
Труды ИСП РАН, том 34, вып. 6, 2022 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022

67

DOI: 10.15514/ISPRAS-2022-34(6)-5

Introducing Programming Language Metrics

T.R. Fayzrakhmanov, ORCID: 0000-0001-5013-4523 <tim.fayzrakhmanov@gmail.com>
Innopolis University,

1, Universitetskaya Str., Innopolis, 420500, Russia

Abstract. We introduce possibly the first approximation of programming language metrics that represent a
spectrum over 70 unique and carefully gathered dimensions by which any two programming languages can be
compared. Based on those metrics, one can evaluate her own “best” language, and to demonstrate how complex
feelings such as “simplicity” and “easy to use”, often found as arguments in language debates and
advertisements, can be decomposed into clear and measurable pieces. We put the collection as a completely
separate open-source file (here as an appendix) so that everyone can participate in eliciting new and interesting
dimensions used in programming languages research, development, and use. Metrics can find their use to
compare languages, define requirements, create rankings, give tips for language designers, and simply provide
a bird’s-eye view on existing languages features found in the wild.

Keywords: programming languages; metrics; comparison; analysis

For citation: Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP
RAS, vol. 34, issue 6, 2022. pp. 67-84. DOI: 10.15514/ISPRAS-2022-34(6)-5

Acknowledgements. We thank Eugene Zouev (Innopolis University), Nikolay Shilov (Innopolis University),
Ivannikov ISP RAS for providing from Nikolay Kudasov (Innopolis University), and an anonymous reviewer

useful suggestions, additional resources and corrections.

Система метрик для языков программирования

Т.Р. Файзрахманов, ORCID: 0000-0001-5013-4523 <tim.fayzrakhmanov@gmail.com>
Университет Иннополис,

420500, Россия, г. Иннополис, ул. Университетская, д.1

Аннотация. Мы представляем, возможно, первое приближение метрик языков программирования,
которые представляют собой спектр из более чем 70 уникальных и тщательно собранных измерений,
по которым можно сравнивать любые два языка. Основываясь на метриках, человек может
самостоятельно определить "лучший" для него язык и продемонстрировать, как сложные чувства, такие
как "простота" и "легкость в использовании", часто встречающиеся в продвижении и спорах о том какой
язык лучше, могут быть разложены на четкие и измеримые части. Мы разместили коллекцию в виде
отдельного файла с открытым исходным кодом (здесь в качестве приложения), чтобы каждый мог
принять участие в поиске новых и интересных измерений, используемых в практике, исследованиях, и
разработке языков программирования. Метрики могут найти свое применение для сравнения языков,
определения требований, создания рейтингов, советов разработчикам языков, а также просто для
получения представления о возможностях в существующих языках программирования.

Ключевые слова: языки программирования; метрики; сравнение; анализ

Для цитирования: Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП
РАН, том 34, вып. 6, 2022 г., стр. 67-84. DOI: 10.15514/ISPRAS-2022-34(6)-5

Благодарности. Мы благодарим Евгения Зуева (Университет Иннополис), Николая Шилова
(Университет Иннополис), Николая Кудасова (Университет Иннополис) и анонимного рецензента ИСП
РАН за полезные предложения, дополнительные ресурсы и исправления.

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

68

1. Introduction
The hot debates in comparison of programming languages have been known for years. “What is the
best programming language?” – is one of the most frequently asked questions when one encounters
a plethora of available options: 100 languages with thousands to millions of active users worldwide
up to 8,945 in total (Table 1). Despite such a precious freedom to choose, in practice, leads to the
paradox of choice where the more options you have, the more time it takes to settle on a final
decision.
Scientific community in the analysis and comparison of programming languages have tried to “nail
down” this question multiple times giving an objective answer to both: “Who is the best?” in general
[1, 2] or for a particular area [3, 4]. However, besides inaccessible scientific jargon for an ordinary
language user, no single research can cover so many languages with so many purposes at once.
In this work we propose an alternative approach. Instead of searching for an abstractly best language
among an ever-growing number of options and realizing in advance that the choice still depends on
numerous factors (user preferences, current infrastructure, etc.), we simply suggest collecting top
language aspects. In other words, the aspects (further “programming language metrics”) that have
always influenced our positive and anti-choices, and proven to be useful over a long period of time.
The definition of best, then, (Section 4) will be a simple formula: subset of aspects that must be
necessarily included in a language plus their weights that distribute the consideration importance
within.
Табл. 1. Количество языков программирования
Table 1. The number of programming languages

Total
(the total number of languages ever created)

8,945 HOPL Historical Encyclopedia (till 2005) [5]
4,217 Programming Language DataBase [6]
Notable
(languages that are influential or proved their existence)

878 Rosetta Code's List of Programming Languages [7]
690 Wikipedia's List of Programming Languages [8]
560 Available in GitHub's Advanced search [9]
370 “Primary” in the annual GitHub report [10]

Popular
(“top” languages with thousands to millions of active users)

52 IEEE Spectrum index [11]
50-100 TIOBE Programming Community index [12]
42 StackOverflow Developer Survey [13]
28 PYPL Popularity index [14]

2. Related works
Our filter out criteria for works in the comparison and analysis of programming languages were
studies that (1) directly identify the list of programming languages metrics, (2) describe possible
ways for an ordinary user to measure them, and (3) give methods to define “best” in terms of given
metrics and measured scores. Within those constraints, we found no previous work. However, [15]
written by Jean E. Sammet 50 years ago is the closest published study.
Although Sammet has not provided a generalized list of metrics with methods for applying them in
defining the best option, we admit that (1) she stressed the importance of a language assessment to
be dependent on numerous factors, e.g. on a viewpoint of a user, implementor, or application area
[15, p. 245]; (2) even though her work was found retrospectively, the method presented in Metrics
use (Section 4) is already implicitly used in evaluation of languages for “a user wishing to write a
payroll program” [15, tables I, V, and VI].

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

69

The rest of the studies were primarily focused on:

 Taking a limited number of metrics (e.g., “running time” or “memory usage”) and evaluating
the best language among the existing few. For example, within a specific area (bioinformatics
[3], robotics [4], economics [16]) or generically ([1, 2, 17-19);

 Introducing a specific metric/s (e.g., “popularity”, “impact” [20], “syntactic complexity” [21],
“structural complexity” [22]) without further generalization with other metrics.

In this work, we considered all types of studies to make the table of metrics as complete as possible.

3. Method
In collecting metrics, we followed no particular method or order. We tried to scrutinize as much
literature and resources as we could, which can effectively cooperate in eliciting useful and easy-to-
distinguish metrics from an end-user perspective. Besides referenced literature, it involves taking a
list of notable languages (Table 1) going through the websites of each, reading the advertising text,
specifications, language references, and they-provided comparison with other competitors.

