
Труды ИСП РАН, том 34, вып. 4, 2022 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022

7

DOI: 10.15514/ISPRAS-2022-34(4)-1

Case study: Source code static analysis for
performance issues detection

1 A.Y. Gerasimov, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
1 A.A. Kanakhin, ORCID: 0000-0000-0000-000 <kanakhin.alexey@huawei.com>

1 P.A. Privalov, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 A.A. Zhukov, ORCID: 0000-0002-2788-4542 <andrey.zhukov@huawei-partners.com>

2 E.A. Kaminsky, ORCID: 0000-0002-5040-0999 <evgeny.kaminsky1@huawei-partners.com>
1 Chong-Ming Software and Technology Center, Huawei Technologies Co. Ltd.,

17k2, Krylatskaya st., Moscow, Russia, 121614
2 Coleman Services,

Bld. 2, Shchipok st. 5/7, Moscow, Russia, 155054
Abstract. Source code static analysis is widely used for program errors detection. Mostly it is used for finding
critical issues like security vulnerabilities, critical program defects leading to runtime errors like crash and
unexpected behavior of programs. Many SCSA tools are used for checking code conformance to different
coding style guides. In this case study we present results of applying SCSA techniques for checking
performance coding rules of Huawei and evaluate whether manually fixing found issues in accordance with the
guidelines could impact performance, or if the compiler already applies all necessary optimizations during
compilation.

Keywords: source code static analysis; program performance; compilers

For citation: Gerasimov A.Y., Kanakhin A.A., Privalov P.A., Zhukov A.A., Kaminsky E.A. Case study: source
code static analysis for performance issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022.
pp. 7-20. DOI: 10.15514/ISPRAS-2022-34(4)-1

Acknowledgements. This paper presents a work of the team. Authors has done a contribution to the paper, but
Cooddy development team responsible for engine and checkers implementation and ideas and code review
should be pointed out: Pavel Mezhuev, Aleksey Demidov, Veronika Butkevich, Natalya Chernova, Damir
Gimatdinov.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

8

Применение статического анализа исходного кода для поиска
проблем с производительностью: примеры из практики

1 А.Ю. Герасимов, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
1 А.А. Канахин, ORCID: 0000-0001-9800-2722 <kanakhin.alexey@huawei.com>

1 П.А. Привалов, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 А.А. Жуков, ORCID: 0000-0002-2788-4542 <andrey.zhukov@huawei-partners.com>

2 Е.А. Каминский, ORCID: 0000-0002-5040-0999 <evgeny.kaminsky1@huawei-partners.com>
1 ООО "Техкомпания Хуавэй",

Россия, 121614, Москва, ул. Крылатская 17к2
2 Coleman Services,

Россия, 155054, Москва, ул. Щипок 5/7, стр. 2
Аннотация. Статический анализ исходного кода программ широко используется для обнаружения
ошибок. В основном он используется для обнаружения критических недостатков программ, таких как
уязвимости безопасности, критических ошибок времени исполнения, таких как разрушение программы
и неожиданное поведение. Многие инструменты статического анализа кода программ используются
для проверки кода программ на соответствие правилам кодирования. В этой работе мы представляем
результаты применения техник анализа кода программ для обнаружения ошибок производительности
из руководства по программированию производительных программ компании Huawei и результаты
проверки, влияет ли исправление программы в соответствии с этими правилами на результирующую
производительность программ, или компилятор в состоянии автоматически оптимизировать
программу.

Ключевые слова: статический анализ исходного кода; производительность программ; компиляторы

Для цитирования: Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А.
Применение статического анализа исходного кода для поиска проблем с производительностью:
примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20. 10.15514/ISPRAS-2022-34(4)-
1

Благодарности: Эта статья представляет результат работы команды исследователей. Авторы статьи
внесли основной вклад в её написание, но также должен учитываться вклад участников команды
исследований и разработки в создание ядра и анализаторов инструмента Cooddy, инспекцию кода и
идей, положенных в основу реализации инструмента: Павла Межуева, Алексея Демидова, Вероники
Буткевич, Натальи Черновой и Дамира Гиматдинова.

