Tpyowr UCIT PAH, mom 34, evin. 4, 2022 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022

DOI: 10.15514/ISPRAS-2022-34(4)-1

Case study: Source code static analysis for
performance issues detection

'A.Y. Gerasimov, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
' A.A. Kanakhin, ORCID: 0000-0000-0000-000 <kanakhin.alexey@huawei.com>
' P.A. Privalov, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 A.A. Zhukov, ORCID: 0000-0002-2788-4542 <andrey.zhukov@huawei-partners.com>
2E.A. Kaminsky, ORCID: 0000-0002-5040-0999 <evgeny.kaminskyl@huawei-partners.com>

! Chong-Ming Software and Technology Center, Huawei Technologies Co. Ltd.,
17k2, Krylatskaya st., Moscow, Russia, 121614
2 Coleman Services,
Bld. 2, Shchipok st. 5/7, Moscow, Russia, 155054

Abstract. Source code static analysis is widely used for program errors detection. Mostly it is used for finding
critical issues like security vulnerabilities, critical program defects leading to runtime errors like crash and
unexpected behavior of programs. Many SCSA tools are used for checking code conformance to different
coding style guides. In this case study we present results of applying SCSA techniques for checking
performance coding rules of Huawei and evaluate whether manually fixing found issues in accordance with the
guidelines could impact performance, or if the compiler already applies all necessary optimizations during
compilation.

Keywords: source code static analysis; program performance; compilers

For citation: Gerasimov A.Y ., Kanakhin A.A., Privalov P.A., Zhukov A.A., Kaminsky E.A. Case study: source
code static analysis for performance issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022.
pp- 7-20. DOLI: 10.15514/ISPRAS-2022-34(4)-1

Acknowledgements. This paper presents a work of the team. Authors has done a contribution to the paper, but
Cooddy development team responsible for engine and checkers implementation and ideas and code review
should be pointed out: Pavel Mezhuev, Aleksey Demidov, Veronika Butkevich, Natalya Chernova, Damir
Gimatdinov.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

I'IpumeHeHue cTaTn4yeckKoro aHanum3a UcxoaHoro Koga Ansa noucka
np06neM C Npon3BoAuUTENIbHOCTbLIO: NPpUMepPbl U3 NMPaKTUKAN

Y A.10. I'epacumos, ORCID: 0000-0001-9964-5850 <gerasimov.alexander@huawei.com>
' 4.A. Kanaxun, ORCID: 0000-0001-9800-2722 <kanakhin.alexey@huawei.com>
VIT.A. Ilpusanos, ORCID: 0000-0002-8939-5824 <petr.privalov@huawei.com>
2 A.A. XKyxos, ORCID: 0000-0002-2788-4542 <andrey.zhukov@huawei-partners.com>
2 E.A. Kamunckuti, ORCID: 0000-0002-5040-0999 <evgeny.kaminskyl@huawei-partners.com>

1000 "Texxomnanus Xyaesi",
Poccusa, 121614, Mockea, yn. Kpvinamckas 17k2
2 Coleman Services,
Poccus, 155054, Mocksa, yn. [L{unox 5/7, cmp. 2

Annoranus. CTaTHUeCcKHi aHaIU3 HCXOAHOTO KOAA MPOTPaMM HIMPOKO HCIONB3YeTCs I OOHapyKeHHS
ommnboK. B 0CHOBHOM OH HCIIOJIB3yeTCs! JUIsl OOHAPYKEHHUST KPHTHICCKUX HEJOCTATKOB IPOIPaMM, TAKHX KaK
YS3BHMOCTH 0€30II1aCHOCTH, KPHTHYECKHX OMIMOOK BPEMEHH UCIIOJIHEHHS, TAKHX KaK pa3pyIICHHE IPOrPaMMBbI
1 HEOXHJIaHHOE MOoBeAeHHe. MHOrHe HHCTPYMEHTHI CTaTUYECKOro aHalu3a KoJa IPOrpaMM HCIIONb3yIOTCS
JUIs MPOBEPKH KOJa MPOTPaMM Ha COOTBETCTBHE NPaBUIIaM KOIUPOBaHHA. B 3Toli paboTe MBI mpescTaBisieM
PE3ynbpTaThl IPUMEHCHUA TEXHUK aHaJM3a KoJa NporpaMmm s 06Hapy)KeHm[OLIHOOK IMIPOU3BOAUTEIIBHOCTH
U3 PYKOBOJCTBA IO IPOrPaMMHPOBAHHIO IIPOU3BOJMUTENBHBIX IIporpamMM KoMmnanuu Huawei u pe3ynbraThl
MPOBEPKH, BIUSCT JIU HCIpPaBICHUE IPOrpaMMbl B COOTBETCTBHHU C STHMH IIPAaBUIIAMH Ha Pe3yIbTUPYIOILYIO
MPOU3BOAUTECIIBHOCTE INIPOrpaMM, HWIUM KOMIIMJIATOP B COCTOAHUHW aABTOMATUYECKH OINTHUMHU3UPOBATH
porpaMmy.

