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Аннотация. В данной статей рассматривается новый подход к компиляции последовательных 
программ для их последующего выполнения на вычислительных системах с распределенной памятью. 
Предложенный подход был реализован в виде автоматически распараллеливающего компилятора для 
программ на языках Си и Фортран. Для описания параллелизма, обнаруженного в программе, 
используется директивная модель параллельного программирования DVMH. Таким образом, 
реализованный компилятор выполняет преобразование программ на уровне исходного кода, добавляя 
в них высокоуровневые спецификации параллелизма в терминах DVMH модели. Распараллеливание 
основано на анализе гнезд циклов программы, содержащих обращения к многомерным массивам, для 
которых большинство индексных выражений линейно зависит от индуктивных переменных циклов 
гнезда. Основной областью применения предложенного подхода являются программы научно-
технических расчетов, реализующие вычисления на структурированных сетках. В отличие от подходов 
к распараллеливанию программ, предложенных в других работах, наш подход охватывает решение всех 
трех основных задач, возникающих при распараллеливании для систем с распределенной памятью: 
распределение данных, распределение вычислений и оптимизация коммуникационных обменов между 
узлами вычислительной системы. Для оценки эффективности получаемых параллельных программ, мы 
использовали некоторых приложения из набора NAS Parallel Benchmarks. В статье приведены 
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результаты экспериментов, в которых были задействованы до 9 узлов вычислительного кластера, 
каждый из которых содержал два 8-ядерных процессора. 

Ключевые слова: компилятор; автоматическое распараллеливание; генерация кода; системы с 
распределенной памятью. 
Для цитирования: Катаев Н.А., Колганов А.С. Построение распределения данных и генерация кода 
при распараллеливании на гетерогенный вычислительный кластер. Труды ИСП РАН, том 34, вып. 4, 
2022 г., стр. 89-100. 10.15514/ISPRAS-2022-34(4)-7 

1. Introduction 
Most of current high performance computing (HPC) systems tend to be heterogeneous and may 
comprise diverse compute devices. However, from the prospective of obtaining greater processing 
power on the way to exascale computing, the common feature of these systems is the distributed 
memory allocation. Such systems consist of multiple compute nodes which are connected with a 
high performance interconnect and each node operates with its own data. The only way to distribute 
computations across different nodes is sending and receiving messages over the interconnect. 
Distributed memory drastically complicates parallel programming. The programmer has to take into 
account not only distribution of computation but also distribution of data and cost of data movement. 
To minimize communication overhead the programmer has to ensure data locality. Another goal is 
even data distribution in order to balance computations. 
Unlike incremental parallelization applicable for shared memory, distributed memory requires 
global decision making since individual parts of a program may impose conflicting requirements. 
These conflicts will ultimately lead to additional communications aimed at data redistribution. 
One of the parallel programming models, widely used to develop compute-intensive applications on 
distributed-memory clusters, is the Message Passing Interface (MPI). However, its low-level forces 
the programmer to manage distribution of data and computation manually, as well as 
communications. This means that parallelization for distributed memory even of a simple program 
can be very error-prone and time-consuming. Therefore, automation of parallel programming for 
distributed-memory systems becomes very much desirable. Especially while the complexity and size 
of systems is growing from year to year. 
In this paper, we propose a technique for automatic translation of sequential programs of scientific-
technical calculations to parallel ones suitable for execution on heterogeneous computational 
clusters. Our technique aims at parallel execution of structured grid computations and allows 
processing sequences of arbitrary nested loops with almost affine accesses.  
The problem of distributed memory parallelization requires a solution to three main sub-problems. 
An automation tool has to distribute data as well as computation and has to manage communications: 
typically accesses to remote data and data redistribution. The proposed technique overcomes all 
these problems. However, in the paper we pay the most attention to data distribution because yet we 
do not find any common solution to this sub-problem, which is suitable for large compute 
applications, in the current literature. 
We implemented our technique as an automatic parallelizing compiler which generates a parallel 
version of a sequential C or Fortran program with parallelism specifications expressed with DVMH 
[1][2] directive-base programming model. To extract properties of an original program which are 
necessary for its parallelization the compiler relies on static and dynamic analysis techniques. We 
also follow an implicit parallel programming methodology [3][4] which implies that the sequential 
program must be well-formed. Thus, a preliminary sequential program transformation may be 
helpful. The user may also assert some high-level program properties which are essential for 
parallelization. Nevertheless, automatic parallelization ensures that the programmer does not write 
parallel code directly. 
This paper makes the following contributions: 
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• a novel approach to automatic program parallelization for distributed memory systems which 
covers distribution of data and computations as well as access to remote data and data 
redistribution; 

