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OueHka CBepXy 4Yncna akKtTuBHbIX Taﬁmepoa B ceTAx I'IeTpM C
BpeéMeHHbIMU AyramMmum ¢ noMoLWbo AUHAMNYEeCKUX CUCTEeM TOYEeK Ha

rpacax
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Annoranus. Ceru Iletpu ¢ BpeMEHHBIMH JyraMu — 3TO BpeMeHHoe pacuiupenue cereii [lerpu (TaPN-cetn),
KOTOpOE MO3BOJIAET NIPUCBanUBaTh TaliMepsl GumkaM. CrcTeMa JMHAMHUYECKHUX TOUYEK Ha METpHUUecKoM Tpade
(DP-cucrema) 3to apyras JMHaMH4YeCKas MOJENb, KOTOpas PacCMaTPUBAETCS B TEOPUU I€OMETPHYECKHX
JIICKPETHBIX JMHAMUYECKMX CHCTEM U, HCTOPHYECKH, €€ H3ydeHHe MOTHBHPOBAHO H3ydYECHHEM
PacIpOCTpaHEeHNs JIOKAIN30BaHHBIX TayCCOBBIX BOJIHOBBIX IIAKETOB IO TOHKHM CTpYKTypaM. DP-cucrema
MOJIETINPYET AUCKPETHBIE BETBANIMECS] COOBITHS NPOUCXOMAIINE B pealbHOM BpeMeHH. B HemaBHuX paborax
ObLIN [OJIyYeHBI ACHMITOTHYECKHE OLIEHKU Ha POCT YKciia Touek B DP-cucremax Ha MeTpuueckux rpadax. B
JTaHHOH paboTe MBI IpeIaraeM MeTOIbI OLICHKH CBEPXY YHCIIa Pa3IMYHbIX 3HAUCHUH TaliMepOB UL MOAKIacca
cereii [leTpu ¢ BpeMeHHBIMH JyraMy ¢ IIOMOIIBIO HocTpoeHust DP-cucteMsl Ha MeTpudeckoM rpade mo cetu
Ilerpu u mnokaspiBaeT, YTO KOJMYECTBO PA3IMYHBIX 3HAYEHHH TallMepoB B HCXOAHOH ceru Iletpu He
IPEBOCXOAT KOJNMYECTBO Touek B DP-cucreme. DTO MO3BONISET NEPEHOCUTh U3BECTHBIE OLEHKH i DP-
cucteM Ha ceTu IleTpu ¢ BpeMeHHBIMH JyraMH JUIS BBIIEICHHOTO HOJKIIacca.

KiioueBble ciioBa: merpuueckue rpadsr; cetu ITeTpu ¢ BpeMEHHBIMH AyTraMy; AHHAMHYECKHE CBOICTBA
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BPEMEHHBIMH JIyraMH ¢ IOMOIIBIO IUHAMHYECKHUX cucTeM Touek Ha rpadax. Tpynst UCIT PAH, Tom 34, B
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Baaroaapuoctu: PaGoTa BbinosiHeHa npu noaaepxke rpanta POOU 20-07-01103 a.

1. Introduction

Petri nets are widely-used to model the behaviour of distributed concurrent computer systems and
concurrent processes in biology, chemistry, physics, and other fields [1]. There are many time
extensions of Petri nets were suggested [2, 3]. Simultaneously, almost any of semantical extensions
makes Petri nets Turing-complete and many of general behavioral problems immediately become
undecidable by Rice-Uspensky theorem. The widely known time extensions of Petri nets — Time
Petri nets and Timed (Duration) Petri nets — are Turing-complete as they admit urgency and allow
to model unbounded counters. Time extensions of Petri nets, as well as other real-time models, are
under active study as, for many real-world software/hardware systems, time related aspects like
performance, time-outs, delays, and latency are crucial for correct functioning [4-6]. A time
semantics with restricted urgency was recently suggested for TaPN-nets in [7]; the suggested
semantics allows urgent transitions to consume tokens only from the bounded places of a Petri net,
and this restriction makes some behavioral problems decidable for TaPN-nets.

