Tpyowr UCIT PAH, mom 35, evin. 1, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 1, 2023

DOI: 10.15514/ISPRAS-2023-35(1)-4 M

Microservice Deployment

V.M. Nifio-Martinez, ORCID: 0000-0002-8436-1430 <ninomtz.victor@gmail.com>
J.0. Ochardan-Herndndez, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>
X. Limén, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>
J.C. Pérez-Arriaga, ORCID: 0000-0003-2354-2462 <juaperez@uv.mx>

University of Veracruz,
Xalapa, Veracruz, 91020, Mexico

Abstract. Modern software development requires agile methods to deploy and scale increasingly demanded
distributed systems. Practitioners have adopted the microservices architecture to cope with the challenges posed
by modern software demands. However, the adoption and deployment of this architecture also creates technical
and organizational challenges, potentially slowing down the development and operation teams, which require
more time and effort to implement a quality deployment process that allows them to constantly release new
features to production. The adoption of a DevOps culture, along with its practices and tools, alleviates some of
these new challenges. In this paper we propose a guide for the deployment of systems with a microservices
architecture, considering the practices of a DevOps culture, providing practitioners with a base path to start
implementing the necessary platform for this architecture. We conducted this work following the Design
Science Research Methodology for Information Systems (DSRM). In this way, we identified the problem, and
also defined the solution objectives through the execution of a Systematic Literature Mapping and a Gray
Literature Review, having as a result the proposed guide. This work can be summarized as follows: (I)
Identification of practices and technologies that support the deployment of microservices. (I1) Identification of
recommendations, challenges, and best practices for the deployment process. (llI) Modeling of the
microservices deployment process using SPEM. (IV) Integration of the knowledge in a guide to deploy
microservices by adopting DevOps practices.

Keywords: agile methods; microservices architecture; deployment; DevOps; Systematic Literature Mapping;
Gray Literature Review

For citation: Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limén X., Pérez-Arriaga J.C. Microservice
Deployment. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 1, 2023. pp. 57-72. DOI: 10.15514/ISPRAS-2023-
35(1)-4

Pa3sBepTbiBaHME MUKPOCEPBUCOB

B.M. Hunvo-Mapmunec, ORCID: 0000-0002-8436-1430 <ninomtz.victor@gmail.com>
X.0. Ouapan-Opnanoec, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>
K. Jlumon, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>
X.K. Iepec-Appuaza, ORCID: 0000-0003-2354-2462 <juaperez@uv.mx>

Yuueepcumem Bepaxpyca,
91020, Mexcuka, Bepaxpyc, Xanana

Annorammsi. CoBpeMeHHast pa3pabOTKa INPOTPaMMHOTO oOOecredeHHs: TpeOyeT THOKMX METOJO0B JUIS
pa3BepTHIBAHUS W MAacIITaOMpOBaHMS Bce Oojiee BOCTPEOOBAHHBIX pACIpENeNeHHBIX cucTeM. [IpakTnku
TIPUMEHSIOT APXUTEKTYPY MHKPOCEPBHCOB, YTOOBI CIIPABUTHCS C IIPOOIEMaMH, CBI3aHHBIMA C COBPEMEHHBIMH
TpeOoBaHUAMH K IIPOrpaMMHOMY obecriedennio. OHAKO HUCIIONB30BaHUE STOH apXUTEKTYPHI TaKKe CO3TaeT
TEXHUYECKHE W OpPraHH3al[OHHBbIE MPOOJIEMBI, MOTCHIMAIBHO 3aMeisisi paboTy Tpymnm pa3paboTKH U

57

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

9KCIUTyaTallu, KOTOPbIM TpeOyeTcs Ooibllie BpEMEHH M YCWIIMH Ul pealn3alyd KaueCTBEHHOro mpolecca
pa3BepPTHIBAHUS, NTO3BOJIIONIEr0 UM IIOCTOSIHHO BBIIMYCKaTh HOBbl (yHKIMM B pabouyto cpexny. IIpunsatue
KynbTypsl DevOps BMecTe ¢ ee MeTolaMi ¥ HHCTPYMEHTAMH CMSTYaeT HEKOTOPHIE U3 STHX HOBBIX IIPOOIIEM.
B aroii cTathe MBI IpeIaraeM pyKoBOJICTBO TI0 Pa3BePTHIBAHUIO CHCTEM C MHKPOCEPBUCHON apXHUTEKTYpoii ¢
no3uimy KyneTypsl DevOps, mpenocTaBisiomel HMpakTHKaM IyThb K Hadail] BHEAPEHWsS HeoOXOIMMOn
wIaTGOpMBl UL 3TOH apXHTEKTYypbl. MBI TIpoBeNHM 3Ty paboTy B COOTBETCTBHH ¢ Merononorueit
UCCIIEJOBaHUIT B 00JACTH NPOCKTHUPOBAHMSA HH(MOPMALMOHHBIX CHCTEM. TakuM 00pa3oM, Mbl ONPEIENHINA
npo0ieMy, a TAKKe ONPEIENUIN LIEIH PEIIeHHs TyTeM BBIIOJHCHUS CHCTEMaTHYeCKOTo 0030pa JINTepaTyphl,
BKJIIOUAs CEPYIO JUTEpaTypy. DTy padOTy MOXKHO pe3lOMHpOBaTh cieayromum odpaszom: (I) ompenenenue
METOJOB M TEXHOJNOTHH, TMOIACPKUBAIOLINX pa3BepThiBaHHe Mukpocepeucos; (II) ompenenenne
peKOMEH ALK, MpoOJIeM U JIYYIINX MPAKTUK Uit mporecca paseptoiBanus; (111) MoxenupoBanue mporecca
pa3BepThIBAHKS MHKPOCEPBHCOB ¢ momouipko; (IV) uHTerpaiys 3HaHHH B PYKOBOACTBO 110 Pa3BEPTHIBAHUIO
MHKPOCEPBHCOB € IPIMEHEHNEM NPAaKTHKH DevOps.