1. Introduction
Programming languages like C and C++ are commonly used in performance-critical applications.
Both of them are compiled languages—they pass through a compilation and an optimization step
before being assembled into an executable binary. Early on, compilers were not proficient enough
to optimize some code constructs like double checks and repeated calculations. To account for this,
various coding guidelines placed the burden of this optimization on programmers, which sometimes
affected code readability. Today, compiler optimization capabilities are much wider because of the
evolution of their optimization algorithms and an increased performance budget for compilation. As
an example, GCC, which is the most widely used C++ compiler at the time of writing, provides over
100 distinct optimization flags [1-3].
In spite of the advancements in automatic optimization, there are still cases where manual
optimization is required to achieve maximum performance. In this paper, we demonstrate our
program for automatic source code analysis capable of diagnosing for many of the rules from various
coding guides, especially Huawei coding guidelines. Our research goal is to evaluate whether
changing source code in accordance with analysis results could visibly impact performance on a

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

9

computation-heavy open source project. This evaluation takes into account that optimizations made
by a modern compiler do not need to be manually implemented by the developer, and an additional
goal is to review each category of issues and find out whether it is already optimizable by the
compiler. As our compiler of choice we selected GCC over other compilers because it is the most
widely used inside the industry.

2. Experiment
As our target for analysis we wanted to choose a C++-based, open-source, command-line application
which performs a lot of calculations. Firstly, an application with a command-line interface and no
graphical user interface would be easy to analyze and measure performance of. Secondly, an
application performing a lot of calculations (as opposed to spending most of the time waiting for
user input, sending/answering web requests, etc.) could be significantly optimized by changing the
source code to reduce redundant data copies, redundant loop calculations, cache misses and other
time sinks under programmer's control.
After some consideration we settled on a project called “Yosys”, a framework for Verilog RTL
synthesis (i.e. synthesis of a logic circuit based on some specification of how such a circuit should
operate; such specification is written at the register transfer level (RTL)) [4]. In addition to the
requirements outlined above, we chose "Yosys" due to a high number of detected issues by our
application.
Although 5210 issues were found, most of these were not worth analyzing in detail, either because
they were caused by a common problem or because they were obvious false positives (FPs). After
an initial filtering we narrowed the amount of interesting issues down to 1845. For review we have
split found issues into categories based on the kind of problem they describe. Each category was
assessed separately to determine whether the detected issue affects performance in a meaningful
way, and if so, if it is optimized by the compiler. For comparing source code, as compiled into
assembler, we used “Compiler Explorer”, a widely used web tool for inspecting results of
compilation [5]. Unless specified otherwise, all ASM examples are compiled with GCC 12.1, with
-O2 optimizations.

3. Results
When describing results, each section is titled after a particular class of issue, with our internal detect
class name in parenthesis for later reference.

3.1 Replace multiple if-else statements with a switch statement
(RedundantMultipleIfElseChecker)

The guideline states that a tree of if-else conditions should be replaced with a switch statement where
possible.
A switch statement is syntactically simpler than an equivalent if-else tree. First, using a switch
ensures that each branch is taken based on an equality comparison with the same value or expression.
Secondly, case values in a switch are required to be constant expressions (known at compile time),
which further simplifies the optimization job for the compiler. Indeed, compilers do optimize
switches better than if-else trees [6].
Project analysis found 36 defects of this type, with 100% TP rate. Unfortunately, none of the defects
were located on performance-critical code paths, so fixing them will not improve application
performance.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

10

3.2 Replace access to a few arrays with the same index to one array of
structs (RedundantCacheAccessChecker)

Defines the proximity of data accessed at the same time to improve data access. The idea is to put
data in the same cache line and basic purpose is to find the cases where 2 or more arrays accessed
with same indexes.
Specifically, it may be considered that, in the data structure, a data field that is frequently accessed
is defined before, and a data field that is seldom accessed is defined after. In this way, most accesses
need to be processed only once by loading the cache; otherwise, multiple times of loading are
required. The idea is to encapsulate the field assignment in the extracted hotspot structure to ensure
that the non-hotspot fields are assigned values at the same time to avoid omission.
The main FP sources are:
• Detect on very small arrays like 2-32 elements which fully fits in cache and have aggressive

random access in cycle. In addition to caching, often such an array is used as a way to address
variables by indexes instead of by names (for example a common use-case is to store X and Y
coordinates as an array of two elements). Other times an array is simply a source of constant
data which is likely to be optimized away completely.

