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AnHoTanus. B maHHOW cTaTeil paccMaTpHBaeTCsi HOBBIH IIOAXOJ K KOMIMISIMH IOCIEJOBATEIbHBIX
nporpamMm Jjisl UX MOCJIEAYHOUICTO BBINIOJHEHNUS Ha BBIYHUCIUTEIIBHBIX CUCTEMAX C pacnpeuenel-moﬁ NaMATBIO.
IpeutoxeHHBIH MOAX0 OBbUT peann30BaH B BUE aBTOMATHYECKU PACHapalieINBAOIIEro KOMITHIATOPA s
nporpamMM Ha s3bikax Cum m @oprpan. Jlns ommcaHus Hapajulenu3Ma, OOHApY)KEHHOTO B IIPOTrpaMMe,
HCIOJIB3yeTCs JUPEKTHBHAs MOJENb HapajensHoro nporpammupoBanus DVMH. Takum  ob6pasom,
peaTn30BaHHBIA KOMITHIISITOP BBIIOJIHSIET IpeoOpa3oBaHue MPOrpaMM Ha ypOBHE HCXOAHOTO KOJa, 100aBisist
B HUX BBICOKOYPOBHEBbIE crenudukanuy mapamwienusma B epmuaax DVMH mopenn. PacnapamnenuBanue
OCHOBAHO Ha aHaJW3e THe3] NUKIOB IIPOrPaMMBI, COAEPKAINX 0OpameHuss K MHOTOMEPHBIM MacCUBaM, IS
KOTOPBIX OONBIIMHCTBO MHJEKCHBIX BBIPXKEHHH JHHEIHO 3aBHCHT OT MHIYKTHBHBIX IEPEMEHHBIX IIMKIOB
rue3a. OCHOBHOM OO0JACTBIO NPUMEHEHUs IPEUIOKEHHOIO IOJAXO0Ja SIBISIOTCS IPOrpaMMbl Hay4HO-
TEeXHHYECKUX PACcUeTOB, PEATH3YIONIHe BEIYUCICHNS Ha CTPYKTYPHPOBAHHBIX CEeTKaxX. B oTiimdue oT HoaxonoB
K pacIiapa/uleIMBaHUIO IPOTPaMM, IPeUI0KeHHBIX B IPYTHX paboTax, HAlll ITOAXOJ OXBATHIBACT PEIICHHE BCEX
TpeX OCHOBHBIX 3aJ1a4, BOSHHMKAIOIIMX IPH PacHapauIeNUBaHUM IJIS CHCTEM C PacHpEneNeHHOH MaMsThio:
pacipejieleHie JaHHBIX, PacIIpeeIeHUe BEMUCICHHI U ONTHMH3AIHsI KOMMYHHKAIIHOHHBIX OOMEHOB MEXKLY
y3IIaMH BBIYHCIIHTENBHOM cucTeMBL. J[11s olleHKH 3¢ ()eKTHBHOCTH HOIy4aeMbIX HapallIeNbHBIX IPOTrPaMM, MBI
HCIIOJIB30BAIM HEKOTOPbIX MNpuiokeHuss u3 Habopa NAS Parallel Benchmarks. B cratbe npuseneHs
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Ppe3ysIbTaThl 3KCIEPUMEHTOB, B KOTOPBIX ObUTH 33.,[[617[(3TBOB3HI)I 0 9 Y3JI0B BBIMUCIHUTEIBHOIO KJIacTepa,
Ka){([{]ﬂﬁ 13 KOTOPBIX COACPIKAT IBa 8-$IHGPHLIX Tponieccopa.

KiroueBble cj10Ba: KOMITHJIATOP; aBTOMATHYECKOE paclapalUle/IiBaHUe, TI'eHEepalus KOJa; CHUCTEMBI C
pacripeielieHHO aMsThIO.