KiuwueBble ciaoBa: THOKME METOABI; MHKPOCEPBHCHAs apXWUTEKTypa; pasBepThiBanue; DevOps;
CHCTEMAaTHYECKHH 0030p JINTEPATYpPbl; 0030p CEpoil IUTEpaTyphI

s nurupoBanusi: Huaro-Maptunec B.M., Ouapan-Opnangec X.O., Jlumon K., Ilepec-Appuara X.K.
PassepteiBanne wmukpocepsucoB. Tpymst MCIT PAH, tom 35, Bem. 1, 2023 r., crp. 57-72. DOL:
10.15514/ISPRAS-2023-35(1)-4

1. Introduction

In the 1990s, the popularization of the World Wide Web (WWW) and the subsequent dot-com gold
rush introduced the world to software as a service (SaaS), leading to entire industries built on this
SaaS model. This motivated the development of applications that required more resources, making
them more complex to develop, maintain and deploy. Nowadays, enterprise systems need to transfer
information with other systems, internal or external to the organization, even at a global scale.
Companies such as Amazon, Netflix [1], Uber [2], LinkedIn [3] and, SoundCloud [4], among others,
found the need to migrate to a software architecture that allows them to undertake the complexity
and constant need of evolution of their systems. To this end, they chose to adopt a Microservices
Architecture (MSA). Not only have these large companies migrated to an MSA, but small and
medium-sized companies have also done so, all of them seeking the benefits that this architecture
brings, such as scalability, heterogeneity, and extensibility, among others.

A MSA is an approach to developing a distributed system as a set of small services. Each of these
services runs in its process and communicates using lightweight mechanisms, like an HTTP resource
API [5]. One of the characteristics that make this architecture different is the granularity of the
services, which must be small and highly cohesive. Microservices adopt the single responsibility
principle approach, which states “Gather together the things that change for the same reasons,
separate those things that change for different reasons” [6], focusing the service boundaries on the
business boundaries, in this way, preventing services from growing too large as well as the
difficulties that this may introduce. The key benefits that microservices architecture offers over
conventional architectural patterns are: the heterogeneity of technologies, fault tolerance, agile
deployment, scalability, alignment with organizational structure, replaceability, and agile
development of business functionality [7, 8].

Software deployment is a stage of the software development life cycle in which a system is put into
operation and transition issues are resolved [9]. Deployment combines two closely related concepts,
the first one is the deployment process, which consists of a series of steps that must be executed by
the developers or those in charge of managing the system infrastructure to put the software into a
production environment, and the second is the deployment architecture, which defines the structure
of the software execution environment [10]. An application is only useful when deployed to users.
Mature deployment practices are crucial to building reliable and stable microservices.

58

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom
35, Boim. 1, 2023 r., cTp. 57-72

Unlike a monolithic system, optimized for a single-use case, microservices deployment practices
need to scale to multiple services; it is possible to have tens or hundreds of microservices, written in
different programming languages and frameworks. Each microservice is a small application with a
specific process and architecture, which operators and developers need to deploy in production. If
operators and developers are not able to quickly and reliably deploy microservices, then the added
development speed gained from microservices would be useless. Therefore, a mature deployment
process and automated deployments are essential for developing microservices at scale.

When migrating from a monolithic approach to deploy microservices, the main challenges are the
familiarization with the variety of technologies and tools, the automation of the process, and the
implementation of a pipeline to continuously deploy [11]. In addition, among the most important
challenges related to the deployment of this type of architecture are: 1) maintaining stability for a
large volume of releases and component changes; 2) avoiding coupling between components,
leading to dependencies in the build or release times; 3) managing changes in the service API, as
changes could negatively affect the clients; and 4) removing and updating production services [12].
The practices found in DevOps aid to alleviate the mentioned challenges, these practices include:
Continuous Integration (CI), Continuous Delivery (CD), Configuration Management (CM), and
monitoring, among others. The implementation of these practices generates new challenges
regarding: communication and coordination between teams; lack of investment in costs; lack of
experience and skills; conflict management; design and code dependencies between components;
implementation and release of software to customers [13].

To help developers and people in charge of creating a stable infrastructure to deploy microservices,
we decided to elaborate a guide for the deployment of microservices-based systems, considering
DevOps culture practices. The goal of the guide is to reduce the effort associated with creating an
ecosystem for the microservices architecture. The guide integrates different organizational technical
decisions, technologies, and tools successfully used by organizations, as well as the associated
DevOps practices. The guide helps all related parties in the process of adopting a microservices
architecture.

In order to create the guide, we followed the Design Science Research Methodology (DSRM)
methodology[14], consisting of six phases. We have already completed the following phases:
identification of practices, technologies, tools, activities, and recommendations for the deployment
of microservices, through a previous work [15] consisting of a systematic mapping of the literature
and a review of gray literature; classification and grouping of the information found; MSA process
adoption modeling; and the selection and integration of related activities according to the adoption
process. With these phases covered, it is possible to have a first version of the microservices
deployment guide, leaving the demonstration and evaluation as future work.

This paper is organized as follows. Section 2 gives an overview of some studies focused on the
deployment of microservices and the adoption of DevOps practices. Section 3 presents the followed
method to develop our microservices deployment guide, based on the DSRM methodology [14].
Section 4 describes the proposed deployment guide and its structure. Finally, Section 5 features the
conclusion and future work.

