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Abstract. Timed-arcs Petri nets are a time extension of Petri nets that allows assigning clocks to tokens. System 
of dynamic points on a metric graph (DP-systems) is another dynamical model that is studied in discrete 
geometry dynamics; DP-system combines continuous time and discrete branching events and used, for 
example, in study of localized Gaussian wave packets scattering on thin structures. In recent works, asymptotic 
estimates of the growth of the number of points in dynamic systems on metric graphs were obtained. In this 
paper, we provide a mean to overapproximate the number of different values of timers for a subclass of timed-
arc Petri nets by constructing a system of dynamic points on a metric graph and prove overapproximation of 
the number of timer values by the number of points in the system of dynamic points.  
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Аннотация. Сети Петри с временными дугами – это временное расширение сетей Петри (TaPN-сети), 
которое позволяет присваивать таймеры фишкам. Система динамических точек на метрическом графе 
(DP-система) это другая динамическая модель, которая рассматривается в теории геометрических 
дискретных динамических систем и, исторически, ее изучение мотивировано изучением 
распространения локализованных гауссовых волновых пакетов по тонким структурам. DP-система 
моделирует дискретные ветвящиеся события происходящие в реальном времени. В недавних работах 
были получены асимптотические оценки на рост числа точек в DP-системах на метрических графах. В 
данной работе мы предлагаем методы оценки сверху числа различных значений таймеров для подкласса 
сетей Петри с временными дугами с помощью построения DP-системы на метрическом графе по сети 
Петри и показывает, что количество различных значений таймеров в исходной сети Петри не 
превосходят количество точек в DP-системе. Это позволяет переносить известные оценки для DP-
систем на сети Петри с временными дугами для выделенного подкласса. 
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1. Introduction 
Petri nets are widely-used to model the behaviour of distributed concurrent computer systems and 
concurrent processes in biology, chemistry, physics, and other fields [1]. There are many time 
extensions of Petri nets were suggested [2, 3]. Simultaneously, almost any of semantical extensions 
makes Petri nets Turing-complete and many of general behavioral problems immediately become 
undecidable by Rice-Uspensky theorem. The widely known time extensions of Petri nets – Time 
Petri nets and Timed (Duration) Petri nets – are Turing-complete as they admit urgency and allow 
to model unbounded counters. Time extensions of Petri nets, as well as other real-time models, are 
under active study as, for many real-world software/hardware systems, time related aspects like 
performance, time-outs, delays, and latency are crucial for correct functioning [4-6]. A time 
semantics with restricted urgency was recently suggested for TaPN-nets in [7]; the suggested 
semantics allows urgent transitions to consume tokens only from the bounded places of a Petri net, 
and this restriction makes some behavioral problems decidable for TaPN-nets. 
Timed-arc Petri nets (TaPN-nets) are an extension of Petri nets with real-time semantics: tokens are 
assigned clocks [8]; the inscription on an incoming arc of a transition define tokens of which age 
can be consumed by the firing of the transition. 
TaPN-nets could be used to model mobile agents moving among nodes or data packets being 
transmitted between nodes of a telecommunication system. The number of tokens with different 
timers corresponds to the number of different data packets in a system. Examples of systems where 
the number of different packets is an important characteristic – networks of self-driven cars, high-
loaded telecommunication systems experiencing DDoS attack, underwater network of drone swarm 
with intensive communication. Excessive number of packets stipulates communication quality 
degradation or failure. Therefore, to assess the quality of system functioning, it is important to 
estimate the number of tokens-packets with different timer values. In this paper, we suggest to an 
approach to approximate the number of different timers in a TaPN by the number of dynamic points 
on metric graphs.  
Metric graph is a graph with lengths assigned to edges. Some results towards dynamical 
characteristics of systems of dynamic points flowing along undirected edges of a metric graphs in 
both directions were recently obtained [9-13]. In such systems, when a point reaches a vertex of the 
graph, new points start moving along all the edges incident to the vertex. The growth of the number 
of points moving along edges and its asymptotics were studied in [11, 12] and, for some special 
cases, in [14]. 
The orientation of metric graph edges allows us to approximate TaPN-nets more precisely; thus, in 
[15], the asymptotics of points number growth were obtained for systems of dynamic points on 
directed Sperner graphs. And later in [16], it was extended to directed Hamiltonian graphs.  
The suggested simulation of a TaPN-net with a metric graph enables us to overapproximate the 
number of different clock values in the TaPN-net. A point in a constructed metric graph represents 
a clock value in the TaPN-net, and the event of the arrival of a point to a vertex simulates that the 
clock has reached a specific value. This allows us to estimate the number of different time events in 
a system modelled using TaPN-net. Translation to less expressive but more amenable to behavioural 
analysis or better studied models can be found in coverability analysis of Petri nets using Karp-
Miller trees or in performance analysis of continuous timed Petri nets using Markov processes [17].  
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Fig. 1. TaPN-net model of an underwater wireless sensor network 