T uurupoBanus: Karaes H.A., Konranos A.C. IToctpoeHue pacrpesiesieHus TaHHBIX U FeHepaus Koja
NIPU pacrapauleIMBaHUK HA IeTepOreHHbIH BbhiuncnuTenbhblil knacrep. Tpyast UCIT PAH, tom 34, Bein. 4,
2022 r., ctp. 89-100. 10.15514/ISPRAS-2022-34(4)-7

1. Introduction

Most of current high performance computing (HPC) systems tend to be heterogeneous and may
comprise diverse compute devices. However, from the prospective of obtaining greater processing
power on the way to exascale computing, the common feature of these systems is the distributed
memory allocation. Such systems consist of multiple compute nodes which are connected with a
high performance interconnect and each node operates with its own data. The only way to distribute
computations across different nodes is sending and receiving messages over the interconnect.
Distributed memory drastically complicates parallel programming. The programmer has to take into
account not only distribution of computation but also distribution of data and cost of data movement.
To minimize communication overhead the programmer has to ensure data locality. Another goal is
even data distribution in order to balance computations.

Unlike incremental parallelization applicable for shared memory, distributed memory requires
global decision making since individual parts of a program may impose conflicting requirements.
These conflicts will ultimately lead to additional communications aimed at data redistribution.

One of the parallel programming models, widely used to develop compute-intensive applications on
distributed-memory clusters, is the Message Passing Interface (MPI). However, its low-level forces
the programmer to manage distribution of data and computation manually, as well as
communications. This means that parallelization for distributed memory even of a simple program
can be very error-prone and time-consuming. Therefore, automation of parallel programming for
distributed-memory systems becomes very much desirable. Especially while the complexity and size
of systems is growing from year to year.

In this paper, we propose a technique for automatic translation of sequential programs of scientific-
technical calculations to parallel ones suitable for execution on heterogeneous computational
clusters. Our technique aims at parallel execution of structured grid computations and allows
processing sequences of arbitrary nested loops with almost affine accesses.

The problem of distributed memory parallelization requires a solution to three main sub-problems.
An automation tool has to distribute data as well as computation and has to manage communications:
typically accesses to remote data and data redistribution. The proposed technique overcomes all
these problems. However, in the paper we pay the most attention to data distribution because yet we
do not find any common solution to this sub-problem, which is suitable for large compute
applications, in the current literature.

We implemented our technique as an automatic parallelizing compiler which generates a parallel
version of a sequential C or Fortran program with parallelism specifications expressed with DVMH
[1][2] directive-base programming model. To extract properties of an original program which are
necessary for its parallelization the compiler relies on static and dynamic analysis techniques. We
also follow an implicit parallel programming methodology [3][4] which implies that the sequential
program must be well-formed. Thus, a preliminary sequential program transformation may be
helpful. The user may also assert some high-level program properties which are essential for
parallelization. Nevertheless, automatic parallelization ensures that the programmer does not write
parallel code directly.

This paper makes the following contributions:
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e anovel approach to automatic program parallelization for distributed memory systems which
covers distribution of data and computations as well as access to remote data and data
redistribution;

e aparallelizing compiler for code generation which produces parallel versions of C and Fortran
programs suitable for execution on heterogeneous computational clusters;

e cxperimental evaluation of the presented approach on some programs from the NAS Parallel
Benchmarks [5].
The rest of the paper is organized as follows. Section 2 presents our program execution model and
proposes a solution to the problem of distributed memory parallelization focusing on the data
distribution sub-problem. Section 3 summarizes implementation details and briefly describes
frameworks that we used to analyze sequential programs and to implement code generation. Section
4 provides experimental results. Section 5 discusses the related work and, finally, section 6
concludes this paper.

2. Distributed memory parallelization

2.1 Execution model

In this section, we highlight the main details of our abstract execution model representing a
distributed memory system.

Our parallelization technique aims at processing sequential programs with structured grid
computations. Hence we assume that a distributed memory system is formed by a multidimensional
grid of a virtual nodes and each node executes operations on a part of the computational grid. The
owner-computes rule [6] is applied to determine a node to execute each assignment statement. Thus,
each node has its own (i.e. local) data which are allocated in its own memory space, which is not
visible to other nodes. It also may access remote data which are allocated on other nodes by sending
and receiving messages over the interconnect.

We also assume that the main source of parallelism is nested loops and that entire iteration of a loop
can be executed by a single node only. These loops produce computations on multidimensional
arrays which are the main source of data to be partitioned between virtual compute nodes. A data
distribution rule divides array dimensions into almost equal blocks and implies that each node has
its own sub-array with the same number of dimensions but of smaller sizes.

If the number of dimensions of a grid of nodes is less than the number of array dimensions, some
array dimensions are not partitioned. Otherwise, if the number of grid dimensions is greater than the
number of array dimensions, some array dimensions are replicated between nodes.

