
Труды ИСП РАН, том 35, вып.3, 2023 г. // Trudy ISP RAN/Proc. ISP RAS, vol.351, issue 3, 2023 

11 

DOI: 10.15514/ISPRAS-2023-35(3)-1 

Discovering Process Models from Event Logs of 
Multi-Agent Systems Using Event Relations 

 A.A. Sherstyugina, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru> 
 R.A. Nesterov, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru> 

 HSE University, 

11 Pokrovsky boulevard, Moscow, 101000, Russia 

Abstract. The structure of a process model directly discovered from an event log of a multi-agent system often 

does not reflect the behavior of individual agents and their interactions. We suggest analyzing the relations 

between events in an event log to localize actions executed by different agents and involved in their 

asynchronous interaction. Then, a process model of a multi-agent system is composed from individual agent 

models between which we add channels to model the asynchronous message exchange. We consider agent 

interaction within the acyclic and cyclic behavior of different agents. We develop an algorithm that supports 

the analysis of event relations between different interacting agents and study its correctness. Experimental 

results demonstrate the overall improvement in the quality of process models discovered by the proposed 

approach in comparison to monolithic models discovered directly from event logs of multiagent systems. 

Keywords: Multi-agent systems; event logs; process discovery; Petri nets; event relations; asynchronous 

interaction. 

For citation: Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent 

Systems Using Event Relations. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. DOI: 

10.15514/ISPRAS-2023-35(3)-1 

Acknowledgments: This work is supported by the Basic Research Program at the HSE University, Russia. 

 

 

Синтез моделей процессов по журналам событий 
мультиагентных систем с помощью  

отношений между событиями 

 A.A. Шерстюгина, ORCID: 0009-0009-2878-3565 <aasherstyugina@edu.hse.ru> 
 Р.А. Нестеров, ORCID: 0000-0002-4162-9070 <rnesterov@hse.ru> 

 Национальный исследовательский университет «Высшая школа экономики», 

Россия, 101000, Москва, Покровский бульвар, 11 

Abstract. Структура модели процесса, синтезированной напрямую по журналу событий 

мультиагентной системы часто не дает представления о поведении отдельных агентов, а также о 

способе их взаимодействия. Для локализации действий, которые выполняются различными агентами и 

которые вовлечены в их асинхронное взаимодействие мы выделяем и анализируем отношения между 

событиями в журнале. В результате модель мультиагентной системы представляет собой композицию 

моделей поведения отдельных агентов, между которыми добавляются каналы асинхронного обмена 

сообщениями. В статье рассматривается как ациклическое, так и циклическое взаимодействие агентов. 

Нами предложен и обоснован алгоритм выделения и анализа отношений между событиями в журнале 

событий мультиагентной системы. Результаты экспериментальной оценки разработанного алгоритма 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

12 

подтверждают общее улучшение качественных оценок моделей процессов, синтезированных по 

журналам событий мультиагентных систем с помощью отношений между событиями в сравнении с 

монолитными моделями, которые синтезируются напрямую. 

Ключевые слова: Мультиагентные системы; журналы событий; синтез моделей процессов; сети 

Петри; отношения между событиями; асинхронное взаимодействие. 

Для цитирования: Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий 

мультиагентных систем с помощью отношений между событиями. Труды ИСП РАН, том 35, вып. 3, 

2023 г., стр. 11–32 (на английском языке). DOI: 10.15514/ISPRAS–2023–35(3)–1 

Благодарности: Работа поддержана Программой фундаментальных исследований Национального 

исследовательского университета «Высшая школа экономики» (НИУ ВШЭ), Россия. 

1. Introduction 

The behavior of an information system is frequently recorded in event logs. They can register, for 

instance, user activities, transaction executions, or message exchanges. An event log consists of 

finite sequences (traces) of events ordered by the occurrence time. Process mining uses event logs 

to discover models reflecting the actual state of processes in an information system. Process models 

discovered from event logs capture considerable changes that can be introduced to an information 

system during its operation, while models manually created at the initial life-cycle stages do not take 

these changes into account [1].  

A record in a trace of an event log usually includes not only the identifier of an action, but also other 

attributes, which can specify the resources necessary for executing the recorded action. These 

attributes can also designate who executes an action. For example, Table 1 shows a trace of an event 

log, where an action record has the «Agent» attribute, and actions are executed by two agents: Peter 

or Alex. We say that an event log where actions are attributed with the information on agents records 

the behavior of a multi-agent system.  

Process models can be discovered in a variety of notations, including different classes of Petri nets, 

transition systems, and BPMN (Business Process Model and Notation). In our paper, we focus on 

modeling the control-flow of processes, i.e., the causal dependencies among events in a log. Thus, 

we will apply Petri nets [2] — the formalism extensively used to model and analyze the properties 

of process behavior. 

Table 1. A trace in an event log of a multi-agent system 

Timestamp Action Agent 

30-12-2022:14.45 prepare msg Peter 

05-01-2023:09.34 send msg Peter 

07-01-2023:12.12 receive msg Alex 

12-01-2023:13.25 send ack Alex 

12-01-2023:14.55 receive ack Peter 

12-01-2023:14.55 local check Alex 

Petri nets are also a convenient tool to model the interaction between different components in a 

multi-agent system. Fig. 1 shows two Petri nets 𝑁1 and 𝑁2 representing two agents with the 

sequential behavior. They exchange messages through two distinguished channel nodes a and b. 

Recent papers in the field of process mining also demonstrate the shift in a focus to a discovery of 

process models with an understandable structure reflecting the complex synchronizations between 

objects [3], the hierarchy of activities [4, 5], or the interaction-oriented viewpoints of the architecture 

of a multi-agent system [6]. 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

13 

 
Fig. 1. A multi-agent system with two asynchronously interacting agents 

The paper [6] proposed a compositional approach to discovering an architecture-aware process 

model from an event log of a multi-agent system. The structure of an architecture-aware process 

model explicitly reflects agent behavior and their interactions similar to Fig. 1, where two agents 

exchange message through channels a and b. A model is constructed by a composition of individual 

agent models controlled by a manually selected interface pattern model. An interface pattern 

provides a high-level specification of agent interactions. However, in the case of the poor selection 

of an interface model, one has to reconfigure it and perform an additional check of a reconfigured 

model.  

Here, we propose to ease this restriction on making the preliminary choice of an interface pattern. 

We suggest to identify asynchronous agent interactions using causal relations between events 

extracted directly from an event log of a multi-agent system. For instance, in an event log obtained 

by simulating a process model shown in Fig. 1 the occurrence of “send msg” action will always be 

recorded before the occurrence of “receive msg” action. Extracting such causality relations will help 

us to localize events in a log corresponding to the occurrence of actions executed by different agents 

and involved in their asynchronous communication. Correspondingly, we will determine transitions 

in individual agent models to be connected via an asynchronous channel. 

Note that the automated discovery of process models from event logs is supported by a wide range 

of algorithms [7]. They usually deal with typical problem of event data representation, including, 

for instance, noise (missing or duplicated records) and incompleteness, i.e., a finite event cannot 

cover all possible process executions. The paper [6] also stressed that an event log of a multi-agent 

system requires the additional inspection of agent behavior, since the direct discovery from a multi-

agent system event log produces process models the structure of which does not explicitly reflect 

agent behavior as sub-models and agent interactions as distinguished nodes. This happens because 

the concurrent execution of relatively independent agents leads to a wide range of possible traces 

recorded in an event log of a multi-agent system.  

The quality of discovered process models is the main subject in conformance checking [8], which 

proposes a collection of different dimensions to evaluate the correspondence between an event log 

and a process model. Fitness and precision are two widely-used quality metrics that can characterize 

a discovered process model. Fitness is an estimation of the ratio of the traces executable by the 

model to the total number of traces in an event log. A model with the perfect fitness can execute 

every trace in an event log. For example, the model shown in Fig. 1 can execute the trace in Table 1, 

if we consider 𝑁1 as the behavior of Peter, and 𝑁2 as the behavior of Alex. Precision evaluates the 

ratio of the behavior recorded in an event log and the behavior allowed by a process model. A process 

model with the perfect precision can only execute traces in an initial event log. The perfect precision 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

14 

limits the use of a discovered process model, since any event log of an information system represents 

only a finite “snapshot” of all possible process executions.  

An architecture-aware process model discovered from an event log of a multi-agent system using 

the compositional approach of [6] is guaranteed to possess the perfect fitness. The approach to the 

analysis of agent interactions using causal event relations in a log, proposed in our study, will also 

ensure the perfect fitness of the process model of a multi-agent system obtained by connecting 

individual agent models via asynchronous channels. The main results presented in this paper are: 

1) An approach to the analysis of causality relations between events in an event log of a multi-

agent system for the identification of specific events involved in the asynchronous 

communication between different agents. 

2) Demonstration of the approach correctness and its experimental evaluation.  