• a parallelizing compiler for code generation which produces parallel versions of C and Fortran 
programs suitable for execution on heterogeneous computational clusters; 

• experimental evaluation of the presented approach on some programs from the NAS Parallel 
Benchmarks [5]. 

The rest of the paper is organized as follows. Section 2 presents our program execution model and 
proposes a solution to the problem of distributed memory parallelization focusing on the data 
distribution sub-problem. Section 3 summarizes implementation details and briefly describes 
frameworks that we used to analyze sequential programs and to implement code generation. Section 
4 provides experimental results. Section 5 discusses the related work and, finally, section 6 
concludes this paper. 

2. Distributed memory parallelization 

2.1 Execution model 
In this section, we highlight the main details of our abstract execution model representing a 
distributed memory system. 
Our parallelization technique aims at processing sequential programs with structured grid 
computations. Hence we assume that a distributed memory system is formed by a multidimensional 
grid of a virtual nodes and each node executes operations on a part of the computational grid. The 
owner-computes rule [6] is applied to determine a node to execute each assignment statement. Thus, 
each node has its own (i.e. local) data which are allocated in its own memory space, which is not 
visible to other nodes. It also may access remote data which are allocated on other nodes by sending 
and receiving messages over the interconnect. 
We also assume that the main source of parallelism is nested loops and that entire iteration of a loop 
can be executed by a single node only. These loops produce computations on multidimensional 
arrays which are the main source of data to be partitioned between virtual compute nodes. A data 
distribution rule divides array dimensions into almost equal blocks and implies that each node has 
its own sub-array with the same number of dimensions but of smaller sizes. 
If the number of dimensions of a grid of nodes is less than the number of array dimensions, some 
array dimensions are not partitioned. Otherwise, if the number of grid dimensions is greater than the 
number of array dimensions, some array dimensions are replicated between nodes. 
If we consider two arrays accessed in the same loop there is some kind of intuitive relation between 
elements of different arrays. To reduce the communication overhead, we have to distribute elements 
accessed at the same loop iteration to the same node. Thus, an alignment of an array 𝐴 with a 
distributed array 𝐵 is an accordance between an element of the array 𝐴 and an element or a sub-
array of the array 𝐵. This accordance aims to reduce the cost of data movement. To specify alignment 
we use affine expressions in a form 𝑎 ∗  𝑖 +  𝑏. Therefore, a distribution rule for the array 𝐵 defines 
the distribution rule for the array 𝐴, i.e. if an element 𝑖 of 𝐵 is allocated on a compute node, the 
corresponding element 𝑎 ∗  𝑖 +  𝑏 of 𝐴 is allocated on the same node. 
If there is no distribution or alignment rule for a variable, we replicate it between all compute nodes. 
The replicated variable must have the same value in each node except reduction and private 
variables. 
Different array accesses may produce different alignments, however, we choose only one of them 
to generate parallel version of a program. Other violated alignments lead to data movement. 
Moreover, non-affine alignments cannot be established and always lead to data movement. Our 
execution model supports two kinds of communications. Firstly, violated affine alignments allow us 
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to implement shadow edges [7]. For structured grid applications, it is useful to extend each sub-array 
with a shadow area to overlap with its neighbors. Shadow edges have to be updated only if their 
values have been altered on the owner node. Secondly, all other communications are implemented 
as an immediate access to remote data when corresponding data are required. 

