of type B. Pictures below will use the legend that every oval denotes a unit and every arrow
means ‘inherits from’ aligned with the direction of the arrow. Rombus-ended edge means inheritance
with no conformance (not able to make polymorphic assignments)

6.1 Type conformance

The simplest case of conformance is that each type conforms to itself.

a: A is new A

Unit conformance is based on the idea to check if there is a path in the inheritance graph between
the current unit type and another one. And this path should consist only of conformant inheritance
edges.

unit A end

unit B extends A end

That is a conformant inheritance.

unit C extend ~A end

That is a non-conformant inheritance.

a: A is new B

Valid as B conforms to A.

a: A is new C

Not valid as C does not conform to A.

When a type is a generic instantiation then in addition to unit type conformance it is necessary to
take into account type by type conformance of all elements of the instantiation. Notice that square
brackets are used to highlight generics. Access to tuples and arrays is done using parentheses as
these are function calls with parameters.

unit A[U, V] end

unit B[X, Y] extend A [X, Y] end

unit T1 end

unit T2 end

unit S1 extend T1 end

unit A[A, B, C] end
a: A[T1, T2] is new A [T1, T2]

Valid as types are identical.

a: A[T1, T2] is new A [S1, T2]

Valid as S1 conforms to T1.

a: A[T1, T2] is new A [T1, Si]

Not valid as S1 does not conform to T2.

a: A[T1, T2] is new B [T1, T2]

Valid as B conforms to A and has identical instantiation types.

a: A[T1, T2] is new B [S1, T2]

Valid as B conforms to A and has conformant instantiation types.

a: A[T1, T2] is new B [T1, Si]

Not valid as S1 does not conform to T2.

a: A[T1, T2] is new A [T1, T2, Si]

Not valid as A with 3 generic parameters does not conform to A with 2 generic parameters.
Tuple conformance. All tuples are of the same type — tuple type. It means that we need to consider
(similar to generic instantiations) by-element conformance of element types.

a: (T1, T2) is (new T1, new T2)

Valid as types are identical.

a: (T1, T2) is (new S1, new T2)

Valid as S1 conforms to T1.

a: (T1, T2) is (new T1l, new S1)
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Not valid as S1 does not conform to T2.

a: (T1, T2) is (new S1, new T2, new S1)

Valid as all elements of the longer tuple, which has corresponding elements in the shorter one,
conform to them.

Last but not the least is unit type conformance. All unit types are of the same type — “unit’, similar
to tuple conformance. So, we need to look at a member after a member to check if they conform to
each other. The difference from tuples that tuples have an order of elements in the tuple but unit
types not. But every member of the unit type has a name. And search by name identifies the subset
of members which will define the conformance. So, if we have two unit types A and B then A
conforms to B if for every member of A there is a member with the same name in B and its signature
in A conforms to the signature of the corresponding member in B and B has not other members.
Common sense logic brings the idea that to an empty unit any unit type will conform. Any ‘thinner’
unit type will always accommodate in terms of conformance the ‘thicker’ one. Empty unit means
any unit!
var A is unit end
var B is unit
foo (T1, T2): T3
goo (T3)
var attr: T1 := (T1)
// It has a setter with an argument
// of type T1
end
var C is unit
foo (S1, T2): T3
goo (T3)
end
var D is unit
foo (S1, T2): T3
goo (T3)
var attr: Tl := (S1)
// it has setter with an argument
// of type S1
too (T1, T2, T3)
end
A = B // Valid as any type conforms
// to an empty type
B :=C // Not valid as C lacks member
// called attr
B:= D // Valid as all D members fit all
// B members in terms of conformance
// and D has extra members — it is
// thicker than B

6.2 Type convertibility

Here, conversion routines are considered as they also play important roles in assignments. There are
two types of conversion routines: from-conversions and to-conversions. The first one is a procedure
with one parameter and the second one is a function with no arguments. Let’s examine the following
example with units A and T.
unit A

:= (other: T) do ... end

// This is a from-conversion procedure,

// which has some algorithm how to

// perform a conversion from objects of

// type T into the objects of the current

// type A. T is just some empty type.