The frequency of time events and its growth can be crucial as it determines energy or traffic load of 
the system. The growth of frequency can be important for such systems as software defined networks 
when resource management is adaptive [18] or when communication is complicated due to media. 
As a motivational example, we can consider a TaPN-net model of an underwater wireless sensor 
networks [19, 20]. The communication among underwater sensors is complicated due to the 
transmission medium (salt water); energy consumption and packets collisions impede efficient 
implementation of acoustic underwater transmission technology. Consider TaPN-net model 
TaPNuwa of an underwater acoustic sensor network (UWA-SN) in Figure 1. Places sensors1-3 model 
spatial locations of underwater sensors, which measure temperature and pH levels. Sensors are 
regularly issued to places sensors0 and sensors2 from pools pool1 and pool2. Each 30 time units, a 
sensor flows to another spatial position. As communication is complicated and energy is an 
important resource, the active participation of sensors in communication shall be reduced to 
minimum. Thus, sensors receive commands to probe the water from controllers controller1 and 
controller2. Signal emission of controllers is modelled with places tasks1-3. If a sensor is ready and 
receives a signal tasks1-3, then it takes take1-3 an assignment, processes processing1 − 3 it, and returns 
back1−3 to waiting states sensors1−3.  
A collision in a node may occur when several signals reach the node simultaneously. Such collisions 
depend on the spatial position of nodes in UWA-SN. When such a collision occurs, the node signals 
emitters about the problem, and the emitters cooperate to avoid collisions. Thus, the appearance of 
a new time event can result in additional traffic in the network. When many collisions occur, such 
reconfiguration can impede the normal functioning; therefore, the growth rate of the number of 
points could be an important parameter of the systems [19, 20].  
To overapproximate the growth of different time event in the system TaPN , we build a metric graph 
Γ. The growth rate of points in Γ is not lower than thus of the number of different token-clock values 
in the TaPN-net. Thus, if the growth rate of Γ is acceptable, then so is the growth rate in TaPN. 
Both models embrace real-time dynamics of discrete entities moving within a structure defined by 
a graph. We establish correspondence between a subclass of TaPN-nets and DP-systems. In Section 
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2, the notions of dynamical systems of points on metric graphs and timed-arc Petri nets are given. 
In Section 3, we provide the notion of overapproximation and supporting translation from a TaPN-
net to a metric graph. In section 4, we provide a translation of a DP-system to a TaPN-net. Section 
5 concludes the paper with some discussion on further research. 

2. Preliminaries 
By N, Q≥0 , R, we denote the sets of natural, non-negative rational, and real numbers, respectively. 
The set of open and closed intervals over R ≥0 ∪ {∞} is denoted by I (R ≥0). For a set S, a bag (multiset) 
m over S is a mapping m : S → N. The set of all bags over S is denoted by NS. We denote addition 
and subtraction of two bags by + and −, the number of all elements in m taking into account the 
multiplicity by |m|, and pointwise comparisons of bags by =, <, >, ≤, ≥, that are defined as 
m1Rm2≡∀s∈S:m1(s)Rm2(s) where R is one of =, <, >, ≤, ≥. We overload the set notation writing ∅ 
for the empty bag and ∈ for the element inclusion. 