2. Research Method

We followed the Design Science Research Methodology (DSRM) [14], establishing the recognition
and legitimization of aims, processes, and investigation outputs, and helping researchers to present
their work according to a common framework. The methodology incorporates principles, practices,
and procedures required to carry out such research, meeting three objectives: consistency with prior
literature, providing a nominal process model for doing Design Science (DS) research, and providing
a mental model for presenting and evaluating DS research. Several studies have used this
methodology to develop artifacts and validate its process, for example [16, 17]. DSRM includes six

59

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

steps: problem identification and motivation, the definition of the objectives, design, and
development, demonstration, evaluation, and communication. We detail these phases in the
following subsections.

2.1 Problem identification and motivation

For the identification of the problem related to microservices deployment and its importance, we
performed a preliminary literature review. The concepts and topics analyzed were the microservice
architecture style; advantages and drawbacks of its use; processes to deploy microservices; aspects
that affect the deployment; and DevOps culture and its practices.

One of the main challenges we found, is the familiarization with the variety of technologies and
tools, as well as the automation and implementation of a pipeline to deploy continuously [11].
Moreover, the implementation of practices such as Continuous Integration (Cl), Continuous
Delivery (CD), Configuration Management (CM), and monitoring; bring new challenges, such as
communication and coordination between teams; lack of investment in costs; lack of experience and
skills; conflict management; design and code dependencies between components; challenges in the
implementation and release of software to customers [13, 18].

With our literature review, we developed a cause-effect diagram to reflect the factors that impact the
deployment of microservices and convert it into a challenging process. Figure 1 shows the cause-
effect diagram.

Whehowt @ maters
deployment process, the
bemefiny af en M54 cannet
e achicved

Fig. 1. Cause-effect diagram of a microservice deployment

2.2 Design the objectives for a Solution

Once we identified the problems, we concluded that a guide to deploy a microservice architecture
could help to solve the problems. To know the state of the art, and the possible solutions, we
performed a Systematic Mapping Study and A Gray Literature Review, both with the aim to identify
practices, processes, technologies, recommendations, and lessons learned and reported by
practitioners.

2.2.1 Systematic Mapping Study

We conducted the study following the guidelines of Kitchenham, Budgen, and Brereton [19], the
guidelines describe a process to perform the mapping in Software Engineering. The objective of a
mapping study is to survey the available knowledge about a topic. It is possible to synthesize
information by categorization, identify “clusters” of studies that could form the basis of a fuller

60

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom
35, Boim. 1, 2023 r., cTp. 57-72

review, and also identify “gaps”, indicating the need for more primary studies. We executed the
mapping study in three main phases: planning, conduction, and results report. Some activities carried
out within these phases were: a preliminary literature review; definition of the research questions
and search keywords; database selection; inclusion, and exclusion criteria; methods for the data
extraction and analysis.

Planning

Research questions: Derived from the objective of the work, we formulated four research questions
(RQ). The questions compiled the state of the art, showing us the techniques and technologies that
researches, and practitioners use to deploy microservices, along with the related DevOps practices.

The RQs and their motivation are shown in Table 1.

Table 1. Research Questions and Motivation

Questions

Motivation

RQ-1: What DevOps practices and approaches
support the deployment of Microservices?

Identify the practices and approaches used in the DevOps
culture and classify the technologies needed for each practice

RQ-2: What technologies do DevOps practices use
to deploy Microservices?

It is important to identify the technologies that are used in each
DevOps practice, to understand which are the most suitable for
a given situation

RQ-2: What technologies do DevOps practices use
to deploy Microservices?

It is important to identify the technologies that are used in each
DevOps practice, to understand which are the most suitable for
a given situation

RQ-3: What challenges does the literature report
regarding the adoption of DevOps practices in the
deployment of microservices?

Many problems can emerge in the implementation of the
practices and this question aims to know what they are and
how often they are reported.

RQ-4: What lessons does the literature report for
successful microservices deployment?

This question aims to identify the processes, best practices,
and recommendations that practitioners implemented in the

deployment of their systems and serve as a guide for those in
the same situation.
Research process: We performed a preliminary literature review, identifying a series of articles that
helped us to define a set of keywords representing the main concepts around the research questions
and, some of their related concepts. In the end, we decided to run an automated search for selecting
primary studies. We constructed a base string with the search terms identified, refined, and validated
using the Recall and Precision techniques. The generated string is the following:
(microservices OR “microservice architecture” OR micro-services OR “architecting
microservices”) AND (DevOps OR development OR operations OR “continuous
integration” OR CI OR “continuous deployment” OR “continuous delivery” OR CD
OR migration OR automation OR tools OR adoption OR monitoring OR cloud).

Table 2. Selected Electronic Databases

Database
IEEE Xplore Digital
Elsevier Science Direct
Springer Link
Wiley Online Library
ACM Digital Library

Table 2 shows the selected databases that to conduct the search. We chose these databases because
they compile the most significant number of works related to Software Engineering. In addition, in
a previous manual review, we found results in the mentioned sources. ACM Digital Library and
Elsevier Science Direct repositories have some considerations in their search engines, so we adjusted
the search string. Due to the large number of results obtained in ACM, we decided to search only
using the title as the indexer. In the Wiley repository, we used the exact string as in Science Direct,
because, in the first tests, we observed that it performed better. We present the search string of each

61

Link
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://link.springer.com
https://onlinelibrary.wiley.com
https://dl.acm.org

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

database in Table 3. We only covered the last five years in the study, in these years the topics of
DevOps and Microservices had more relevance in research articles. We have also observed in these
years an increase in popularity of the topics of interest, and therefore it is of relevance for the study.
We defined a list of inclusion and exclusion criteria for the studies, presented in Table 4.