• Values read from different arrays is not synchronized by index, and grouping items by
structure in one array will have negative effect in performance.

Only 4 cases appear to be true positive, others cases fall into one of FP categories described above,
which make it just ~2.5% TP rate.

3.3 Reorder condition sub-expressions to avoid redundant heavy-weight
calculations (WeightingConditionChecker)

This checker leverages the short-circuit evaluation principle, implemented in C and C++. Short-
circuit evaluation guarantees that the right-hand operand of built-in && (logical AND) and ||
(logical OR) operands will not be evaluated if evaluation of the left-hand operand already
determined expression result. This means that a programmer can reorder operands in if conditions
so that more expensive to compute operands appear last, which will yield an increase in performance
in cases where these operands are never evaluated.
The heuristic by which the approximate cost of an operator is determined is as follows. Each operand
has a "cost" value, determined by the most expensive operation performed (fig. 1).

Cost Operation
1 Literal expression
2 Variable access expression
3 Conditional expression
4 Call expression

Fig. 1. Weighting condition checker operation cost

Operands are sorted by their cost, with lower cost operands being placed first. Care is taken to avoid
reordering operands which share variables, to avoid cases like reordering nullptr checks and
pointer dereferencing. Sadly, no similar algorithm exists for preventing reordering function calls
with side effects which affect each other.
Checker could be especially useful in cases where a condition with many operands is inside a loop.
Analysis of Yosys found 138 defects, with 87 of them being true positives (63% TP rate). The main
sources of false positives (51 cases) are short functions inlined by the compiler. Function calls have

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

11

a cost of 4, yet the real operation inside is often much cheaper. Reordering such conditions will have
no effect or sometimes an opposite effect.
82 cases contain external functions which made these cases difficult to analyze and optimize. Due
to branch predictor and speculative execution such optimizations generally will have no effect.
Other cases do not lie on critical execution paths, and fixing them requires deep knowledge of the
project to know with certainty that reordering conditions will produce no undesired side-effects.

3.4 Avoid redundant heap allocations (RedundantHeapAllocChecker)
The rule states that one should avoid redundant heap allocations, i.e. situations where neither manual
lifetime management, nor big memory blocks are required. Frequent memory allocation and
deallocation can be a serious performance issue. In some cases, a better approach might be to re-use
a block of memory allocated once.
Analysis produced 67 defects, with 6 of them being true positives (9% TP rate). The main FP sources
are:
• Pointer leaves the scope of the function where memory is allocated, i.e. manual memory

management is, in fact, required (33/67 ≈ 49% of all cases);
• There are common recommendations not to allocate more than 16KB per function on the stack

and use heap allocation instead. Our tool uses a limit of 4KB. There are cases where allocated
size is constant and greater than 4KB, which can be considered a FP (12/67 ≈ 18% of all
cases);

• Cases where we cannot assume the allocated memory size is FP due to insufficient knowledge
of the code. (16/67 ≈ 24% of all cases).

True positive cases that we decided not to fix:
• Issues in non-performance critical code, mostly used for debugging and error messaging

functions;
• Console output of statistics;
• File output dump functions;
• Dead code (functions not used by the application);
• Lookup of libraries and files by path;
• One case where a 20-byte structure was allocated on heap and was freed at the end of the

function. But the defect is not on any performance critical path and has no measurable
performance impact.