If we consider two arrays accessed in the same loop there is some kind of intuitive relation between
elements of different arrays. To reduce the communication overhead, we have to distribute elements
accessed at the same loop iteration to the same node. Thus, an alignment of an array A with a
distributed array B is an accordance between an element of the array A and an element or a sub-
array of the array B. This accordance aims to reduce the cost of data movement. To specify alignment
we use affine expressions in aforma * i + b. Therefore, a distribution rule for the array B defines
the distribution rule for the array 4, i.e. if an element i of B is allocated on a compute node, the
corresponding element a * i + b of A is allocated on the same node.

If there is no distribution or alignment rule for a variable, we replicate it between all compute nodes.
The replicated variable must have the same value in each node except reduction and private
variables.

Different array accesses may produce different alignments, however, we choose only one of them
to generate parallel version of a program. Other violated alignments lead to data movement.
Moreover, non-affine alignments cannot be established and always lead to data movement. Our
execution model supports two kinds of communications. Firstly, violated affine alignments allow us
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to implement shadow edges [7]. For structured grid applications, it is useful to extend each sub-array
with a shadow area to overlap with its neighbors. Shadow edges have to be updated only if their
values have been altered on the owner node. Secondly, all other communications are implemented
as an immediate access to remote data when corresponding data are required.

2.2 Data Distribution

In this section, we present our technique aimed to solve the data distribution sub-problem. This
technique relies on a graph-based representation of an array alignment. We introduce a graph of
arrays which depicts arrays accessed in loop nests. A vertex of the graph is a dimension of an array
and an edge connects dimensions that should be aligned. Note that the alignment relation is
transitive. Thus, two dimensions are aligned if there is a path between corresponding vertexes in a
graph.

A pair of array accesses in a loop produces edges in a graph. Coefficients in affine subscript
expressions which calculate offset from the beginning of array dimensions are attached to the edge
and allow us to infer alignment expression. Only affine subscript expressions, which depend on the
same single counter of a loop, produce edges. Note, that values of distinct induction variables of the
same loop can be computed through the loop counter. Therefore, corresponding subscript
expressions also produce edges in a graph.

If a pair of array accesses produces an edge in a graph, a kind and a weight of alignment are also
attached to the edge. Three kinds of alignments are possible:

e WW if both accesses write into memory,
e IWR if one of accesses writes into memory and another access reads from memory,

e RR if both accesses read from memory.

A weight of alignment equals to Loop,, * Transfer,,. Transfe,, estimates a number of bytes to
be send or received if the alignment is violated. Computation of Transfer,, is based on sizes of
arrays which are known from static and dynamic analysis. Loop,, estimates a corresponding loop
weight and shows how often the loop is executed. Static and dynamic analysis techniques allow us
to compute loop weights. If an edge with the same subscript coefficients and the same kind already
exists in a graph its weight is updated.

It is necessary to know a kind of alignment to compare different edges according to memory access
types. A priority of WW edge is higher than a priority of WR edge which, in its turn, is higher than
a priority of RR. The owner-computes rule establishes this priority because it is forbidden to write
to non-local memory.

In the first step, loops in a sequential program are analyzed to determine all possible alignments
which depend on array accesses at the same loop iteration. Procedure buildGraph, shown in Listing
1, builds a corresponding graph of arrays. It calls the following procedures when necessary:

e dimension(Expr) to determine a dimension of an array which this subscript expression
corresponds to,

e kind(Accy, Acc,) to determine a kind of alignment which these array accesses produce,

e array(Acc) to determine a top level declaration of an accessed array, i.e. it analyzes a call
graph and establishes correspondence between formal and actual parameters which have an
array type.

This procedure produces a graph of arrays which may be ambiguous or may have conflicting edges.

Two cases are possible:

e there is a cycle in a graph that implies two different affine expressions to specify an alignment
of the same array dimension,

e two different dimensions of an array are aligned on each other, i.e. two different dimensions of
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the same array should be mapped to the same node..
procedure buildGraph

for L € Loops of aprogram
for Acc, € Array accesses in L
for Expry; € Subscripts in Accy
if Expry is ay x i + byand i is loop counter of L
for Acc, € Array accesses in L
for Expr, € Subscripts in Acc,
if (Accy # Acc, or dimension(Expry) # dimension(Expr,)) and
Expr, is a; * i + b, and i is loop counter of L

Add vertexes V4imension(Expr) Vdime"Sio"(ExWZ), if they do not exist.

array(Accy) > Varray(Accy)
kind(Accy,Accy) dimension(Expry) y,dimension(Exprz)y .o .
Add an edge Eq byapby (Varmy(Accl)' , Varmy(Accz)l ), if it does not exist.