Table 3. String Adjusted to each database

Source String

ACM Digital Library [microservice* OR “microservice architecture” OR "architecting microservices"] AND
[DevOps OR development OR operations OR “continuous integration” OR CI OR
“continuous deployment” OR “continuous delivery” OR CD OR migration]

Elsevier Science Direct (microservice OR “microservice architecture”) AND (devops OR development OR
operations OR “continuous integration” OR “continuous deployment” OR “continuous
delivery” OR migration)

Springer Link (devops OR development OR operations OR “continuous integration” OR “continuous
deployment” OR “continuous delivery” OR migration)

Wiley Online Library (devops OR development OR operations OR “continuous integration” OR “continuous
deployment” OR “continuous delivery” OR migration)

Table 4. Inclusion and Exclusion Criteria

Database Link

IC-1: Studies published between 2015 and 2020. EC-1: It is an abstract, workshop, opinion article,
presentations, book chapters, or conference notes.

CI-2: Articles written in English EC-2: The study does not focus on Microservices and DevOps
process deployment

IC-3: The title and abstract contain information | EC-3: The study is an earlier version of more recent work
indicating that the full text could answer at least
one research question.

IC-4: The full text answers at least one research
question

Data extraction: We defined a template to extract the necessary information from each article to
answer the research questions. Data D1-D10 contains the general information of each study, and
data D11-D16 helped to extract qualitative data that answers the research questions. We used a
spreadsheet to collect the information.

Data synthesis: For information synthesis, we used the meta-aggregation method [20]. The
synthesis brings together the study findings, communicated as themes, metaphors, categories, or
concepts; and grouped by further aggregation based on similarity of meaning [20]. This method
helped us to identify lessons learned, common mistakes and understand why the literature reports
certain technologies a higher number of times. Moreover, with the information classified and
grouped, its analysis becomes a more straightforward process.

Conduction

We conducted the selection process in three stages, implementing the inclusion and exclusion of the
strings in the different sources, and using the filters provided by each of them, the CI-1 and CI-2
criteria corresponding to the years of publication and their language were applied. In addition, in
databases such as Science Direct, Springer Link, and ACM Digital Library, we used filters to only
include research articles and not book chapters or lecture notes, thus applying the execution criteria
CI-3 as well as the exclusion criteria CE-1 and CE-2. In the third stage, we read the full text, and the
inclusion and exclusion criteria Cl-4, and CE-3 were applied. Figure 2 shows the results after
applying the inclusion and exclusion criteria by stage and database. At the end of the third stage, we
obtained a total of 21 primary studies.

62

Hunpo-Mapruaec B.M., Ouapan-Dpranaec X.0. Jlumon K., ITepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost CII PAH, Tom

35, Boim. 1, 2023 r., cTp. 57-72

grouped findings on them.

Records identified from

F

Databases (n=5)

| Registers (n = 2 839)

Records marked

F
Records removed before screening

automation toals (n = 1,136)

as ineligible by

L
—_—
Records screened

{n=1703)
¥
Records sought for

(n=1,500)

retrieval

(n=NA)

Records assessed for
el:gibi'."ly
—

L 4

review

L 4

(n=HMAa)

(n = 203)

New studies included in

{n=21)

.
o | Records excluded
»

| ——

Records not retrieved

S —

Records excluded
> EC1(n=4)
EC2{n=178)

Fig. 2. Selection process

Data extraction and analysis: Once we selected the primary studies, we created a spreadsheet in
which each column presents the to be extracted data. We performed a complete reading of each
article, highlighting the information that answered the research questions and capturing this
information in the spreadsheet; we performed this process for each of the primary studies selected.
With the extracted information, we proceeded to apply the meta-aggregation method. This method
has three main steps: (1) Identify and assemble findings from all included studies; (I1) Aggregate
well-founded and explicit findings; (111) Synthesis of findings implications. We also captured the
findings in a spreadsheet, and with all the findings identified, we iteratively created categories and

Microservices
deployment and| ———=
DevOps

Considerations |——""
for Deploying

Microservices —~—

_

Dreploy mgnt
technologies

N

Microservices
deployment
requirements

——————
Characteristics of
DevOps practices
|

Microservice
deployment
challenges:

 EEE—
Challenges of
DevOps practices

-y
Characteristics of
building

technologies

—
Characteristics of

containerization
technologies

Caracteristics of
orchestration

technologies

Fig. 3. Meta-aggregation classification

63

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

Results

Meta-aggregation results: After the application of the method, we extracted classified 43 findings
into seven categories. These categories were grouped into three synthesized findings Considerations
for Deployment Microservices, Precautions when Deploying Microservices, and Deployment
Technologies. Figure 3 shows the associations between categories.

Microservices deployment requirements: In this category, we identified requirements that
practitioners, from their experience in the area, considered necessary for a successful microservices
deployment. We found that architectural support is crucial for the adoption of DevOps practices, as
well as having a mature operations team, to allow continuous deployment of numerous
microservices. Furthermore, developers need to consider microservices' backward compatibility,
and microservices upgrading with minimum effort and application downtime. Flexible and
maintainable delivery systems support these needs.

Characteristics of DevOps practices: We grouped in this category, requirements, tips, and lessons
learned by practitioners when implementing DevOps practices as well as deployment pipelines. The
practitioners agree that pipelines are one of the key parts in the deployment of microservices because
without good construction of pipelines, long wait times for releases and builds occur. To prevent it,
it is necessary to apply DevOps principles in building CI/CD pipelines, automation is paramount to
successful deployment.

Microservices deployment challenges: The findings related to this category are challenges those
practitioners identified when adopting a microservices-based architecture. One of the challenges
identified is the release of a new version of a microservice, because one or more microservices may
depend on it. In addition, when adopting this architecture, there is a great effort in the context of
new tools and frameworks. Microservices configuration is essential to achieve the expected results.

Challenges of DevOps practices: In this category, we grouped a set of challenges related to practices
and technologies related to DevOps practices. The constant updating of tools and libraries makes
development difficult, as well as the lack of tools for specific tasks that developers need to automate.
For example, monitoring has several challenges such as lack of commercial options, lack of
standardization, and lack of faster learning curves.