The remainder of this paper is organized as follows. In the next section, we collect the formal 

background of our approach to the analysis of event relations in an event log, including generalized 

workflow nets (GWF-nets) — a class of Petri nets used to model the behavior of agents and multi-

agent systems. Section 3 considers the localization of events in an event log corresponding the 

asynchronous agent interactions within the acyclic agent behavior. Section 4 explores the case of 

localizing asynchronous interactions among agents with cycles. Section 5 reports the outcomes from 

the experimental evaluation. In Section 6, we review the related research, and Section 7 concludes 

the paper. 

2. Background 

In this section, we aim to provide the basic definitions concerning several general notions, event 

logs, and generalized workflow nets. We refer to these definitions when describing our approach to 

the analysis of causal event relations involving different agents. 

𝑆+ denotes the set of all finite non-empty sequences over a finite set 𝑆, and 𝑆∗ = 𝑆+ ∪ {𝜀}, where 𝜀 

is the empty sequence. Let 𝜎 ∈ 𝑆∗ and 𝑆′ be a subset of 𝑆. Then 𝜎|𝑆′ denotes the projection of 𝜎 on 

𝑆′. In other words, 𝜎|𝑆′ is the subsequence of 𝜎 obtained by removing elements not belonging to 𝑆′. 

For example, let 𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝜎 = 𝑎𝑏𝑎𝑑𝑎𝑏𝑐𝑑𝑐𝑏 ∈ 𝑆∗, and 𝑆′ = {𝑏, 𝑐}. Projecting 𝜎 on 𝑆′ gives 

𝜎|𝑆′ = 𝑏𝑏𝑐𝑏. If 𝑠 ∈ 𝑆 occurs in a sequence 𝜎 ∈ 𝑆∗, then we write 𝑠 ∈ 𝜎. 

ℕ denotes the set of non-negative integers. A function 𝑚: 𝑆 → ℕ defines a multiset 𝑚 over a non-

empty set 𝑆. We write 𝑠 ∈ 𝑚 iff 𝑚(𝑠) > 0. The set of all finite multisets over 𝑆 is denoted by ℬ(𝑆). 

Let 𝑚1, 𝑚2 ∈ ℬ(𝑆). Then 𝑚1 ⊆ 𝑚2 iff 𝑚1(𝑠) ≤ 𝑚2(𝑠); 𝑚′ = 𝑚1 ∪ 𝑚2 if 𝑚′(𝑠) = 𝑚1(𝑠) +
𝑚2(𝑠); 𝑚′′ = 𝑚1 ∖ 𝑚2 iff 𝑚′′(𝑠) = max(𝑚1(𝑠) − 𝑚2(𝑠), 0) for all 𝑠 ∈ 𝑆. 

2.1 Event Logs 

An event log is the main input to a process discovery algorithm. It contains a multiset of traces — 

ordered event sequences. 

Definition 1 (Event log). Let 𝒜 denote the set of actions. A trace 𝜎 is a finite non-empty sequence 

over 𝒜, i.e., 𝜎 ∈ 𝒜+. An event log 𝐿 is a multiset of traces over 𝒜, i.e., 𝐿 ∈ ℬ(𝒜). 

When we consider an event log of a multi-agent system with two asynchronously interacting agents, 

the set 𝒜 can be partitioned into two disjoint subsets, i.e., 𝒜 =  𝒜1 ∪ 𝒜2, s.t. 𝒜1 ∩ 𝒜2 =  ∅, where 

𝒜1 (𝒜2) is the set of actions executed only by the first (second) agent. 

To discover an individual model of a multi-agent system, we need to project all traces in 𝐿 onto the 

set of actions executed by the corresponding agent. The projection of an event log over 𝒜 =  𝒜1 ∪
𝒜2 on 𝒜1 is denoted by 𝐿𝒜1

. Constructing 𝐿𝒜1
 requires projecting every trace 𝜎 ∈ 𝐿 on 𝐿𝒜1

, i.e., 

taking 𝜎|𝒜1
. We take into account only non-empty projections 𝜎|𝒜1

 and pay additional attention to 

coinciding projections. 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

15 

For example, a trace shown in Table 1 can be projected onto the set of action executed only by Peter 

or by Alex. 

Let us consider basic causality relations between events recorded in a log 𝐿 over 𝒜, which are 

determined by the order of corresponding records in the traces of 𝐿. Thus, two events 𝑎1, 𝑎2 ∈ 𝒜 

are: 

1) in the precedence relation (𝑎1 precedes 𝑎2), denoted 𝑎1 < 𝑎2, iff ∀𝜎 ∈ 𝐿: if 𝑎1, 𝑎2 ∈ 𝜎, 

then 𝜎 = 𝜎′𝑎1𝜎′′𝑎2𝜎′′′, where 𝜎′, 𝜎′′, 𝜎′′′ ∈ (𝒜 ∖ {𝑎1, 𝑎2})∗; 

2) in the following relation (𝑎1 follows 𝑎2), denoted 𝑎1 > 𝑎2, iff ∀𝜎 ∈ 𝐿: if 𝑎1, 𝑎2 ∈ 𝜎, then 

𝜎 = 𝜎′𝑎2𝜎′′𝑎1𝜎′′′, where 𝜎′, 𝜎′′, 𝜎′′′ ∈ (𝒜 ∖ {𝑎1, 𝑎2})∗; 

3) in the parallel relation (𝑎1 is in parallel with 𝑎2), denoted 𝑎1 >< 𝑎2, if there exists a trace 

𝜎 ∈ 𝐿, s.t. 𝜎 = 𝜎′𝑎1𝜎′′𝑎2𝜎′′′, and a trace 𝑤 ∈ 𝐿, s.t. 𝑤 = 𝑤′𝑎1𝑤′′𝑎2𝑤′′′, where 

𝜎′, 𝜎′′, 𝜎′′′, 𝑤′, 𝑤′′, 𝑤′′′ ∈ (𝒜 ∖ {𝑎1, 𝑎2})∗. 

It follows that the precedence and the following relations are transitive. For example, 𝑎1 < 𝑎2 and 

𝑎2 < 𝑎3 together leads to traces of the form 𝜎 =. . . 𝑎1 … 𝑎2 … 𝑎3 …, which implies 𝑎1 < 𝑎3. If 

required by the context, we can also use the <𝐿 relation sign to explicitly show to which event log 

this relation corresponds. 

2.2 Generalized Workflow Nets 

Workflow nets (WF-nets) [9] are among basic process models discovered from event logs. A WF-

net is a special class of a Petri net with the distinguished initial and final places. The execution of a 

trace in an event log directly corresponds to the execution of a WF-net from its initial to its final 

place. We will use generalized workflow nets (GWF-nets), as in [6], to model the behavior of agents 

and multi-agent systems. Here, we define GWF-nets and their behavior. 

Definition 2 (Net). A net is a triple 𝑁 = (𝑃, 𝑇, 𝐹), where 𝑃 and 𝑇 are two disjoint sets of places and 

transitions, and 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is the flow relation. For any node 𝑥 ∈ 𝑃 ∪ 𝑇: 

1) • 𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ F} is the preset of 𝑥. 

2) 𝑥 • = {𝑦 ∈ 𝑃 ∪ 𝑇 | (𝑦, 𝑥) ∈ F} is the postset of 𝑥.  

3) • 𝑥 • = • 𝑥 ∪ 𝑥 • is the neighborhood of 𝑥.  

In our study, we consider nets without self-loops, i.e., ∀𝑥 ∈ 𝑃 ∪ 𝑇:• 𝑥 ∩ 𝑥 • =  ∅ and isolated 

transitions, i.e., ∀𝑡 ∈ 𝑇: |• 𝑡| ≥ 1 and |𝑡 •| ≥ 1. 

The •-notation is also extended to subsets of nodes. Let 𝑁 = (𝑃, 𝑇, 𝐹) be a net, and 𝑌 ⊆ 𝑃 ∪ 𝑇. 

Then • 𝑌 = ⋃ • 𝑦𝑦∈𝑌 , 𝑌 •= ⋃ 𝑦 •𝑦∈𝑌  and • 𝑌 • = • 𝑌 ∪ 𝑌 •. 𝑁(𝑌) denotes the subnet of 𝑁 generated 

by 𝑌, i.e., 𝑁(𝑌) = (𝑃 ∩ 𝑌, 𝑇 ∩ 𝑌, 𝐹 ∩ (𝑌 × 𝑌)). 

Let 𝑁 = (𝑃, 𝑇, 𝐹) be a net, and 𝑡1, 𝑡2 ∈ 𝑇. Transitions 𝑡1, 𝑡2 are in conflict iff • 𝑡1 ∩ • 𝑡2 ≠ ∅. 𝑁 is 

conflict-free if no transitions are in conflict. 

A marking (state) 𝑚 in a net 𝑁 = (𝑃, 𝑇, 𝐹) is a multiset over 𝑃, i.e., 𝑚: 𝑃 →  ℕ. Marking is safe iff 

∀𝑝 ∈ 𝑃: 𝑚(𝑝) ≤ 1, i.e., a safe marking is a set of places. Marking 𝑚 of place 𝑝 ∈ 𝑃 is depicted by 

putting 𝑚(𝑝) black dots inside 𝑝. 