3.1 Terminology
There are many words to describe dimensions by which objects, be they programming languages or
apples, can be differentiated with each other. To make our mappings between words and meaning
clearer throughout the text, we want to explicitly distinguish the following terms:

 Dimension (aspect, property, indicator, attribute, characteristic, criteria, parameter) –
a quality associated with an object

 Metric – a set of qualities and a method of quantifying (measuring) it

 Feature – a quality that beneficiary distinguishes one object from others in its class

We use “dimension” (and its synonyms) to signify the most atomic aspects of a language, “metric”
as a set of dimensions that can be represented numerically, and “feature” to simply provide a
colloquial language used in languages advertising or keywords to search solutions in the web.
Our terminology implies that quality of an object is taken for granted and means what common sense
suggests us. Quantity represents the state of being in a certain quality. For example, “five apples”
can be considered as immeasurable qualitative state of having “five” (not used here) or as a
measurable quantitative state of being in 5 pieces. Binary states (used in the metrics of a type
“language supports X”) are also accounted as measurable quantitative states of the amount of two
(“red apple” is 1 and lacking the “red” is 0).

3.2 Metrics vs. features
A common practice to think of any consumer product, which we believe any programming language
essentially is, is in terms of “features”. Features can be considered as a common language that are
used by both product creators in advertising as well as end-users in product perception.
In this work, it was tempting to present neutrally-oriented list of metrics in terms of features as it is
the most popular way for a computer language to be promoted and picked up in the wild. However,
if we decided to do so, the table would have become suggestive, implying that those features are
rather requirements for a “perfect language” we are seeking for, than the dimensions by which we
simply want to compare. Table 2 shows the difference. Thus, we decided to keep the list neutral and
add features (whenever possible) right under the metric names to simply provide an additional
information.

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

70

Табл. 2. Разница между метрикой и «фитчей» языка
Table 2. The difference between a language metric vs. feature

Language Metric Language Feature
Definition and Purpose

A method to measure (quantify) a
quality of an object in a neutral manner

A quality of an object that
demonstrates an advantage(s) over
others in its class

The main difference
A metric cannot be introduced without
a method of measuring it

A feature, similar to a feeling, can
be introduced even if there is no
clear way to measure it

Examples

Performance (mostly nouns) Fast (mostly adjectives)

Number of seconds required to
compile and/or run a program

Whatever the numbers are, it feels
really fast comparing to others

Compiler size Lightweight

Lines of code or size in bytes of a
language compiler or VM

We may not know exactly but the
language weights really nothing
comparing to others

4. Result
We introduce the full list of metrics in Appendix A. We have made the appendix self-contained. It
is a completely separate document with its own description, legend, references, and contributors list.
We wanted to make it easily printed, shared, and updated independently of the article itself. As such,
some of the parts that are already present in this article might be duplicating in the appendix.

4.1 Disclaimer
We do not pretend the list to be complete nor we believe it is reasonable to do so. As the field
progresses, there will be always new unique ways to measure language aspects, similar to those of
software metrics. The attempt is to make at least a first approximation of what programming
language metrics might be, what one can measure in general, and how they can be used in practice.

5. Metrics use
In this section, we introduce a simple method of how to define and compute your “best” language
using a simple table, the list of metrics, and the measurement data.

5.1 Background
Being able to compare similar objects around us and picking the “best one” among available options
is one of the essential cornerstones for an effective everyday life. Being able to compare
programming languages and choosing the best one for a particular problem is probably the essential
cornerstone for an effective programmer life.
Languages are often advertised and perceived in terms of intuitive feelings such as “simple” (Python
[23]), “fast” (C [24]), “delightful” (Elm [25]) or even “magical” and “sacred” (LISP [26]). Those
feelings, collectively, make us prefer one language over another and, thus, shape our favorite
choices. However, when it comes to the precise definition of what those feelings actually mean, how
they can be assessed in practice, and how they affect our final choice(s), the details always elude
from the scene. Programming languages are very versatile inventions, and to understand why the
same language can be considered as the best for one and the worst for another, we need a method of

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

71

dismantling complex feelings, features, and the notion of “best” into something that can be
effectively measured.

5.2 Procedure
To demonstrate the method, we will be using a simple example. Suppose our goal is to find the “best
fit” language out of the three: L1, L2, L3 (names are chosen deliberately abstract to eliminate
language affections). The question is “How do we know what language is the best among selected?”
To do so, we first identify dimensions by which they can be compared.

Step 1. Skim through programming language metrics and pick the ones that “feels” right, essential,
or important

Suppose we selected Popularity, Documentation, Standard Library, Performance, and Expressivity
(further as Popl, Docs, Stdlib, Perf, and Expr for brevity). Then,

Step 2. Create a table where rows are languages and columns are metrics

In our case, the table will look like the following:

 Popl Docs Stdlib Perf Expr
L1 - - - - -
L2 - - - - -
L3 - - - - -

Before we start fulfilling the table,

Step 3. Distribute the importance (weights) per each of the metric

We do so before fulfilling the table because metric importance affects not only the computing
procedure for the final choice but how carefully and precisely should we measure the scores. For
example, according to some ranking, we may find out that L1 has 2nd place in Popl, and L2 – 20th.
If we decided a place in Popl isn't that important for us, we may no longer waste our time trying to
refine the scores by other rankings, we can simply move on to measuring something else that is more
important. So, let us say we decided to make the distribution as follows:

 Popl Docs Stdlib Perf Expr
Weight 5% 15% 30% 40% 10%

L1 - - - - -
L2 - - - - -
L3 - - - - -

As we can see the sum of all weights is equal to 100%. In practice, however, when we, say, have 15
metrics, it becomes difficult to distribute importance manually to sum them back to 100%. Instead,
we suggest simply giving metrics a “place” or “points” (say, from 1 to 10), and compute the
corresponding percentages automatically. For example:

 Popl Docs Stdlib Perf Expr
Weight 2 4 5 8 3

Sum: 2 + 4 + 5 + 8 + 3 = 22
Normalize: 2/22 4/22 5/22 8/22 3/22

Weight (result): =0.09 =0.18 =0.23 =0.36 =0.14
In % 9% 18% 23% 36% 14%

Despite using points, we were able to “normalize” them back to percentages so that they sum up to
100% and roughly correspond to our previous manual distribution.
As a result, the table may look as follows:

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

72

 Popl Docs Stdlib Perf Expr
Weight 2 4 5 8 3
In % 9% 18% 23% 36% 14%

L1 - - - - -
L2 - - - - -
L3 - - - - -

The second (grayed out) row is optional and can be removed completely. However, we recommend
to keep it and, with the help of spreadsheet software, use it to “interactively” adjust points so that
the computed weights in percentage looks desirable.