Characteristics of building technologies: Technologies are an important part of software
deployment and construction; therefore, it is an aspect that practitioners pay particular attention to.
In this category, we gathered characteristics mentioned by practitioners for these technologies. Some
examples are integration servers such as Jenkins, GitLab CI, and Travis CI. Also, as part of the
findings of the category, we made a comparison and characteristics of usage of each technology.

Characteristics of containerization technologies: The use of containerization technologies, such as
Docker, is one of the characteristics that popularized the microservices architecture. Many studies
recommend the use of this technology, contrasting the advantages with respect to virtual machines.
Deploying microservices using containers takes significantly less time than using virtual machines.
The use of containers makes deployment a simple, fast, and platform-independent process. The
mentioned benefits come from the fact that developers can automate the construction and
provisioning of containers using scripts.

Characteristics of orchestration technologies: As a result of the wide adoption of containerization
technologies, solutions for their orchestration have emerged. Technologies such as Kubernetes,
Docker Swarm, and Docker-compose, among others, provide practitioners with various deployment
benefits. This category presents a comparison in terms effectiveness of these technologies, and also
compiles the experiences that developers had with their adoption. Kubernetes for container
orchestration is the most suitable method for deploying microservices when the application demands
high availability and scalability, however when it comes to security Kubernetes and Docker Swarm
do not provide complete isolation between deployed containers, which introduces security issues.

64

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom

35, Boim. 1, 2023 r., cTp. 57-72

Practices by study

Continuous Integration and Delivery
CIfCD [52,53,54,56,58,59,512 513,
515,516,517, 520]

Implicitly mentioned [51,57,511
518,519, 521]

Continuous Deployment [51,57,511
518,519, 521)

Monitoring [51,57,511 518,519, $21]

=]

2 4 6 g8 10 12

14

Fig. 4. Practices mentioned by study

Answers to research questions: What DevOps practices and approaches support the
deployment of Microservices? The studies mentioned the DevOps practices of Continuous
Integration (CI), Continuous Delivery (CD), Continuous Deployment and Monitoring. However,
some studies did not directly mention the use of DevOps practices but used the processes and
activities of these practices. Figure 4 shows the practices reported and related articles. It is worth
noting that some studies mentioned more than one practice.

Technologies reported

Docker

Jenkins

Kubernetes

Docker Hub

GitHub

Docker-compose

AWS

Logstash

Kibana

Grafana

-]
=
o
]
-
1
&
=
=

Fig. 5. Technologies reported by the studies

What technologies do DevOps practices use to deploy Microservices? We found several
technologies for the construction and deployment of microservices. Figure 5 presents the ten most
frequently reported technologies.

65

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

Studies mentioned Docker, a containerization technology, 16 times. The literature compares
containers with other similar technologies such as Virtual Machines (VM), and in each comparison,
the studies concluded that the former provided more significant benefits. The literature also
highlights DockerHub as a repository for container images.

Another important technology is Jenkins, a building technology used in CI/CD practices, mentioned
in the literature eight times. In contrast, the literature only mentions once Circle Cl and Travis-Cl,
which are similar to Jenkins.

Among deployment and orchestration technologies, the literature mentions Kubernetes, Docker-
compose, and Docker Swarm. Kubernetes was the most used because it provides significant benefits
in systems with many microservices. Finally, the literature also mentions GitHub and Gitlab four
and three times, respectively.

What challenges does the literature report regarding the adoption of DevOps practices in the
deployment of microservices?

Publishing and upgrading microservices: Updating and publishing a new microservice version is a
significant challenge, developers have to be careful since a microservice may depend on many others
[21]. In addition, service discovery is a challenging aspect affected by upgrading a new version of a
microservice and deploying it [22].

Technologies and tools required for building and deploying microservices: Developers make a great
effort to adopt new tools and frameworks for each practice that they implement [23]. It is crucial to
choose the right tools to protect the DevOps approach; otherwise, the rollback or tool change is very
costly in time and effort [24]. Developers must perform careful initial configuration of the tools as
this will allow correct automation [25]. Constant updates of libraries and tools make development
and maintenance difficult.

Monitoring of a microservices architecture: The challenges that practitioners must face are the lack
of commercial monitoring options, lack of standardization, and lack of faster learning curves [26].

What lessons does the literature report for successful microservices deployment? We grouped the
lessons learned into two main topics: Solid architectural foundations and Attention to DevOps
principles.

Solid architectural baseline: A long and scalable system requires a good architectural foundation
that supports DevOps [27]. Every change in the architecture imposes new requirements on the
delivery system and the implementation of new components and technologies [28]. Backward
compatibility between microservices, separation of domains, and responsibilities for each service
helps to prevent cross-configuration and keep services running smoothly.

Attention to DevOps principles: Applying DevOps principles in building CI/CD pipelines makes
them leaner and more robust. Principles such as automation in all processes (integration, testing,
deployment, analysis, and monitoring) are key to ensuring system reliability [29]. Good design and
implementation of deployment pipelines allow rapid error detection [24]. Maintenance and updating
of pipelines should take priority over code development. When problems arise, it is important to
centralize error handling, in order to reduce the work of developers and operators. System
monitoring should be flexible and scalable.

2.2.2 Gray literature review

We conducted a gray literature review to complement the mapping findings. For the review, we
considered books, and electronic resources focused on the topics of DevOps, microservices
deployment, and associated technologies. We searched the resources using the search engines
Google Scholar, Google Books, and Google. We used these three since we aimed to have as much
information as possible. In addition, we applied the snowballing method [30], which consists of
searching for the material cited or referenced in the mapping articles. The steps carried out for the
66

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom
35, Boim. 1, 2023 r., cTp. 57-72

selection of the resources were as follows: For the selection of books, the process consisted of
reading the table of contents, and the chapters that corresponded to the deployment of microservices
or some DevOps practice related to microservices. For the selection of electronic resources such as
company blogs, standards, and technical documentation, we read the content to determine if it would
be useful. We investigated each of the resources to answer the research questions formulated in the
MSL, or at least to find information that contributes to the findings.