KimroueBble c10Ba: CTaTHUECKUI aHAIH3 HCXOAHOTO KOJa; MPOU3BOAUTEIIBHOCTD IIPOTrPaMM; KOMIIUIIATOPHL

Jas uutupoBanus: ['epacumoB A.1O., Kanaxun A.A., Ilpusanos IL.A., XKykoB A.A., Kamunckuii E.A.
IIpuMeHeHne CTaTHYECKOrO aHAIM3a HMCXOJHOIO KOJa Il IIOMCKA IPOOIeM C IPOM3BOAUTEIBHOCTHIO:
npumeps! 13 npakTuku. Tpyast UCIT PAH, Tom 34, Bein. 4, 2022 1., ctp. 7-20. 10.15514/ISPRAS-2022-34(4)-
1

BaarogapuocTH: DTa CTaThs IPEACTaBISICT PE3yNIbTaT PadOThl KOMAHIB! HCCleJOBaTeNleld. ABTOPBI CTaTbU
BHECIH OCHOBHOH BKIam B e HalUCaHHE, HO TAaKkKe JOIDKEH YYHTBHIBATHCS BKJIAJA YYACTHHKOB KOMAHIBI
HCCIIEN0BaHMI U pa3pabOTKU B CO3AaHME spa M aHanu3atopoB uHcTpymeHta Cooddy, MHCHEKuuio Koga u
uyiei, MOJIOXKEHHBIX B OCHOBY peanu3aly MHCTpyMeHTa: [laBna Mexyesa, Anekces: [lemunoBa, Beponuku
Byrkesuu, Haranen Yepnosoii u lamupa ['umataunoBa.

1. Introduction

Programming languages like C and C++ are commonly used in performance-critical applications.
Both of them are compiled languages—they pass through a compilation and an optimization step
before being assembled into an executable binary. Early on, compilers were not proficient enough
to optimize some code constructs like double checks and repeated calculations. To account for this,
various coding guidelines placed the burden of this optimization on programmers, which sometimes
affected code readability. Today, compiler optimization capabilities are much wider because of the
evolution of their optimization algorithms and an increased performance budget for compilation. As
an example, GCC, which is the most widely used C++ compiler at the time of writing, provides over
100 distinct optimization flags [1-3].

In spite of the advancements in automatic optimization, there are still cases where manual
optimization is required to achieve maximum performance. In this paper, we demonstrate our
program for automatic source code analysis capable of diagnosing for many of the rules from various
coding guides, especially Huawei coding guidelines. Our research goal is to evaluate whether
changing source code in accordance with analysis results could visibly impact performance on a

8

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

computation-heavy open source project. This evaluation takes into account that optimizations made
by a modern compiler do not need to be manually implemented by the developer, and an additional
goal is to review each category of issues and find out whether it is already optimizable by the
compiler. As our compiler of choice we selected GCC over other compilers because it is the most
widely used inside the industry.

2. Experiment

As our target for analysis we wanted to choose a C++-based, open-source, command-line application
which performs a lot of calculations. Firstly, an application with a command-line interface and no
graphical user interface would be easy to analyze and measure performance of. Secondly, an
application performing a lot of calculations (as opposed to spending most of the time waiting for
user input, sending/answering web requests, etc.) could be significantly optimized by changing the
source code to reduce redundant data copies, redundant loop calculations, cache misses and other
time sinks under programmer's control.

After some consideration we settled on a project called “Yosys”, a framework for Verilog RTL
synthesis (i.e. synthesis of a logic circuit based on some specification of how such a circuit should
operate; such specification is written at the register transfer level (RTL)) [4]. In addition to the
requirements outlined above, we chose "Yosys" due to a high number of detected issues by our
application.

Although 5210 issues were found, most of these were not worth analyzing in detail, either because
they were caused by a common problem or because they were obvious false positives (FPs). After
an initial filtering we narrowed the amount of interesting issues down to 1845. For review we have
split found issues into categories based on the kind of problem they describe. Each category was
assessed separately to determine whether the detected issue affects performance in a meaningful
way, and if so, if it is optimized by the compiler. For comparing source code, as compiled into
assembler, we used “Compiler Explorer”, a widely used web tool for inspecting results of
compilation [5]. Unless specified otherwise, all ASM examples are compiled with GCC 12.1, with
-02 optimizations.

3. Results

When describing results, each section is titled after a particular class of issue, with our internal detect
class name in parenthesis for later reference.

3.1 Replace multiple if-else statements with a switch statement
(RedundantMultiplelfEIseChecker)

The guideline states that a tree of if-else conditions should be replaced with a switch statement where
possible.