Definition 3 (Net system). A net system is a quadruple 𝑁 = (𝑃, 𝑇, 𝐹, 𝑚0), where (𝑃, 𝑇, 𝐹) is a net, 

and 𝑚0: 𝑃 →  ℕ is the initial marking. 

A marking m in a net 𝑁 = (𝑃, 𝑇, 𝐹) enables transition 𝑡 ∈ 𝑇, denoted 𝑚[𝑡⟩, iff • 𝑡 ∈ 𝑚. Enabled 

transitions may fire. Firing 𝑡 at 𝑚 evolves 𝑁 to a new marking 𝑚′ = (𝑚\• 𝑡) ∪ 𝑡 •, denoted 𝑚[𝑡⟩𝑚′.  
A sequence 𝑤 ∈ 𝑇∗ is a firing sequence in a net system 𝑁 = (𝑃, 𝑇, 𝐹, 𝑚0) if 𝑤 = 𝑡1𝑡2 … 𝑡𝑛 and 

𝑚0[𝑡1⟩𝑚1[𝑡2⟩ … 𝑚𝑛−1[𝑡𝑛⟩𝑚𝑛. Then we write 𝑚0[𝑤⟩𝑚𝑛. The set of all firing sequences in 𝑁 is 

denoted by 𝐹𝑆(𝑁).  



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

16 

A marking 𝑚 in 𝑁 = (𝑃, 𝑇, 𝐹, 𝑚0) is reachable if ∃𝑤 ∈ 𝐹𝑆(𝑁): 𝑚0[𝑤⟩𝑚. Any marking can be 

reached from itself by firing the empty sequence 𝑚0[𝜀⟩𝑚. The set of all markings reachable from 

𝑚 is denoted by [𝑚⟩. 𝑁 is safe iff all reachable markings in 𝑁 are safe. 

A state machine is a connected net (𝑃, 𝑇, 𝐹), where∀𝑡 ∈ 𝑇: |• t | = |t •| = 1. A subnet of 𝑁 =
(𝑃, 𝑇, 𝐹) generated by 𝑌 ⊆ 𝑃 and • Y •, i.e., 𝑁(𝑌 ∪ • Y •), is a sequential component of 𝑁 if it is a 

state machine and has a single token in the initial marking. 𝑁 is covered by sequential components 

if every place belongs to at least one sequential component. In this case, N is state machine 

decomposable (SMD).  

State machine decomposability is a basic feature bridging structural and behavioral properties of 

nets, also considered in [9] as an important feature of workflow nets. It is easy to see that SMD net 

systems are safe since their initial markings are safe. We further work with SMD net systems, unless 

otherwise stated explicitly. Thus, we omit SMD in their descriptions.  

In a GWF-net, we impose additional restrictions on its initial marking (no arcs incoming to 

corresponding places) and distinguish its final marking (places without outgoing arcs). Compared 

to a classical WF-net, initial and final marking in a GWF-net can be sets of places rather than 

singletons. 

Definition 4 (GWF-net). A generalized workflow net is a net system 𝑁 = (𝑃, 𝑇, 𝐹, 𝑚0) equipped 

with the final marking 𝑚𝑓 ⊆ 𝑃 such that: 

1) • 𝑚0 = ∅. 

2) 𝑚𝑓 • = ∅. 

3) ∀𝑥 ∈ 𝑃 ∪ 𝑇 ∃𝑠 ∈ 𝑚0 ∃𝑓 ∈ 𝑚𝑓: (𝑠, 𝑥), (𝑥, 𝑓) ∈ 𝐹𝑅𝑇, where 𝐹𝑅𝑇  is the reflexive transitive 

closure of 𝐹. 

According to the third requirement in Definition 4, any node in a GWF-net lies on a path from a 

place in its initial marking to a place in its final marking. For instance, the Petri net shown earlier in 

Fig. 1 is a GWF-net, while the behavior of agents 𝑁1 and 𝑁2 can be considered as classical WF-nets 

with the single initial and final places. 

3. Localizing Acyclic Agent Interactions 

Here we discuss our approach to finding pairs of actions in an event log representing sending and 

receiving operations executed by different agents. Given an event log of a multi-agent system, we 

construct a matrix representation of event relations. Then we show how to identify the candidate 

pairs of events that may represent the asynchronous communication of different agents and connect 

corresponding transitions in the individual agent models. 

3.1 Matrix Representation of Event Relations 

Matrix representation of relations among events recorded in an event log facilitate the pair-wise 

analysis of events. For what follows, we consider the basic case of a multi-agent system with the 

sequential agent behavior, s.t., actions executed by a specific agent are recorded in an event log only 

in the precedence or in the following relation. We also show how our reasoning can be extended to 

agents with parallel and alternative behavioral constructs. 

Let 𝐿 be an event log over 𝒜 = 𝒜1 ∪ 𝒜2, s.t. 𝒜1 ∩ 𝒜2 = ∅. Correspondingly, 𝒜1 and 𝒜2 are two 

disjoint sets of actions executed by two asynchronously interacting agents. Assume |𝒜1| = 𝑚 and 
|𝒜2| = 𝑛. 

We construct matrix 𝑅𝐿 of size 𝑚 × 𝑛, which stores relations between the pairs of events 

representing the occurrence of actions executed by different agents. Given 𝑎𝑖
1 ∈ 𝒜1 and 𝑎𝑗

2 ∈ 𝒜2 

with 𝑖 = 1, 2, . . . , 𝑚 and 𝑗 = 1, 2, . . . , 𝑛, every element 𝑟𝑖,𝑗 in 𝑅𝐿 is defined by the following cases: 

1) 𝑟𝑖,𝑗 = " < " iff 𝑎𝑖
1 <𝐿 𝑎𝑗

2; 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

17 

2) 𝑟𝑖,𝑗 = " > " iff 𝑎𝑖
1 >𝐿 𝑎𝑗

2; 

3) 𝑟𝑖,𝑗 = " >< " iff 𝑎𝑖
1 ><𝐿 𝑎𝑗

2. 

Thus, event relations extracted from an event log 𝐿 fully determines the values of the elements in 

the corresponding matrix 𝑅𝐿.  

Figure 2 shows the example of a matrix representation for event relations constructed from an event 

log a multi-agent system with asynchronously interacting agents, where the first agents executes 

actions from the set 𝒜1 = {𝑎0, 𝑎1, 𝑎2}, and the second agent executes actions from the set 𝒜2 =
{𝑏0, 𝑏1, 𝑏2, 𝑏3}. For the convenience of the representation, we use names of actions instead of the 

indices of rows and columns. This matrix says that, for example, in all traces of the initial event log 

𝐿, actions 𝑏1 and 𝑎2 are executed concurrently (independently), while action 𝑎1 always precedes 

action 𝑏1. 

In addition, recall that agent behavior is considered to be conflict-free and sequential. Then we can 

easily order actions executed by the same agent according to the event relations, i.e., using the 

precedence relation. For instance, in Fig. 2, we have that 𝑎0 < 𝑎1 < 𝑎2 and 𝑏0 < 𝑏1 < 𝑏2 < 𝑏3. 

This ordering of actions is done before constructing a matrix of event relations. It will help us 

simplify the further processing and identification of events representing the occurrence of sending-

receiving operations between two agents. 

 𝑏0 𝑏1 𝑏2 𝑏3 

𝑎0 >< < < < 

𝑎1 >< < < < 

𝑎2 > >< >< >< 

Fig. 2. A matrix of event relations between two asynchronously interacting agents 

The intuition behind the asynchronous message exchange is rather straightforward. After putting a 

message to a channel, an agent can freely continue its job, while the other agent expecting to receive 

a message cannot continue to operate until the message is delivered.  

This reasoning can also be shifted to our matrix representation of event relations. In a matrix of 

event relations constructed out of an event log of a multi-agent system with two sequential 

asynchronously interacting agents, we will be able to locate a “rectangle” formed by the adjacent 

rows and columns filled by the same event relation " < " or " > ". This is justified by the fact that 

in all traces of an initial event log several events corresponding to the actions executed by the agent 

receiving a message are recorded strictly after several events corresponding to the actions executed 

by the agent who sends a message. Rectangular sections in an event relation matrix filled by the 

same precedence or following relation are called regions. 

Definition 5. Let 𝐿 be an event log over 𝒜 = 𝒜1 ∪ 𝒜2, s.t. 𝒜1 ∩ 𝒜2 = ∅, |𝒜1| = 𝑚, |𝒜2| = 𝑛. 

Let 𝑅𝐿 be an event relation matrix constructed as described above. A rectangular section in 𝑅𝐿 

formed by 𝑘 adjacent rows 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘 − 1 and by ℓ adjacent columns 𝑗, 𝑗 + 1, . . . , 𝑗 + ℓ − 1 

is a p-region (f-region) of 𝑅𝐿 if and only if for all 𝑖′ = 𝑖, 𝑖 + 1, . . . , 𝑖 + 𝑘 − 1 and 𝑗′ = 𝑗, 𝑗 + 1, . . . , 𝑗 +
ℓ − 1 we have that 𝑟𝑖′,𝑗′ = " < " (𝑟𝑖′,𝑗′ = " > "). 