Once we identified the resources, we continued with the reading of the most relevant aspects.
Following a process similar to the meta-aggregation method used in the mapping, we identified
important ideas or findings, and classify them according to their type. Among the types identified
are deployment patterns, principles, practices, advantages, and disadvantages of technologies and
resources.

2.3 Design and Development

In the design and development phase, we performed a series of activities, these activities consisted
of grouping and classifying the information obtained from the white and gray literature reviews. We
focus on the implementation modeling process of a microservices architecture, aiming to provide an
order to the set of tasks and activities that we identified in previous phases. Finally, using the
modeling and the information obtained, we integrated the microservices deployment guide, which
we structured according to the modeling phases, having as content the related activities in each
phase.

2.4 Demonstration and Evaluation

The demonstration aims to use the artifact to solve one or more instances of the problem. To achieve
it, the authors propose certain approaches such as experimentation, simulation, case study, or other
appropriate activity. Once performed the demonstration is needed to observe and measure how well
the artifact supports a solution to the problem. However, given the complexity, the amount of time,
personnel, and resources involved in building a microservices architecture large enough to be
applied as a case study, as well as the number of case studies that would be needed to have
deterministic results, it was decided not to include this phase in the scope of this work.

For the evaluation of the guide, we decided to use another approach and analyze the evaluation
method that best suits our problem, so far, we are considering using the work of Garousi et al. [31]
and focusing on the evaluation of quality for technical software documents, thus the application of
the evaluation is planned as future work.

2.5 Communication

As a part of the communication phase, we communicated the importance of the problem through the
paper publication Microservice Deployment: A Systematic Mapping Study [15]. For the artifact
communication, its utility, and effectiveness we present the current paper, and we are developing a
website to publish the guide so it could be accessible for the practitioners.

3. Proposed Deployment Guide

The guide works as a path where practitioners can identify their starting point and gradually adopt
practices and strategies for microservices deployment. The guide includes practices, patterns [32],
technologies, and tips found in the literature. The guide organizes possible decisions according to
the phases of the microservices deployment process. Organizations interested in adopting the MSA
can follow the guide, in this way, the person in charge of design or deployment can consult the
practices and strategies recommended for each specific phase. The intention of showing the
decisions in a modular way is that the managers can consult the parts they need, without the need to

67

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

read the whole guide, or if practitioners have already managed to adopt some practices, they can
find additional information that allows them to improve their current process.

We used SPEM 2.0 (Software & Systems Process Engineering Metamodel) for the modeling of the
guide, it is a standard for defining software processes. SPEM uses the UML (Unified Modeling
Language) notation, which provides components that allow the standardized representation of
methods, life cycles, roles, activities, tasks, and work products used in Software Engineering. The
main process consists of three phases. Each phase can have different iterations, an iteration is a set
of activities performed iteratively, and each activity has one or many tasks needed to complete the
activity. Due to the time involved in having a platform that supports the microservices architecture,
practitioners can perform all these activities iteratively and incrementally as the project develops,
thus adding value to the deployment process as the project and its needs grow.

The first phase corresponds to the architectural design, separating the problem domain, identifying
the required microservices, the communication style between them, and the deployment method for
orchestrating the microservices. The second phase presents the preparation of the development
environment for each microservice; the related activities in the construction; integration and delivery
of each service; and finally, the strategies for delivery and observability of the microservices in the
production environment. The third and last phase, covers microservice construction, following the
design and platform created in the previous phases. The following is a description of the sections
that make up the guide as well as the related activities and tasks.

3.1 Deployment design

This section of the guide covers the design and deployment planning iteration, which has four main
activities for those responsible for the design and implementation of the system. Each activity has
an output that serves as input for the next task, the first activity is the selection of the deployment
strategy, followed by the selection of technologies, and finally, the last two activities, possibly
executed in parallel, corresponding to the design of configurable services, and the design of
observable services can.

The activities described in this section contain the following information: Name, Roles in charge,
Description, List of identified methods or patterns, and Recommendations. Each identified pattern
has the following properties: Characteristics, Advantages, Disadvantages, and Technology.

3.2 Configuration management and development environment

This section encompasses the Iteration Delivery Environment Preparation activity for the
preparation of the deployment pipeline. This activity is very important since it is the basis that will
allow the implementation of a deployment pipeline, the person in charge of the deployment has the
task of implementing a set of practices and technologies that allow the control of the changes made
in the service's code, as well as the automation of the processes for the construction of services. The
activities implemented are the Implementation of version control, Establishment of development
guidelines, Implementation of patterns for source code branch management, implementation of unit
tests, and automation of the build and test processes.

3.3 Deployment pipeline

This section of the guide presents DevOps activities related to Continuous Integration and
Continuous Delivery practices. The section incorporates two activities from the iteration phase of
the deployment pipeline: the preparation of the built environment, and the preparation of the delivery
environment. These activities are fundamental to constantly building and releasing microservices, a
key aspect of successfully implementing MSA. The section features recommendations,
technologies, and features for each task. The first activity corresponds to the practice of Continuous

68

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom
35, Boim. 1, 2023 r., cTp. 57-72

Integration, this activity concerns the implementation of a continuous integration system;
automation of the compilation process; implementation of unit and acceptance tenting;
implementation of code analysis and generation of binaries; and packaging artifacts. The second
activity, focused on the Continuous Delivery practice, concerns the tasks of environment
configuration; implementation of smoke tests; implementation of manual tests; acceptance or
performance tests; and deployment and release to a production environment.

