Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

e

Deployment Approaches in Distributed Complex
Event Processing

DOI: 10.15514/ISPRAS-2023-35(3)-5

A.A. Zorin, ORCID: 0009-0000-2689-2543 <zorinarsenij@mail.ru>
I.E. Chernetskaya, ORCID: 0009-0009-8254-9606 <white731@yandex.ru>

Southwest State University,
94, ul. 50 Let Oktyabrya, Kursk, Russia, 305040.

Abstract. Big Data technologies have traditionally focused on processing human-generated data, while
neglecting the vast amounts of data generated by Machine-to-Machine (M2M) interactions and Internet-of-
Things (1oT) platforms. These interactions generate real-time data streams that are highly structured, often in
the form of a series of event occurrences. In this paper, we aim to provide a comprehensive overview of the
main research issues in Complex Event Processing (CEP) techniques, with a special focus on optimizing the
distribution of event handlers between working nodes. We introduce and compare different deployment
strategies for CEP event handlers. These strategies define how the event handlers are distributed over different
working nodes. In this paper we consider the distributed approach, because it ensures, that the event handlers
are scalable, fault-tolerant, and can handle large volumes of data.

Keywords: complex event processing; distributed processing; event based systems.

For citation: Zorin A.A., Chernetskaya |.E. Deployment approaches in distributed complex event
processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 71-82. DOI:
10.15514/ISPRAS-2023-35(3)-5

MopxoAabl K pa3BepTbiBaHUIO B pacnpeaeneHHon obpaboTke
CNOXHbIX COObITUN

A.A. 3opun, ORCID: 0009-0000-2689-2543 <zorinarsenij@mail.ru>
U.E. Yepneyras, ORCID: 0009-0009-8254-9606 <white731@yandex.ru>

IOz0-3anaonviii 2ocyoapcmeennwiii yHugepcument,
50 nem Oxmsabps ya., 94, Kypcx, Kypckas o6a., 305040.

AnHoTanusi. TexHomoruu OONBIIMX JaHHBIX TPAJUIHMOHHO (OKYCHPOBAINCH Ha 0OpabOTKE NaHHBIX,
reHepUpyeMbIX YelIOBEKOM, MNpeHeOperas IMpU STOM OrPOMHBIMH OOBEMaMH aHHBIX, T€HEPUPYEMBIX
MEXMAaIIMHHBIMU B3aUMOICHCTBISIMU U Tatdopmamu MHTepHeTa Beleid. DTH B3aUMOACHCTBHS TeHEPUPYIOT
MOTOKH IAHHBIX B PEaTbHOM BPEMEHH, KOTOPHIE SIBIIOTCS BEICOKOCTPYKTYPHUPOBAHHBIMH, JaCTO B BUJIE CEPUHI
COOBITHI. B 3TOIf cTaThe MBI CTPEMHUMCS TIPEIOCTaBUTh BCECTOPOHHUH 0030p OCHOBHBIX HCCIIEOBATEIBCKHX
npobieM B 00macTH MeTOM0B KoMIUTeKCHOH oOpabortku coObituit (CEP), ymemsist ocoboe BHHMaHHE
ONITHMH3AINN pacIpezeneHuss 00paboTINKOB COOBITHH MEXTy paboYMMH y3namMu. MBI NMPEACTaBIsIeM H
CpaBHHBAaEM pa3jWYHbIC CTPATErHH pa3BepThiBaHUS 0OpaboTunkoB coObituit CEP. Dtu crpareruu
OTIPEIICIISIOT, KaKk 00pabOTUYNKH COOBITHI PACTIPEACIISIOTCS TI0 Pa3IHUHBIM paboynM y3iaM. B 3Toit craThe Mbl
paccMaTpuBaeM pacIpeiesiCHHBIH IMOJX0MA, IOCKOJIbKY OH TapaHTUPYeT, 4TO OO0pabOTYMKU COOBITHIA
MacIITaOUpPyeMbl, OTKa30yCTOWYMBBI U MOTYT 00padaThIBaTh OOJbILINE 00HEMBI JAHHBIX.