The region in an event relation matrix 𝑅𝐿 starting from row 𝑎, column 𝑐 and finishing at row 𝑏 and 

at column 𝑑 is briefly denoted by 𝑅𝐿(𝑎 − 𝑏, 𝑐 − 𝑑).  

Note that we do not consider a region which is included in another one. We are looking for maximal 

regions in an event relation matrix. For instance, in the event relation matrix shown in Fig. 2, region 

𝑅𝐿(𝑎2 − 𝑎2, 𝑏0 − 𝑏0), since it cannot be extended with other adjacent rows and columns, while 

𝑅𝐿(𝑎0 − 𝑎1, 𝑏1 − 𝑏2) is not maximal, since it is a part of the bigger region 𝑅𝐿(𝑎0 − 𝑎1, 𝑏1 − 𝑏3) that 

is indeed maximal.  



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

18 

Further, while analyzing regions in an event relation matrix, we always consider maximal regions 

that cannot be extended with more adjacent rows and columns. 

Let us take a closer look at the p-region 𝑅𝐿(𝑎0 − 𝑎1, 𝑏1 − 𝑏3) in the event relation matrix shown in 

Fig. 2. The occurrences of actions 𝑎0 and 𝑎1 were recorded before the occurrences of actions 𝑏1, 𝑏2 

and 𝑏3 in an event log 𝐿. Taking into account the sequential agent behavior, i.e., 𝑎0 < 𝑎1 < 𝑎2 and 

𝑏0 < 𝑏1 < 𝑏2 < 𝑏3, we can easily simplify three event relations 𝑎0 < 𝑏1, 𝑎0 < 𝑏2 and 𝑎0 < 𝑏3 to 

the single relation 𝑎0 < 𝑏1, which automatically ensures the remaining two relations. By analogy, 

three relations 𝑎1 < 𝑏1, 𝑎1 < 𝑏2 and 𝑎1 < 𝑏3 are simplified to 𝑎1 < 𝑏1. Finally, two relations 𝑎0 <
𝑏1 and 𝑎1 < 𝑏1 with 𝑎0 < 𝑎1 give us the single event relation 𝑎1 < 𝑏1.  

Thus, the p-region 𝑅𝐿(𝑎0 − 𝑎1, 𝑏1 − 𝑏3) in the event relation matrix from Fig. 2 can be fully 

described by the single event relation a1 < b1 — the lower left corner of the corresponding 

rectangular area in the event relation matrix.  

Event relation that fully describes a region in an event relation matrix is called the minimum of a 

region, i.e., other event relations within this region coincides with the minimum. It is easy to see 

that, if the minimum of a p-region is its lower left corner, then the minimum of an f-region is its 

upper right corner, as illustrated in Fig. 3, where the minimum is highlighted in red.  

The minimum event relation in a region is the pair of events which can represent the occurrence of 

actions agents use for the asynchronous communication. 

 … 𝑏𝑗 … 𝑏𝑗+ℓ−1 

…     

𝑎𝑖  < … < 

…  < … < 

𝑎𝑖+𝑘−1  < … < 

…     

 

 … 𝑏𝑗 … 𝑏𝑗+ℓ−1 

…     

𝑎𝑖  > … > 

…  > … > 

𝑎𝑖+𝑘−1  > … > 

…     

Fig. 3. Localizing minimum in a region of an event relation matrix 

For example, the event relation matrix 𝑅𝐿 shown in Fig. 2 has the p-region 𝑅𝐿(𝑎0 − 𝑎1, 𝑏1 − 𝑏3) 

with the minimum relation 𝑎1 <  𝑏1 and the f-region 𝑅𝐿(𝑎2 −  𝑎2, 𝑏0  −  𝑏0) with the minimum 

relation 𝑎2  >  𝑏0. The sequential behavior of corresponding agents can be easily represented via a 

Petri net with consequent transitions (see 𝑁1 and 𝑁2 in Fig. 4).  

According to the minimal event relation of region in the event relation matrix 𝑅𝐿 from Fig.2, we 

introduce two channel places between transitions 𝑎1, 𝑏1 (green place) and transitions 𝑏0, 𝑎2 (red 

place). Arcs connecting these places with transitions in Fig. 4 follow the direction of the 

corresponding minimum event relation. 

In the following paragraph, we propose an algorithm, which identifies regions in the event relation 

matrix and finds their corresponding minimal event relations. We prove the algorithm correctness 

from the point of view of preserving the perfect fitness. We also show that there can be redundant 

minimum event relations representing different overlapping regions. 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

19 

 

 

Fig. 4. Introducing channel places according to the matrix from Fig. 2 

3.2 Algorithm for Finding Minimal Event Relations in Regions of an Event 
Relation Matrix 

We start with an event log 𝐿 over 𝒜 = 𝒜1 ∪ 𝒜2 of a multi-agent system with two asynchronously 

interacting agents. Let |𝒜1| = 𝑚 and |𝒜2| = 𝑛. To simplify the processing of traces in 𝐿, we will 

construct a square event relation matrix 𝑅0
𝐿 of size (𝑚 +  𝑛)  ×  (𝑚 +  𝑛) storing event relations 

between all possible pairs of events in 𝒜. The indices of an element 𝑟𝑖,𝑗
0  in 𝑅0

𝐿 will directly 

correspond the indices of actions 𝑎𝑖 and 𝑎𝑗 in 𝒜. Afterwards, choosing necessary rows and columns 

in a square 𝑅0
𝐿 representing the behavior of different agents, we will be able to easily form a required 

event relation matrix 𝑅𝐿, as described in the previous paragraph.  

Here, instead of directly using relation signs, we will assign numbers: −1 for < (precedence), 1 for 

> (following), and 0 for >< (parallel). Initially, 𝑅0
𝐿 is filled by the ordering of indices, where 𝑖, 𝑗 =

 1, 2, . . . , 𝑚 +  𝑛: (a) if 𝑖 <  𝑗, then 𝑟𝑖,𝑗
0 = −1; (b) if 𝑖 >  𝑗, then 𝑟𝑖,𝑗

0  =  1. We do not care about the 

values in 𝑅0
𝐿 at its main diagonal (for 𝑟𝑖,𝑖

0 ), since we do not consider the reflexive event relations. 

Subsequently, we update 𝑅0
𝐿 according to the actual relations between event pairs in L. Algorithm 1 

shows how we process traces in 𝐿 to extract corresponding event relations. Given a trace 𝜎 in an 

event log 𝐿, we consider every pair of two events preceding each other in 𝜎 and update 𝑟𝑖,𝑗
0  to 0 only 

if it was 1 before, taking into account that actions executed by different agents are also sorted by the 

preceding relation. This intuitively means that we have the pair of events recorded in both following 

and precedence relation in a log representing the sequentialization of parallel execution. 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

20 

 

For instance, Fig. 5 shows the square event relation matrix 𝑅0
𝐿, built according to Algorithm 1, 

corresponding to the earlier discussed 𝑅𝐿 (see Fig. 2). The main diagonal in this 𝑅0
𝐿 is filled with 

asterisk signs, since we ignore reflexive relations.  

We filled two areas in this square matrix with different colors to demonstrate two possible ways of 

choosing rows and columns for further analysis of event relations corresponding to the occurrence 

of actions executed by different agents. It is also easy to refine the notion of a region w.r.t. the 

numerical representation of event relations. 

 𝑎0 𝑎1 𝑎2 𝑏0 𝑏1 𝑏2 𝑏3 

𝑎0 ∗ −1 −1 0 −1 −1 −1 

𝑎1 1 ∗ −1 0 −1 −1 −1 

𝑎2 1 1 ∗ 1 0 0 0 

𝑏0 0 0 −1 ∗ −1 −1 −1 

𝑏1 1 1 0 1 ∗ −1 −1 

𝑏2 1 1 0 1 1 ∗ −1 

𝑏3 1 1 0 1 1 1 ∗ 

Fig. 5. A square matrix of event relations constructed by Algorithm 1 

The p-region is the rectangular area of the numerical event relation matrix filled completely with 

−1, while the f-region should be filled only with 1. Here, we also consider maximal regionы only, 

which fully correspond to the representation discussed in the previous paragraph. 

Let us consider another example of an event relation matrix 𝑅𝐿, shown in Fig. 6, constructed from 

an event log 𝐿 over 𝒜 = 𝒜1 ∪ 𝒜2, where 𝒜1  =  {𝑥0, 𝑥1, 𝑥2, 𝑥3} and 𝒜2  =  {𝑦0, 𝑦1, 𝑦2}.  

In this event matrix, there are two p-regions 𝑅𝐿(𝑥0  − 𝑥1, 𝑦0  −  𝑦2) with the minimum event relation 

𝑥1  <  𝑦0 and 𝑅𝐿(𝑥0 − 𝑥3, 𝑦0 − 𝑦1) with the minimum event relation 𝑥3  <  𝑦0. However, since 

𝑥0  <  𝑥1 <  𝑥2  <  𝑥3, there is enough to keep 𝑥3  <  𝑦0, which will automatically satisfy 𝑥1  <  𝑦0 

because 𝑥3 occurs after 𝑥1. This agrees with the transitivity of the precedence relation. The 

redundancy of these event relations can be easily shown in the corresponding agent models (see 

Fig. 7). We do not need to add a place between transitions 𝑥1 and 𝑦0 having a place between 

transitions 𝑥2 and 𝑦0.  