2.2 Data Distribution 
In this section, we present our technique aimed to solve the data distribution sub-problem. This 
technique relies on a graph-based representation of an array alignment. We introduce a graph of 
arrays which depicts arrays accessed in loop nests. A vertex of the graph is a dimension of an array 
and an edge connects dimensions that should be aligned. Note that the alignment relation is 
transitive. Thus, two dimensions are aligned if there is a path between corresponding vertexes in a 
graph. 
A pair of array accesses in a loop produces edges in a graph. Coefficients in affine subscript 
expressions which calculate offset from the beginning of array dimensions are attached to the edge 
and allow us to infer alignment expression. Only affine subscript expressions, which depend on the 
same single counter of a loop, produce edges. Note, that values of distinct induction variables of the 
same loop can be computed through the loop counter. Therefore, corresponding subscript 
expressions also produce edges in a graph. 
If a pair of array accesses produces an edge in a graph, a kind and a weight of alignment are also 
attached to the edge. Three kinds of alignments are possible: 
• 𝑊𝑊 if both accesses write into memory, 
• 𝑊𝑅 if one of accesses writes into memory and another access reads from memory, 
• 𝑅𝑅 if both accesses read from memory. 
A weight of alignment equals to 𝐿𝑜𝑜𝑝௪  ∗  𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟௪. 𝑇𝑟𝑎𝑛𝑠𝑓𝑒௪ estimates a number of bytes to 
be send or received if the alignment is violated. Computation of 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟௪ is based on sizes of 
arrays which are known from static and dynamic analysis. 𝐿𝑜𝑜𝑝௪ estimates a corresponding loop 
weight and shows how often the loop is executed. Static and dynamic analysis techniques allow us 
to compute loop weights. If an edge with the same subscript coefficients and the same kind already 
exists in a graph its weight is updated. 
It is necessary to know a kind of alignment to compare different edges according to memory access 
types. A priority of 𝑊𝑊 edge is higher than a priority of 𝑊𝑅 edge which, in its turn, is higher than 
a priority of 𝑅𝑅. The owner-computes rule establishes this priority because it is forbidden to write 
to non-local memory. 
In the first step, loops in a sequential program are analyzed to determine all possible alignments 
which depend on array accesses at the same loop iteration. Procedure 𝑏𝑢𝑖𝑙𝑑𝐺𝑟𝑎𝑝ℎ, shown in Listing 
1, builds a corresponding graph of arrays. It calls the following procedures when necessary: 
• 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛ሺ𝐸𝑥𝑝𝑟ሻ to determine a dimension of an array which this subscript expression 

corresponds to, 
• 𝑘𝑖𝑛𝑑(𝐴𝑐𝑐ଵ,𝐴𝑐𝑐ଶ) to determine a kind of alignment which these array accesses produce, 
• 𝑎𝑟𝑟𝑎𝑦(𝐴𝑐𝑐) to determine a top level declaration of an accessed array, i.e. it analyzes a call 

graph and establishes correspondence between formal and actual parameters which have an 
array type. 

This procedure produces a graph of arrays which may be ambiguous or may have conflicting edges. 
Two cases are possible: 
• there is a cycle in a graph that implies two different affine expressions to specify an alignment 

of the same array dimension, 
• two different dimensions of an array are aligned on each other, i.e. two different dimensions of 
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the same array should be mapped to the same node.. 
procedure buildGraph 