A switch statement is syntactically simpler than an equivalent if-else tree. First, using a switch
ensures that each branch is taken based on an equality comparison with the same value or expression.
Secondly, case values in a switch are required to be constant expressions (known at compile time),
which further simplifies the optimization job for the compiler. Indeed, compilers do optimize
switches better than if-else trees [6].

Project analysis found 36 defects of this type, with 100% TP rate. Unfortunately, none of the defects
were located on performance-critical code paths, so fixing them will not improve application
performance.

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

3.2 Replace access to a few arrays with the same index to one array of
structs (RedundantCacheAccessChecker)

Defines the proximity of data accessed at the same time to improve data access. The idea is to put
data in the same cache line and basic purpose is to find the cases where 2 or more arrays accessed
with same indexes.

Specifically, it may be considered that, in the data structure, a data field that is frequently accessed
is defined before, and a data field that is seldom accessed is defined after. In this way, most accesses
need to be processed only once by loading the cache; otherwise, multiple times of loading are
required. The idea is to encapsulate the field assignment in the extracted hotspot structure to ensure
that the non-hotspot fields are assigned values at the same time to avoid omission.

The main FP sources are:

e Detect on very small arrays like 2-32 elements which fully fits in cache and have aggressive
random access in cycle. In addition to caching, often such an array is used as a way to address
variables by indexes instead of by names (for example a common use-case is to store X and Y
coordinates as an array of two elements). Other times an array is simply a source of constant
data which is likely to be optimized away completely.

e Values read from different arrays is not synchronized by index, and grouping items by
structure in one array will have negative effect in performance.

Only 4 cases appear to be true positive, others cases fall into one of FP categories described above,
which make it just ~2.5% TP rate.

3.3 Reorder condition sub-expressions to avoid redundant heavy-weight
calculations (WeightingConditionChecker)

This checker leverages the short-circuit evaluation principle, implemented in C and C++. Short-
circuit evaluation guarantees that the right-hand operand of built-in && (logical AND) and | |
(logical OR) operands will not be evaluated if evaluation of the left-hand operand already
determined expression result. This means that a programmer can reorder operands in if conditions
so that more expensive to compute operands appear last, which will yield an increase in performance
in cases where these operands are never evaluated.

The heuristic by which the approximate cost of an operator is determined is as follows. Each operand
has a "cost" value, determined by the most expensive operation performed (fig. 1).

Cost | Operation
1 Literal expression
2 Variable access expression
3 Conditional expression
4 Call expression

Fig. 1. Weighting condition checker operation cost

Operands are sorted by their cost, with lower cost operands being placed first. Care is taken to avoid
reordering operands which share variables, to avoid cases like reordering nullptr checks and
pointer dereferencing. Sadly, no similar algorithm exists for preventing reordering function calls
with side effects which affect each other.

Checker could be especially useful in cases where a condition with many operands is inside a loop.
Analysis of Yosys found 138 defects, with 87 of them being true positives (63% TP rate). The main
sources of false positives (51 cases) are short functions inlined by the compiler. Function calls have

10

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

a cost of 4, yet the real operation inside is often much cheaper. Reordering such conditions will have
no effect or sometimes an opposite effect.

82 cases contain external functions which made these cases difficult to analyze and optimize. Due
to branch predictor and speculative execution such optimizations generally will have no effect.
Other cases do not lie on critical execution paths, and fixing them requires deep knowledge of the
project to know with certainty that reordering conditions will produce no undesired side-effects.

3.4 Avoid redundant heap allocations (RedundantHeapAllocChecker)

The rule states that one should avoid redundant heap allocations, i.e. situations where neither manual
lifetime management, nor big memory blocks are required. Frequent memory allocation and
deallocation can be a serious performance issue. In some cases, a better approach might be to re-use
a block of memory allocated once.

Analysis produced 67 defects, with 6 of them being true positives (9% TP rate). The main FP sources
are:

e Pointer leaves the scope of the function where memory is allocated, i.e. manual memory
management is, in fact, required (33/67 = 49% of all cases);

e There are common recommendations not to allocate more than 16KB per function on the stack
and use heap allocation instead. Our tool uses a limit of 4KB. There are cases where allocated
size is constant and greater than 4KB, which can be considered a FP (12/67 = 18% of all
cases);

e (Cases where we cannot assume the allocated memory size is FP due to insufficient knowledge
of the code. (16/67 = 24% of all cases).

True positive cases that we decided not to fix:

e Issues in non-performance critical code, mostly used for debugging and error messaging
functions;

e Console output of statistics;

e File output dump functions;

e Dead code (functions not used by the application);
e Lookup of libraries and files by path;

e One case where a 20-byte structure was allocated on heap and was freed at the end of the
function. But the defect is not on any performance critical path and has no measurable
performance impact.