Update weight of the edge.

Listing 1. Algorithm to build a graph of arrays
In the second step, an original graph of arrays is reduced to disambiguate these conflicts. The goal
is to minimize total weight of edges to be removed from the graph. Fig. 1 shows a graph of arrays
for a fragment of a source code in Listing 2.
integer A(40,50), B(40,50)
do i =1, 30
z = A(i, 1)
do k = 5, 30
a(i, k) = b(i, k) + b(k, k) / z

enddo
enddo
do i =1, 30
z = a(i, 2)

do k = 5, 30
a(i, k) = b(i, k + 1) + z

enddo
enddo
Listing 2. Example of a Fortran program which is used to build a graph of arrays in Fig. 1
Different weight models can be used to calculate wy, w,, ws, w, weights, so we do not specify exact
weights in the example. Assuming wy; > w,, wz > w, and w; > w,, the solid lines determine a
possible graph after all conflicts are disambiguated.

A(40, %) A(*,50)
1.0 o
[1.0] ilo
W] w3
[1.0] [1.0]

B (40, *) B(*, 50)

Fig. 1. Graph of arrays for the program in Listing 1
We adapted Prim's algorithm for finding a minimum spanning tree (MST). A minimum spanning
tree is a subset of the edges of a connected edge-weighted undirected graph that connects all the
vertices together. It has the minimum possible total edge weight and does not have cycles. If the
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source graph is connected, then a spanning tree is built, but if there are several disconnected
components in the source graph, then the result is a spanning forest. Our goal is to find the set of
edges with the highest weight. Thus, we can use an algorithm similar to Prim's algorithm to find a
maximum spanning tree, i.e. a tree which has the maximum possible total edge weight.

To resolve conflicts of a second type, we add temporary edges between all different dimensions of
the same array. A weight of these edges must be greater than the sum of all weights in the graph.
Hence, these temporary edges are never removed and a spanning tree does not contain edges that
imply alignment of two dimensions of the same array on each other.

This algorithm has linear complexity depending on the number of vertices in the graph. However,
the found solution is not always optimal, but the search of optimal solution has exponential
complexity and it is not applicable in practice if the total number of dimensions of arrays in a
program is significantly greater than 10. On the other hand, the algorithm for finding the maximum
spanning tree has not only linear complexity but can be also performed in parallel, so it is applicable
to any program with any number of arrays.

3. Code generation

We implemented our technique as automatic parallelizing Fortran and C compiler. We adapted the
compiler from the System FOR Automated Parallelization (SAPFOR) [8], which is a software
development suit that is focused on cost reduction of manual program parallelization, to implement
our parallelization technique. To express parallelism specifications in a code the DVMH [1][2]
directive-based programming model is used.

2.3 The DVMH programming model

DVMH was designed to create parallel programs of scientific technical calculations for
heterogeneous computational clusters. This model provides the programmer with high-level
specifications of parallelism. Thus, it introduces directives to specify data and computation
distribution, to manage accesses to remote data and to highlight the computational regions which
can be executed on accelerators and multiprocessors.
We choose the DVMH model because it satisfies constraints which our execution model exposes.
The DVMH languages allow us to generate distribution and alignment rules in a simple way, as well
as to implement shadow edges and other accesses to remote data. Moreover, the DVMH compilers
and run-time system implement various optimizations: data transformation at run-time to choose the
right memory access pattern, dynamic CUDA handler compilation during the program run-time,
parallel execution of loops with regular loop carried dependencies on GPU and others. Therefore,
the presence of these optimizations significantly simplifies the implementation of the automatic
compilers.
Listing 3 shows the distribution (the distribute specification) and alignment (the align specification)
rules for some arrays in the BT application from the NAS Parallel Benchmarks. The shadow
specification determines sizes of shadow edges for the array u.
#pragma dvm array distribute [block] [block] [block]
double us [KMAX/2+%2+1] [JMAX/2*2+1] [IMAX/2%2+1] ;

#ipragma dvm array align ([k] [j][i][] with us([k] [j][i]),\
shadow([2:2] [2:2] [2:2] [2:2]

double ul[ (KMAX+1)/2*2+1] [ (JMAX+1) /2*2+1] [ (IMAX+1) /2*2+1] [5];

Listing 3. Example of data distribution in the COVMH language.