Timed-arc Petri nets (TaPN-nets) are an extension of Petri nets with real-time semantics: tokens are
assigned clocks [8]; the inscription on an incoming arc of a transition define tokens of which age
can be consumed by the firing of the transition.

TaPN-nets could be used to model mobile agents moving among nodes or data packets being
transmitted between nodes of a telecommunication system. The number of tokens with different
timers corresponds to the number of different data packets in a system. Examples of systems where
the number of different packets is an important characteristic — networks of self-driven cars, high-
loaded telecommunication systems experiencing DDoS attack, underwater network of drone swarm
with intensive communication. Excessive number of packets stipulates communication quality
degradation or failure. Therefore, to assess the quality of system functioning, it is important to
estimate the number of tokens-packets with different timer values. In this paper, we suggest to an
approach to approximate the number of different timers in a TaPN by the number of dynamic points
on metric graphs.

Metric graph is a graph with lengths assigned to edges. Some results towards dynamical
characteristics of systems of dynamic points flowing along undirected edges of a metric graphs in
both directions were recently obtained [9-13]. In such systems, when a point reaches a vertex of the
graph, new points start moving along all the edges incident to the vertex. The growth of the number
of points moving along edges and its asymptotics were studied in [11, 12] and, for some special
cases, in [14].

The orientation of metric graph edges allows us to approximate TaPN-nets more precisely; thus, in
[15], the asymptotics of points number growth were obtained for systems of dynamic points on
directed Sperner graphs. And later in [16], it was extended to directed Hamiltonian graphs.

The suggested simulation of a TaPN-net with a metric graph enables us to overapproximate the
number of different clock values in the TaPN-net. A point in a constructed metric graph represents
a clock value in the TaPN-net, and the event of the arrival of a point to a vertex simulates that the
clock has reached a specific value. This allows us to estimate the number of different time events in
a system modelled using TaPN-net. Translation to less expressive but more amenable to behavioural
analysis or better studied models can be found in coverability analysis of Petri nets using Karp-
Miller trees or in performance analysis of continuous timed Petri nets using Markov processes [17].
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Fig. 1. TaPN-net model of an underwater wireless sensor network
The frequency of time events and its growth can be crucial as it determines energy or traffic load of
the system. The growth of frequency can be important for such systems as software defined networks
when resource management is adaptive [18] or when communication is complicated due to media.
As a motivational example, we can consider a TaPN-net model of an underwater wireless sensor
networks [19, 20]. The communication among underwater sensors is complicated due to the
transmission medium (salt water); energy consumption and packets collisions impede efficient
implementation of acoustic underwater transmission technology. Consider TaPN-net model
TaPN,.q of an underwater acoustic sensor network (UWA-SN) in Figure 1. Places sensors).; model
spatial locations of underwater sensors, which measure temperature and pH levels. Sensors are
regularly issued to places sensorsy and sensors, from pools pool; and pool,. Each 30 time units, a
sensor flows to another spatial position. As communication is complicated and energy is an
important resource, the active participation of sensors in communication shall be reduced to
minimum. Thus, sensors receive commands to probe the water from controllers controller; and
controller;. Signal emission of controllers is modelled with places tasks;.s. If a sensor is ready and
receives a signal tasks;.3, then it takes fake;.; an assignment, processes processing; - 3 it, and returns
back;-3 to waiting states sensors;-3.
A collision in a node may occur when several signals reach the node simultaneously. Such collisions
depend on the spatial position of nodes in UWA-SN. When such a collision occurs, the node signals
emitters about the problem, and the emitters cooperate to avoid collisions. Thus, the appearance of
a new time event can result in additional traffic in the network. When many collisions occur, such
reconfiguration can impede the normal functioning; therefore, the growth rate of the number of
points could be an important parameter of the systems [19, 20].
To overapproximate the growth of different time event in the system TaPN , we build a metric graph
I'. The growth rate of points in I is not lower than thus of the number of different token-clock values
in the TaPN-net. Thus, if the growth rate of T is acceptable, then so is the growth rate in TaPN.
Both models embrace real-time dynamics of discrete entities moving within a structure defined by
a graph. We establish correspondence between a subclass of TaPN-nets and DP-systems. In Section
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2, the notions of dynamical systems of points on metric graphs and timed-arc Petri nets are given.
In Section 3, we provide the notion of overapproximation and supporting translation from a TaPN-
net to a metric graph. In section 4, we provide a translation of a DP-system to a TaPN-net. Section
5 concludes the paper with some discussion on further research.