Step 4. Measure metric scores for each of the language and fulfill the table. Make sure all scores
have a numeric value

Step 4 must be the most difficult and important one as everything else depends on its data. However,
measurements details are out of scope of this article. We will simply assume we were able to get the
results that are more or less “accurate”:

 Popl Docs Stdlib Perf Expr
Weight 2 4 5 8 3
In % 9% 18% 23% 36% 14%

L1 2pl 7p 82pkg 3.1ms 300L
L2 20pl 3p 117pkg 1.7ms 155L
L3 13pl 5p 63pkg 0.5ms 170L

We do not need to fit our metric scores into a particular system of units or scale. Scores can be
completely “raw”. What is important is that they are numerical. For example, Popl can be a place in
some ranking as TIOBE [12]; Docs can be a sum of abstract points (say, +1 for coverage, readability,
nice-looking, etc.); Stdlib – a number of available packages in it; Perf – time in milliseconds needed
to run a test-bench program; and Expr could be the lines of code for the program we run in Perf.

Step 5. Set the polarity for each of the metric (e.g., “higher is better” or “lower is better”, where
binary metrics are not the exception) and place them on a separate line or near the names

We used higher ↑ and lower ↓ is better at the end of the names:

 Popl↓ Docs↑ Stdlib↑ Perf↓ Expr↓

Weight 2 4 5 8 3
In % 9% 18% 23% 36% 14%

L1 2pl 7p 82pkg 3.1ms 300L
L2 20pl 3p 117pkg 1.7ms 155L
L3 13pl 5p 63pkg 0.5ms 170L

Before we continue, we may do an additional step:

Step 5.1 (optional) Identify best scores per each of the column, and write them out on a separate
“Best [score]” line

This step is completely optional and serves rather as an intermediate phase. It shows how close
visually (by counting highlights) each language approximates to the best sampled scores:

 Popl↓ Docs↑ Stdlib↑ Perf↓ Expr↓

Weight 2 4 5 8 3
In % 9% 18% 23% 36% 14%

Best 2pl 7p 117pkg 0.5ms 155L
L1 2pl 7p 82pkg 3.1ms 300L
L2 20pl 3p 117pkg 1.7ms 155L
L3 13pl 5p 63pkg 0.5ms 170L

It's time, however, to calculate how actually close each language approximates to the best sampled
scores considering the weights. In other words, “Who is the best?” among our three. Depending on

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

73

how we would define “best”, we might have two strategies. First is to compute proximity relative to
the unreal best scores (0th place in Popl and 0ms in Perf). Second – relative to the real “Best” scores
taken from the previous table (2nd place in Popl and 0.5ms in Perf). We will take the first strategy
and remove “Best” line altogether. We do so because (1) taking the second strategy doesn't change
the order of “winners”, (2) we found it simpler to compute, and (3) we want the highlighted line,
which is now is used by “Best”, to be taken by the real winner (L1, L2, or L3).

Step 6. Calculate the final score for each of the languages using the following algorithm 1:
 For each row [language]:
 For each column [metric in a language]:
 Take score value v
 Take maximum value in column max
 Take metric weight w
 If column polarity is ‘higher is better’:

 Compute 𝑣/𝑚𝑎𝑥 × 𝑤
 Otherwise (‘lower is better’):
 Compute |𝑣/ 𝑚𝑎𝑥 − 1| × 𝑤
 Add the result to language score S
 [After all metrics are processed]
 Language score S is ready
 Put S on a separate column ‘Score’
 [After all languages are processed]
 Evaluation is completed
 Best language is the one with the biggest S
Algorithm 1. Best Language Evaluation

Procedure visually:

 Popl↓ Docs↑ Stdlib↑ Perf↓ Expr↓ Score
L1 2pl 7p 82pkg 3.1ms 300L 0.42

 |2/20 – 1|
×0.09
=0.081 +

7/7
×0.18
=0.18 +

82/117
×0.23
=0.16 +

|3.1/3.1 – 1|
×0.36
=0 +

|300/300 – 1|
×0.14
=0 =

0.421

L2 20pl 3p 117pkg 1.7ms 155L 0.54
 |20/20 – 1|

×0.09
=0 +

3/7
×0.18
=0.077 +

117/117
×0.23
=0.23 +

|1.7/3.1 – 1|
×0.36
=0.16 +

|155/300 – 1|
×0.14
=0.068 =

0.535

L3 13pl 5p 63pkg 0.5ms 170L 0.64
 |13/20 – 1|

×0.09
=0.032 +

5/7
×0.18
=0.128 +

63/117
×0.23
=0.124 +

|0.5/3.1 – 1|
×0.36
=0.3 +

|170/300 – 1|
×0.14
=0.06 =

0.644

Procedure formally:

𝑆best

⎩
⎨

⎧
𝑆ଵ = 𝑚ଵ[𝑤ଵ] + 𝑚ଶ[𝑤ଶ]+ . . . + 𝑚[𝑤]

𝑆ଶ = 𝑚ଵ[𝑤ଵ] + 𝑚ଶ[𝑤ଶ]+ . . . + 𝑚[𝑤]

⋮
𝑆 = 𝑚ଵ[𝑤ଵ] + 𝑚ଶ[𝑤ଶ]+ . . . + 𝑚[𝑤]

,

where

𝑚 = ൞

𝑣

𝑚𝑎𝑥
 , if polarity is "higher is better"

ቚ
𝑣

𝑚𝑎𝑥
− 1ቚ , otherwise ("lower is better")

(1)

and

 𝑆best is the best language score among n languages;

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

74

 𝑆n is the final score for the language n;

 wj is the weight (importance) of the metric j;

 mj is the computed score value of the metric j;

 vj is the “raw” score value of the metric j;

 max is the biggest numeric value for j among 𝑆1…n.
We call (1) as the “Formula of Choice”. We read it as following: the best language 𝑆best among
available 𝑆1…n is the one which has the biggest sum of metric scores 𝑚1…j given their weights 𝑤1…j.

So, after we have computed all the language scores, we can finalize our table with:

Step 6. Sort the table by Score in descending order, and add a Place column enumerating languages
from 1

 Popl↓ Docs↑ Stdlib↑ Perf↓ Expr↓ Place Score
Weight 2 4 5 8 3
In % 9% 18% 23% 36% 14%

L3 13pl 5p 63pkg 0.5ms 170L 1 0.64
L2 20pl 3p 117pkg 1.7ms 155L 2 0.54
L1 2pl 7p 82pkg 3.1ms 300L 3 0.42

Column “Place” will give us an ability to keep/see language places even if we decide to sort the
table by other columns (e.g., shuffle languages by the largest number of packages).