  for 𝐿 ∈  𝐿𝑜𝑜𝑝𝑠 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 
      for 𝐴𝑐𝑐ଵ ∈ 𝐴𝑟𝑟𝑎𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝐿 
        for 𝐸𝑥𝑝𝑟ଵ ∈ 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑖𝑛 𝐴𝑐𝑐ଵ 
          if 𝐸𝑥𝑝𝑟ଵ 𝑖𝑠 𝑎ଵ ∗ 𝑖 + 𝑏ଵand 𝑖 𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑜𝑓 𝐿 
            for 𝐴𝑐𝑐ଶ ∈ 𝐴𝑟𝑟𝑎𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑖𝑛 𝐿 
              for 𝐸𝑥𝑝𝑟ଶ ∈ 𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑖𝑛 𝐴𝑐𝑐ଶ 
                if (𝐴𝑐𝑐ଵ ≠ 𝐴𝑐𝑐ଶ 𝑜𝑟 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝐸𝑥𝑝𝑟ଵ) ≠ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(𝐸𝑥𝑝𝑟ଶ)) and 
                     𝐸𝑥𝑝𝑟ଶ 𝑖𝑠 𝑎ଶ ∗ 𝑖 + 𝑏ଶ and 𝑖 𝑖𝑠 𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑜𝑓 𝐿 
                   Add vertexes 𝑉௔௥௥௔௬(஺௖௖భ)ௗ௜௠௘௡௦௜௢௡(ா௫௣௥భ), 𝑉௔௥௥௔௬(஺௖௖మ)ௗ௜௠௘௡௦௜௢௡(ா௫௣௥మ), if they do not exist. 

                   Add an edge 𝐸௔భ,௕భ,௔మ,௕మ௞௜௡ௗ(஺௖௖భ,஺௖௖మ) (𝑉௔௥௥௔௬(஺௖௖భ).ௗ௜௠௘௡௦௜௢௡(ா௫௣௥భ),𝑉௔௥௥௔௬(஺௖௖మ).ௗ௜௠௘௡௦௜௢௡(ா௫௣௥మ)), if it does not exist. 
                  Update weight of the edge.        

Listing 1. Algorithm to build a graph of arrays 
In the second step, an original graph of arrays is reduced to disambiguate these conflicts. The goal 
is to minimize total weight of edges to be removed from the graph. Fig. 1 shows a graph of arrays 
for a fragment of a source code in Listing 2.  
integer A(40,50), B(40,50) 
do i = 1, 30 
  z = A(i, 1) 
  do k = 5, 30 
    a(i, k) = b(i, k) + b(k, k) / z 
  enddo 
enddo 
do i = 1, 30 
  z = a(i, 2) 
  do k = 5, 30 
    a(i, k) = b(i, k + 1) + z 
  enddo 
enddo 

Listing 2. Example of a Fortran program which is used to build a graph of arrays in Fig. 1 
Different weight models can be used to calculate 𝑤ଵ, 𝑤ଶ, 𝑤ଷ, 𝑤ସ weights, so we do not specify exact 
weights in the example. Assuming 𝑤ଵ > 𝑤ଶ, 𝑤ଷ > 𝑤ଶ and 𝑤ଷ > 𝑤ସ, the solid lines determine a 
possible graph after all conflicts are disambiguated. 

 
Fig. 1. Graph of arrays for the program in Listing 1 

We adapted Prim's algorithm for finding a minimum spanning tree (MST). A minimum spanning 
tree is a subset of the edges of a connected edge-weighted undirected graph that connects all the 
vertices together. It has the minimum possible total edge weight and does not have cycles. If the 
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source graph is connected, then a spanning tree is built, but if there are several disconnected 
components in the source graph, then the result is a spanning forest. Our goal is to find the set of 
edges with the highest weight. Thus, we can use an algorithm similar to Prim's algorithm to find a 
maximum spanning tree, i.e. a tree which has the maximum possible total edge weight. 
To resolve conflicts of a second type, we add temporary edges between all different dimensions of 
the same array. A weight of these edges must be greater than the sum of all weights in the graph. 
Hence, these temporary edges are never removed and a spanning tree does not contain edges that 
imply alignment of two dimensions of the same array on each other. 
This algorithm has linear complexity depending on the number of vertices in the graph. However, 
the found solution is not always optimal, but the search of optimal solution has exponential 
complexity and it is not applicable in practice if the total number of dimensions of arrays in a 
program is significantly greater than 10. On the other hand, the algorithm for finding the maximum 
spanning tree has not only linear complexity but can be also performed in parallel, so it is applicable 
to any program with any number of arrays. 