2.1. DP-systems on directed metric graphs  
A directed metric graph Γ is a graph consisting of set of vertices V, set of directed edges (arcs) E, 
and length function l mapping each arc a = <v1, v2>∈ E to a positive real, i.e., l: E→ R+ [21].  
The arc opposite to arc a = <vi, vj> is denoted by a, i.e., a = <vj, vi>. For two points x and y on the 
graph, metric ρ(x, y) is the shortest distance between them, where distance is measured along the 
arcs of the graph additively. A walk is a finite or infinite sequence of arcs which joins a sequence of 
vertices. 

 
Fig. 2. System of dynamic points PΓ on metric graph Γ  

Definition 1 (System of dynamic points). A system of dynamic points (DP-system) on a metric 
graph PΓ is a pair <Γ, P>, where Γ is metric graph and P is a set of points distributed on vertices 
and edges of Γ. 
Dynamics of a DP-system PΓ is defined as following. In the initial state, a set of points is distributed 
on the arcs and vertices of Γ. The position of point p on arc a is denoted by xa(p) or just x(p). When 
time starts to flow, each point p moves along its arc a direction. Each point p located at vertex v, for 
each outgoing arc a incident to v, produces a new point p0 on each a, and p disappears (intuitively, 
this corresponds to wave packet scattering); each produced point p0 starts moving along 
corresponding a. All points move with the same constant velocity; and, due to new points generation, 
some arcs may carry more than one point. When a moving point reaches the end incident to vertex 
v0, again, on each outgoing arc incident to v0, a new point is generated. When more than one points 
reach a vertex simultaneously at t, on each outgoing arc, only one point is produced, as if only one 
point has reached the vertex at t; i.e., points met on a vertex fuse, and each coordinate of an arc can 
carry only one dynamic point. 
In Figure 2, the initial set of points consists of two points in vertices v1 and v3. The point at v1 
produces a new point on edge <v1, v2>. The point at v3 produces points on edges leading to vertices 
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v2, v4, v5, v6, v7. After a time unit, there are no points in v1 and v3 (coloured grey), but there are points 
(coloured black) moving from v1 and v3 to their adjacent vertices. 
The number of dynamic points in PΓ at time t is denoted by NPΓ(t). The number of points on edge e 
at time t is denoted by Ne(t). For dynamical systems of points PΓ and P’Γ’, we say that the growth 
rate of PΓ is equal or less than thus of P’Γ’ if ∀t ∈ R+\Coll: NPΓ(t) ≤ NP’Γ’(t), where Coll is the 
(countable) set of time points when more than one dynamic point meet on a vertex; we exclude such 
time points as technically the number of dynamic points decreases for these moments. In what 
follows, we discuss number of points implicitly omitting vertices collision time points. 