3.5 Avoid double checking the same value (DoubleCheckChecker)
The rule states that if a pointer validity check is performed at some point in the code and enters a
“safe code block”, any subsequent checks within the safe code block are redundant. For safety and
security reasons, SEI CERT C Coding Standard [7] recommends that any called function validate
its parameters.
Influence of the multiple null checks on performance is questionable for two reasons. First, if both
checks are visible by the compiler, it will optimize the latter check during global common
subexpression elimination (available in GCC under the -fgcse flag). Additionally, if the check is
not removed for whatever reason, branch prediction will minimize the second branch to a no-op.
There are, however, several older methods of branch prediction that can create situations where an
incorrect branch is taken [8]. Static prediction is the simplest branch prediction technique because it
does not rely on information about the dynamic history of code executing. Instead, it predicts the

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

12

outcome of a branch based solely on the branch instruction. With static prediction all decisions are
made at compile time, before the execution of the program. The early implementations of SPARC
[9] and MIPS [10] always predict that a conditional jump will not be taken, so they always fetch the
next sequential instruction. And this is probably even source of recommendation to handle
exceptional cases inside if with return. A more advanced form of static prediction presumes that
backward branches will be taken and that forward branches will not. A backward branch is one that
has a target address that is lower than its own address.
GCC uses -fdelete-null-pointer-checks flag (commonly enabled under -O2) to enable
global dataflow analysis that eliminates useless checks for null pointers. The optimization algorithm
assumes that a nullptr can never be dereferenced, since dereferencing it would lead to undefined
behavior under C++ Standard, and a trap in most real-world cases. This means that if a pointer has
already been dereferenced, any later checks for nullptr can be discarded.
These optimizations make found issues irrelevant. However, such a rule can still be useful with very
old versions of compiler or some specific architectures where the optimization passes like the ones
described above are not available.

3.6 Avoid redundant memory zeroing (RedundantZeroMemoryChecker)
The rule states that redundant calls to memset, such as after allocating memory with calloc,
should be avoided. The memory operation functions memset/memset_s involve system calls
and have a relatively high overhead. If the memory is used to store a string, you can avoid zeroing
the entire block, since the '\0' terminator prevents reading the unused tail.
Analysis found 7 defects. We classified 3 cases as FPs. These cases had no efficient fix—a zero-
initialized structure, with some fields being individually initialized afterwards, was not possible to
optimize.
Other 4 cases had a similar structure: a call to calloc followed by a call to memset.

Source GCC 6.1 GCC 4.1.2
struct SomeStruct {
 float a;
 double b;
 char* c;
 int d[10];
};

SomeStruct* Create() {
 SomeStruct* s;
 s =
(SomeStruct*)calloc(1,

sizeof(SomeStruct));
 memset(s, 0,

sizeof(SomeStruct));
 return s;
}

Create():
 mov esi, 64
 mov edi, 1
 jmp calloc

Create():
 sub %rsp, 8
 mov %edi, 1
 mov %esi, 64
 call calloc
 cld
 mov %rdx, %rax
 mov %ecx, 8
 xor %eax, %eax
 mov %rdi, %rdx
 rep stosq
 mov %rax, %rdx
 add %rsp, 8
 ret

Fig. 2. Optimization of memory zeroing under different versions of GCC
Additionally, this code is well optimized by a modern compiler, and only an old version of GCC
4.1.2 do not (fig. 2).

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

13

3.7 Avoid passing function arguments by value
(RedundantArgCopyChecker)

This class of issues stems from a syntax feature of the C and C++ languages: when passing an
argument to a function, the default operation is to take a copy of the passed value. This can cause a
performance issue when big structures are copied by accident.
There are two alternatives to pass-by-copy. In C, one can modify the function signature to take a
pointer (or const pointer if the value is not meant to be modified), and take an address of a value
when passing it to the function. In C++, a more streamlined option is to pass a reference or const
reference, which does not require changing the caller code and also disallows null values.
Of course, both of these methods involve pointer indirection, which can introduce a pessimization
into the callee code. Most codestyle rules recommend passing values by copy only when they are
small enough to be copied in registers. Our research found that 16 bytes is the maximum structure
size which can be safely like this (fig. 3).