3. Code generation 
We implemented our technique as automatic parallelizing Fortran and C compiler. We adapted the 
compiler from the System FOR Automated Parallelization (SAPFOR) [8], which is a software 
development suit that is focused on cost reduction of manual program parallelization, to implement 
our parallelization technique. To express parallelism specifications in a code the DVMH [1][2] 
directive-based programming model is used.  

2.3 The DVMH programming model 
DVMH was designed to create parallel programs of scientific technical calculations for 
heterogeneous computational clusters. This model provides the programmer with high-level 
specifications of parallelism. Thus, it introduces directives to specify data and computation 
distribution, to manage accesses to remote data and to highlight the computational regions which 
can be executed on accelerators and multiprocessors. 
We choose the DVMH model because it satisfies constraints which our execution model exposes. 
The DVMH languages allow us to generate distribution and alignment rules in a simple way, as well 
as to implement shadow edges and other accesses to remote data. Moreover, the DVMH compilers 
and run-time system implement various optimizations: data transformation at run-time to choose the 
right memory access pattern, dynamic CUDA handler compilation during the program run-time, 
parallel execution of loops with regular loop carried dependencies on GPU and others. Therefore, 
the presence of these optimizations significantly simplifies the implementation of the automatic 
compilers. 
Listing 3 shows the distribution (the distribute specification) and alignment (the align specification) 
rules for some arrays in the BT application from the NAS Parallel Benchmarks. The shadow 
specification determines sizes of shadow edges for the array u. 
#pragma dvm array distribute [block][block][block] 
double us[KMAX/2*2+1][JMAX/2*2+1][IMAX/2*2+1]; 
 
#pragma dvm array align ([k][j][i][] with us[k][j][i]),\ 
                  shadow[2:2][2:2][2:2][2:2] 
double u[(KMAX+1)/2*2+1][(JMAX+1)/2*2+1][(IMAX+1)/2*2+1][5]; 

Listing 3. Example of data distribution in the CDVMH language. 
Listing 4 shows the computation decomposition (the parallel specification) for a loop nest in the BT 
application. The computation decomposition depends on the data distribution. Hence the definition 
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of a parallel loop must include the on specification which associates loops in the perfect loop nest 
with dimensions of a distributed array. 
The mentioned specifications imply a relation between loop iterations and array elements that 
enables compile-time and runtime optimizations. For example, knowing how arrays are associated 
with each other and knowing the loop mapping rules, the DVMH runtime system determines the 
optimal representation of arrays in the device memory for a given parallel loop, and subsequently, 
it performs the dynamic transformation of arrays before the loop execution. As a result, on GPUs all 
accesses to global memory, performed by CUDA threads of each warp, will be combined. Adjacent 
threads of the CUDA-block will access neighboring cells of the GPU's global memory and the loop 
can be performed up to 10 times faster [9]. 
The hyperplane method (the across specification) is implemented in the DVMH model to execute 
loops with regular loop carried dependencies (some kind of flow dependencies with distances 
limited by a constant) in parallel. The per-diagonal transformation is implemented in the DVMH 
runtime system to efficiently execute these kinds of loops on GPUs [9]. 
To update shadow edges the shadow_renew specification is used. To specify all other 
communications the DVMH model provides the remote_access specification. 
#pragma dvm region 
{ 
#pragma dvm parallel ([k][j][i] on u[k][j][i][])\ 
            reduction(sum(r1),sum(r2),sum(r3),sum(r4),sum(r5)),\ 
            private(u_exact,xi,eta,zeta,m,add) 
  for(k = 0; k <= PROBLEM_SIZE - 1; ++k) 
    for(j = 0; j <= PROBLEM_SIZE - 1; ++j) 
      for(i = 0; i <= PROBLEM_SIZE - 1; ++i) { 
      ... 
        for (m = 1; m <=5; ++m) 
          u_exact[m-1] = ... 
               add = u[k][j][i][0] - u_exact[0]; 
               r1 = r1 + add * add; 
               ... 
      } 
} 