2.2. Timed-Arc Petri nets 
Petri nets is a classical well-known formalism for concurrent systems modelling. A place/transition 
net (PT-net) is a Petri net with black tokens, that are indistinguishable from each other.  
Definition 2 (Place/transition nets). A PT-net is a tuple <P,T,F,γ>, where 
• P and T are disjoint finite sets of places, respectively, transitions; 
• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation); 
• γ : F → N is a weight function. 
For an element x ∈ P ∪ T, an arc <y,x> is called an input arc, and arc <x,y> – an output arc. Preset •x and a postset x• are subsets of P ∪ T such that •x = {y|<y,x> ∈ F} and x• = {y|<x,y> ∈ F}. A marking 
of N is a function m: P → N. A pair <N,m> of a PT-net and a marking is called a marked net. 
Let N = <P,T,F,γ> be a PT-net. A transition t ∈ T is enabled in a marking m iff ∀p ∈ •t ⇒ m(p) ≥ γ <p,t>. An enabled transition t can fire yielding a new marking m’(p) = m(p)−γ <p,t>+γ <t,p> for 
each p ∈ P (denoted m →t m’ ). The set of all markings reachable from a marking m is denoted by 
R(m). 
Now, we provide the definition of Timed-Arc Petri nets (TaPN-nets) with token-based time 
semantics and urgency [6, 8, 22]. 
Definition 3 (Timed-Arc Petri net with Urgency). A TaPN-net is a tuple TaPN = <N,γt,U>, 
where 
• N = <P,T,F,γ> is a PT-net called the skeleton of TaPN and denoted by S(TaPN); 
• γt: P × T → I(R+ ≥ 0) is a set of token-age constraints on arcs; 
• U : T → Q≥0 is a set of urgency constraints on transitions. 
The marking m = <ms,mt,mu> of a TaPN-net TaPN consists of a marking ms of S(TaPN), a time 
marking mt : Tok(ms) → R≥0 that assigns clocks to tokens, and an urgency marking mU : T(ms) → R≥0 
that assigns clocks to transitions, where T(ms) comprises all enabled transitions and Tok(ms) 
comprises all tokens of the marked PT-net <S(TaPN),ms>. The urgency constraint U(t) means that t 
must fire if t has been enabled for U(t) units of time. The token-age constraint γt(p,t) defines that a 
firing of t may consume only token z in p with mt(z) ∈ γt(p,t). The urgency U of a transition is 
depicted as a number near the transition. The time constraints γt of an arc are depicted as an interval 
on the arc. 
The operational semantics of TaPN-nets is defined by incorporating time constraints into the firing 
rules of PT-nets. Transition t is enabled in the marking m = <ms,mt,mu>, if t is enabled in <S(TaPN),ms> and time constraints of t are satisfied, i.e., each token α from a place p involved in 
the firing of t satisfies mt(z) ∈ γt(p,t). 
An execution of a TaPN-net is a sequence of steps of the following two kinds.  
A transition firing step is the firing of enabled transition t that consumes involved tokens from places 
•t and produces new tokens to places t•; the urgency clock of t is set to zero, mu(t) = 0, and, for each 
produced token α, the clock value is set to zero, i.e., mt(α) = 0. 
A time elapsing step corresponds to the elapsing δ time units in each clock of the marking m. We 
assume that all token clocks and transition clocks run at the same pace. We denote by m+δ the 
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marking with all its clocks increased by δ, i.e., for each token α ∈ ms : (mt + δ)(α) = mt(α) + δ, and 
for each transition t : (mu + δ)(t) = mu(t) + δ. Under urgency restrictions, a time elapsing step δ is 
allowed if there are no δ’ ∈ [0,δ) such that the m + δ’ marking has urgent transitions. 

3. Overapproximation of the number of active timers 
Coverability analysis or approximation using continuous Petri nets are classical examples of 
overapproximation in Petri net analysis. TaPN-nets with urgency are Turing-complete, and DP-
systems on metric graphs are, obviously, less expressive (consider DP-systems dynamics 
monotonicity) [23]. Thus, we consider a restricted class of TaPN-nets, such that token-age 
constraints on input arcs are positive intervals of zero length and each transition t has zero urgency, 
i.e., U(t) = 0. 
In metric graphs, if points are met in a vertex simultaneously, they are coalesced, i.e., the resulting 
effect is the same as if only one point came to the vertex. This peculiarity of metric graphs 
functioning hinders direct modelling of TaPN-nets using metric graphs. However, under the 
provided restrictions on TaPN nets, it is possible to overapproximate the number of different timers 
present simultaneously in a TaPN-net.  
Let TaPN be a marked TaPN-net and m = <ms,mt,mu> be its marking. Let us introduce an 
equivalence relation ≈T over tokens: ∀α1, α2 ∈ Tok(m): α1 ≈T α2 ↔ α1 ∈ ms(p)∧ α2∈ ms(p)∧ mt(α1) = mt(α2) 
where tokens α1 and α2 are ≈T -equivalent iff both are located in the same place p and have the same 
clock values. 
When the clock value of a token α located in place p passes the maximum value of all the time 
constraints on outgoing arcs of p, it cannot further involve in firings and its clock becomes 
redundant. Such tokens are dead [16] by time restrictions and we may remove their clocks from 
consideration. We denote by ActiveTokens(m) the set of active tokens in marking m  