5.3 Discussion
When we originally looked at the data, we were expecting L2 to become our “top” language.
However, the calculation gave it the 2nd, which made us suspect an error in calculations. After a
closer look (and double-checking estimates), we understood that L2 is simply 3x times slower than
the winner in Perf, which we decided to be the most important aspect in the table. Even though,
Stdlib of L2 is larger almost twice, its importance is still lower. When it comes to the rest of the
metrics, they seemed simply compensating each other: L2 is slightly better at Expr, however, slightly
worse at Docs, whereas Popl felt completely discarded due to its very low importance.
These slightly unexpected results led us to draw the following conclusions:

1) Weights have to match the actual expectations of the author (originally, they have been put
artificially without author's internal agreement).

2) Even if weights were in a perfect harmony with us, such cases cannot be excluded, which would
require us to start metric refinement. The latter means what we have said at the very beginning
– the more important metric is, the more effort one should invest into its score elicitation.

5.4 Metric composition
For the sake of simplicity, at the very beginning of the subsection 4.2 (Step 1 and 3), we used metric
only as independent variables to form our comparison. However, using Step 6 and the “Formula of
Choice”, we can elaborate the method. We can compose metrics as if they are building blocks for
defining other “high-order” metrics, or (as we are interested in this section) features and feelings.
For example:

“Easy to learn” = Expressiveness↑〈6〉 + Documentation↑〈4〉 + REPL↑〈2〉;

“Easy to write” = Syntactic complexity↓〈5〉 + Code formatting↑〈3〉;

“Easy to run” = Compiler portability↑ + Supporting platforms↑;

“Easy to debug” = Error hints↑〈7〉 + Compilation speed↓〈3〉;

“Easy to find help” = max (Popularity↑, Technical support↑);

“Fast” = Runtime speedRust / Runtime speedC (How fast is C relative to Rust)

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

75

where

 “Aspect” = metricଵ
〈weight

ଵ
〉 𝑜𝑝 metricଶ

〈weight
ଶ

〉 …;

 “Aspect” can be a new (composite) metric, feeling, or feature;

 Angle brackets designate weight of the metric (in relative units, say, from 1 to 10);

 Lack of brackets means all metrics share the same importance;

 p is the polarity of the metric: higher ↑ or lower ↓ is better;

 op is how we want to combine metrics to produce new aspect (e.g., by summation, division,
taking max, etc.)

For example, we defined an “Easy to learn” as a sum of three aspects: Expressiveness of code,
available Documentation, and the presence of REPL. The importance within was distributed using
relative points to get percentages automatically (as we did in Step 3). In our case, they come to 50%,
33%, 16% accordingly. “Easy to run” we defined as the sum of Compiler portability and Supporting
platforms. We missed weights, which mean they are distributed equally: 50% and 50%. Finally,
“Easy to find help” is simply the metric that is best manifested in the language: either Popularity or
direct Technical support, where the weight of whichever metric is chosen will be 100%. The rest of
examples should be self-explanatory.
These simple rules of composition give us unlimited power in defining feelings, features, and other
high-order metrics that would otherwise be difficult to express. We believe that the idea of
combining metrics could be an interesting tool for making sound arguments in the endless
emotionally-driven language debates. This perspective could make metric composition to be
uncharted territory for further research and exploration.

6. Conclusion
The current work presents possibly the first approximation of programming language metrics. We
provided an open-source document (to which we welcome to contribute) with over 70 unique
programming language aspects that can be used to pragmatically compare languages, define
requirements, create rankings, and have an overview of available language features. We have
presented the “Formula of Choice” to determine “best language” for your own needs using a simple
table with few calculations. We have presented the method of metrics composition to decompose
complex feelings and features, such as “simplicity” and “easy to use”, into more measurable pieces.
We hope that this information can serve as a useful guidance for the analysis and comparison of
programming languages in the never-ending debates and constantly emerging options.

References / Список литературы
[1] Nanz S., Furia C.A. A Comparative Study of Programming Languages in Rosetta Code. In Proc. of the

IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015, pp. 778-788.
[2] Prechelt L. An Empirical Comparison of Seven Programming Languages. Computer, vol. 33, issue 10,

2000, pp. 23-29.
[3] Fourment M., Gillings M.R. A comparison of common programming languages used in bioinformatics.

BMC Bioinformatics, vol. 9, issue 1, 2008, article no. 82, 8 p.
[4] Pembeci İ., Hager G. A Comparative Review of Robot Programming Languages, Report CIRL-Johns

Hopkins University, 2003, 29 p.
[5] Pigott D.J., Axtens B.M. HOPL; Online Historical Encyclopaedia of Programming Languages. Available

at: https://hopl.info/, accessed Aug. 11, 2020.
[6] Programming Language DataBase. Available at: https://pldb.com/, accessed Aug. 13, 2022.
[7] Programming Languages. Rosetta Code. Available at:

https://rosettacode.org/wiki/Category:Programming_Languages, accessed Nov. 04, 2022.
[8] List of programming languages. Wikipedia. Available at:

https://en.wikipedia.org/w/index.php?title=List_of_programming_languages&oldid=972639589,
accessed Aug. 13, 2020

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

76

[9] GitHub | Advanced Search.GitHub. Available at: https://github.com/search/advanced, accessed Nov. 04,
2022.

[10] The state of open source software | Top Languages. Available at: https://octoverse.github.com/2022/top-
programming-languages, accessed Nov. 16, 2022.

[11] Top Programming Languages 2022. IEEE Spectrum. Available at: https://spectrum.ieee.org/top-
programming-languages-2022, accessed Dec. 20, 2022.

[12] TIOBE Programming Community index. Available at: https://www.tiobe.com/tiobe-index/, accessed Dec.
20, 2022.

[13] Stack Overflow Developer Survey 2022. Available at:
https://survey.stackoverflow.co/2022/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2022, accessed Dec. 20, 2022.

[14] Carbonnelle P. PYPL PopularitY of Programming Language index. Available at:
http://pypl.github.io/PYPL.html, accessed Jul. 16, 2020.

[15] Sammet J.E. Problems in, and a pragmatic approach to, programming language measurement. In Proc. of
the Fall Joint Computer Conference, 1971, pp. 243-251.

[16] Aruoba S.B, Fernández-Villaverde J.A Comparison of Programming Languages in Economics. Working
Paper 20263. National Bureau of Economic Research, 2014, 20 p.

[17] Boom H.J., de Jong E. A critical comparison of several programming language implementationsю
Software: Practice and Experience, vol. 10, issue 6, 1980, pp. 435-473,

[18] Alomari Z., Halimi O.E. et al. Comparative Studies of Six Programming Languages. arXiv:1504.00693,
2015, 71 p.