3.4 Infrastructure management and System observability

This section presents the tasks that correspond to DevOps culture practices, such as Infrastructure
as Code and GitOps. Here we present the description of these practices, the description of the
existing technologies, as well as good practices found in the literature for their correct
implementation. In addition, the last section presents the practices we found in the literature to
achieve adequate observability of the services deployed in a production environment.

4. Conclusion and Future Work

This paper presented the current results of a project to build a deployment guide for applications
with a microservices architectural style. To this end, we conducted a systematic mapping study to
identify the practices, tools, technologies, activities, and recommendations used in microservices
deployment, we also complemented the information found with a gray literature review. We
integrated into the guide all the elements and models found.

As for future work, we plan to perform the evaluation phase of the DSRM methodology. This phase
is for analyzing the guide and related artifacts, to know if they meet the intended objectives. To
perform the evaluation of the guide we intend to use the work of Garousi et al. [31] for the evaluation
of the use and quality of software technical documentation.

The present version of the artifact does not cover organizational aspects of the DevOps culture. To
obtain the benefits of a DevOps culture, organizations not only have to adopt technologies and
practices, but they also have to adopt an organizational and cultural base, driven by the highest levels
of the organization. Therefore, as future work, the guide will incorporate the organization of
effective teams for microservices deployment. In this way, the work would bring additional value to
organizations and to all those who seek to adopt a DevOps culture.

References / Cnucok nutepartypbl

[11 Mauro T. Adopting Microservices at Netflix: Lessons for Architectural Design. NGINX Blog, 2015.
Available at: https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/, accessed
May 10, 2021.

[2] Reinhold E. Rewriting Uber Engineering: The Opportunities Microservices Provide. Uber Engineering
Blog. Available at: https://eng.uber.com/building-tincup-microservice-implementation/, accessed May 10,
2021.

[3] Ihde S., Parikh K. From a Monolith to Microservices + REST: the Evolution of LinkedIn’s Service
Architecture. Mar. 2015. Available at: https://www.infog.com/presentations/linkedin-microservices-urn/,
accessed Mar. 22, 2022)

[4] Calcado P. Building Products at SoundCloud —Part I: Dealing with the Monolith. SoundCloud Backstage
Blog, Jun. 11, 2014. Available at: https://developers.soundcloud.com/blog/building-products-at-
soundcloud-part-1-dealing-with-the-monolith, accessed Mar. 22, 2022.

[5] Lewis J., Fowler M. Microservices. Mar. 25, 2014. Available at:
https://martinfowler.com/articles/microservices.html, accessed Nov. 16, 2021.

[6] Martin R.C. The Single Responsibility Principle. Clean Coder Blog, May 08, 2014. Available at:
https://blog.cleancoder.com/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html, accessed Jan. 26,
2022.

[71 Newman S. Building Microservices: Designing Fine-Grained Systems. O'Reilly Media, 2015, 280 p.

69

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

(8]
[]

[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

70

Indrasiri K., Siriwardena P. Microservices for the Enterprise: Designing, Developing, and Deploying.
Apress, 2018, 441 p.

IEEE Standard for DevOps: Building Reliable and Secure Systems Including Application Build, Package,
and Deployment: IEEE Standard 2675-2021.

Richardson C. Microservices Patterns: with examples in Java. Manning, 2018, 520 p.

Fritzsch J., Bogner J. et al. Microservices Migration in Industry: Intentions, Strategies, and Challenges. In
Proc. of the IEEE International Conference on Software Maintenance and Evolution (ICSME), 2019, pp.
481-490.

Bruce M., Pereira P.A. Microservices in action. Manning, 2018, 392 p.

Shahin M., Ali Babar M., Zhu L. Continuous Integration, Delivery and Deployment: A Systematic Review
on Approaches, Tools, Challenges and Practices. IEEE Access, vol. 5, 2017, pp. 3909-3943.

Peffers K., Tuunanen T. et al. A Design Science Research Methodology for Information Systems
Research. Journal of Management Information Systems, vol. 24, issue 3, 2007, pp. 45-77.

Nifio-Martinez V.M., Ocharan-Hernandez J.O. et al. Microservices Deployment: A Systematic Mapping
Study. In Proc. of the 9th International Conference in Software Engineering Research and Innovation
(CONISOFT), 2021, pp. 24-33.

Hyvirinen H., Risius M., Friis G. A Blockchain-Based Approach Towards Overcoming Financial Fraud
in Public Sector Services. Business & Information Systems Engineering, vol. 59, issue 6, 2017, pp. 441-
456.

Tello-Rodriguez M., Ocharan-Hernandez J.O. et al. A Design Guide for Usable Web APIs. Programming
and Computer Software, vol. 46, issue 8, 2020, pp. 584-593 / Tenwo-Poapurec M., Ouapan-DpHanjec
X.0., Ilepec-Appuara X.K., Jlumon K., Canuec-I'apcus A.X. IlyreBoaurenp MO NPOEKTHPOBAHHIO
ymo06HbIx Web-API. Tpyast UCIT PAH, Tom 33, Beim. 1, 2021 r., crp. 173-188. DOI: 10.15514/ISPRAS-
2021-33(1)-12.

Chen L. Continuous Delivery: Overcoming adoption challenges. Journal of Systems and Software, vol.
128, 2017, pp. 72-86.

Kitchenham B., Budgen D., Brereton P. Evidence-Based Software Engineering and Systematic Reviews.
Chapman and Hall/CRC, 2015, 399 p.

Pearson A., Robertson-Malt S., Rittenmeyer L. Synthesizing Qualitative Evidence. Lippincott Williams
& Wilkins, 2011, 80 p.

Kargar M.J., Hanifizade A. Automation of regression test in microservice architecture. In Proc. of the
International Conference on Web Research (ICWR), 2018, pp. 133-137.

Singh V., Peddoju S.K. Container-based microservice architecture for cloud applications. In Proc. of the
International Conference on Computing, Communication and Automation (ICCCA), 2017, pp. 847-852.