ActiveTokens(m) = {α ∈ Tok(m) | α ∈ ms(p) ∧ mt(α) < max∀<p,t>∈F(γt<p, t>)} 
The quotient set Timers(m) = ActiveTokens(m)/≈T consists of the classes of live tokens in marking 
m; each equivalence class corresponds to a set of tokens located in a place p that have the same clock 
value. In a physical system, a set of agents represented by such a class can share the same 
timer/external signal. The cardinality of |Timers(m)| is the number of timers simultaneously active 
in the system. 
Let TaPN = <<P, T, F, γ>, γt, U> be a TaPN-net, where P = {p1...pn} and T = {t1...tm}, and let m0 
be its initial marking. We construct DP-system PΓ(TaPN), which will be used to overapproximates 
TaPN, with simultaneously constructing relation φb⊂Timers(m)×PΓ between timers Timers(m) and 
points in PΓ(TaPN) created to approximate these timers.  
We start by adding a vertex vi to PΓ(TaPN) for each transition ti∈T. In Figure 3, an example of TaPN-
net TaPN and PΓ(TaPN) that overapproximates TaPN is given. Then, for each pair of transitions ti 
and tj in T and place pk in P such that there are edges <ti, pk> and <pk, tj> in F, we add an arc <vi, vj> 
to PΓ(TaPN) with length l(<vi, vj>)=γt(<pk, tj>). For each place pk of P, for each token α in m0 
located in pk, for each two transitions ti and tj, such that arcs <ti, pk> and <pk, tj> are in F, we put a 
new point p at the beginning of arc <vi, vj> in PΓ(TaPN) and add <[α]≈T, pi> to φb. Technically, we 
don’t put p to vi but on <vi, vj> as putting p to vi would produce tokens to all outgoing arcs. For each 
marked place pk in P that has only outgoing arcs, for each transition tj in T adjacent to pk, we 
introduce a new vertice v0 and a new arc <v0, vj> into PΓ(TaPN) with length l(<v0, vj>) = γt(<pi, tj>); 
we put a point p to v0 (as for p1 and t1 in Fig. 3) and add <tm, p> to φb, where tm = <pi, 0>. The 
intention is that each potential firing of a transition tj in TaPN, producing tokens to its output places, 
corresponds to an event when a point in PΓ(TaPN) reaches vj, generating points on its outgoing arcs. 
In Figure 3, two active tokens oscillate between places p2 and p3 in TaPN, while their corresponding 
points in PΓ(TaPN) oscillate on edges between v2 and v3. 
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Fig. 2. TaPN-net TaPN and corresponding DP-system PΓ(TaPN ) 

We say that PΓ overapproximates TaPN-net TaPN, if for any TaPN execution σ = m0→s1m1→s2 
m2..., for any state mi ∈ σ and global time t ∈ R+\Coll that corresponds to mi, |Timers(mi)| ≤ NPΓ(t) 
holds.  
Lemma 1. Let TaPN be a TaPN-net with intervals of zero length as constraints on input arcs and 
each transition t has zero urgency. Let PΓ(TaPN) be a DP system constructed from TaPN. Then 
PΓ(TaPN) overapproximates TaPN-net TaPN. 
Let σ = m0→s1m1→s2 m2... be an execution of TaPN. For each mi and corresponding time t, we define 
relation φτ ⊂ Timers(mi) × PΓ. For initial marking m0 and time point τ = 0, φ0 is equal to φb. Let φt 
is defined for mi−1 and τi−1 is global time corresponding to mi−1. Let si be a time elapsing step for δ 
time units, and τi=τi−1+δ is the time corresponding to mi. 
For each place pk, for each token α∈ mi−1 located in pk, for each two transitions tl and tj such that 
there are edges <tl, pk> and <pk, tj>, if (mi−1 + δ)t(α) ≤ γt(<pk, tj>), add <tm, p> to φτi, where point 
p is located on edge <vl, vj> at coordinate x(p) = (mi−1 + δ)t(α) and tm = <pk,(mi−1 + δ)t(α)>. If 
(mi−1 + δ)t(α) > γt(<pk, tj>), we don’t add anything to φτ as it means that the age of α won’t let it be 
involved in a firing of tj. 
Let si be a transition firing step for transition tj and τi = τi−1 as time doesn’t flow during a transition 
firing step. All pairs related to all tokens consumed by the firing are not more in φτ. For each new 
token α ∈ mi in place pk produced by the tj-firing for each two transitions tl and tq such that there are 
edges <tl, pk> and <pk, tq>, we add <tm, p> to φτi, where point p located at the beginning of edge 
<vl, vq>, and tm = <pk, 0>. 
Note that for each marking mi, for each active token α, image φτ([α]≈T) is not empty as, when all the 
pairs related to α cease from φτ, α is dead and [α]≈T ceases from Timers(mi) by definition. For 
different equivalence classes tm1 = <p1, τ1> and tm2 = <p2, τ2>, images φτ(tm1) and φτ(tm2) are 
disjoint as they either lie on different graph edges if p1≠p2, or lie on different coordinates if τ1 ≠ τ2. 
Hence, |Timers(mi)| ≤ NPΓ(τ). 
Now let us consider a class of TaPN-nets without urgency and with inscriptions [x, ∞) on input arcs 
of transitions. Now a token α may be involved in a firing of transition t, even if its clock passed 
maximal interval lower bounds at time τ and t is disabled. When some other token α0 comes to an 
input place p of t and α0 clock satisfies inscription on arc <p, t>, transition t may become enabled 
and may fire consuming α. Such a token α is not dead at τ but we call it passive. For such TaPN-
nets, set of active tokens ActiveTokens(m) is defined as follows  