2. Preliminaries

By N, Qz0, R, we denote the sets of natural, non-negative rational, and real numbers, respectively.
The set of open and closed intervals over Rxo U {oo} is denoted by I (R=0). For a set S, a bag (multiset)
m over S is a mapping m : S = N. The set of all bags over S is denoted by N5. We denote addition
and subtraction of two bags by + and -, the number of all elements in m taking into account the
multiplicity by |m|, and pointwise comparisons of bags by =, <, >, <, 2, that are defined as
miRm;=Vs €S:m;(s)Rm(s) where R is one of =, <, >, <, >. We overload the set notation writing @
for the empty bag and € for the element inclusion.

2.1. DP-systems on directed metric graphs

A directed metric graph /" is a graph consisting of set of vertices V, set of directed edges (arcs) E,
and length function / mapping each arc a = <v;, v,>€ E to a positive real, i.e., [: E— R+ [21].

The arc opposite to arc a = <v;, v> is denoted by g, i.e., a = <v;, v>. For two points x and y on the
graph, metric p(x, y) is the shortest distance between them, where distance is measured along the
arcs of the graph additively. A walk is a finite or infinite sequence of arcs which joins a sequence of
vertices.

Fig. 2. System of dynamic points Pr on metric graph I”

Definition 1 (System of dynamic points). A system of dynamic points (DP-system) on a metric
graph Pris a pair <I', P>, where I is metric graph and P is a set of points distributed on vertices
and edges of T.

Dynamics of a DP-system P is defined as following. In the initial state, a set of points is distributed
on the arcs and vertices of . The position of point p on arc a is denoted by x,(p) or just x(p). When
time starts to flow, each point p moves along its arc a direction. Each point p located at vertex v, for
each outgoing arc a incident to v, produces a new point py on each a, and p disappears (intuitively,
this corresponds to wave packet scattering); each produced point p, starts moving along
corresponding a. All points move with the same constant velocity; and, due to new points generation,
some arcs may carry more than one point. When a moving point reaches the end incident to vertex
vy, again, on each outgoing arc incident to vy, a new point is generated. When more than one points
reach a vertex simultaneously at ¢, on each outgoing arc, only one point is produced, as if only one
point has reached the vertex at #; i.e., points met on a vertex fuse, and each coordinate of an arc can
carry only one dynamic point.

In Figure 2, the initial set of points consists of two points in vertices v; and vs. The point at v;
produces a new point on edge <v,, v>>. The point at v; produces points on edges leading to vertices
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V2, V4, Vs, Vs, V7. After a time unit, there are no points in v; and v; (coloured grey), but there are points
(coloured black) moving from v; and v; to their adjacent vertices.

The number of dynamic points in P at time ¢ is denoted by Npr(2). The number of points on edge e
at time 7 is denoted by N.(?). For dynamical systems of points P, and P’;», we say that the growth
rate of Pr is equal or less than thus of P’r if V¢ € R\Coll: Npr(t) < Npr(t), where Coll is the
(countable) set of time points when more than one dynamic point meet on a vertex; we exclude such
time points as technically the number of dynamic points decreases for these moments. In what
follows, we discuss number of points implicitly omitting vertices collision time points.

2.2. Timed-Arc Petri nets

Petri nets is a classical well-known formalism for concurrent systems modelling. A place/transition
net (PT-net) is a Petri net with black tokens, that are indistinguishable from each other.

Definition 2 (Place/transition nets). A PT-net is a tuple <P,T,F,y>, where

e Pand T are disjoint finite sets of places, respectively, transitions;

o [Fc(PxT) U(T xP)isaset of arcs (flow relation);

o y:F — Nisa weight function.