= (): Tdo ... end

// This is a to-conversion function that
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// creates a proper object of type T
// and works well for assignments too.
foo (arg: T) do end

// Procedure “foo” will be used to show
// how converters work

end

unit T end
At first, let’s create a valid object of type A, and then different conversions will be done using an
assignment statement.
var a is new A
a:=new T
Here, a can be assigned with an object of type T as it has a from-converter procedure.
a.foo (new A)
This call is valid as well as unit A has a to-conversion function to type T.
Here is a brief review of routines’ signature conformance which also has similarity with generic
instantiation conformance and uses tuple conformance. If we have routine foo with signature S1 and
routine goo with signature S2 then S2 conforms to S1 if they have the same number of elements and
every type element of signature S1 conforms to the appropriate element of signature S1. Let’s
consider the following example
unit A

foo (T1; T2; T3): T4
end
unit B extend A

override foo (Ul; U2; U3): U4
end
In this example, the signature of foo from Ais ((T1, T2, T3), T4), and foo from B has ((U1,
U2, U3), U4) and the task is equal to tuple conformance. Tuple ((U1, U2, U3), U4) conforms
to the tuple ((T1, T2, T3): T4) as they have the same number of elements — two in this case
(for the procedure we may just drop the return type) and for the first element we again have tuples
conformance case — whether (U1, U2, U3) conformsto (T1, T2, T3) and check if U4 conforms
to T4.
Some notes about the name and structural type equivalence. Below is an example in Ada [2], which
presents name equivalence — type Integer_1 is not compatible with type Integer_2 as they have
different names! But structurally they are identical.

type Integer 1 is range 1 .. 10;
type Integer 2 is range 1 .. 10;
A : Integer 1 := 8;

B : Integer 2:= A; -- illegal!

We can choose between two different approaches. The first one is right below

a:1..10 is 8

b 1 .. 10 is a

Here, a and b have the same type: range type 1. .10 and a can be assigned to b.

In the second case when one likes to introduce new types, type Integer_1 is different from
Integer_2 and they are not compatible.

unit Integer_1 extend Integer
require
this in1l .. 10

end
unit_Integer_2 extend Integer
require
this in1 .. 10
end
var a Is new Integer_1
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var b: Integer_ 2 is a

Declaration of b leads to compile-time error as the type of a is not compatible with the type of b.
So, support of name equivalence is in place but the term name is treated a bit wider. 1. . 10 is treated
as the type name, A | B is the type name too, and (T1, T2, T3) is also a type and its name is a
tuple (T1, T2, T3),type “as this” is compatible to the type of the unit where an attribute of
such type was declared.

7. Duck typing

The popular thing is duck typing. It also can be interpreted in terms of the conformance test. As an
ability to fly means that we can imagine a hypothetical unit Flyable with one abstract procedure
Ffly and check if the object of interest conforms to this unit-based type or not. The trick is that we
do not need to enforce to change the inheritance graph for that. We need just to construct such a unit
on the fly, keep it anonymous, and just apply the proper check. Let's consider the following example
which is used for other programming languages

unitfll3uck // 1t can fly

y do
StandardlO.print("'Duck is flying")
end
end
unit Sparrow // It flies too
fly do
StandardlO.print(“Sparrow is flying™)
end
end
unit Whale // 1t does not fly but swims
swim do
StandardlO.print(""Whale is swimming')
end
end

while animal in (Duck, Sparrow, Whale) do
// Now it is necessary to check if the
// object “animal’ conforms to the type
// which is described as the anonymous
// unit-based type which has only one
// routine — fly with no arguments.
// Routines are specified using their
// signature only.

gf animal is unit fly O end

animal . fly
end

end

Here are a few caveats. What is the static type of animal to be determined by the type inference
process? If units Duck, Sparrow, and Whale have the nearest common ancestor, this unit will be
the type of animal. If such unit was not explicitly mentioned thru extend directives, then Any will
be such unit. So, the process terminates in any case. If there are several nearest common ancestors,
then the process can be run for them recursively.

8.Conclusion

The paper presents the unified type system which supports the convergence of different models of
programming, allows to have static typing with type inference, to have all types and values to be
explicitly and fully defined using the same programming language. For that, the concept of the unit
is used and it is defined as a combination of class and module concepts. Types compatibility if fully
and explicitly defined using type conformance and type conversion. Both conformance and
conversions are fully defined too. The approach which allows treating manifest constants as
immutable objects of the proper type is introduced, it works well for basic types and user-defined
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ones. It supersedes enumerations and sets the background to have the programming language which
is fully defined using the language itself.
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