Fig. 3. Assembly generated from function foo, which creates structure of specified size and passes that
structure to function bar by value

12 bytes structure
foo():
 sub rsp, 24
 lea rdi, [rsp+4]
 call T::T()
 mov rdi, QWORD PTR [rsp+4]
 mov esi, DWORD PTR [rsp+12]
 call bar(T)
 add rsp, 24
 ret

16 bytes structure
foo():
 sub rsp, 24
 mov rdi, rsp
 call T::T()
 mov rdi, QWORD PTR [rsp]
 mov rsi, QWORD PTR [rsp+8]
 call bar(T)
 add rsp, 24
 ret

20 bytes structure
foo():
 sub rsp, 40
 mov rdi, rsp
 call T::T()
 sub rsp, 32
 movdqa xmm0, XMMWORD PTR [rsp+32]
 mov eax, DWORD PTR [rsp+48]
 movups XMMWORD PTR [rsp], xmm0
 mov DWORD PTR [rsp+16], eax
 call bar(T)
 add rsp, 72
 ret

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

14

Our analysis found only a single issue, where a structure of 32 bytes was copied when passed into a
print function. Since the cost of printing greatly outweighs the cost of pushing values on the stack,
we consider this case not performance critical.

3.8 Avoid using RTTI (RttiChecker)
RTTI (Run-Time Type Information) is a special mechanism in the C++ language which allows the
user to retrieve type information at runtime (mainly the type name), as well as traverse inheritance
trees [11, sect. 17.8]. This is the mechanism behind features like typeid and dynamic_cast.
This language feature, along with exceptions, has long been a polarizing discussion point [12, sect.
C.146], and a notorious breaker of the “zero-overhead abstraction” rule [13], since for polymorphic
classes type information now needs to be stored alongside the value, regardless of whether
dynamic_cast is actually used or not. For this reason, RTTI is disabled in many high-
performance projects [14], and the rule to disable RTTI via compiler flags is present in many C++
style guides [15, 16].
To explain the options a programmer has when avoiding RTTI, let us conduct a one-paragraph
review of different kinds of polymorphism. Dynamic polymorphism, the very same that is being
used by virtual inheritance in C++, is the practice of using dynamic method dispatch when calling
methods of polymorphic objects. Dynamic method dispatch is called dynamic since the work of
selecting an appropriate derived method happens at runtime (using what in essence is just pointers
to functions) [17]. This approach does not restrict the amount of derived classes that can be created
and allows derived classes to be declared in separate translation units. This means that the C++
virtual polymorphism model is openly extensible without modifying the base class, and so it is an
example of open type set polymorphism (referred to later as simply open polymorphism). A polar
opposite to open polymorphism is closed polymorphism, where no extension of the class hierarchy
is allowed. An example of closed polymorphism is the variant data type; a variable of such type is a
wrapper around one of N types specified during declaration [18, p.24]. Of course, to call variant
types polymorphic we also need to implement method dispatch, and here, since we know all types
in advance, we can avoid using runtime pointer indirection and just create a branch structure, which
checks which type is stored inside and call its appropriate method. This logic is generated statically,
and so variant-based polymorphism is an example of static polymorphism.
A general recommendation of the C++ community when replacing RTTI with other mechanisms is
to implement static, closed polymorphism, as opposed to dynamic, open polymorphism that virtual
methods and inheritance represent [19, p. 18][18, p. 80].

3.9 Other rules
Analysis was also performed on several other rules. Most of these deserve only a passing mention,
since all detects generated by them were optimized by the compiler.
These additional rules were:
• Avoid repeated variable initialization (RedundantInitializationChecker);
• Avoid complex calculations inside the loop condition (RedundantLoopCondCalcChecker);
• Avoid repeated nested dereferencing, such as nested member variable access via a chain of

pointers (RedundantAddressCalculationChecker);
• Do not mark global variables as volatile (RedundantVolatileGlobalVarChecker). Detects from

this rule were not optimized, but it was impossible to determine accurately whether they were
TP or FP without deep knowledge of the code.

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

15

4. Related Works

4.1 Proprietary tools
PVS-Studio, trial version is used [20].
PVS-Studio has 35 rules on performance optimization in C++. 12 of them intersected with the rules
detected by Cooddy.
After running this tool on Yosys we found 128 warnings, detected by 10 rules. 81 of these warnings
are true positive (FP rate of 37%). The only warning that was common with Cooddy was the one
from RedundantArgCopyChecker.

4.2 Open source projects
CppCheck has 11 performance checkers that apply to CWE398, CWE597, CWE628, CWE704.
Most of them are related to std::string. No rules are common with Cooddy checkers [21].