Listing 4 shows the computation decomposition (the parallel specification) for a loop nest in the BT

application. The computation decomposition depends on the data distribution. Hence the definition
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of a parallel loop must include the on specification which associates loops in the perfect loop nest
with dimensions of a distributed array.
The mentioned specifications imply a relation between loop iterations and array elements that
enables compile-time and runtime optimizations. For example, knowing how arrays are associated
with each other and knowing the loop mapping rules, the DVMH runtime system determines the
optimal representation of arrays in the device memory for a given parallel loop, and subsequently,
it performs the dynamic transformation of arrays before the loop execution. As a result, on GPUs all
accesses to global memory, performed by CUDA threads of each warp, will be combined. Adjacent
threads of the CUDA-block will access neighboring cells of the GPU's global memory and the loop
can be performed up to 10 times faster [9].
The hyperplane method (the across specification) is implemented in the DVMH model to execute
loops with regular loop carried dependencies (some kind of flow dependencies with distances
limited by a constant) in parallel. The per-diagonal transformation is implemented in the DVMH
runtime system to efficiently execute these kinds of loops on GPUs [9].
To update shadow edges the shadow remew specification is used. To specify all other
communications the DVMH model provides the remote_access specification.

#pragma dvm region

{

#pragma dvm parallel ([k] [j][i] on ulk] [§][i][]1)\

reduction (sum(rl) ,sum(r2),sum(r3),sum(r4),sum(xr5)),\
private (u_exact,xi,eta, zeta,m,add)
for(k = 0; k <= PROBLEM SIZE - 1; ++k)
for(j = 0; j <= PROBLEM SIZE - 1; ++3j)
for(i = 0; i <= PROBLEM SIZE - 1; ++i) {

for (m = 1; m <=5; ++m)
u_exact [m-1] =
add = ulk] [j]1[i][0] - u_exact[O0];
rl = rl + add * add;

}

Listing 4. Example of computation distribution in the CDVMH language

The region specification forms the computational region, which can be executed on different
computational devices (multi-core CPU and accelerators). The region is a fragment of a source code
with one entrance and one exit. Each region may enclose one or more parallel loops. The iterations
of parallel loops inside the region are partitioned between the devices selected for the region
execution according to the parallel specification.

Code fragments outside the regions are always executed on CPU. The DVMH model introduces
actualization directives (the actual and get actual specifications) to manage data transfer between
random access memory of CPU and memories of accelerators. These specifications must be placed
outside computational regions. The deferred semantic of actualization directives allows DVMH
runtime system to avoid redundant data transfer. Moreover, there is no difference whether all regions
are executed on GPU or some part of them is targeted to the CPU-only execution. Actualization
directives affect only transfer between regions and code fragments outside them. The DVMH
runtime system will manage the necessary data transfer in an automatic way.

2.4 SAPFOR

SAPFOR includes an automatic parallelizing compiler that relies on static [10] and dynamic [11]
analysis techniques. However, unlike conventional automatic parallelizing compilers, which may
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suffer from a lack of user participation, SAPFOR relies on an implicitly parallel programming model
and involves the user in the parallelization process [12].

SAPFOR has already implemented semi-automatic parallelization approach to exploit loop-level
parallelism for multi-core processors and accelerators. It uses the DVMH model to express
parallelism specifications. SAPFOR inserts three kinds of annotations: specification of parallel
loops, specification of compute regions and specification of data transfer between a memory of CPU
and memory of accelerator. It searches for the outermost perfect loop nests to execute them in
parallel and then it examines whether some properties of the loop nest prevent its parallel execution
(safety of control flow and memory accesses, canonical loop form, etc.). To insert actualization
directives SAPFOR examines the direction of data usage in every loop. It also applies alias analysis
to determine indirect memory accesses in C programs. SAPFOR relies on the optimization of data
transfer at run-time that DVMH run-time library makes. So, it marks each assignment to the variable
outside a compute region with the actual specification and places the get_actual specification before
each statement which uses the variable changed in any DVMH region.