For an element x € P U T, an arc <y,x> is called an input arc, and arc <x,y>— an output arc. Preset
*x and a postset x* are subsets of P U T such that *x = {y|<y,x> € F} and x*= {y|<x,y> € F}. A marking
of Nis a function m: P — N. A pair <N,m> of a PT-net and a marking is called a marked net.

Let N=<P,T,Ey> be a PT-net. A transition t € T is enabled in a marking m iff Vp € *‘t = m(p) 2y
<p,t>. An enabled transition t can fire yielding a new marking m’(p) = m(p)-y <p,t>+y <t,p> for
each p € P (denoted m —»tm”). The set of all markings reachable from a marking m is denoted by
R(m).

Now, we provide the definition of Timed-Arc Petri nets (TaPN-nets) with token-based time
semantics and urgency [6, 8, 22].

Definition 3 (Timed-Arc Petri net with Urgency). A TaPN-net is a tuple TaPN = <N,y',U>,
where

o N =<PTFy>isa PT-net called the skeleton of TaPN and denoted by S(TaPN);

o yt: PxT— [(R:s>0)is a set of token-age constraints on arcs,

o U.:T— Q>0is a set of urgency constraints on transitions.

The marking m = <msm,mu> of a TaPN-net TaPN consists of a marking msof S(TaPN), a time
marking m:: Tok(ms) = Rsothat assigns clocks to tokens, and an urgency marking my: T(ms) = Rzo
that assigns clocks to transitions, where T(ms) comprises all enabled transitions and Tok(ms)
comprises all tokens of the marked PT-net <S(TaPN),ms>. The urgency constraint U(t) means that ¢
must fire if ¢ has been enabled for U(t) units of time. The token-age constraint y(p,t) defines that a
firing of ¢t may consume only token z in p with m«(z) € yt(p,t). The urgency U of a transition is
depicted as a number near the transition. The time constraints y*of an arc are depicted as an interval
on the arc.

The operational semantics of TaPN-nets is defined by incorporating time constraints into the firing
rules of PT-nets. Transition t is enabled in the marking m = <msmymu>, if t is enabled in
<S(TaPN),ms> and time constraints of ¢ are satisfied, i.e., each token o from a place p involved in
the firing of ¢ satisfies m«(z) € yt(p,t).

An execution of a TaPN-net is a sequence of steps of the following two kinds.

A transition firing step is the firing of enabled transition # that consumes involved tokens from places
«t and produces new tokens to places #+; the urgency clock of ¢ is set to zero, m,(?) = 0, and, for each
produced token a, the clock value is set to zero, i.e., m,(a) = 0.

A time elapsing step corresponds to the elapsing & time units in each clock of the marking m. We
assume that all token clocks and transition clocks run at the same pace. We denote by m+6 the
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marking with all its clocks increased by 6, i.e., for each token o € ms: (me+ 6)(a) = m«(a) + 6, and
for each transition t : (mu+ 6)(t) = mu(t) + 8. Under urgency restrictions, a time elapsing step & is
allowed if there are no &’ € [0,6) such that the m + §’marking has urgent transitions.

3. Overapproximation of the number of active timers

Coverability analysis or approximation using continuous Petri nets are classical examples of
overapproximation in Petri net analysis. TaPN-nets with urgency are Turing-complete, and DP-
systems on metric graphs are, obviously, less expressive (consider DP-systems dynamics
monotonicity) [23]. Thus, we consider a restricted class of TaPN-nets, such that token-age
constraints on input arcs are positive intervals of zero length and each transition ¢ has zero urgency,
ie., U) = 0.
In metric graphs, if points are met in a vertex simultaneously, they are coalesced, i.e., the resulting
effect is the same as if only one point came to the vertex. This peculiarity of metric graphs
functioning hinders direct modelling of TaPN-nets using metric graphs. However, under the
provided restrictions on TaPN nets, it is possible to overapproximate the number of different timers
present simultaneously in a TaPN-net.
Let TaPN be a marked TaPN-net and m = <msmymu> be its marking. Let us introduce an
equivalence relation =t over tokens:
Vau, a2 € Tok(m): a1 =r a2 <> o1 € my(p)A\ 02€ ms(p)A mi(or) = my(oz)

where tokens a; and a; are =7 -equivalent iff both are located in the same place p and have the same
clock values.
When the clock value of a token « located in place p passes the maximum value of all the time
constraints on outgoing arcs of p, it cannot further involve in firings and its clock becomes
redundant. Such tokens are dead [16] by time restrictions and we may remove their clocks from
consideration. We denote by ActiveTokens(m) the set of active tokens in marking m