4.3 Non-commercial article-based tools
CARAMEL is a novel static technique that detects and fixes performance bugs that have non-
intrusive fixes likely to be adopted by developers. Each performance bug detected by CARAMEL
is associated with a loop and a condition. When the condition becomes "true" during the loop
execution, all the remaining computation performed by the loop is wasted. CARAMEL analyses
C/C++/Java applications [22].
Other tools are Toddler [23], Clarity [24], LDoctor [25].

5. Conclusion
We can split the code guidelines we reviewed into 4 main categories: valid and useful rules, outdated
rules, rules that can be implemented in SCSA but were not possible to be properly evaluated using
our method and software, and finally rules that cannot be implemented in SCSA at all.

5.1 Useful rules
Out of the rules reviewed RedundantArgCopyChecker is the only one we consider useful when
working on a modern architecture and with a modern compiler. Although we did not find many
issues on the “Yosys” project, it’s likely because on any project with significant attention such issues
are quickly fixed when on performance-critical paths. SCSA can be used during development to
more quickly spot such issues.

5.2 Outdated rules
Rules in this category are outdated in the sense that they are no longer a programmer’s burden—

today’s compiler technology is advanced enough that all of the possible performance issues are
optimized away. The checkers in this category are:
• RedundantMultipleIfElseChecker;
• DoubleCheckChecker;
• RedundantInitializationChecker;
• RedundantLoopCondCalcChecker;
• RedundantAddressCalculationChecker;
• RedundantZeroMemoryChecker.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

16

5.3 Poor method
These issues are useful and it is possible to gain performance by fixing them, but the current
implementation in our SCSA tool is not advanced enough to evaluate their impact properly. These
issue categories are:
• RedundantCacheAccessChecker, due to a high number of false positives;
• WeightingConditionChecker, because in its current implementation it does not consider inlined

functions and functions with side-effects when reordering conditional operands;
• RedundantHeapAllocChecker, due to a high number of false positives, mainly when pointers to

allocated memory leave the function scope.

5.4 Not implementable in automatic SCSA
We consider two checkers unimplementable in SCSA engines in general:
RedundantVolatileGlobalVarChecker and RttiChecker.
RedundantVolatileGlobalVarChecker is essentially a “code knowledge” rule. The reason for its
existence is due to a very broad misuse of the volatile keyword as an erroneous way to create atomic
variables [26; 27, sect. 5.1.2.3 para.2; 12, section CP.8]. The volatile keyword should only be used
in very specific circumstances, and in these circumstances its necessity is a fact hidden from the
compiler and known only by the programmer.
RttiChecker is not possible to implement properly because even in cases when no code uses any
functionality dependent on RTTI, a compiler does not know whether the source files are compiled
into an object file are linked to an object file with RTTI enabled. Some compilers do not support
linking object files in such a way [28].

5.5 Final observations
The analysis performed shows that more often than not, compiler technology covers the common
issues with the source code and allows the programmer to write code for readability and simplicity
as a first priority. Additionally, automatic SCSA could be of use when configured to exclude classes
of issues that are no longer relevant in a modern environment. Cooddy in particular was often not
able to properly filter out false positives, but the approach in general is viable and further research
is ought to improve Cooddy’s ability to cover issues still affecting today’s code. On the other hand
there are some specific architectures which has no branch prediction module or sophisticated
memory management units. In this case checking performance coding rules has a sense and SCSA
can be helpful.

References
[1] GCC, the GNU Compiler Collection. Available at:

https://web.archive.org/web/20220913154847/http://gcc.gnu.org/, accessed 2022-09-13.
[2] The State of Developer Ecosystem 2021: C++. Available at:

https://web.archive.org/web/20220609172327/https://www.jetbrains.com/lp/devecosystem-2021/cpp/,
accessed 2022-06-09.

[3] GCC: Options That Control Optimization. Available at:
https://web.archive.org/web/20220910030424/https://gcc.gnu.org/onlinedocs/gcc/Optimize-
Options.html, accessed 2022-09-10.

[4] Yosys Open SYnthesis Suite. Available at: https://github.com/YosysHQ/yosys, accessed 2022-09-10.
[5] Compiler Explorer. Available at: https://godbolt.org/
[6] V. Lazarenko. From Switch Statement Down to Machine Code. Available at:

https://web.archive.org/web/20220313040503/http://lazarenko.me/switch/, accessed 2022-03-13.