Listing 4. Example of computation distribution in the CDVMH language 
The region specification forms the computational region, which can be executed on different 
computational devices (multi-core CPU and accelerators). The region is a fragment of a source code 
with one entrance and one exit. Each region may enclose one or more parallel loops. The iterations 
of parallel loops inside the region are partitioned between the devices selected for the region 
execution according to the parallel specification. 
Code fragments outside the regions are always executed on CPU. The DVMH model introduces 
actualization directives (the actual and get_actual specifications) to manage data transfer between 
random access memory of CPU and memories of accelerators. These specifications must be placed 
outside computational regions. The deferred semantic of actualization directives allows DVMH 
runtime system to avoid redundant data transfer. Moreover, there is no difference whether all regions 
are executed on GPU or some part of them is targeted to the CPU-only execution. Actualization 
directives affect only transfer between regions and code fragments outside them. The DVMH 
runtime system will manage the necessary data transfer in an automatic way. 

2.4 SAPFOR 
SAPFOR includes an automatic parallelizing compiler that relies on static [10] and dynamic [11] 
analysis techniques. However, unlike conventional automatic parallelizing compilers, which may 
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suffer from a lack of user participation, SAPFOR relies on an implicitly parallel programming model 
and involves the user in the parallelization process [12]. 
SAPFOR has already implemented semi-automatic parallelization approach to exploit loop-level 
parallelism for multi-core processors and accelerators. It uses the DVMH model to express 
parallelism specifications. SAPFOR inserts three kinds of annotations: specification of parallel 
loops, specification of compute regions and specification of data transfer between a memory of CPU 
and memory of accelerator. It searches for the outermost perfect loop nests to execute them in 
parallel and then it examines whether some properties of the loop nest prevent its parallel execution 
(safety of control flow and memory accesses, canonical loop form, etc.). To insert actualization 
directives SAPFOR examines the direction of data usage in every loop. It also applies alias analysis 
to determine indirect memory accesses in C programs. SAPFOR relies on the optimization of data 
transfer at run-time that DVMH run-time library makes. So, it marks each assignment to the variable 
outside a compute region with the actual specification and places the get_actual specification before 
each statement which uses the variable changed in any DVMH region. 
In our work we extend SAPFOR capabilities to produce parallel versions of C and Fortran programs 
suitable for execution on distributed memory systems. Our implementation allows the compiler to 
insert: 
• distritbute and align specifications to partition array elements between compute nodes, 
• parallel and on specifications to partition computations according data distribution, 
• shadow, shadow_renew and remote_access specifications to express necessary data transfer 

between compute nodes. 
We implemented our parallelization technique as a separate library. This library provides interface 
to build the graph of arrays and to get data and computation distribution in the language independent 
way. It automatically resolves possible conflicts in the graph and rejects arrays that cannot be 
partitioned across multiple computational nodes. 
The core of the SAPFOR compiler architecture is the SAPFOR pass framework. Passes perform 
analysis and transformation of the program. New passes can be constructed to implement new 
capabilities. We added new SAPFOR passes to collect and fill data necessary to build the graph of 
arrays. To place necessary DVMH specifications in a source code we also extended the code 
generation passes for both C and Fortran programming languages. We use passes available in 
SAPFOR to determine loop-carried and spurious data dependencies, to find parallelizable loops and 
to find computational regions suitable for execution on accelerators and multiprocessors. 