ActiveTokens(m) = {o € Tok(m) | a € my(p) N my(a) < maxv<p,>er(y<p, t>)}
The quotient set Timers(m) = ActiveTokens(m)/~r consists of the classes of live tokens in marking
m; each equivalence class corresponds to a set of tokens located in a place p that have the same clock
value. In a physical system, a set of agents represented by such a class can share the same
timer/external signal. The cardinality of |Timers(m)| is the number of timers simultaneously active
in the system.
Let TaPN = <<P, T, F, y>, y', U> be a TaPN-net, where P = {p,...p,} and T = {1,...t,}, and let my
be its initial marking. We construct DP-system Pp(TaPN), which will be used to overapproximates
TaPN, with simultaneously constructing relation ¢, Timers(m) xPr between timers Timers(m) and
points in Pr(TaPN) created to approximate these timers.
We start by adding a vertex v; to Pr(TaPN) for each transition #,€7. In Figure 3, an example of TaPN-
net 7aPN and Pr(TaPN) that overapproximates TaPN is given. Then, for each pair of transitions ¢
and ¢ in T and place py in P such that there are edges <t;, px> and <py, ;> in F, we add an arc <v;, v>
to Pr(TaPN) with length I(<v, v>)=y(<pi t>). For each place p; of P, for each token a in my
located in py, for each two transitions ¢ and #, such that arcs <#;, py> and <py, t> are in F, we put a
new point p at the beginning of arc <v;, v/> in Pr(TaPN) and add </a/-r, pi> to @,. Technically, we
don’t put p to v; but on <v;, v;> as putting p to v; would produce tokens to all outgoing arcs. For each
marked place p; in P that has only outgoing arcs, for each transition ¢ in 7 adjacent to p;, we
introduce a new vertice vp and a new arc <vy, v;> into Pr(TaPN) with length /(<vy, v>) = y'(<p;, t>);
we put a point p to vy (as for p; and ¢ in Fig. 3) and add <tm, p> to ¢,, where tm = <p;, 0>. The
intention is that each potential firing of a transition ¢ in TaPN, producing tokens to its output places,
corresponds to an event when a point in Pr(7aPN) reaches v;, generating points on its outgoing arcs.
In Figure 3, two active tokens oscillate between places p» and p; in TaPN, while their corresponding
points in Pr(TaPN) oscillate on edges between v, and vs.
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TaPN:

Pr(TaPN):

b4

Fig. 2. TaPN-net TaPN and corresponding DP-system Pr(TaPN )

We say that Pr overapproximates TaPN-net TaPN, if for any TaPN execution o = mo—*'m;—*