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

17

[7] SEI CERT C Coding standard. API00-C. Functions should validate their parameters. Available at:
https://wiki.sei.cmu.edu/confluence/display/c/API00-C.+Functions+should+validate+their+parameters,
accessed 2022-03-13.

[8] J.E. Smith. A study of branch prediction strategies. In Proc. of the 8th Annual Symposium on Computer
Architecture, 1981, pp. 135-148.

[9] SPARC International. Available at: https://sparc.org/, accessed 2022-03-13.
[10] D. Patterson. Computer Organization and Design, Fifth Edition. Morgan Kaufmann, 2013, 800 p.
[11] ISO/IEC N4860 – Programming Language C++. [Working draft]. Available at:

https://web.archive.org/web/20220901051849/https://isocpp.org/files/papers/N4860.pdf, accessed 2022-
09-01.

[12] C++ Core Guidelines. Available at:
https://web.archive.org/web/20220913102723/https://isocpp.github.io/CppCoreGuidelines/CppCoreGuid
elines, accessed 2022-09-13.

[13] B. Stroustrup. Foundations of C++. Lecture Notes in Computer Science, vol. 7211, 2013, pp. 1-25.
[14] Electronic Arts Standard Template Library. Available at:

https://github.com/electronicarts/EASTL/blob/master/doc/FAQ.md#info11-what-c-language-features-
does-eastl-use-eg-virtual-functions, accessed 2022-09-01.

[15] Google C++ Style Guide. Available at: https://google.github.io/styleguide/cppguide.html#Run-
Time_Type_Information__RTTI_, accessed 2022-09-01.

[16] LLVM Coding Standards. Available at: https://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-
exceptions, accessed 2022-09-01.

[17] S. Milton, H.W. Schmidt. Dynamic Dispatch in Object-Oriented Languages. Australian National
University, TR-CS-94-02, 1994.

[18] J.R. Bandela. Polymorphism != Virtual. Flexible Runtime Polymorphysm wihtout Inheritance. In the
CppCon 2019 Presentation Materials, 2019, available at:
https://github.com/CppCon/CppCon2019/blob/master/Presentations/polymorphism__virtual/polymorphis
m__virtual__john_bandela__cppcon_2019.pdf, accessed 2022-09-01.

[19] L. Dionne. Runtime polymorphism: back to the basics. In the CppCon 2017 Presentation Materials,
2017, available at:
https://github.com/CppCon/CppCon2017/blob/master/Presentations/Runtime%20Polymorphism%20-
%20Back%20to%20the%20Basics/Runtime%20Polymorphism%20-
%20Back%20to%20the%20Basics%20-%20Louis%20Dionne%20-%20CppCon%202017.pdf, accessed
2022-09-01.

[20] PVS-Studio. Available at: https://pvs-studio.com/en/docs/warnings/#MicroOptimizationsCPP, accessed
2022-09-01.

[21] CPPCheck. Available at: https://github.com/danmar/cppcheck, accessed 2022-09-01.
[22] A. Nistor, P-C. Chang et al. Caramel: detecting and fixing performance problems that have non-intrusive

fixes. In Proc. of the 37th International Conference on Software Engineering, vol. 1, 2015, pp. 902-912
[23] A. Nistor, L. Song et al. Toddler: Detecting Performance Problems via Similar Memory-Access Patters.

In Proc. of the 35th International Conference on Software Engineering (ICSE), 2013, pp. 562-571.
[24] O. Olivio, I. Dilling, C. Lin. Static detection of asymptotic performance bugs in collection traversals. In

Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 2016,
pp. 369-378.

[25] L. Song, S. Lu. Performance Diagnostics for Inefficient Loops. In Proc. of the IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), 2017, pp. 370-380.

[26] SEI CERT C Coding Standard. 3 Recommendations. Rec. 14. Concurrency (CON). CON02-C. Do not
use volatile as a synchronization primitive. Available at:
https://web.archive.org/web/20220916130555/https://wiki.sei.cmu.edu/confluence/display/c/CON02-
C.+Do+not+use+volatile+as+a+synchronization+primitive, accessed 2022-09-16.