3.5 Avoid double checking the same value (DoubleCheckChecker)

The rule states that if a pointer validity check is performed at some point in the code and enters a
“safe code block”, any subsequent checks within the safe code block are redundant. For safety and
security reasons, SEI CERT C Coding Standard [7] recommends that any called function validate
its parameters.
Influence of the multiple null checks on performance is questionable for two reasons. First, if both
checks are visible by the compiler, it will optimize the latter check during global common
subexpression elimination (available in GCC under the - fgcse flag). Additionally, if the check is
not removed for whatever reason, branch prediction will minimize the second branch to a no-op.
There are, however, several older methods of branch prediction that can create situations where an
incorrect branch is taken [8]. Static prediction is the simplest branch prediction technique because it
does not rely on information about the dynamic history of code executing. Instead, it predicts the
11

outcome of a branch based solely on the branch instruction. With static prediction all decisions are
made at compile time, before the execution of the program. The early implementations of SPARC
[9] and MIPS [10] always predict that a conditional jump will not be taken, so they always fetch the
next sequential instruction. And this is probably even source of recommendation to handle
exceptional cases inside if with return. A more advanced form of static prediction presumes that
backward branches will be taken and that forward branches will not. A backward branch is one that
has a target address that is lower than its own address.

GCCuses -fdelete-null-pointer-checks flag (commonly enabled under -02) to enable
global dataflow analysis that eliminates useless checks for null pointers. The optimization algorithm
assumes that a nullptr can never be dereferenced, since dereferencing it would lead to undefined
behavior under C++ Standard, and a trap in most real-world cases. This means that if a pointer has
already been dereferenced, any later checks for nullptr can be discarded.

These optimizations make found issues irrelevant. However, such a rule can still be useful with very
old versions of compiler or some specific architectures where the optimization passes like the ones
described above are not available.

3.6 Avoid redundant memory zeroing (RedundantZeroMemoryChecker)

The rule states that redundant calls to memset, such as after allocating memory with calloc,
should be avoided. The memory operation functions memset /memset s involve system calls
and have a relatively high overhead. If the memory is used to store a string, you can avoid zeroing
the entire block, since the "\0' terminator prevents reading the unused tail.

Analysis found 7 defects. We classified 3 cases as FPs. These cases had no efficient fix—a zero-
initialized structure, with some fields being individually initialized afterwards, was not possible to
optimize.

Other 4 cases had a similar structure: a call to calloc followed by a call to memset.

Source GCC 6.1 GCC4.1.2
struct SomeStruct { Create() : Create() :
float a; mov esi, 64 sub $rsp, 8
double b; mov edi, 1 mov %$edi, 1
char* c; jmp calloc mov %esi, 64
int d[10]; call calloc
}i cld
mov $rdx, %rax
mov %ecx, 8
SomeStruct* Create () { XOor %$eax, %eax
SomeStruct* s; mov $rdi, $rdx
s = rep stosqg
(SomeStruct*)calloc (1, mov $rax, %$rdx
add $rsp, 8
sizeof (SomeStruct)) ; ret
memset (s, 0,
sizeof (SomeStruct)) ;
return s;
}

Fig. 2. Optimization of memory zeroing under different versions of GCC

Additionally, this code is well optimized by a modern compiler, and only an old version of GCC
4.1.2 do not (fig. 2).

12

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

3.7 Avoid passing function arguments by value
(RedundantArgCopyChecker)

This class of issues stems from a syntax feature of the C and C++ languages: when passing an
argument to a function, the default operation is to take a copy of the passed value. This can cause a
performance issue when big structures are copied by accident.

There are two alternatives to pass-by-copy. In C, one can modify the function signature to take a
pointer (or const pointer if the value is not meant to be modified), and take an address of a value
when passing it to the function. In C++, a more streamlined option is to pass a reference or const
reference, which does not require changing the caller code and also disallows null values.

Of course, both of these methods involve pointer indirection, which can introduce a pessimization
into the callee code. Most codestyle rules recommend passing values by copy only when they are
small enough to be copied in registers. Our research found that 16 bytes is the maximum structure
size which can be safely like this (fig. 3).

12 bytes structure
foo():
sub rsp, 24
lea rdi, [rsp+4]
call T::T()
mov rdi, QWORD PTR [rsp+4]
mov esi, DWORD PTR [rsp+12]
call bar (T)
add rsp, 24
ret
16 bytes structure
foo():
sub rsp, 24
mov rdi, rsp
call T::T()
mov rdi, QWORD PTR [rsp]
mov rsi, QWORD PTR [rsp+8]
call bar (T)
add rsp, 24
ret
20 bytes structure
foo():
sub rsp, 40
mov rdi, rsp
call T::T()
sub rsp, 32
movdga xmm0O0, XMMWORD PTR [rsp+32]
mov eax, DWORD PTR [rsp+48]
movups XMMWORD PTR [rspl, xmmO
mov DWORD PTR [rsp+16], eax
call bar (T)
add rsp, 72
ret

Fig. 3. Assembly generated from function foo, which creates structure of specified size and passes that
structure to function bar by value

13

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

Our analysis found only a single issue, where a structure of 32 bytes was copied when passed into a
print function. Since the cost of printing greatly outweighs the cost of pushing values on the stack,
we consider this case not performance critical.