Richter D., Konrad M. et al. Highly-Available Applications on Unreliable Infrastructure: Microservice
Architectures in Practice. In Proc. of the IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), 2017, pp. 130-137.

Soenen T., Van Rossem S. et al. Insights from SONATA: Implementing and integrating a microservice-
based NFV service platform with a DevOps methodology. In Proc. of the IEEE/IFIP Network Operations
and Management Symposium, 2018, pp. 1-6.

Fan C.Y., Ma S.P. Migrating Monolithic Mobile Application to Microservice Architecture: An
Experiment Report. In Proc. of the IEEE International Conference on Al & Mobile Services (AIMS),
2017, pp. 109-112.

Tamburri D.A., Miglierina M., Di Nitto E. Cloud applications monitoring: An industrial study.
Information and Software Technology, vol. 127, 2020, article no. 106376, 28 p.

Chen H.M., Kazman R. et al. Architectural Support for DevOps in a Neo-Metropolis BDaa$S Platform. In
Proc. of the IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW), 2015, pp. 25-
30.

Steffens A., Lichter H., Doring J.S. Designing a next-generation continuous software delivery system:
Concepts and architecture. In Proc. of the 4th International Workshop on Rapid Continuous Software
Engineering, 2018, pp. 1-7.

Hasselbring W., Steinacker G. Microservice architectures for scalability, agility and reliability in e-
commerce. |IEEE International Conference on Software Architecture Workshops (ICSAW), 2017, pp. 243-
246.

Wohlin C. Guidelines for snowballing in systematic literature studies and a replication in software
engineering, In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, 2014, article no. 38, 10 p.

Hunpo-Maprunec B.M., Ouapan-Dpranaec X.0. Jlumon K., [Tepec-Appuara X.K. PasseproiBanue mukpocepBucos. Ipyost UCII PAH, Tom
35, Boim. 1, 2023 r., cTp. 57-72

[31] Garousi G., Garousi V. et al. Evaluating Usage and Quality of Technical Software Documentation: An
Empirical Study. In Proc. of the 17th International Conference on Evaluation and Assessment in Software
Engineering, 2013, pp. 24-35.

[32] ValdiviaJ.A., Lora-Gonzalez A. et al. Patterns related to microservice architecture: a multivocal literature
review. Programming and Computer Software, vol. 46, issue 8, 2020, pp. 594-608 / Bansausus X.A.,

Jlopa-T'oncanec A. u gp. IlaTTepHBl MHUKPOCEPBHCHOH apXWUTEKTYyphl: MHOTONPOQHIBHBIA 0030p
auteparypsl. Tpyast UCITPAH, tom 33, Beim. 1,2021 r., ctp. 81-96. DOI: 10.15514/ISPRAS-2021-33(1)-
4.

Information about authors / UHcpopmauma 06 aBTopax

Victor M. NINO-MARTINEZ, Software Engineer Student. Research interests: Software
Engineering, Software Architecture, and DevOps.

Buxrop M. HUHBO-MAPTUHEC, crynent-mporpammuct. OOnacTe HaydHBIX HHTEPECOB:
pa3paboTka mporpaMMHOTO 00ecIieueH s, apXUTEeKTypa mporpaMmMHoro obecriedenust u DevOps.

Jorge Octavio OCHARAN-HERNANDEZ, Doctor in Computing Sciences, Professor at the School
of Statistics and Informatics. Research interests: software engineering, software architecture,
requirements engineering, API design

Xopxe OxraBro OYAPAH-DPHAHJIEC, kanmuaaT KOMIObIOTEPHBIX HayK, mpodeccop dakyabTera
cratucTuk u wuHbopMaTuku. OOJNACTh HAyYHBIX HMHTEPECOB: pa3pabOoTKa MPOrPaMMHOTO
oOeCrieueHHs, AapXWTEKTypa MPOrpaMMHOro obecmedyeHus, pa3paboTka TpeOOBaHUIA,
paszpaboTtkaAPl.

Xavier LIMON, Doctor of Artificial Intelligence, Associate Professor of the Statistics and
Informatics Faculty. Research interests: Distributed Systems, Software Architectures, Multi-agent
systems, Machine Learning.

KcaBpe JIUMOH, kanaumat Hayk B 00JacTH MCKYyCCTBEHHOTO WHTEIUICKTA, JOICHT (pakynbreTa
CTaTUCTHKN © wHpopMatuku. OONacTe HAYYHBIX HWHTEPECOB: PACIHpPEICICHHBIE CHCTEMEL,
APXUTEKTYPHI IPOTPAMMHOTO 00ECIIEYCHNsI, MHOTOATCHTHBIE CUCTEMBI, MAIITTHHOE 00yUYCHHE.

Juan Carlos PEREZ-ARRIAGA, Master in Computer Science, Software Developer. Research
interests include software architecture, software engineering, software metrics, software tools,
software quality.

Xyan Kapnoc ITEPEC-APPUAT'A, Maructp KOMIIBIOTEpHBIX HAyK, Pa3paboTYMK MPOrpaMMHOTO
obecrieuennsa. OOnacTh HaydHBIX HHTEPECOB: AapXHUTEKTypa IPOrpaMMHOTO oObOecreueHwus,
WHXKCHEpUsI MPOTPaMMHOr0 OOecHedyeHus, MOKa3zaTeId MNpOrpaMMHOTO oOecredeHwus,
HpOTpaMMHBIE HHCTPYMEHTHI, Ka4€CTBO MMPOTPAMMHOT0 00eCIICUeHHSI.

71

Nifio-Martinez V.M., Ocharan-Hernandez J.O., Limon X., Pérez-Arriaga J.C. Microservice Deployment. Trudy ISP RAN/Proc. ISP RAS, vol.
35, issue 1, 2023. pp. 57-72

72