[27] ISO International Standard ISO/IEC 9899:201x – Programming Language C. [Working draft]. Geneva,
Switzerland: International Organization for Standardization (ISO). Available at:
https://web.archive.org/web/20220831233111/https://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1570.pdf, accessed 2022-08-31.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

18

[28] XL C/C++ for Linux: -qrtti, -fno-rtti. Available at:
https://web.archive.org/web/20220916134348/https://www.ibm.com/docs/en/xl-c-and-cpp-
linux/13.1.1?topic=descriptions-qrtti-fno-rtti-qnortti-only, accessed 2022-09-16.

Информация об авторах / Information about authors
Александр Юрьевич ГЕРАСИМОВ – кандидат физико-математических наук, руководитель
группы анализа программ в Московском исследовательском центре Российского
исследовательского института компании Huawei с 2020. Сфера научных интересов:
автоматический анализ программ, обеспечение качества программ, компиляторные
технологии, цикл разработки безопасного ПО.
Alexander Yurievich GERASIMOV – Doctor of Philosophy in Computer Sciences, Head of the
Program Analysis team of Moscow Research Center of Russian Research Institute of Huawei
Company from 2020. Research interests: automatic program analysis, quality assurance, compiler
construction technologies, secure software development cycle.
Алексей Алексеевич КАНАХИН – кандидат физико-математических наук, ведущий
инженер-исследователь в Московском исследовательском центре Российского
исследовательского института компании Huawei с 2019 г. Сфера научных интересов:
высокопроизводительные вычисления, архитектура компьютера, отказоустойчивость
компьютерных систем, автоматический анализ программ.
Alexey Alexeyevich KANAKHIN – Doctor of Philosophy in Physics of Semiconductors, Senior
Research Engineer in Moscow Research Center of Russian Research Institute of Huawei Company
from 2019. Research interests: high-performance computing, computer architecture, fault-tolerant
computer systems, automatic program analysis.
Петр Алексеевич ПРИВАЛОВ – магистр прикладной математики и физики, ведущий
инженер группы анализа программ в Московском исследовательском центре Российского
исследовательского института компании Huawei с 2020. Сфера научных интересов:
автоматический анализ программ, обеспечение качества программ, компиляторные
технологии, цикл разработки безопасного ПО, архитектура программ, многопоточные
алгоритмы.
Petr Alekseevich PRIVALOV – Master of Science in applied mathematics and physics, Senior
Software Engineer at the Program Analysis team of Moscow Research Center of Russian Research
Institute of Huawei Company from 2020. Research interests: automatic program analysis, quality
assurance, compiler construction technologies, secure software development cycle, program
architecture and design, multithread algorithms.
Андрей Александрович ЖУКОВ – магистр по специальности "информатика и
вычислительная техника", сотрудник группы анализа программ в Московском
исследовательском центре Российского исследовательского института компании Huawei с
2022. Сфера научных интересов: автоматический анализ программ, компиляторные
технологии, метапрограммирование, архитектура программного обеспечения.
Andrey Alexandrovich ZHUKOV – Master of Science in information and computation systems,
member of the Program Analysis team of Moscow Research Center of Russian Research Institute
of Huawei Company from 2022. Research interests: automatic program analysis, compiler
technology, metaprogramming, software architecture.
Евгений Аркадьевич КАМИНСКИЙ – старший разработчик в команде анализа программ в
Московском исследовательском центре Российского исследовательского института
компании Huawei с 2022. Сфера научных интересов: автоматический анализ программ,

Герасимов А.Ю., Канахин А.А., Привалов П.А., Жуков А.А., Каминский Е.А. Применение статического анализа исходного кода
для поиска проблем с производительностью: Примеры из практики. Труды ИСП РАН, том 34, вып. 4, 2022 г., стр. 7-20

19

обеспечение качества программ, компиляторные технологии, цикл разработки безопасного
ПО.
Evgenii Arkadievich KAMINSKII – senior developer of the Program Analysis team of Moscow
Research Center of Russian Research Institute of Huawei Company from 2022. Research interests:
automatic program analysis, quality assurance, compiler construction technologies, secure software
development cycle.