In our work we extend SAPFOR capabilities to produce parallel versions of C and Fortran programs
suitable for execution on distributed memory systems. Our implementation allows the compiler to
insert:

e distritbute and align specifications to partition array elements between compute nodes,
e parallel and on specifications to partition computations according data distribution,

e shadow, shadow_renew and remote_access specifications to express necessary data transfer
between compute nodes.
We implemented our parallelization technique as a separate library. This library provides interface
to build the graph of arrays and to get data and computation distribution in the language independent
way. It automatically resolves possible conflicts in the graph and rejects arrays that cannot be
partitioned across multiple computational nodes.
The core of the SAPFOR compiler architecture is the SAPFOR pass framework. Passes perform
analysis and transformation of the program. New passes can be constructed to implement new
capabilities. We added new SAPFOR passes to collect and fill data necessary to build the graph of
arrays. To place necessary DVMH specifications in a source code we also extended the code
generation passes for both C and Fortran programming languages. We use passes available in
SAPFOR to determine loop-carried and spurious data dependencies, to find parallelizable loops and
to find computational regions suitable for execution on accelerators and multiprocessors.

4. Experimental results

This section presents performance results from 3 applications from the NAS Parallel Benchmarks
[5]: BT (Block Tri-diagonal solver), CG (Conjugate Gradient), EP (Embarrassingly Parallel) that
we parallelized using out technique. Fig. 2 and fig. 3 show the execution time of the generated
DVMH programs in comparison with the origin MPI programs written by the developers of the NAS
Parallel Benchmarks.

We conducted experiments on the K10 [11] cluster of NUMA nodes. Each node contains two 8-core
Intel Xeon E5-2660 processors and three GPUs NVIDIA Tesla M2090. All codes were compiled
with Intel C/C++ and Fortran compilers version 14.0.1 with option -O2. DVMH compiler was
preliminary used to translate programs with DVMH specifications to MPI+OpenMP+CUDA code.
For all experiments, we use the total power of one, four and nine nodes. We did not use GPUs to
achieve the fair comparison of our solution to distributed-memory parallelization problem with a
manual parallelization approach using MPL.
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Fig. 3. Times in seconds of C programs, NPB 3.3 class C
Unfortunately, in the suite, there are no built-in C versions of considered applications, so we
translated Fortran to C manually. To obtain well-formed versions of original programs, which can
be converted to DVMH programs fully automatically, we applied some source-to-source
transformations implemented in SAPFOR (functions inlining, loop fusion, loop distribution, and
etc.). Also, we manually did some transformations which have not been implemented in SAPFOR
yet.
Table 1 and Table 2 show speedup of parallel DVMH programs relative to their well-formed
sequential versions. The first group of columns represents execution time of sequential programs
before and after source-to-source transformations.
Number of transformations implemented in SAPFOR must be extended to obtain well-formed
versions of other applications from the suite. We plan to review these transformations in future
works and figure out basic source-to-source transformations that can be done automatically. Their
implementation as separate passes in the SAPFOR pass framework will allow us to parallelize other
applications.
Table 1. Speedup of Fortran-DVMH programs relative to well-formed sequential versions
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Serial, time (s.) 1 node (16 MPI) 4 node (64 MPI) 9 node (144 MPI)
Origin Well- Time (s.) Speedup Time (s.) | Speedup | Time (s.) Speedup
formed
BT | 92577 | 934,14 80,00 11,7 24,80 37,7 14,90 62,7
CG | 28299 | 297,67 25,90 11,5 47,00 6,3 60,10 4,95
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| EP | 341,53 | 381,73 | 22,60 | 16,9 | 5,67 | 67,3 | 2,52 | 151,5
Table 2. Speedup of CDVMH programs relative to well-formed sequential versions
Serial, time (s.) 1 node (16 MPI) 4 node (64 MPI) 9 node (144 MPI)
Origin Well- Time (s.) | Speedup | Time(s.) | Speedup | Time (s.) Speedup
formed
BT | 95504 | g1638 97,10 8,4 30,00 27,2 16,57 49,3
CG | 31443 | 9574 | 2580 11,5 47,00 63 60,70 4,9
EP | 43195 | 40889 | 28,00 14,6 7,00 58,4 3,13 130,6

The experiments show that automatically generated versions of BT and EP applications have the
similar performance to the manually parallelized ones.