4. Experimental results 
This section presents performance results from 3 applications from the NAS Parallel Benchmarks 
[5]: BT (Block Tri-diagonal solver), CG (Conjugate Gradient), EP (Embarrassingly Parallel) that 
we parallelized using out technique. Fig. 2 and fig. 3 show the execution time of the generated 
DVMH programs in comparison with the origin MPI programs written by the developers of the NAS 
Parallel Benchmarks. 
We conducted experiments on the K10 [11] cluster of NUMA nodes. Each node contains two 8-core 
Intel Xeon E5-2660 processors and three GPUs NVIDIA Tesla M2090. All codes were compiled 
with Intel C/C++ and Fortran compilers version 14.0.1 with option -O2. DVMH compiler was 
preliminary used to translate programs with DVMH specifications to MPI+OpenMP+CUDA code. 
For all experiments, we use the total power of one, four and nine nodes. We did not use GPUs to 
achieve the fair comparison of our solution to distributed-memory parallelization problem with a 
manual parallelization approach using MPI. 
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Fig. 2. Times in seconds of Fortran programs, NPB 3.3 class C 

 
Fig. 3. Times in seconds of C programs, NPB 3.3 class C 

Unfortunately, in the suite, there are no built-in C versions of considered applications, so we 
translated Fortran to C manually. To obtain well-formed versions of original programs, which can 
be converted to DVMH programs fully automatically, we applied some source-to-source 
transformations implemented in SAPFOR (functions inlining, loop fusion, loop distribution, and 
etc.). Also, we manually did some transformations which have not been implemented in SAPFOR 
yet. 
Table 1 and Table 2 show speedup of parallel DVMH programs relative to their well-formed 
sequential versions. The first group of columns represents execution time of sequential programs 
before and after source-to-source transformations. 
Number of transformations implemented in SAPFOR must be extended to obtain well-formed 
versions of other applications from the suite. We plan to review these transformations in future 
works and figure out basic source-to-source transformations that can be done automatically. Their 
implementation as separate passes in the SAPFOR pass framework will allow us to parallelize other 
applications.  
Table 1. Speedup of Fortran-DVMH programs relative to well-formed sequential versions 

 Serial, time (s.) 1 node (16 MPI) 4 node (64 MPI) 9 node (144 MPI) 
Origin Well-

formed 
Time (s.) Speedup Time (s.) Speedup Time (s.) Speedup 

BT 925,77 934,14 80,00 11,7 24,80 37,7 14,90 62,7 
CG 282,99 297,67 25,90 11,5 47,00 6,3 60,10 4,95 
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EP 341,53 381,73 22,60 16,9 5,67 67,3 2,52 151,5 
Table 2. Speedup of CDVMH programs relative to well-formed sequential versions 

 Serial, time (s.) 1 node (16 MPI) 4 node (64 MPI) 9 node (144 MPI) 
Origin Well-

formed 
Time (s.) Speedup Time (s.) Speedup Time (s.) Speedup 

BT 955,04 816,38 97,10 8,4 30,00 27,2 16,57 49,3 
CG 314,43 295,74 25,80 11,5 47,00 6,3 60,70 4,9 
EP 431,95 408,89 28,00 14,6 7,00 58,4 3,13 130,6 

The experiments show that automatically generated versions of BT and EP applications have the 
similar performance to the manually parallelized ones. 
However, the MPI version of CG program running on more than one node significantly outperforms 
the automatically generated DVMH version. Detailed examination of the benchmark shows that 
most of time is spent in the multiplication of a sparse matrix by a vector. This operation leads to 
indirect array accesses which cannot be efficiently processed by our parallelization technique that 
aims at processing sequential programs with structured grid computations. The current 
implementation produces at each iteration a collective operation to broadcast remote data between 
all processes. The cost of this data movement degrades parallel program performance if data are 
transferred through the interconnect between different nodes. If GPUs are used, then 16 processes 
(1 node) will be enough to achieve high performance. 
The available extension of the DVMH model for irregular grids may be helpful to increase 
parallelization performance, so we plan to address this problem in future works and to improve our 
parallelization technique. 