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

21 

Transition 𝑥3 will fire only after transition 𝑥1. Thus, adding the direct channel place between 

transitions 𝑥1 and 𝑦1 will not introduce new event relations different from those already present in 

the matrix from Fig. 6, unless this channel is not necessary according to the practical requirements. 

 𝑦0 𝑦1 𝑦2 

𝑥0 −1 −1 −1 

𝑥1 −1 −1 −1 

𝑥2 −1 −1 0 

𝑥3 −1 −1 0 

Fig. 6. An event relation matrix with two overlapping p-regions 

The same transitivity principle can also be applied to the case of two overlapping f-regions. The 

example of an event relation matrix with two overlapping f-regions is shown in Fig. 8. The minimum 

event relation 𝑥0 > 𝑦3 will cover all event relations in both f-regions. 

 

Fig. 7. Redundant channel according to the event matrix shown in Fig. 6 

Note that the localization of the minimum in a region of an event relation matrix 𝑅𝐿 actually boils 

down to finding the cell 𝑟𝑖,𝑗, s.t.: 

 if 𝑟𝑖,𝑗 = −1, where 𝑟𝑖+1,𝑗 ≠ −1 and 𝑟𝑖,𝑗−1 ≠ −1, then 𝑟𝑖,𝑗 is the minimum of a p-region in 

𝑅𝐿 with the corresponding event relation 𝑎𝑖 < 𝑎𝑗; 

 if 𝑟𝑖,𝑗 =  1, where 𝑟𝑖−1,𝑗 ≠ 1 and 𝑟𝑖,𝑗+1 ≠ 1, then 𝑟𝑖,𝑗 is the minimum of an f-region in RL 

with the corresponding event relation 𝑎𝑖 > 𝑎𝑗. 

Thus, the main scheme for the compositional discovery of a process model from an event log 𝐿 over 

𝒜 = 𝒜1 ∪ 𝒜2 of a multi-agent system using minimal event relations in the event relation matrix 

𝑅𝐿 includes the following steps:  



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

22 

1) population of the square event relation matrix 𝑅0
𝐿 (Algorithm 1) and selection of columns 

and rows (for 𝑅𝐿) with the actions corresponding to different agents;  

2) identification of minimum event relations in p-regions and f-regions in 𝑅𝐿;  

3) discovery of individual agent process models 𝑁1 and 𝑁2 from projected event logs 𝐿𝒜1
 and 

𝐿𝒜2
, respectively;  

4) introduction of channel places between transitions in 𝑁1 and 𝑁2 corresponding to the events 

associated by the minimal event relations constructed at step 2.  

  𝑦0 𝑦1 𝑦2 𝑦3 

𝑥0 0 0 1 1 

𝑥1 0 0 1 1 

𝑥2 1 1 1 1 

𝑥3 1 1 1 1 

Fig. 8. An event relation matrix with two overlapping f-regions 

Individual agent models can be discovered from projected event logs using any existing process 

discovery algorithm. We recommend to use Inductive miner [10], since it can guarantee the perfect 

fitness of a discovered model. The soundness of the compositional discovery procedure presented 

above is formalized in the following Theorem 1, where we prove that a process model of a multi-

agent system inherits the perfect fitness of agent models discovered from projected event logs. In 

other words, a process model obtained by adding channel places between transitions in the individual 

agent models with respect to the minimal event relations can execute all traces in the event log 𝐿 of 

a multi-agent system. 

Theorem 1. Let 𝐿 be an event log of a multi-agent system over 𝒜 = 𝒜1 ∪ 𝒜2. Let 𝐸 ⊆  (𝒜1  ×
 𝒜2)  ∪  (𝒜2  ×  𝒜1) be the set of event pairs, which correspond to the minimum event relations 

extracted from the event relation matrix 𝑅𝐿. If 𝑁𝑖 is a GWF-net discovered from the projection 𝐿𝒜𝑖
, 

such that it perfectly fits 𝐿𝒜𝑖
 with 𝑖 =  1, 2, then 𝑁 obtained from 𝑁1 and 𝑁2 by introducing channel 

places between transition pairs corresponding to event pairs in 𝐸 perfectly fits 𝐿 as well. 

Proof. The proof is done by contradiction. Assume 𝑁 =  (𝑃, 𝑇, 𝐹, 𝑚0, 𝑚𝑓  ) does not perfectly fits 

𝐿. Consider a pair (𝑎𝑖  , 𝑎𝑗)  ∈  𝐸, which corresponds to the minimal event relation 𝑎𝑖  <  𝑎𝑗. Let 𝜎 ∈

 𝐿 be a trace of the event log 𝐿, which contains 𝑎𝑖 and 𝑎𝑗 that 𝑁 cannot execute. Since 𝑎𝑖 < 𝑎𝑗, 𝜎 =

 𝜎′𝑎𝑖𝜎′′𝑎𝑗𝜎′′′. Transitions 𝑡𝑖  , 𝑡𝑗 ∈ 𝑇 corresponding to events 𝑎𝑖 and 𝑎𝑗 are connected in 𝑁, such that 

there is a place 𝑐 ∈ 𝑃, where (𝑡𝑖 , 𝑐), (𝑐, 𝑡𝑗) ∈ 𝐹. If 𝑁 cannot execute 𝜎, then transition 𝑡𝑗 should be 

able to fire before 𝑡𝑖, which will result in 𝜎 =  𝜎′𝑎𝑗𝜎′′𝑎𝑖𝜎′′′. This contradicts the correct 

configuration of the trace 𝜎 =  𝜎′𝑎𝑖𝜎′′𝑎𝑗𝜎′′′. Thus, the initial assumption that 𝑁 does not perfectly 

𝐿 is wrong. Hence, 𝑁 obtained by adding corresponding channels between transitions in 𝑁_1 and 

𝑁2 perfectly fits 𝐿.  

Here, we considered the analysis of acyclic interactions between agents with sequential and conflict-

free behavior. However, we can also generalize our approach to agents with conflicting (alternative) 

and parallel branches.  

It is necessary to extend the proposed collection of event relations with the conflicting relation. Two 

actions 𝑎1 and 𝑎2 are in conflict (denoted by 𝑎1#𝑎2 and 2 for the square matrix 𝑅0
𝐿) if for every trace 

in an event log 𝑎1 and 𝑎2 never occur together. Conflicting and parallel actions can be involved in 

the asynchronous interaction among agents.  

Application of our approach requires separate investigation of sequential parts in agent behavior 

recorded in a log for the proper construction of regions in the corresponding matrix with ordered 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

23 

actions. This is by analogy with the identification of sequential components in GWF-nets (recall the 

state machine decomposability discussed in Section 2).  

For example, Fig. 9 shows the acyclic interaction between 𝑁1 and 𝑁2, where 𝑁1 has the conflict 

between transitions 𝑥3 and 𝑥5. In an event log, actions 𝑥3 and 𝑥5 will never occur in the same trace. 

Using 𝑅0
𝐿 we can identify maximal sequential parts in the behavior of 𝑁1, i.e., 𝑥2 < 𝑥3 and 𝑥4 < 𝑥5, 

and construct two inter-agent matrices to localize minimal event relations in corresponding regions. 

Two minimal event relations 𝑦2 < 𝑥3 and 𝑦2 < 𝑥5 with the common event 𝑦2 are ensured with a 

single channel place a connecting transitions w.r.t. the relation direction. 

 

Fig. 9. Acyclic interaction with choice in the agent behavior 

Using a similar reasoning, we can analyze asynchronous interactions involving different parallel 

branches in the behavior of agents. In this case, the minimal relations with the common events are 

modeled by individual channel places, since, for parallel actions, the occurrence of one does not 

exclude the occurrence of the others. 

In the following section, we consider asynchronous interactions among agents, s.t. actions used for 

the message exchange are involved in a cycle. The direct analysis of causality relation is not enough 

for cyclic behavior, since events within a cycle can be recorded in an event log in any order. 

4. Localizing Cyclic Agent Interactions 

In this section, we consider the problem of identifying the pairs of events in an event log of a multi-

agent system involved intro the cyclic interaction between different agents. Cyclic interaction 

implies that the actions corresponding to the asynchronous message exchange are executed within a 

cycle in the agent behavior. We cannot directly use the minimal causality relations proposed in the 

previous section, since actions within cycles in different agents will be recorded in an event log in 

any order. 

4.1 Bounded Asynchronous Channels 

The cyclic interaction is directly connected with the problem of the boundedness in Petri net theory. 