»..., for any state m; € o and global time ¢ € R:\Coll that corresponds to m;, |Timers(m;)| < Npr(t)
holds.
Lemma 1. Let TaPN be a TaPN-net with intervals of zero length as constraints on input arcs and
each transition t has zero urgency. Let Pr(TaPN) be a DP system constructed from TaPN. Then
PI'(TaPN) overapproximates TaPN-net TaPN.
Let o = my—*'m;—*? m,... be an execution of TaPN. For each m; and corresponding time ¢, we define
relation ¢, © Timers(m;) *x Pr. For initial marking m, and time point 7 = 0, ¢y is equal to ¢,. Let ¢,
is defined for m;-; and 7;-; is global time corresponding to m;-;. Let s; be a time elapsing step for ¢
time units, and 7,=7;-;+J is the time corresponding to m;.
For each place py, for each token a & m;-; located in py, for each two transitions # and ¢ such that
there are edges <#, px> and <py, >, if (mi-; + 9)i() < y(<ps t>), add <t,, p> to ¢, where point
p 1is located on edge <v;, v> at coordinate x(p) = (mi-; + J)i(a) and t,, = <pi,(mi-; + J)(0)>. If
(mi-; + 6)u(a) > y(<ps, t;>), we don’t add anything to ¢, as it means that the age of a won’t let it be
involved in a firing of #;.
Let s; be a transition firing step for transition ¢ and 7; = 7;-; as time doesn’t flow during a transition
firing step. All pairs related to all tokens consumed by the firing are not more in ¢.. For each new
token a € m; in place p; produced by the #-firing for each two transitions # and ¢, such that there are
edges <#, px> and <py, t,>, we add <tm, p> to ¢, where point p located at the beginning of edge
<v, v, and tm = <py, 0>.
Note that for each marking m;, for each active token o, image ¢-(/a/~7) is not empty as, when all the
pairs related to a cease from ¢., o is dead and [a/~r ceases from Timers(m;) by definition. For
different equivalence classes tm; = <p;, t;> and tm, = <p,, >, images @.(tm;) and @.(tm;) are
disjoint as they either lie on different graph edges if p,;#p2, or lie on different coordinates if 7; # 7.
Hence, |Timers(m;)| < Npr(z).
Now let us consider a class of TaPN-nets without urgency and with inscriptions /x, ©) on input arcs
of transitions. Now a token o may be involved in a firing of transition #, even if its clock passed
maximal interval lower bounds at time 7 and ¢ is disabled. When some other token oy comes to an
input place p of t and ay clock satisfies inscription on arc <p, £>, transition # may become enabled
and may fire consuming a. Such a token « is not dead at z but we call it passive. For such TaPN-
nets, set of active tokens ActiveTokens(m) is defined as follows

ActiveTokens(m) = {o. € Tok(m) | 0. € my(p) N my(a) < max {x | <p,t>€F & y<p,t>=[x,0)} }

Theorem 2. Let TaPN be a TaPN-net without urgency, with inscriptions [x, ©) on input arcs of
transitions, and with initial marking my. Let Pr(TaPN) be a DP-system constructed from TaPN. Then
Pr(TaPN) overapproximates TaPN-net TaPN.
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Let ¢ be a transition and its firing produces tokens a;,...a, to output places of ¢. As inscriptions are
unbounded, ¢ may fire not necessary immediately at its earliest enabling time 7 but later, at time
79 = 7 + 0. Due to the monotonicity of Petri net firing rule and monotonicity of time constraints of
form [x, ), we may fire transition ¢ at time 7 and then just keep (freeze) tokens a; ... a, at output
positions of 7 until 7 + J. Such execution may only increase the number of tokens in 7aPN at interval
[t, T + J]. Henceforth, when we want to overapproximate execution ¢ we may consider execution
¢’ such that if a transition ¢ will fire then it will fire at its earliest enabling time.

Now we may apply the similar argument as in Lemma 1, and obtain | Timers(m;)| < Npr(7).

As urgency may only narrow a set of possible executions of a TaPN-net, we get the following
corollary.

Corollary 3. Let TaPN be a TaPN-net with urgency, with inscriptions [x, ) on input arcs of
transitions, and with initial marking my. Let Pr(TaPN) be a DP-system constructed from TaPN. Then
Pr(TaPN) overapproximates TaPN net TaPN.

TaPN:

Fig. 4. TaPN-net TaPN and corresponding DP-system Pr(TaPN )

In Fig. 4, TaPN-net TaPN is on the left, and DP-system Pr(TaPN) that overapproximates TaPN is
on the right. In [7], it was calculated that the growth of the number of points in Pr(7aPN) is
N(PHTaPN)) = (a; + a; + a; + ag + as) / (2(a; + a4 + as) (a> + a3) (a; + a; + as)) + O(t)
This gives us asymptotical estimate on the upper bound of the growth of number of active timers in
TaPN.
In P(TaPN), the arrival of a point to a vertex always corresponds to emitting of new points on the
outgoing edges. In TaPN, the firing of transition ¢ in 7aPN may occur only when all input places «¢
have tokens with suitable clock values. Thus, some arrivals of points in /”do not represent real firings
of transition t in TaPN. In addition, tokens do not collapse in TaPN-nets; thus, we overapproximate
the number of different clock values in TaPN. However, the number of different clock values is an
important parameter for a system when, for example, its components use shared clocks.