3.8 Avoid using RTTI (RttiChecker)

RTTI (Run-Time Type Information) is a special mechanism in the C++ language which allows the
user to retrieve type information at runtime (mainly the type name), as well as traverse inheritance
trees [11, sect. 17.8]. This is the mechanism behind features like typeid and dynamic_cast.
This language feature, along with exceptions, has long been a polarizing discussion point [12, sect.
C.146], and a notorious breaker of the “zero-overhead abstraction” rule [13], since for polymorphic
classes type information now needs to be stored alongside the value, regardless of whether
dynamic_cast is actually used or not. For this reason, RTTI is disabled in many high-
performance projects [14], and the rule to disable RTTI via compiler flags is present in many C++
style guides [15, 16].

To explain the options a programmer has when avoiding RTTI, let us conduct a one-paragraph
review of different kinds of polymorphism. Dynamic polymorphism, the very same that is being
used by virtual inheritance in C++, is the practice of using dynamic method dispatch when calling
methods of polymorphic objects. Dynamic method dispatch is called dynamic since the work of
selecting an appropriate derived method happens at runtime (using what in essence is just pointers
to functions) [17]. This approach does not restrict the amount of derived classes that can be created
and allows derived classes to be declared in separate translation units. This means that the C++
virtual polymorphism model is openly extensible without modifying the base class, and so it is an
example of open type set polymorphism (referred to later as simply open polymorphism). A polar
opposite to open polymorphism is closed polymorphism, where no extension of the class hierarchy
is allowed. An example of closed polymorphism is the variant data type; a variable of such type is a
wrapper around one of N types specified during declaration [18, p.24]. Of course, to call variant
types polymorphic we also need to implement method dispatch, and here, since we know all types
in advance, we can avoid using runtime pointer indirection and just create a branch structure, which
checks which type is stored inside and call its appropriate method. This logic is generated statically,
and so variant-based polymorphism is an example of static polymorphism.

A general recommendation of the C++ community when replacing RTTI with other mechanisms is
to implement static, closed polymorphism, as opposed to dynamic, open polymorphism that virtual
methods and inheritance represent [19, p. 18][18, p. 80].

3.9 Other rules

Analysis was also performed on several other rules. Most of these deserve only a passing mention,
since all detects generated by them were optimized by the compiler.
These additional rules were:

e Avoid repeated variable initialization (RedundantlnitializationChecker);
e Avoid complex calculations inside the loop condition (RedundantLoopCondCalcChecker);

e Avoid repeated nested dereferencing, such as nested member variable access via a chain of
pointers (RedundantAddressCalculationChecker);

e Do not mark global variables as volatile (RedundantVolatileGlobalVarChecker). Detects from
this rule were not optimized, but it was impossible to determine accurately whether they were
TP or FP without deep knowledge of the code.

14

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

4. Related Works

4.1 Proprietary tools

PVS-Studio, trial version is used [20].
PVS-Studio has 35 rules on performance optimization in C++. 12 of them intersected with the rules
detected by Cooddy.

After running this tool on Yosys we found 128 warnings, detected by 10 rules. 81 of these warnings
are true positive (FP rate of 37%). The only warning that was common with Cooddy was the one
from RedundantArgCopyChecker.

4.2 Open source projects

CppCheck has 11 performance checkers that apply to CWE398, CWE597, CWE628, CWE704.
Most of them are related to std::string. No rules are common with Cooddy checkers [21].

4.3 Non-commercial article-based tools

CARAMEL is a novel static technique that detects and fixes performance bugs that have non-
intrusive fixes likely to be adopted by developers. Each performance bug detected by CARAMEL
is associated with a loop and a condition. When the condition becomes "true" during the loop
execution, all the remaining computation performed by the loop is wasted. CARAMEL analyses
C/C++/Java applications [22].

Other tools are Toddler [23], Clarity [24], LDoctor [25].

5. Conclusion

We can split the code guidelines we reviewed into 4 main categories: valid and useful rules, outdated
rules, rules that can be implemented in SCSA but were not possible to be properly evaluated using
our method and software, and finally rules that cannot be implemented in SCSA at all.

5.1 Useful rules

Out of the rules reviewed RedundantArgCopyChecker is the only one we consider useful when
working on a modern architecture and with a modern compiler. Although we did not find many
issues on the “Yosys” project, it’s likely because on any project with significant attention such issues
are quickly fixed when on performance-critical paths. SCSA can be used during development to
more quickly spot such issues.