Consider an example of cyclic interaction shown in Fig. 10. The cycle in 𝑁1 sends messages to the 

cycle in 𝑁2 via the single channel 𝑎. 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

24 

 

Fig. 10. An unbounded asynchronous channel 

The problem with this channel place a is that 𝑁1 can put messages to place a infinitely many times, 

which will lead to the possibility of the unbounded number of messages in a. As a result, the 

complete system will have infinitely many different reachable states.  

To avoid the problem of the unboundedness, we can introduce an additional place into the model of 

a multi-agent system with two interacting agents. This place will act as a “limiter” of the number of 

messages an asynchronous channel can store.  

For example, if we add place 𝑏, as shown in Fig. 11, the maximum number of messages that can be 

put to place a by 𝑁1 will not exceed 1. Such places are called complement in Petri nets, since they 

mirror the direction of arcs connected with the channel place. 

 

Fig. 11. An asynchronous channel with the bound 

In fact, the number of tokens in the complement place we add to bound an asynchronous channel 

correspond to the maximum number of messages this asynchronous channel can store. In the 

following paragraph, we show our approach to the analysis of cyclic interactions between agents in 

a multi-agent system with respect to the maximum number of messages a candidate asynchronous 

channel place can store. 

4.2. Algorithm for Localizing Cyclic Asynchronous Interactions and Channel 
Bounds 

In the case of the cyclic asynchronous interactions, we cannot directly refer to the minimum event 

relations, since all involved actions can potentially be recorded in any order in an event log. For 

example, by simulating the net from Fig. 11, we can obtain 𝑡2 < 𝑡4 as well as 𝑡4 < 𝑡2. Instead, we 

are going to consider the number of occurrences of events in an event log to devise the maximum 

number of messages an asynchronous channel can handle.  

For what follows, let 𝐿 be an event log of a multi-agent system with two asynchronously interacting 

agents over 𝒜 = 𝒜1 ∪ 𝒜2. We isolate only the cyclic behavior of agents in these sets 𝒜1 and 𝒜2, 

since the acyclic part can be analyzed before using the algorithm described in Section 3. To avoid 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

25 

the ambiguity, we assume additionally that actions 𝒜1 represent the behavior of an agent sending 

messages, while the actions 𝒜2 — the behavior of an agent receiving messages.  

The main idea of our approach is to analyze pairs of actions in 𝒜1 × 𝒜2 to count the maximum 

number of messages. If in a trace of 𝐿 the occurrence of an event 𝑎1 ∈ 𝒜1 is recorded, then the 

bound in the number of messages decreases by 1. If in a trace of 𝐿 the occurrence of an event 𝑎2  ∈
 𝒜2 is recorded, then the bound in the number of messages increases by 1.  

We assume that an asynchronous channels stores 𝑘 ≥  0 messages initially. Algorithm 2 shows how 

to analyze the pairs of events in 𝒜1 × 𝒜2 according to their behavior with respect to increasing and 

decreasing 𝑘. This algorithm produces the range, i.e., the minimum and maximum number of 

messages an asynchronous channel between a concrete pair of events can process.  

Consider the example of using Algorithm 2 for the event log of a multi-agent system L (see Table 

2) over 𝒜 = 𝒜1 ∪ 𝒜2, where 𝒜1  =  {𝑡4, 𝑡5, 𝑡6} and 𝐴2  =  {𝑡1, 𝑡2, 𝑡3}. 

Table 2. An event log of a multi-agent system with four traces 

Trace 1 𝑡4𝑡5𝑡6𝑡4𝑡5𝑡2𝑡3𝑡6𝑡4𝑡5𝑡6𝑡4𝑡5𝑡2𝑡3𝑡6𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡4𝑡1𝑡5𝑡6𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡4𝑡2𝑡3𝑡5 

𝑡1𝑡6𝑡4𝑡5𝑡6𝑡4𝑡5𝑡6𝑡4𝑡2𝑡5𝑡3𝑡6𝑡1 

Trace 2 𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡4𝑡1𝑡5𝑡2𝑡6𝑡3𝑡4𝑡1𝑡5𝑡6𝑡4𝑡2𝑡5𝑡3𝑡1𝑡6𝑡2𝑡4 

Trace 3 𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6 

Trace 4 𝑡4𝑡1𝑡5𝑡6𝑡4𝑡1𝑡5𝑡6𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1𝑡2𝑡3𝑡1 

The result of computing the minimum and maximum number of messages for different event pairs 

in Trace 1 in this event log is presented in Table 3.  

For instance, we consider the pair of events (𝑡4, 𝑡1) of transitions between which we aim to add a 

bounded asynchronous channel place. We check the minimum and maximum number of messages 

for all traces in the event log from Table 2, as shown in Table 4. 

Table 3. Applying Algorithm 2 to Trace 1 in the log from Table 2 

Event pair Minimum Maximum 

(𝑡1, 𝑡4) 𝑘 − 3 𝑘 + 2 

(𝑡1, 𝑡5) 𝑘 − 4 𝑘 + 1 

(𝑡1, 𝑡6) 𝑘 − 4 𝑘 + 2 

(𝑡2, 𝑡4) 𝑘 − 2 𝑘 + 3 

(𝑡2, 𝑡5) 𝑘 − 3 𝑘 + 3 

(𝑡2, 𝑡6) 𝑘 − 2 𝑘 + 3 

(𝑡3, 𝑡4) 𝑘 − 3 𝑘 + 2 

(𝑡3, 𝑡5) 𝑘 − 3 𝑘 + 2 

(𝑡3, 𝑡6) 𝑘 − 3 𝑘 + 2 

To cover the complete event log from Table 2, we need to construct the range for the channel 

between events 𝑡4 and 𝑡1 uniting the individual ranges for all traces. Thus, according to Table 4, the 

range of the number of messages that can be handled by the asynchronous channel between 

transitions 𝑡4 and 𝑡1 is [𝑘 −  3;  𝑘 +  3]. The length of this range is 𝑘 +  3 −  (𝑘 −  3)  =  6. 

Therefore, the maximum number of messages that can be stored in the channel between 𝑡4 and 𝑡1 is 

bounded by 6. 

Note also that, since the left border of this range 𝑘 −  3, initially the channel place between 𝑡4 and 

𝑡1 should have 3 tokens in it, because the number of tokens in places of a Petri net cannot go below 

0. This is also caused by the fact that in Trace 2 of the event log from Table 2 the agent receiving 

messages operates before the one who sends messages. 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

26 

 

We have everything to construct the model of a multi-agent system with two agents exchanging 

messages through actions t4 and t1 within cyclic sequential behavior regarding the event log from 

Table 2. Fig. 12 shows the corresponding process model for this multi-agent system, where 𝑁1 is 

the agent sending messages with transitions 𝑡4, 𝑡5, 𝑡6, and 𝑁2 — receiving messages with transitions 

𝑡1, 𝑡2, 𝑡3. 

Table 4. The number of messages in the channel connecting 𝑡4 and 𝑡1 

 Minimum Maximum 

Trace 1 𝑘 − 3 𝑘 + 2 

Trace 2 𝑘 𝑘 + 2 

Trace 3 𝑘 − 2 𝑘 + 3 

Trace 4 𝑘 − 2 𝑘 + 3 

We note that the similar analysis can be done for any pair of transitions representing the behavior of 

sending and receiving agents, s.t. one can add an asynchronous channel between them in different 

ways, unless there is an additional information on actions provided. For instance, one can choose 

those transitions with the channel the capacity of which does not exceed 1 (for safe Petri nets). In 

addition, as in the case of the acyclic interaction, it is possible to analyze the cyclic behavior of 

agents with parallel and alternative behavioral constructs inside cycles by checking interactions 

between separate sequential components. 

Moreover, the same property on preserving the perfect fitness of the individual agent models (see 

Theorem 1) will also hold for the cyclic interaction, since we add channel places between transitions 

in the strict accordance with an initial event log. 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

27 

 

Fig. 12. A multi-agent system with two interacting agents with cyclic behavior 

5. Experimental Evaluation 

This section reports the key outcomes obtained from the series of experiments conducted to evaluate 

the proposed approach to the identification of the pairs of events involved into the acyclic and cyclic 

interactions among different agents in a multi-agent system. 

5.1 Layout of Experiments 

We compared process models discovered by our approach and directly from an event log of a multi-

agent system. We also considered a specific case of a process model with “disconnected” agents, 

i.e., we do not add asynchronous channels between them. 

Within the experimental evaluation, we used the synthetic event logs of multi-agent systems 

recording different ways of agent asynchronous interactions provided in [11]. They were also used 

to test the compositional approach to discovering architecture-aware process model of multi-agent 

systems [6]. This dataset was constructed with respect to various widespread service interaction 

patterns described in [12]. 

Thus, process models of multi-agent systems obtained by our approach to introducing channels were 

compared with the following other models:  

1) reference models, also provided in [11], which represent the ideal model of a multi-agent 

system with the minimum number of asynchronous channels;  

2) disconnected agent models, where individual agent models discovered from projected 

event logs are put together without adding any asynchronous channels;  

3) monolithic models discovered from directly event logs. 