[19] Al-Qahtani S.S., Pietrzynski P. et al. Comparing Selected Criteria of Programming Languages Java, PHP,
C++, Perl, Haskell, AspectJ, Ruby, COBOL, Bash Scripts and Scheme. Revision. arXiv:1008.3434, 2010,
149 p.

[20] Delorey D.P., Knutson C.D., Giraud-carrier C. Programming language trends in open source development:
An evaluation using data from all production phase sourceforge projects, In Proc. of the Second
International Workshop on Public Data about Software Development, 2007, 5 p.

[21] MacLennan B.J. Simple metrics for programming languages. Information Processing & Management, vol.
20, no. 1, 1984, pp. 209-221.

[22] MacLennan B.J. The Structural Analysis of Programming Languages. Report NPS52 81-009, Naval
Postgraduate School, 1981, 37 p.

[23] van Rossum G. Python reference manual. Technical Report CS-R9525. NCWI (Centre for Mathematics
and Computer Science), 1995, 59 p.

[24] Kernighan B.W., Ritchie D.M. The C programming language. 2nd edition. Pearson, 1988, 272 p.
[25] Elm - delightful language for reliable web applications. Available at: https://elm-lang.org/, accessed Nov.

04, 2022.
[26] G. Steele. Common LISP: the language. 2nd updated edition. Digital Press, 1990, 1029 p.

A. Appendix. Programming language metrics
This appendix is a collection of over 70 unique programming language metrics. The purpose of this
section is to provide dimensions (features, properties, aspects) by which any two computer languages
can be qualitatively and quantitatively compared. These metrics can be used to analyze languages,
define requirements, create rankings, provide tips for language designers, or simply give a bird’s-
eye view on existing language features. The list is based on metrics commonly used in programming
language research, development and use, as well as the years of author and contributors personal
experience. The collection is open-source and can be downloaded as a separate PDF file at
https://github.com/timfayz/language-metrics.

A.1 Contribution
To contribute new metrics, typo fixes, or suggest any other improvements, please send an email to
tim.fayzrakhmanov@gmail.com, or make a pull request / open an issue at
https://github.com/timfayz/language-metrics. Please, specify your full name, public email, and
affiliation if necessary.

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

77

A.2 Legend
Metrics are grouped into nine basic categories:
1) User experience – a user background affecting the language use;
2) Language recognizability – how popular the language is;
3) Language infrastructure – surrounding documentation and libraries;
4) Language development and support – maintenance, user support, and tooling;
5) Language special features – coding experience and special-purpose features;
6) Language implementation and programs – compiler and its generated executable files;
7) Language specialization and design – focus and syntactic/semantic design decisions;
8) Language definition – specification, formalization, and standardization;
9) Language origin – by whom, when, and why the language was originally conceived.
Each metric has an ordinal number, name, indicators for measuring score, and examples of a user
feedback. The order of categories and metrics within is by potential “impact factor” for an ordinary
end-user rather than by the impact factor for a potential language designer.
First column contains:
1) Metric name with a polarity sign: ↑ “higher or support is better”, ↓ “lower or absence is better”,

and ○ “neutral or depends”;
2) Feature names found in the advertising descriptions of languages (should be read as “Language

is / has / supports ...”);
3) Typical examples of languages with a good demonstration score (based on public information,

author/contributors experience, with no supporting references).
Second column contains a set of indicators for measuring metric “score”. If many, indicators can be
added together or used individually to adjust the desired accuracy.
Third column describes typical positive “+” or negative “–“ end-user perception (usually emotional
ones) that have been found “in the wild” (forums, comments, contributors/author experience).
Sometimes we put content of the third column in the second (after a long dash “—“) to save some
vertical space.

A.3 Metrics table
v0.4 (Updated 22 Dec, 2022)

 Metric name(polarity)

Feature name
Typical representative

How to measure
Common › indicators for measuring
metric score

Typical end-user perception
Positive + or negative – comments found in the
wild, when the score is high/low according to
metric’s polarity

 User Experience

1. Familiarity↑ › N of years coding in the language + “It is easier to code in because I already
know the language”

2. Similarity↑
C, C++, C#
Pascal, Modula, Oberon

› Language is similar to other languages
known by the user

+ “The language is really easy to grasp because
it looks similar to others”

 Language Recognizability

3. Popularity↑
Popular
Mainstream
Rich set of libraries
Community support
Python, JavaScript

› Rank of the language in popularity
ranks/surveys: TIOBE [12], PYPL [14],
IEEE Spectrum [11], StackOverflow
Developer Survey [13], GitHub’s State of
Octoverse [10]
If manually:
(the order reflects an ease of checking)

+ “Language must be safe to learn because a
lot of people already use it and there must be a
reason for it”
+ “Language must be actively developed* and
its development won’t be abandoned soon”
+ “There are plenty of tutorials, examples,
snippets, answers to get started”

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

78

3. Popularity↑ (cont.)
Popular
Mainstream
Rich set of libraries
Community support
Python, JavaScript

› Wiki page is available
› Is in “Popular” category at GitHub’s
search [9]
› Reddit community is available + N of
members
› N of questions at StackOverflow [27]
› N of packages at GitHub [9]
› N of references/tutorials in web searches
› N of books written
› YouTube videos are available
› Job openings are available

+ “It’s probably easier to find a job”

* Language development might be stagnating even if
it is still actively used or considered popular. That is
why we included “Development” as a separate metric

4. Trendiness↑
Trendy
“Rising star”
Haskell, Python, Rust

› N of stars in public repository compared
to the date of the project inception
› Language has a surge of interest in
newsgroups, conference talks and media

+ “The language seems promising. If I start
using it now, it may payoff in the future (new
jobs, niches, technological advantage)”

Language Infrastructure

5. Documentation↑
Easy to read
Comprehensive
Full of examples
PHP, C#, Go

› Language has “official
documentation”, “reference manual”, or
“programmer’s guide” that:
› Clearly describes how to get started
› Written in a clear/informal manner
› Has a wide coverage
› Contains illustrative code examples
› Well-linked with other parts of
documentation
› Loads quickly

+ “With good examples in documentation I can
easily start prototyping my own project”
+ “I can easily find an answer to my questions
concerning the language”
– “It is almost impossible to use and learn
language without a well-written
documentation”

6. 3rd-party Resources↑
Rich community support

› N of textbooks available
(for various kind of users; from novices to
experienced developers)
› Online resources: tutorials, articles, posts
› Q&A websites
› Videos

+ “It is great when language has a lot of
additional resources, tutorials, etc. that explain
the same language from different angles, and
for different users”

7. Standard Library↑
Rich/Clean stdlib
“Batteries included”
Go, Python, Java, C++

› N of packages available in standard
library
› Language is following exhaustive vs
minimalistic standard library approach