5.2 Outdated rules

Rules in this category are outdated in the sense that they are no longer a programmer’s burden—
today’s compiler technology is advanced enough that all of the possible performance issues are
optimized away. The checkers in this category are:

e RedundantMultiplelfElseChecker;

e DoubleCheckChecker;

e RedundantlnitializationChecker;

e RedundantLoopCondCalcChecker;

e RedundantAddressCalculationChecker;
e RedundantZeroMemoryChecker.

15

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

5.3 Poor method

These issues are useful and it is possible to gain performance by fixing them, but the current
implementation in our SCSA tool is not advanced enough to evaluate their impact properly. These
issue categories are:

e RedundantCacheAccessChecker, due to a high number of false positives;

e WeightingConditionChecker, because in its current implementation it does not consider inlined
functions and functions with side-effects when reordering conditional operands;

e RedundantHeapAllocChecker, due to a high number of false positives, mainly when pointers to
allocated memory leave the function scope.

5.4 Not implementable in automatic SCSA

We consider two checkers unimplementable in SCSA engines in general:
RedundantVolatileGlobalVarChecker and RttiChecker.

RedundantVolatileGlobalVarChecker is essentially a “code knowledge” rule. The reason for its
existence is due to a very broad misuse of the volatile keyword as an erroneous way to create atomic
variables [26; 27, sect. 5.1.2.3 para.2; 12, section CP.8]. The volatile keyword should only be used
in very specific circumstances, and in these circumstances its necessity is a fact hidden from the
compiler and known only by the programmer.

RttiChecker is not possible to implement properly because even in cases when no code uses any
functionality dependent on RTTI, a compiler does not know whether the source files are compiled
into an object file are linked to an object file with RTTI enabled. Some compilers do not support
linking object files in such a way [28].

5.5 Final observations

The analysis performed shows that more often than not, compiler technology covers the common
issues with the source code and allows the programmer to write code for readability and simplicity
as a first priority. Additionally, automatic SCSA could be of use when configured to exclude classes
of issues that are no longer relevant in a modern environment. Cooddy in particular was often not
able to properly filter out false positives, but the approach in general is viable and further research
is ought to improve Cooddy’s ability to cover issues still affecting today’s code. On the other hand
there are some specific architectures which has no branch prediction module or sophisticated
memory management units. In this case checking performance coding rules has a sense and SCSA
can be helpful.

References

[1] GCC, the GNU Compiler Collection. Available at:
https://web.archive.org/web/20220913154847/http://gcc.gnu.org/, accessed 2022-09-13.

[2] The State of Developer Ecosystem 2021: C++. Available at:
https://web.archive.org/web/20220609172327/https://www jetbrains.com/lp/devecosystem-2021/cpp/,
accessed 2022-06-09.

[3] GCC: Options That Control Optimization. Available at:
https://web.archive.org/web/20220910030424/https://gcc.gnu.org/onlinedocs/gee/Optimize-
Options.html, accessed 2022-09-10.

[4] Yosys Open SYnthesis Suite. Available at: https://github.com/YosysHQ/yosys, accessed 2022-09-10.

[5] Compiler Explorer. Available at: https://godbolt.org/

[6] V. Lazarenko. From Switch Statement Down to Machine Code. Available at:
https://web.archive.org/web/20220313040503/http://lazarenko.me/switch/, accessed 2022-03-13.

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

A.Y. Gerasimov, A.A. Kanakhin, P.A. Privalov, A.A. Zhukov, E.A. Kaminsky. Case study: source code static analysis for performance
issues detection. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 4, 2022. pp. 7-20

[7] SEI CERT C Coding standard. API00-C. Functions should validate their parameters. Available at:
https://wiki.sei.cmu.edu/confluence/display/c/AP100-C.+Functions+should+validate+their+parameters,
accessed 2022-03-13.

[8] J.E. Smith. A study of branch prediction strategies. In Proc. of the 8th Annual Symposium on Computer
Architecture, 1981, pp. 135-148.

[9]1 SPARC International. Available at: https://sparc.org/, accessed 2022-03-13.

[10] D. Patterson. Computer Organization and Design, Fifth Edition. Morgan Kaufmann, 2013, 800 p.

[11] ISO/IEC N4860 — Programming Language C++. [Working draft]. Available at:
https://web.archive.org/web/20220901051849/https://isocpp.org/files/papers/N4860.pdf, accessed 2022-
09-01.

[12] C++ Core Guidelines. Available at:
https://web.archive.org/web/20220913102723/https://isocpp.github.io/CppCoreGuidelines/CppCoreGuid
elines, accessed 2022-09-13.

[13] B. Stroustrup. Foundations of C++. Lecture Notes in Computer Science, vol. 7211, 2013, pp. 1-25.