5. Related works 
Various approaches exist to simplify parallelization for distributed-memory systems. However, most 
of approaches do not overcome all three main sub-problems. 
For example, [6] proposes an approach to derive the computation decomposition from 
predetermined data distribution. The polyhedral approach is used to develop a mathematical model 
for code generation and to optimize the communications. These optimizations include eliminating 
redundant messages, aggregating messages, and hiding the communication latency by overlapping 
the communication with computation [6]. 
The predefined data distribution was also used in the [14] tool. This tool provided the user with an 
interactive subsystem to manage the parallelization process, to define data distribution and to choose 
program transformations. In both works the owner-computes rule is applied to derive the 
computation decomposition. However, [6] makes it possible to relax owner-computes rule. Thus, 
locations written to can be replicated or mapped to different nodes. 
The Molly [15] tool extends the capabilities of the Polly [16] compiler for shared memory systems, 
built on top of LLVM [17]. Molly also relies on the polyhedral model. It introduces a special data 
type to define distributed arrays which allows the compiler to control the absence of pointer 
arithmetic operations applied to distributed data. The tool uses a fixed block-distribution while 
communications are generated in an automatic way. The sizes of blocks are equal for every node. 
There is no way for the programmer to specify alignment of data on each other. To derive 
computation distribution the own-computes rule is applied. It is assumed that in the future the user 
will be able to define an arbitrary mapping of data and computation by putting appropriate directives 
in a source code. Molly also imposes additional restrictions on the well-structured code fragments 
(SCoPs), does not deal with reduction operations and supports distribution of global data only. 
Hence an accurate interprocedural analysis is not required. 
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An automatic parallelizing compiler presented in [18] also uses the polyhedral compiler framework 
to translate sequential C programs to parallel ones which are suitable for execution on distributed-
memory systems. This work extends the capabilities of the Pluto [19] polyhedral compiler for shared 
memory systems. The data distribution is not required, and the computation partitioning and data 
dependencies determine the owner of data at a particular moment. Therefore, this approach does not 
support the global decision-making in data distribution and finally may lead to an increase in the 
frequency and the volume of communications. 
The problem of data distribution was addressed in the Paradigm [20] tool. The research aims at 
parallelizing sequential programs in the Fortran 77 language. It also addresses other parallelization 
problems along with data distribution: communication optimization, support for irregular 
computations, multi-threaded execution and pipeline execution of loops with cross-iteration 
dependencies. However, only simple inter-dimensional alignment is performed and nor offset, nor 
stride within a given pair of dimensions cannot be used. The practical applicability of the tool is not 
clear because the experimental results are only given for small computing kernels. 

6. Conclusion 
In this paper, we introduce the technique for automatic translation of sequential programs of 
scientific-technical calculations to parallel ones suitable for execution on heterogeneous 
computational clusters. We emphasize in the paper that a problem of distributed memory 
parallelization requires a solution to three main sub-problems. These sub-problems include data and 
computation distribution as well as communication optimization and our technique addresses all of 
them. In the paper, we focus more on data distribution sub-problem because we do not find yet any 
common solution to this sub-problem, which is suitable for a large compute applications, in the 
current literature. 
We present a novel data structure, called the graph of arrays, and use it to derive data decomposition 
from affine array accesses in loop nests. We also determine an alignment of arrays with each other 
to reduce the frequency and the volume of data movement. To choose between possible alignments, 
we estimate communication costs if one of them is violated. 
We implemented our technique as an automatic parallelizing compiler which generates a parallel 
version of a sequential C or Fortran program with parallelism specifications expressed with DVMH 
directive-base programming model. Conducted experiments show that in conjunction with implicit 
parallel programming methodology the generated code is capable of matching hand-coded MPI 
versions of programs with structured grid computations. 
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