+ “Rich standard library means I can build
many applications without switching to
unreliable 3rd-party libraries that might be
buggy or no longer supported”

8. 3rd-party Libraries↑
Rich ecosystem
JavaScript, Python, C++

› N of packages available on GitHub or
language’s own repository network

+ “The more packages available in the wild,
the faster I can create my own solution, just by
using someone else’s work”

Language Development and Support

9. Development↑
Actively Developed
Python, C++

(the overall language development
dynamics)
› How recently was the stable release
› N of releases per month/year
› N of commits per month/year

+ “If the language is actively developed, then
it’s not going to “die” soon, and so we can rely
on it”
+ “Bugs reported in the previous version(s) are
to be fixed in the next one”

10. IDE support↑
Supported by many IDEs
Java

› N of 3rd-party IDEs supporting the
language

IDE support = syntax highlight, syntax checker,
code formatter, auto-completion, refactoring,
code search, debugging, linter, etc. (each feature
gives “point”)

+ “I can use language in my favorite IDE”
– “Without IDE support (like syntax, error
highlighting, autocompletion, and such), the
modern use of language is almost impossible”
(if ↓)

11. Milestone↑
Stable

› Language has reached version 1.0 (ie. its
library API, syntax, and language
constructs became fixed)

+ “Language API isn’t in complete flux, so we
can rely on it without worrying of breaking
changes in the next update”

12. Backward-
compatibility○
Backwards-compatible
C++, JavaScript

› Every new release keeps language API,
syntax, and language constructs backward
compatible with previous release(s)

+ “My codebase can rely on the API it was
originally written in and yet keep updating
compiler for possible performance
improvements”

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

79

13. Technical support↑
24/7 Technical support

› Language provides a service with direct
human-based technical support

—

Language Special Features

14. Garbage collection○

Automatic memory
management
Go, Java, Python, C#

› Language provides a garbage collector
(GC)
——
+ “Language takes care of my resources so
I don’t need to think about manual
memory allocation and deallocation”

– “Programs in the language with automatic
memory control are memory hungry and
probably cannot be used for embedded
systems”
– “Language does not give me manual memory
control to do my own (unsafe) stuff”

15. Type safety↑
Strong typing
Static type-checking
Rust, Go, Haskell

› Language provides any form of runtime
or/and compile-time type checking (ie.
prevents a program to perform illegal
operations on values that do not have
appropriate data type)

+ “Programs written in this language are
reliable, less error-prone, and always behave
the way I defined them to behave”
– “I’m so annoyed with the constant type errors
that I simply cannot write programs”

16. Memory safety↑
Safe/Memory-safe
Rust, Go, Kotlin

› Language provides any form of
mechanisms to prevent illegal memory
access in a program (runtime/compile-time
checks for buffer/stack overflows,
dangling pointers, double freeing, etc.)

+ “Programs written in this language are more
safe and less prone to memory leaks”

17. Type richness↑

Rich types
Haskell, Scala,
Typescript

› Language has high descriptive power in
its type system (eg. support for interfaces,
generics, algebraic, high-order, dependent
types, etc.)

+ “Language allows me to define complex
types, data and program behaviour as well as
verify them prior execution”

18. Exception handling↑

Exception handling
C++, Python, Java

› Language provides mechanisms for
handing unexpected runtime errors without
immediate crash / resuming execution

+ “Language allows me to handle runtime
errors such that I am able to recover execution
flow or exit properly”

19. Concurrency↑
Parallel computing
Multithreaded
Coroutines
C/C++, Go, Erlang

› Language supports any form of
parallel execution and multithreaded
computing:
› Heavyweight threads (also native, or
operating system threads)
› Lightweight coroutines (also fibers,
generators, or “green threads”)

+ “Language allows me to do parallel
computing (ie. utilize as much computing
power as possible) in a manageable way”

20. Instruction-level
parallelism↑

Parallel computing
SIMD programming
C/C++

› Language supports any form of
vectorized operations or "SIMD
programming” (eg. explicit directives for
vectorized/”streaming” data structures,
operations, loop unrolling, etc.)

+ “Language allows me to do professional
optimization of my code to get the maximum
performance and efficiency of my programs”

21. GPU computing↑
Parallel computing
Scientific computing
C/C++

› Language provides well-supported
libraries or primitives to dispatch
execution onto GPU(s)

+ “Language allows me to accelerate my
programs with the power of GPU”

22. Distributed computing↑

Distributed computing
C/C++, Julia, Erlang

› Language provides mechanisms to
distribute a single program or execution
flow upon several physically separated
machines (incl. separated by network)

+ “Language allows me to do highly scalable
computation across multiple machines”

23. Message passing↑
Distributed computing
Erlang, Smalltalk, Java

› Language supports sending messages
between abstract objects which can be
objects, parallel processes, subroutines,
functions or threads

+ “Language gives me a single model of
objects that simply communicate with each
other, no matter whether they are functions or
parallel processes”

24. Reflection↑
Reflective
Go, Julia, JavaScript

› Language provides constructs to “see”
and modify its own code (normally, at
runtime; eg. accessing variable names,
function signatures, etc.)

+ “I can dynamically (at run-time) access
meta-data of language constructs (eg. get a
name of a class, variable, function, etc.), which
allows me to write a more generic code and do
all kinds of static/dynamic code analysis”

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

80

25. Lazy evaluation○
Haskell, Io, Clojure,
Scala

› Language supports holding up the
evaluation of an expression until its value
is needed
› Language allows switching back to or
explicitly forcing (normal) “eager
evaluation” when needed
——
+ “My code can be more efficient in terms
of memory and performance because
values don’t need to be computed if they
aren’t going to be used”

+ “In lazy language it is possible to define
infinite lists and elegantly handle streams of
data”
– “Lazy evaluation brings a certain amount of
memory bloat, and requires too much
knowledge of the program and algorithms to
get the benefits”
– “It is not clear when exactly side effects are
going to happen and so it is hard to debug”

26. Lambda
expressions↑
Haskell, Scheme, many...

› Language supports anonymous functions + “I can construct higher-order functions or use
them as values to return from other functions”

27. Package manager↑
Package manager
C# NuGet, Python pip

› Language allows to download and
install packages and dependencies using
one of its (built-in) CLI commands

+ “Language comes with its own package
manager so I don’t need to install some 3-rd
party packages to get things up and running”

28. Doc generator↑
Doc comments
Java, C#

› Language supports “documentation
comments” (formatting tags) and is able to
generate (HTML) pages based on these
annotations

+ “I can embed parts of program
documentation directly into my source code
and get nice-looking pages for free”

29. Build system↑
Native build system
Zig

› Language allows to write build scripts in
itself without using external tools or other
languages (such as Bash, make, CMake,
Maven, etc.)