However, the MPI version of CG program running on more than one node significantly outperforms
the automatically generated DVMH version. Detailed examination of the benchmark shows that
most of time is spent in the multiplication of a sparse matrix by a vector. This operation leads to
indirect array accesses which cannot be efficiently processed by our parallelization technique that
aims at processing sequential programs with structured grid computations. The current
implementation produces at each iteration a collective operation to broadcast remote data between
all processes. The cost of this data movement degrades parallel program performance if data are
transferred through the interconnect between different nodes. If GPUs are used, then 16 processes
(1 node) will be enough to achieve high performance.

The available extension of the DVMH model for irregular grids may be helpful to increase
parallelization performance, so we plan to address this problem in future works and to improve our
parallelization technique.

5. Related works

Various approaches exist to simplify parallelization for distributed-memory systems. However, most
of approaches do not overcome all three main sub-problems.

For example, [6] proposes an approach to derive the computation decomposition from
predetermined data distribution. The polyhedral approach is used to develop a mathematical model
for code generation and to optimize the communications. These optimizations include eliminating
redundant messages, aggregating messages, and hiding the communication latency by overlapping
the communication with computation [6].

The predefined data distribution was also used in the [14] tool. This tool provided the user with an
interactive subsystem to manage the parallelization process, to define data distribution and to choose
program transformations. In both works the owner-computes rule is applied to derive the
computation decomposition. However, [6] makes it possible to relax owner-computes rule. Thus,
locations written to can be replicated or mapped to different nodes.

The Molly [15] tool extends the capabilities of the Polly [16] compiler for shared memory systems,
built on top of LLVM [17]. Molly also relies on the polyhedral model. It introduces a special data
type to define distributed arrays which allows the compiler to control the absence of pointer
arithmetic operations applied to distributed data. The tool uses a fixed block-distribution while
communications are generated in an automatic way. The sizes of blocks are equal for every node.
There is no way for the programmer to specify alignment of data on each other. To derive
computation distribution the own-computes rule is applied. It is assumed that in the future the user
will be able to define an arbitrary mapping of data and computation by putting appropriate directives
in a source code. Molly also imposes additional restrictions on the well-structured code fragments
(SCoPs), does not deal with reduction operations and supports distribution of global data only.
Hence an accurate interprocedural analysis is not required.
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An automatic parallelizing compiler presented in [18] also uses the polyhedral compiler framework
to translate sequential C programs to parallel ones which are suitable for execution on distributed-
memory systems. This work extends the capabilities of the Pluto [19] polyhedral compiler for shared
memory systems. The data distribution is not required, and the computation partitioning and data
dependencies determine the owner of data at a particular moment. Therefore, this approach does not
support the global decision-making in data distribution and finally may lead to an increase in the
frequency and the volume of communications.

The problem of data distribution was addressed in the Paradigm [20] tool. The research aims at
parallelizing sequential programs in the Fortran 77 language. It also addresses other parallelization
problems along with data distribution: communication optimization, support for irregular
computations, multi-threaded execution and pipeline execution of loops with cross-iteration
dependencies. However, only simple inter-dimensional alignment is performed and nor offset, nor
stride within a given pair of dimensions cannot be used. The practical applicability of the tool is not
clear because the experimental results are only given for small computing kernels.

6. Conclusion

In this paper, we introduce the technique for automatic translation of sequential programs of
scientific-technical calculations to parallel ones suitable for execution on heterogeneous
computational clusters. We emphasize in the paper that a problem of distributed memory
parallelization requires a solution to three main sub-problems. These sub-problems include data and
computation distribution as well as communication optimization and our technique addresses all of
them. In the paper, we focus more on data distribution sub-problem because we do not find yet any
common solution to this sub-problem, which is suitable for a large compute applications, in the
current literature.

We present a novel data structure, called the graph of arrays, and use it to derive data decomposition
from affine array accesses in loop nests. We also determine an alignment of arrays with each other
to reduce the frequency and the volume of data movement. To choose between possible alignments,
we estimate communication costs if one of them is violated.

We implemented our technique as an automatic parallelizing compiler which generates a parallel
version of a sequential C or Fortran program with parallelism specifications expressed with DVMH
directive-base programming model. Conducted experiments show that in conjunction with implicit
parallel programming methodology the generated code is capable of matching hand-coded MPI
versions of programs with structured grid computations.
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