ActiveTokens(m) = {α ∈ Tok(m) | α∈ ms(p) ∧ mt(α) < max {x | <p,t>∈F & γt<p,t>=[x,∞)} } 
Theorem 2. Let TaPN be a TaPN-net without urgency, with inscriptions [x, ∞) on input arcs of 
transitions, and with initial marking m0. Let PΓ(TaPN) be a DP-system constructed from TaPN. Then 
PΓ(TaPN) overapproximates TaPN-net TaPN.  
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Let t be a transition and its firing produces tokens α1...αn to output places of t. As inscriptions are 
unbounded, t may fire not necessary immediately at its earliest enabling time τ but later, at time 
τ0 = τ + δ. Due to the monotonicity of Petri net firing rule and monotonicity of time constraints of 
form [x, ∞), we may fire transition t at time τ and then just keep (freeze) tokens α1 ... αn at output 
positions of t until τ + δ. Such execution may only increase the number of tokens in TaPN at interval 
[τ, τ + δ]. Henceforth, when we want to overapproximate execution σ we may consider execution 
σ’ such that if a transition t will fire then it will fire at its earliest enabling time. 
Now we may apply the similar argument as in Lemma 1, and obtain |Timers(mi)| ≤ NPΓ(τ). 
As urgency may only narrow a set of possible executions of a TaPN-net, we get the following 
corollary.  
Corollary 3. Let TaPN be a TaPN-net with urgency, with inscriptions [x, ∞) on input arcs of 
transitions, and with initial marking m0. Let PΓ(TaPN) be a DP-system constructed from TaPN. Then 
PΓ(TaPN) overapproximates TaPN net TaPN. 

 
Fig. 4. TaPN-net TaPN and corresponding DP-system PΓ(TaPN ) 

In Fig. 4, TaPN-net TaPN is on the left, and DP-system PΓ(TaPN) that overapproximates TaPN is 
on the right. In [7], it was calculated that the growth of the number of points in PΓ(TaPN) is  

N(PΓ(TaPN)) = t2 (a1 + a2 + a3 + a4 + a5) / (2(a1 + a4 + a5) (a2 + a3) (a1 + a3 + a5)) + O(t) 
This gives us asymptotical estimate on the upper bound of the growth of number of active timers in 
TaPN.  
In PΓ(TaPN), the arrival of a point to a vertex always corresponds to emitting of new points on the 
outgoing edges. In TaPN, the firing of transition t in TaPN may occur only when all input places •t 
have tokens with suitable clock values. Thus, some arrivals of points in Γ do not represent real firings 
of transition t in TaPN. In addition, tokens do not collapse in TaPN-nets; thus, we overapproximate 
the number of different clock values in TaPN. However, the number of different clock values is an 
important parameter for a system when, for example, its components use shared clocks. 