+ “It is great that I don’t need to learn other
building tools and their cryptic languages in
order to automate my project building
routines”

30. Error hints↑
Smart compiler
Helpful debug messages
Elm

› Language compiler or run-time
environment provides error messages that
are instructive enough to understand how
to fix them

+ “Language is really good in helping to fix
my code. I get not only an error message but
also a hint how to fix it”

31. Code formatting↑

No more formatting wars
Go fmt, C clang-format

› Language compiler can automatically
reformat code to follow default/user-
defined coding standards

+ “I don’t need to spend time following
numerous and over-complicated coding styles
to format my code. Let the language do it
instead”

32. Macros↑
Metaprogramming
C/C++, Zig, Nim

› Language supports any form of
metaprogramming or defining “macros” to
execute logic during compile time

+ “I can do a lot of prepossessing during
compile time so that runtime is not occupied by
unnecessary computations”

33. Native IDE↑
Built-in IDE
Eiffel → EiffelStudio

› Language offers its own integrated
development environment
——
+ “Native IDE may give much better
integration than 3rd-party alternatives”

– “I don’t want to change my environment just
because of the language” (if only native IDE
available)
– “It’s unlikely that build-in IDE is better than
my current”

34. REPL↑
Interactive
Python, Scala

› Language has interactive Read-Eval-
Print-Loop mode

+ “It is easy to play with the language and test
code snippets”

35. Embedding↑
Embeddable
Lua, Tcl, Red, Lisp

› Language (as “guest”) can run in N of
(“host”) languages or applications

+ “Language can be used as a scripting
language to automate repetitive tasks in my
favorite app or a host language (eg. Bash in
shell, Python in Blender, Lua in World of
Warcraft)”

36. Bindings↑
FFI support*
Python/Go ← C/C++
Kotlin ⇄ Java

› Language supports direct function calls
(bindings) from N other languages
without wrappers or special API

+ “My code can easily use the libraries of other
language(s)”
*FFI (Foreign Function Interface) – a language is
capable to call functions written in another language
providing so called “bindings” (primarily to C)

37. Transpilation↑
Transpiled
Haxe, TypeScript, Elm

› Language is able to compile code into
source code of other N (high-level)
languages

+ “I can keep writing my code in the language
to the benefits of which I already get used to
but also benefit from other language(s)
infrastructure, libraries, performance, etc.”

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

81

38. IR access↑
Open interface
Deep language
integration
C# or VB (using Roslyn)

› Language, for each compilation step,
provides internal intermediate
representation (IR) export (eg. pre-
processed source code, parse tree, syntax
tree, intermediate code, etc.)

+ “Probably language provides a good amount
of data for implementing advanced IDE
features (debuggers, static analyzers, code
formatters, dependency checkers, visualizers,
etc.)”

39. Unicode support↑
UTF-8 support
Java, C#, Go, Swift

› Language supports Unicode Standard for
representing characters in strings or
identifiers

+ “I can work with special characters such as
emoji in my strings or use foreign language
identifiers”

40. GOTO support○
C/C++, Go, Fortran

› Language supports “goto” statements for
unconditional jumps to specific program
locations (usually by means of labels)

+ “I can create custom control structures where
the built-in ones do not satisfy my
(professional/low-level) needs”
– “GOTO statements can be easily abused by
unskilful programmer and lead to notorious
Spaghetti code”

Language Implementation and Programs

41. Compilation speed↑
Fast compilation
C, Go, Zig

› How fast compiler compiles programs in
s/ms/ns

+ “Recompilation time in this language is really
short, which allows me to make the feedback
loop between code changes and results short”

42. Runtime speed↑
Fast
C/C++, Rust, Zig

› How fast programs run in s/ms/ns + “Language is blazingly fast, programs
written it run really quickly”

43. Compile-time memory
footprint↓
Low memory usage
C, Pascal, Forth

› The amount of memory in bytes needed
to compile a program (or while compiling
the program)

+ “I can compile big projects without thinking
that I will run out of memory on my machine”

44. Runtime memory
footprint↓
Low memory footprint
C/C++, Fortran, Rust

› The amount of memory in bytes that a
program uses while running

+ “Programs written in this language hardly
use any RAM (compared to others), which
means the compiler does good optimizations,
emits efficient code and probably suitable for
embedded systems”

45. Compiler/VM size↓
Lightweight
Lua

› Size of language compiler or VM in
LOC/bytes

+ “Language is lightweight, minimalistic and
(possibly) embeddable”

46. Executable size↓
Compact programs
Slim binaries
C, Oberon, Zig

› Size of executables, including the ones
for VM, in bytes (eg. with default compiler
options)

+ “Programs are small, possibly fast, and may
fit into embedded systems”

47. Compiler/VM
portability↑

Portable
C/C++, Java

› N of platforms the language compiler/VM
can run on

+ “I can compile my code on many platforms”
or “I can run compiler/VM on many platforms”

48. Executable portability↑
Cross-compiled
Portable, Transpiled
C/C++, Java

› N of “target platforms” the language
programs can be run on

+ “I can write code once and run it anywhere
(WORA)”

49. CLI complexity↓
Simple to use
Go

› N of $ language commands
› N of command line --options

+ “Command Line Interface of the language is
easy and simple to use and remember”

50. Self-hosting↑
Self-hosted
Zig, Go, Rust

› Language implementation is written in
itself
——
+ “If language is self-hosted, it can be
considered “serious”, “production ready”
and independent from others”

+ “Language can get more contributions to its
compiler by people who before would only
work on the standard library”

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

82

51. Open-source↑
Open Source
OSI-approved
Python, Go

› Language (compiler) source code is open-
source and available for download,
modification, recompilation, distribution,
static linking and commercialization

+ “Open-source is good because anyone can
contribute to language development: do code
reviews, fix bugs, write modules,
documentation, etc.”
– “If open-source, it is not clear who is
responsible for the project and fixing bugs. It
can be abandoned at any time”

52. License○
MIT license

› Language license type
(MIT, GPL, BSD etc.)