[14] Electronic Arts Standard Template Library. Available at:
https://github.com/electronicarts/EASTL/blob/master/doc/F AQ.md#infol 1-what-c-language-features-
does-eastl-use-eg-virtual-functions, accessed 2022-09-01.

[15] Google C++ Style Guide. Available at: https://google.github.io/styleguide/cppguide.html#Run-
Time Type_Information RTTI , accessed 2022-09-01.

[16]LLVM Coding Standards. Available at: https:/llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-
exceptions, accessed 2022-09-01.

[17]S. Milton, H.W. Schmidt. Dynamic Dispatch in Object-Oriented Languages. Australian National
University, TR-CS-94-02, 1994.

[18] J.R. Bandela. Polymorphism != Virtual. Flexible Runtime Polymorphysm wihtout Inheritance. In the
CppCon 2019 Presentation Materials, 2019, available at:
https://github.com/CppCon/CppCon2019/blob/master/Presentations/polymorphism__virtual/polymorphis
m__virtual _john bandela_ cppcon_2019.pdf, accessed 2022-09-01.

[19] L. Dionne. Runtime polymorphism: back to the basics. In the CppCon 2017 Presentation Materials,
2017, available at:
https://github.com/CppCon/CppCon2017/blob/master/Presentations/Runtime%20Polymorphism%20-
%20Back%20t0%20the%?20Basics/Runtime%20Polymorphism%20-
%20Back%20t0%20the%20Basics%20-%20Louis%20Dionne%20-%20CppCon%202017.pdf, accessed
2022-09-01.

[20] PVS-Studio. Available at: https://pvs-studio.com/en/docs/warnings/#MicroOptimizationsCPP, accessed
2022-09-01.

[21] CPPCheck. Available at: https://github.com/danmar/cppcheck, accessed 2022-09-01.

[22] A. Nistor, P-C. Chang et al. Caramel: detecting and fixing performance problems that have non-intrusive
fixes. In Proc. of the 37th International Conference on Software Engineering, vol. 1, 2015, pp. 902-912

[23] A. Nistor, L. Song et al. Toddler: Detecting Performance Problems via Similar Memory-Access Patters.
In Proc. of the 35th International Conference on Software Engineering (ICSE), 2013, pp. 562-571.

[24] O. Olivio, 1. Dilling, C. Lin. Static detection of asymptotic performance bugs in collection traversals. In
Proc. of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 2016,
pp. 369-378.

[25]L. Song, S. Lu. Performance Diagnostics for Inefficient Loops. In Proc. of the IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), 2017, pp. 370-380.

[26] SEI CERT C Coding Standard. 3 Recommendations. Rec. 14. Concurrency (CON). CON02-C. Do not
use volatile as a synchronization primitive. Available at:
https://web.archive.org/web/20220916130555/https://wiki.sei.cmu.edu/confluence/display/c/CON02-
C.+Do+not+use+volatilet+as+a+synchronization+primitive, accessed 2022-09-16.

[27] ISO International Standard ISO/IEC 9899:201x — Programming Language C. [Working draft]. Geneva,
Switzerland: International Organization for Standardization (ISO). Available at:
https://web.archive.org/web/20220831233111/https://www.open-
std.org/jtc1/sc22/wgl4/www/docs/n1570.pdf, accessed 2022-08-31.

17

[28] XL C/C++ for Linux: -qrtti, -fno-rtti. Available at:
https://web.archive.org/web/20220916134348/https://www.ibm.com/docs/en/x1-c-and-cpp-
linux/13.1.1?topic=descriptions-qrtti-fno-rtti-qnortti-only, accessed 2022-09-16.

UHdopmauusa o6 aBTopax / Information about authors

Anekcannp OpweBru 'EPACUMOB — kanaunat Gu3uko-MaTeMaTHYeCKUX HayK, PyKOBOJIHUTEINb
TPYNIIBl aHaJW3a TNporpaMM B MOCKOBCKOM HCCIIEIOBATENbECKOM IeHTpe Poccuiickoro
HCCIIeIOBATeNIbCKOTO HMHCTHTYTa KoMmmanuu Huawei ¢ 2020. Cdepa HaydyHBIX HHTEPECOB:
ABTOMATUYECKHH aHalIu3 TporpamMM, OOECHEeYCHHWE KadyecTBa MNpPOrpaMM, KOMIHJISITOPHBIS
TEXHOJIOTUH, IUKJI pa3paboTku Ge3omacHoro I10.

Alexander Yurievich GERASIMOV — Doctor of Philosophy in Computer Sciences, Head of the
Program Analysis team of Moscow Research Center of Russian Research Institute of Huawei
Company from 2020. Research interests: automatic program analysis, quality assurance, compiler
construction technologies, secure software development cycle.