We characterized these models according to the following two quality dimensions:  

1) precision evaluating the extra amount of behavior allowed by a process models regarding 

the behavior recorded in an event log (see the gray area in Fig. 13);  

2) the number of asynchronous channels connecting transitions in the models of different 

agents. 

 

Fig. 13. The behavior of a process model and traces in an event log 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

28 

The perfect fitness of discovered process models is guaranteed by our approach and by the paper 

[6]. A model with the disconnected agent behavior also ensures the perfect fitness, since the 

concurrent execution of fully independent agents can also cover all possible ways of their 

asynchronous interactions. Therefore, we did not need to measure the fitness of considered process 

models. As for the precision, we used the approach from [13] as the one, which provides the balanced 

estimation of this quality dimension. The experimental evaluation was supported by the ProM 

software [14]. 

5.2 Experiment Results and Discussion 

Table 5 reports the results on comparing the quality of process models discovered from an event log 

of a multi-agent system using our approach with the quality of directly discovered models 

(monolithic) and models with the disconnected agent behavior. The dataset [11] used in our 

experiments contains seven different event logs of multi-agent system corresponding to different 

ways of acyclic (IP-1, ..., IP-6) and cyclic (IP-7) patterns of asynchronous interactions. We also did 

not evaluate the number of channels in monolithic process models of multi-agent systems, since in 

the structure of such a model one cannot unambiguously identify the behavior of individual agents 

and asynchronous channel places. 

Table 5. Experimental results: the number of asynchronous channels and precision evaluation 

Interaction 
Reference  Disconnected Monolithic Our approach 

Channels Precision Precision Precision Channels Precision 

Acyclic 

IP-1 1 0.7156 0.6949 0.5825 14 0.8109 

IP-2 2 0.4014 0.3719 0.3880 33 0.5337 

IP-3 2 0.7545 0.7097 0.8984 26 0.8861 

IP-4 2 0.7589 0.6752 0.6684 10 0.8420 

IP-5 4 0.3902 0.3503 0.1342 39 0.5724 

IP-6 4 0.5636 0.5256 0.6849 34 0.7034 

Cyclic  IP-7 3 0.8165 0.5945 0.1327 5 0.6782 

According to the experimental results provided in Table 5, we may conclude the following. Firstly, 

our approach detects considerably more “points” of the asynchronous interactions between different 

agents compared to the ideal reference model. A finite sequential record of the concurrent execution 

of relatively independent agents cannot cover all possible scenarios. Thus, there are more candidate 

relations among event pairs that can be considered for adding asynchronous channel places between 

the corresponding transitions. We can further analyze all found minimum event relations from the 

point of view on their frequencies w.r.t. an initial event log to exclude some of them. Secondly, 

process models obtained by our approach exhibits the increase in the precision estimations, since 

introduction of other asynchronous channels decreases the amount of extra behavior allowed by a 

model and not recorded in a log. Thirdly, we generally outperform the quality of the monolithic 

process model the structure of do not correspond to the architecture of a multi-agent system 

regarding the individual agent behavior and their interactions.  

We believe that increasing the number of traces in an event log will bring the quality of process 

models obtained by adding channels using our approach closer to the evaluations of reference 

models, since an event log will exhibit more different execution scenarios. As one of the possible 

directions of future research, we will consider the analysis of connections between the precision of 

agent models and of system models obtained by our approach based on event relation. 

6. Related Work 

As we mentioned in Introduction, different algorithms were proposed for the computer-aided 

discovery of process models from event logs. The most popular ones include Inductive miner [10], 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

29 

Fuzzy miner [15], Region Theory-based miner [16], and Genetic miner [17]. These algorithms can 

guarantee that discovered process models will exhibit certain properties. For example, Inductive 

miner can guarantee perfect fitness and soundness of discovered workflow nets. In the recent study 

[7], the authors gave an extensive review and comparison of process discovery algorithms. Note that 

these algorithms are aimed to tackle different internal limitations of event data representation rather 

than to analyze interactions among different information system components.  

The quality of discovered process models takes an important part in choosing an algorithm for 

discovering process models from event logs. Conformance checking [7] provides several 

dimensions that allow one to evaluate the correspondence between a model and an event log (fitness, 

precision, generalization), and the structure of a discovered model (simplicity). Researchers stress 

that there is a lack of universally applicable properties and requirements that can constitute the 

formal basis for computing conformance checking dimensions [7, 18]. Thus, our study also 

considers the formal analysis of preserving the perfect fitness of agent models discovered from 

filtered logs in a multi-agent system models with introduced asynchronous channels recovered using 

event relations.  

The problem of discovering process models with a clear structure is studied from different 

perspectives. Inductive miner produces well-structured process models that are recursively 

constructed from “building blocks” representing standard behavioral constructs: sequential, cyclic, 

parallel, and alternative execution of actions. A series of papers [19, 20, 21] proposed different 

approaches to improving the structure of discovered models by the additional localization of the 

environment of events in a log and by composing fragments of regular and frequent behavior with 

the rare “exceptional” scenarios. Discovery of hierarchical process models, where a high-level event 

represents a sub-process, was studied in [4]. The identification of low-level and high-level events in 

an event log is a natural way to improve the structural representation of a process model. The paper 

[3] proposed a novel approach to discover object-centric Petri nets from event logs. Interactions of 

objects is represented through complex synchronizations which allow one to model consumption 

and production of objects of different types. Compositional discovery of behaviorally correct and 

“architecture-aware” process models from event logs of multi-agent systems was studied in [6]. 

Using interface patterns and structural property-preserving mapping helped to achieve the clear 

structure of a model reflecting independent behavior of agents and their communication. 

Our study continues [6] in a way that we are trying to analyze and identify “points” of asynchronous 

interactions — actions involved in the asynchronous message passing between agents — directly 

from event logs. Based on the causality relations among events in a log, we can find, for example, 

pairs of actions that are always executed in a fixed order. Such actions are then considered to be the 

candidates to represent send-receive operations within the asynchronous interaction. Then we may 

relax the requirement on the manual selection of interface patterns, as originally proposed.  

Patterns are typically used in the software development as the collection of best practices and 

recurring development scenarios [22]. Frequently used control-flow constructs in business process 

modeling — workflow patterns — were systematically studied in [23]. In [12, 24], the authors 

generalized workflow patterns for modeling widespread correct service interactions in complex and 

large-scale systems. Within the context of process discovery, several papers also proposed different 

approaches for the analysis of behavioral patterns in event logs, including, among the others, [25, 

26], but these patterns were not considered from the point of view of interactions among different 

information system components. 

7. Conclusion 

In this paper, we considered the problem of discovering a process model in terms of a generalized 

workflow net from an event log of a multi-agent system with the understandable structure reflecting 

the architecture of a system. A model of a multi-agent system is obtained from a composition of 

individual agent models through the introduction of asynchronous channels. To identify transitions 

in agent models to be connected via a channel place, we analyze causal relations between events 



Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

30 

recorded in an event log. Within the asynchronous agent interactions, several actions of one agents 

are executed before certain actions of the other. This idea helped us to localize the so-called 

minimum event relations corresponding to the occurrence of actions executed by different agents. 

The pairs of events representing these minimum relations can be seen as “points” of the 

asynchronous communication between agents. Transitions corresponding to these events can be 

connected with an asynchronous channel place. We also showed that certain minimum event 

relations can cover other minimum relations between events in a log.  

The pair-wise analysis of relations between events recorded in an event log was based on matrices 

with rows and columns representing events. Matrix representation of event logs was used in process 

mining in different contexts (cf. the footprint matrix in the basic 𝛼-algorithm [27] and the analysis 

of unchanged sections in BPMN models [28]).  

We separately considered the cases of the acyclic and cyclic asynchronous interactions, since, within 

the latter one, events can be recorded in any possible order. To localize events in the cyclic 

communication, we analyzed the number of event occurrences regarding the maximum number of 

messages that a potential asynchronous channel can handle. This allows us to achieve the 

boundedness, i.e., the finite number of reachable states, in a complete process model of a multi-

agent system.  

The correctness of the proposed approach to adding asynchronous channels between behavioral 

models of individual agents is justified by the fact that we preserve the perfect fitness, i.e., the ability 

to execute all traces in the event log of a multi-agent system, of agent model in a complete system 

model. We conducted a series of experiments to evaluate our approach. The experimental results 

demonstrate the overall improvement in process models discovered by adding asynchronous 

channels in comparison to models directly discovered from event logs of multi-agent systems.  

As for the future research, we plan to continue it in the following directions. Firstly, we would like 

to consider more complex ways of the asynchronous communications, including, for instance, 

message broadcasting. Secondly, we also intend to make a deeper analysis of the preservation of 

behavioral properties, including deadlock-freeness, in a process model of a multi-agent system 

obtained from individual agent models connected by asynchronous channel places. For example, we 

need to avoid the introduction of channels leading to the “circular wait”, as shown in Fig. 14, where 

𝑁1 waits for 𝑁2, while 𝑁2 waits for 𝑁1 at the same time. Finally, we plan to conduct more 

experiments using real-life event logs. 