+ “Nonrestrictive license types give a language
freedom to be not confined to any single
ownership, and prevent attempts to be
company or technology specific”

Language Specialization and Design

53. Paradigm○ › Language presents itself as following a
particular or multiple paradigms (eg.
procedural, object-oriented, functional)

+ “I like when the language mix different
paradigms because I can approach problems
using a paradigm that is the most effective for
the solution”

54. Visual language○
Visual Programming
DRAKON, Scratch

› Language has a graphical representation
and can be used as a visual modeling or
programming language

+ “I like the visual expression of my code to
better understand and manipulate my program”

55. Esoteric language○
Brainfuck

› Language is considered as “esoteric”
(esolang)

+ “I can use the language as a form of software
art to show off my skills”

56. Educational language○
Logo

› Language is specifically designed or can
be used to introduce pure computer science
ideas (also known as “tiny”, “small”, or
“first”)

+ “I can use the language to concentrate on
pure ideas without being distracted with
unnecessary infrastructural details”

57. Domain-specialization○
Used by professionals
Hardened by industry
R in statistics
Matlab/Python in
scientific computations

› Language became one of the standard
tools used in a certain domain
——
– “Language is not safe to invest time
because if I use it, I’ll stuck in its domain”
+ “I’ll be able to do what other
professionals do”

+ “Language is safe for time investment
because other people in my domain use it
already”
+ “Typical problems have been solved already”
+ “It will be easier to find a job (or simply, you
don’t find any without having skills in it)”

58. Platform-orientation○

Deep integration
Apple –› Swift
Microsoft –› C#

› Language is primarily driven by or
developed for a certain platform and its
infrastructure

+ “Language provides the best integration
experience for this platform”
– “If I use this language I will probably stuck
in its infrastructure”

59. Expressiveness↑
Expressive, Powerful
Python

› Length of program in LOC to express a
typical problem comparing to the same
task written in another language [8]

+ “Language is easy to write, it is concise,
short and elegant; code do not repeat itself”
(if ↑)
– “Language is difficult to write, read, and
maintain; code grows fast” (otherwise)

60. Syntactic complexity↓

Laconic, Concise
Elegant, Simple
Lisp ↓, C++ ↑

› N of production rules language grammar
has
› N of keywords

+ “Language is simple, elegant, concise and
has a small learning curve” (if ↓)
– “Language is bulky, complex, bloated and
has a steep learning curve” (otherwise)

61. Syntactic coherence↑
Clean syntax
APL, Brainfuck ↓
Elm ↑

› Ratio between word- vs ASCII-based
operators, keywords, and constructs
› Keywords are in/distinguishable
› Use of ASCII in identifiers is not/allowed
› Lack/use of underscores in reserved
identifiers

– “Code is cryptic, noisy, ripples in eyes and
difficult to follow” (if ↑)
+ “Code is clean, consistent and easy to
follow” (otherwise)

62. Semantic complexity↓
Simple
Go

› N of language constructs
› N of built-in operators

+ “The less construct language has, the less I
need to remember”

Файзрахманов Т.Р. Система метрик для языков программирования. Труды ИСП РАН, том 34, вып. 6, 2022 г., стр. 67-84

83

63. Semantic coherence↑
Consistent design
Easy to learn
Coherent
Lisp

› Language constructs are composable with
each other
› Language follows a paradigm
“everything is an expression”

+ “Language feels well-designed, coherent,
and easy to learn. It has a small number of
constructs, everything is composable with each
other, and there are little/no special rules or
exceptions”

64. (Syntactic/Semantic)
Homoiconicity○
Code as data
Lisp, Scheme

› Code can be directly interpreted as data
(ie. as language built-in structures), and
inversely, data can be executed as code

+ “Language feels magical and self-referential”
+ “I can easily generate programs or do
program analysis written in that language”

65. Design independence○
Inspired by X
Designed from scratch
X is a well-known language

› Language design is “inspired” by other
languages, or it is a continuation of
“language family”

+ “If the language is inspired by X, and X
wasn’t bad, then the new one is going to be at
least as good as its predecessor(s)”
+ “If a language designed from scratch, it is
probably fresh and ambitious enough to give a
good “punch” to others”

Language Definition

66. Specification↑
C/C++, Java

› Language has a normative Specification
with a complete in-/semi-/formal definition
of its form (syntax) and behaviour
(semantics)
› Specification includes the specification of
standard library

– “If specification is too big, the language is
probably over-complicated to hold in one’s
programmer head and so, difficult to learn”
+ “If specification is simple/short, the language
can be probably easily re-implemented or
ported to new architectures”

67. Standardization○
Standardized
C/C++

› Specification is based on the consensus of
different parties that may include firms,
interest groups, standards organizations or
governments

+ “It is good that I can have independent
compilers for the same code base and switch
them if there is performance or development
stagnating issues”
– “Language has become huge, bulky and
slow-moving because its design is now
dispatched to (big) standardization committee
rather than (small group of) individual(s)”

68. Formal syntax↑
SQL, C#, Go, Python

› Specification includes the formal
grammar of language syntax (normally in
EBNF)

+ “I can use it to write a parser for language
analysis or as a basis for its reference
implementation”

69. Formal semantics↑
Formalized
Standard ML, PL/I

› Specification includes the definition of
language semantics in some theory or
formal system (eg. Set theory + First-order
logic, Category theory, etc.)

+ “Behaviour of my programs can be verified
with mathematical rigour”
+ “Language can be used for mission- and
safety-critical software systems”

Language Origin

70. Origin○
Came from X
X is a well-known
company or eminent
university

› Language was born as an academic,
industry, or a hobby project
——
+ “If the language was born in industry, it
is probably battle-tested, pragmatic, and
understandable by a normal human being”

– “If the language was born in academia,
probably it is not well suited for the real
industrial software development”
+ “If it was born in academia, it is well-
designed, has a mathematical rigour, formally
defined behaviour, and potentially verifiable
programs”

71. Author○
Designed by X
X is a prominent person

› Author name(s) who designed,
implemented or gave rebirth to the
language

+ “If the author is well-known
developer/researcher, then the language should
be well-designed too”

72. Initial purpose○
Designed for X

› The problem domain the language was
originally(historically) designed for

+ “If the language was created for X, then it
should probably do it well”

73. Age○
Developed since X
X suggests maturity

› Date or N of years from the first release
or exposition

+ If the language is developed over many
years, then it must be mature, has
comprehensive documentation, and vast
infrastructure”
– “If the language is too old, then it is slow
developed, its design overloaded with special

Fayzrakhmanov T.R. Introducing Programming Language Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 34, issue 6, 2022, pp. 67-84

84

cases and exceptions, and it is overall
conservative towards new advancements”

Information about the author / Информация об авторе

Timur Rasimovich FAYZRAKHMANOV – software developer, PhD student, researcher. Research
interests: programming languages, knowledge representation and processing, knowledge
organization and reuse, formalization, generic systems modeling, World Digital Mathematics
Library, graphics, alternative development environments, block-based approach.

Тимур Расимович ФАЙЗРАХМАНОВ – разработчик ПО, аспирант, исследователь. Сфера
научных интересов: языки программирования, представление и обработка знаний,
организация и повторное использование знаний, формализация, обобщённое моделирование
систем, Всемирная цифровая математическая библиотека, графика, альтернативные среды
разработки, блочный подход.