4. Simulation of DP-systems using timed-arc Petri nets 
To simulate DP-systems using Petri nets with real-time semantics, we need to represent points 
moving along edges of a graph using clocks in a Petri net. The advance of a point along an edge in 
a metric graph is modelled with the progress of the corresponding clock in a Petri net.  
The number of points on a metric graph may grow indefinitely when edge lengths are 
incommensurable; therefore, it is not possible to model the evolution of a system of points on a 
metric graph using clocks in classical time or timed Petri nets [2, 24] because these models have 
finite structurally-determined number of clocks. On the contrary, in timed-arc Petri nets, clocks are 



Дворянский Л.В. Оценка сверху числа активных таймеров в сетях Петри с временными дугами с помощью динамических систем 
точек на графах. Труды ИСП РАН, том 34, вып. 5, 2022 г., стр. 183-194 

191 

assigned to tokens [25], and the number of clocks can grow along with the number of tokens in the 
net; therefore, TaPN-nets with token-based time semantics suits well for simulating DP-systems. 

 
Fig. 5. A metric graph Γ and a fragment of TaPN(Γ) built from edge e1 

Let PΓ be a DP-system and TaPN(PΓ) be the resultant TaPN-net simulating PΓ. For each edge e of Γ 
connecting vertices a and b, we add two places eab and eba, where eab models arc <a, b> and eba 
models arc <b, a>. In Fig. 5, DP-system PΓ is on the left, and a fragment of its simulation TaPN(PΓ) 
built for edge e1 of Γ is on the right. Each point p on edge <a, b> of PΓ such that x(p) = x0 is 
represented with a token α in pab such that mt(α) = x0. In Fig. 5, two points on edge <v1, v5> at the 
distances 3 and 5 from v1 are modelled with two tokens that have timer values of 3 and 5, 
correspondingly. In addition, we add transitions tab and tba with U(tab) = U(tba) = 0, which firings 
model events when a point on e reaches b and a, respectively. We add arc <eab, tab> with γt(<eab, 
tab>) = l(e), and, for each edge ei in the metric graph connecting vertex b with vertex c, we add arc 
<tab, ebc> with γt(<tab, ebc>) = 0. Also, for each place eab, we add transition tab with U(tab) = 0 (as 
for e51 in Fig. 5); tab models collapsing of points in a vertex by consuming two tokens with clocks 
equals to 0 in eab, and puts only one token with a clock equal to 0 back. 
The tool support and details of the translation software implementation are provided in [26]. The 
translation enables us to utilise well-known analysis tools for TaPN nets – TAPAAL/UPPAAL[29] 
and ReNew [30], to conduct behaviour analysis and numerical experiments for metric graphs. In 
Fig. 6, the translation of a metric graph DP to TaPN-net in TAPAAL representation using the 
developed tool is demonstrated. 

 
Fig.6. Tool support for translation of metric graph to TaPN-net 

For example, the following properties can be checked using TCTL engine of TAPAAL: 
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– is it possible that more than 50 signals come to node X in 10 seconds; 
– is it possible that in the next 5 minutes two messages come with the difference of their time 

moments less that ε milliseconds;  
– does it hold, for the system initial phase with duration of 15 minutes, that if a point comes to 

node X, then no points comes to node Y within 10 seconds, 
etc. 

5. Conclusion 
In this paper, we studied correspondence between metric graphs and a restricted class of TaPN-nets. 
We demonstrated that, for a restricted subclass of TaPN nets, it is possible to overapproximate the 
number of active timers using DP system on a metric graph. Such a correspondence connects studies 
on TaPN-nets and metric graphs, which allows to conduct analysis of the number of different timers 
in a given subclass of TaPN-nets using a system of points dynamics.  
Our current research is to further weaken the suggested restrictions on TaPN-nets and, 
simultaneously, to find asymptotics for a more general class of DP-systems. Current working 
hypothesis is that the approach used to obtain estimates in [15, 16] could be extended to arbitrary 
directed graphs letting the suggested overapproximation to be used for a wider class of TaPN-nets. 
Conducted computed numerical experiments support it. 
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