4. Simulation of DP-systems using timed-arc Petri nets

To simulate DP-systems using Petri nets with real-time semantics, we need to represent points
moving along edges of a graph using clocks in a Petri net. The advance of a point along an edge in
a metric graph is modelled with the progress of the corresponding clock in a Petri net.

The number of points on a metric graph may grow indefinitely when edge lengths are
incommensurable; therefore, it is not possible to model the evolution of a system of points on a
metric graph using clocks in classical time or timed Petri nets [2, 24] because these models have
finite structurally-determined number of clocks. On the contrary, in timed-arc Petri nets, clocks are
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assigned to tokens [25], and the number of clocks can grow along with the number of tokens in the
net; therefore, TaPN-nets with token-based time semantics suits well for simulating DP-systems.

Fragment of TaPN (T): es2

Fig. 5. A metric graph I’ and a fragment of TaPN(T) built from edge e;

Let Prbe a DP-system and TaPN(Py) be the resultant TaPN-net simulating Pr. For each edge e of I
connecting vertices a and b, we add two places eq and ep,, Where e,, models arc <a, b> and ep,
models arc <b, a>. In Fig. 5, DP-system Pr is on the left, and a fragment of its simulation TaPN(PI')
built for edge e; of I" is on the right. Each point p on edge <a, b> of Pr such that x(p) = xy is
represented with a token a in p4 such that m,(a) = x¢. In Fig. 5, two points on edge <v;, vs> at the
distances 3 and 5 from v; are modelled with two tokens that have timer values of 3 and 5,
correspondingly. In addition, we add transitions #, and . with U(t,) = U(ts) = 0, which firings
model events when a point on e reaches b and a, respectively. We add arc <eg, t.»> with yt(<eaw,
ta>) = l(e), and, for each edge e; in the metric graph connecting vertex b with vertex ¢, we add arc
<tab, €p> With pt(<ta, ep>) = 0. Also, for each place e, we add transition ¢ with U(t®) = 0 (as
for es; in Fig. 5); ** models collapsing of points in a vertex by consuming two tokens with clocks
equals to 0 in eq, and puts only one token with a clock equal to 0 back.

The tool support and details of the translation software implementation are provided in [26]. The
translation enables us to utilise well-known analysis tools for TaPN nets - TAPAAL/UPPAAL[29]
and ReNew [30], to conduct behaviour analysis and numerical experiments for metric graphs. In
Fig. 6, the translation of a metric graph DP to TaPN-net in TAPAAL representation using the
developed tool is demonstrated.
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Fig.6. Tool support for translation of metric graph to TaPN-net
For example, the following properties can be checked using TCTL engine of TAPAAL:
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— is it possible that more than 50 signals come to node X in 10 seconds;

— is it possible that in the next 5 minutes two messages come with the difference of their time
moments less that &€ milliseconds;

— does it hold, for the system initial phase with duration of 15 minutes, that if a point comes to
node X, then no points comes to node Y within 10 seconds,

etc.

5. Conclusion

In this paper, we studied correspondence between metric graphs and a restricted class of TaPN-nets.
We demonstrated that, for a restricted subclass of TaPN nets, it is possible to overapproximate the
number of active timers using DP system on a metric graph. Such a correspondence connects studies
on TaPN-nets and metric graphs, which allows to conduct analysis of the number of different timers
in a given subclass of TaPN-nets using a system of points dynamics.

Our current research is to further weaken the suggested restrictions on TaPN-nets and,
simultaneously, to find asymptotics for a more general class of DP-systems. Current working
hypothesis is that the approach used to obtain estimates in [15, 16] could be extended to arbitrary
directed graphs letting the suggested overapproximation to be used for a wider class of TaPN-nets.
Conducted computed numerical experiments support it.
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