Anekceit Anexceenu KAHAXWH - kangumat (u3MKo-MareMaTHUECKHX HAyK, BTy
HIKEHep-uccireioBaTelb B MOCKOBCKOM — HCCIIEIOBATENBCKOM — IeHTpe Poccuiickoro
HCCIIEIOBATENILCKOr0 MHCTUTYTa KoMmannd Huawei ¢ 2019 1. Cdepa HaydHBIX HHTEPECOB:
BBICOKOIIPOM3BOJUTEIbHBIE BBIYUCICHHSA, AapXHTEKTYpa KOMIIBIOTEpAa, OTKa30yCTOHYHUBOCTH
KOMITBIOTEPHBIX CHCTEM, aBTOMAaTHUYECKUI aHAIIM3 IPOTPaMM.

Alexey Alexeyevich KANAKHIN — Doctor of Philosophy in Physics of Semiconductors, Senior
Research Engineer in Moscow Research Center of Russian Research Institute of Huawei Company
from 2019. Research interests: high-performance computing, computer architecture, fault-tolerant
computer systems, automatic program analysis.

Ietp Anexceesny [IPUBAJIOB — Maructp NpUKIagHOW MaTeMaTHKA W (DM3UKH, BETyLIHiH
WHKEHEep TPYINIbl aHallk3a MporpaMM B MOCKOBCKOM HCCIIEHOBATEIbCKOM IIeHTpe Poccuiickoro
HCCIIeIOBATeNIbCKOT0 HMHCTHTYTa Kommanuu Huawei ¢ 2020. Cdepa HaydyHBIX HHTEPECOB:
AaBTOMAaTHYECKUI aHamM3 mporpamM, oOecreyeHHe KadecTBa MPOrpaMM, KOMITHIISTOPHBIC
TEXHOJIOTUH, LUK pa3paboTkm Oe3omacHoro IIO, apXuTekTypa IporpaMM, MHOTOIIOTOYHBIC
QIITOPHUTMBL

Petr Alekseevich PRIVALOV — Master of Science in applied mathematics and physics, Senior
Software Engineer at the Program Analysis team of Moscow Research Center of Russian Research
Institute of Huawei Company from 2020. Research interests: automatic program analysis, quality
assurance, compiler construction technologies, secure software development cycle, program
architecture and design, multithread algorithms.

Aunpeit Anekcanaposny JKYKOB — wMaructp mo crmenuanbHOCTH —"HHGOpPMATHKA U
BBIYHCITUTENIbHAS TEXHUKA", COTPYAHHK TpPYNIbl aHajiW3a MporpaMM B MOCKOBCKOM
HCCIIEI0BATEIBCKOM IIeHTpe Poccuiickoro mccinenoBaTenbckoro HHCTUTYTa KoMranni Huawei ¢
2022. Cdepa Hay4IHBIX HHTEPECOB: ABTOMATHYECKMH aHAJIU3 MPOrpaMM, KOMITHJISATOPHBIC
TEXHOJIOTUH, METaIIPOr pAMMHUPOBAHUE, APXUTEKTYPa IIPOrPAMMHOTO 00ECTICUCHHSL.

Andrey Alexandrovich ZHUKOV — Master of Science in information and computation systems,
member of the Program Analysis team of Moscow Research Center of Russian Research Institute
of Huawei Company from 2022. Research interests: automatic program analysis, compiler
technology, metaprogramming, software architecture.

Esrenuii Apkagsesnds KAMUHCKUI — crapmmit pa3paGoTunk B KOMaH/Ie aHAIK3a IPOrPaMM B
MOCKOBCKOM ~ HCCIEOBATeIbCKOM IIEHTpe Poccuiickoro HccienoBaTeNnbCKOro HHCTUTYTa
kommanun Huawei ¢ 2022. Cdepa HaydHBIX HHTEpPECOB: aBTOMATHYECKHI aHAIN3 MPOrPaMM,

18

T'epacumon A 10., Kanaxun A.A., ITpuanos IT.A., XKykos A.A., Kamunckuii E.A. TIpuMeHeHre CTaTHUECKOTO aHAJIM3a HCXOIHOTO KOJa
JUIs IONCKA TIPo6JIeM ¢ mpon3BoanTenbHOCThI0: [Ipumepst 3 npaktuxu. Tpyost UCIT PAH, Tom 34, Beimn. 4, 2022 1., ctp. 7-20

obecrieueHne KauecTra nporpamMm, KOMITUJISATOPHBIC TEXHOJIOIMH, UK pa3pa60TKH 6e301MacHoro
I10.

Evgenii Arkadievich KAMINSKII — senior developer of the Program Analysis team of Moscow
Research Center of Russian Research Institute of Huawei Company from 2022. Research interests:
automatic program analysis, quality assurance, compiler construction technologies, secure software
development cycle.

19