 

Fig. 14. Asynchronous interaction may result in a deadlock 



Шерстюгина А.А., Нестеров Р.А. Синтез моделей процессов по журналам событий мультиагентных систем с помощью отношений 

между событиями. Труды ИСП РАН, 2023, том 35 вып. 3, с. 11-32. 

31 

References 
[1] W. van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg, 2016. DOI: 

10.1007/978-3-662-49851-4. 

[2] W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Springer, 

Heidelberg, 2013. DOI: 10.1007/978-3-642-33278-4. 

[3] W. van der Aalst and A. Berti. Discovering Object-Centric Petri Nets. Fundamenta Informaticae, vol. 

175, pp. 1–40, 2020. DOI: 10.3233/FI-2020-1946. 

[4] A. Begicheva and I. Lomazova. Discovering High-Level Process Models from Event Logs. Modeling 

and Analysis of Information Systems, vol. 24, no. 2, pp. 125–140, 2017. DOI: 10.18255/1818-1015-2017-

2-125-140. 

[5] C. Li, S. van Zelst, and W. van der Aalst. An Activity Instance Based Hierarchical Framework for Event 

Abstraction. In 2021 3rd International Conference on Process Mining (ICPM), 2021, pp. 160–167. DOI: 
10.1109/ICPM53251.2021.9576868. 

[6] R. Nesterov, L. Bernardinello, I. Lomazova, and L. Pomello. Discovering architecture-aware and sound 

process models of multi-agent systems: a compositional approach. Software & Systems Modeling, vol. 

22, pp. 351–375, 2023. DOI: 10.1007/s10270-022-01008-x. 

[7] A. Augusto, R. Conforti, M. Dumas, M. Rosa, F. Maggi, A. Marrella, M. Mecella, and A. Soo. Automated 

Discovery of Process Models from Event Logs: Review and Benchmark. IEEE Transactions on 

Knowledge and Data Engineering, vol. 31, no. 4, pp. 686–705, 2019. DOI: 

10.1109/TKDE.2018.2841877. 

[8] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance Checking: Relating Processes and 

Models. Springer, Cham, 2018. DOI: 10.1007/978-3-319-99414-7. 

[9] W. van der Aalst. Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based 

Techniques. In Business Process Management: Models, Techniques, and Empirical Studies. Lecture 

Notes in Computer Science, vol. 1806. Springer, Heidelberg, 2000, pp. 161–183. DOI: 10.1007/3-540-

45594-9_11. 

[10] S. Leemans, D. Fahland, and W. van der Aalst. Discovering Block-Structured Process Models from Event 

Logs – A Constructive Approach. In Application and Theory of Petri Nets and Concurrency (PETRI 

NETS 2013). Lecture Notes in Computer Science, vol. 7927. Springer, Heidelberg, 2013, pp. 311–329. 

DOI: 10.1007/978-3-642-38697-8_17. 

[11] R. Nesterov, “Compositional discovery of architecture-aware and sound process models of multi-agent 

systems: experimental: data experimental data. (version 1) [data set].” [Online]. Available: 

https://doi.org/10.5281/zenodo.5830863. 

[12] A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction Patterns. In Business Process Management 

(BPM 2005). Lecture Notes in Computer Science, vol. 3649. Springer, Heidelberg, 2005, pp. 302–318. 

DOI: 10.1007/11538394_20. 

[13] J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Conformance. In Business Process 

Management (BPM 2010). Lecture Notes in Computer Science, vol. 6336. Springer Heidelberg, 2010, 

pp. 211–226. DOI: 10.1007/978-3-642-15618-2_16. 

[14] “ProM Tools,” [Online]. Available: https://www.promtools.org/doku.php.  

[15] C. Gunther and W. van der Aalst. Fuzzy Mining – Adaptive Process Simplification Based on Multi-

Perspective Metrics. In Business Process Management (BPM 2007). Lecture Notes in Computer Science, 

vol. 4714. Springer, Heidelberg, 2007, pp. 328–343. DOI: 10.1007/978-3-540-75183-0_24. 

[16] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions of Languages. In 

Business Process Management (BPM 2007). Lecture Notes in Computer Science, vol. 4714. Springer, 

Heidelberg, 2007, pp. 375–383. DOI: 10.1007/978-3-540-75183-0_27. 

[17] W. van der Aalst, A. de Medeiros, and A. Weijters. Genetic Process Mining. In Applications and Theory 

of Petri Nets (ICATPN 2005). Lecture Notes in Computer Science, vol. 3536. Springer, Heidelberg, 2005, 

pp. 48–69. DOI: 10.1007/11494744_5. 

[18] W. van der Aalst. Relating Process Models and Event Logs – 21 Conformance Propositions. In 

Proceedings of the International Workshop ATAED-2018. CEUR Workshop Proceedings, vol. 2115. 

CEURWS.org, 2018, pp. 56–74. 

[19] A. Kalenkova, I. Lomazova, and W. van der Aalst. Process model discovery: A method based on 

transition system decomposition. In Application and Theory of Petri Nets and Concurrency (PETRI 

https://doi.org/10.1109/ICPM53251.2021.9576868
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.5281/zenodo.5830863
https://www.promtools.org/doku.php


Sherstyugina A.A., Nesterov R.A. Discovering Process Models from Event Logs of Multi-Agent Systems Using Event Relations. Trudy ISP 

RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 11-32. 

32 

NETS 2014). Lecture Notes in Computer Science, vol. 8489. Springer, Cham, 2014, pp. 71–90. DOI: 

10.1007/978-3-319-07734-5_5. 

[20] A. Kalenkova and I. Lomazova. Discovery Of Cancellation Regions Within Process Mining Techniques. 

Fundamenta Informaticae, vol. 133, pp. 197–209, 2014. DOI: 10.3233/FI-2014-1071. 

[21] W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek. Process Discovery Using Localized Events. 

In Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science, vol. 9115. 

Springer, Cham, 2015, pp. 287–308. DOI: 10.1007/978-3-319-19488-2_15. 

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley Professional, 1994. 

[23] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow Patterns. Distributed and 

Parallel Databases, vol. 14, pp. 5–51, 2003. DOI: 10.1023/A:1022883727209. 

[24] D. Campagna, C. Kavka, and L. Onesti. BPMN 2.0 And The Service Interaction Patterns: Can We 

Support Them All? In Software Technologies (ICSOFT 2014). Communications in Computer and 

Information Science, vol. 555. Springer, Cham, 2015, pp. 3–20. DOI: 10.1007/978-3-319-25579-8_1. 

[25] S. Suriadi, R. Andrews, A. ter Hofstede, and M. Wynn. Event logs imperfection patterns for process 

mining: towards a systematic approach to cleaning event logs. Information Systems, vol. 34, pp. 132–

150, 2017. DOI: 10.1016/j.is.2016.07.011. 

[26] M. Acheli, D. Grigori, and M. Weidlich. Discovering and Analyzing Contextual Behavioral Patterns from 

Event Logs. IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5708–5721, 

2022. DOI: 10.1109/TKDE.2021.3077653. 

[27] W. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: discovering process models from event 

logs. IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004. DOI: 

10.1109/TKDE.2004.47. 

[28] K. Artamonov and I. Lomazova. What Has Remained Unchanged in Your Business Process Model? In 

2019 IEEE 21st Conference on Business Informatics (CBI), 2019, pp. 551–558. DOI: 

10.1109/CBI.2019.00070. 

Информация об авторах / Information about authors 

Анастасия Андреевна ШЕРСТЮГИНА – студентка бакалавриата факультета компьютерных 

наук НИУ Высшая Школа Экономики (ВШЭ), стажер-исследователь научно-учебной 

лаборатории процессно-ориентированных информационных систем (ПОИС) НИУ ВШЭ. 

Область научных интересов: моделирование и формальный анализ поведения процессов в 

информационных системах с помощью сетей Петри и других формализмов, объектно-

ориентированное программирование и архитектура информационных систем. 

Anastasiya SHERSTYUGINA is a bachelor student at the faculty of computer science in HSE 

University and a research assistant at the Laboratory for Process-Aware Information Systems (PAIS 

Lab), HSE University. Her research interests mainly include modeling and analysis of process 

behavior in information systems using Petri nets and other related formalisms, object-oriented 

programming and architecture of information systems. 

Роман Александрович НЕСТЕРОВ – старший преподаватель факультета компьютерных наук 

НИУ ВШЭ, младший научный сотрудник научно-учебной лаборатории ПОИС НИУ ВШЭ. 

Имеет степень кандидата компьютерных наук (физико-математические науки) НИУ ВШЭ 

(2022 г.). Область научных интересов: теория параллелизма, сети Петри, теория категорий, 

формальные методы моделирования и верификации сложно организованных 

информационных систем. 

Roman NESTEROV is a senior lecturer at the faculty of computer science in HSE University and a 

junior researcher at the PAIS Lab, HSE University. He holds a PhD degree in Computer Science 

awarded by HSE University in 2022. His research interests include concurrency and category theory, 

Petri nets, formal methods for modeling and verifying complex information systems. 

https://doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1109/TKDE.2004.47
https://doi.org/10.1109/CBI.2019.00070