71

mailto:white731@yandex.ru

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

KuaroueBbie coBa: 06paboTKa CIOXKHBIX COOBITH; pacrpeseneHHas 00paboTKa; CHCTEMbI, OCHOBAHHbIE Ha
COOBITHSIX.

s uurupoBanusi: 3opul A.A., Ueprerkas U.E. ITonxompl K pa3BepThIBAHUIO B pacHpeeneHHoi 00paboTke
crnoxubix cobsitii. Tpyast UCIT PAH, tom 35, Beim. 3, 2023 r., ctp. 71-82 (na anrmuiickom sizeike). DOI:
10.15514/ISPRAS-2023-35(3)-5

1. Introduction

Several complex systems operate by observing a set of primitive events that happen in the external
environment, interpreting and combining them to identify higher level composite events, and finally
sending notifications about these events to the components in charge of reacting to them, thus
determining the overall system’s behavior. This means that the systems are able to perform complex
tasks by breaking them down into simpler, more manageable events. In order to achieve this, the
systems use a general architecture that includes sources and sinks at the peripherals of the system.
These sources observe primitive events and report them, while the sinks receive composite event
notifications and react to them.

At the center of the system is the complex event processing (CEP) subsystem, which is responsible
for processing and routing events from sources to interested sinks. It operates by interpreting a set
of event definition rules, which describe how composite events are defined from primitive ones [1,
2]. The CEP subsystem is crucial to the operation of the system, as it is responsible for ensuring that
the right events get to the right places.

Event-based applications usually involve a large number of sources and sinks, possibly dispersed
over a wide number of working nodes [3, 4, 5]. This means that the CEP subsystem can be internally
built around several, distributed working nodes, connected together to form an overlay network, and
cooperating to provide the processing and routing service [6]. This allows the system to process and
route events more efficiently, as it can distribute the workload across multiple working nodes.

This paper introduces and compares different deployment approaches for CEP, which are designed
to optimize the performance of the system. A deployment approach defines how the event handlers
are distributed over working nodes. The first aspect is often called operator placement, and it
involves finding the best mapping of the event handlers defined in rules on available working nodes
[7]. Operator placement may pursue different goals, such as reducing the latency required to deliver
notifications to interested parties, or minimizing the usage of network resources. In the last few
years, different solutions have been proposed for operator placement. However, the problem is
known to be extremely complex to solve, even for small instances with a reduced number of workers
and rules. Accordingly, existing approaches are often based on approximated optimization
algorithms or heuristics, and they usually rely on a centralized decider, which collects all the relevant
information about the network status and locally computes a solution to the problem.

The novelty of this work is the study of the applied use of scaling approaches in systems for
processing complex events in real time.The solutions presented in this paper are explicitly tailored
to large scale distributed scenarios. They try to take into account the topology of the processing
network as well as the location of event sources and their generation rates [8].

2. Approaches

2.1. Uniform distribution of handlers between working nodes

This approach for distributing handlers is based on an even distribution of handlers among all the
working nodes. The implementation of this approach is simple and requires a few steps. Firstly, the
handler distribution storage must be expanded to include information about the number of running
handlers on each of the working nodes. The data schema in DBML format might look like this:

72

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

Table handlers {
id integer [primary key]
w_node_id integer
other_data data

}

Table working_nodes {
id integer [primary key]
other_data data

}

Ref: working_nodes.id > handlers.w_node_id

The volume of the information storage depends on the number of working nodes and handlers, but
does not depend on the number of events occurring in the system. Therefore, the memory cost for
storing the information can be estimated in O(W+H), where W is the number of working nodes, and
H is the number of handlers.

Working node 1
Handler
management - -
service) . e Hy
R o ‘ Ra e ‘
Handler distribution | N | | : |
service
l HM . ‘ Han — ‘
Handler
distribution Working node 2
storage Handler
management
service Ha Ha
Rz e ‘ R4t . ‘
| [1 - |
Ray _— ‘ / Ran ey ‘

Fig. 1. Uniform distribution of handlers between working nodes

Once this information is available, the handler distribution service can be used to control the even
launch of handlers across all working nodes. Fig. 1 illustrates this approach with the uniform
distribution of four handlers between two working nodes. The handler distribution storage is used
to store information about the handlers that are running on specific working nodes and their numbers.
If there is a change in the number of handlers, the handler distribution service will redistribute them.
When a new handler is added, the handler distribution service identifies the working node with the
fewest running handlers and deploys the new handler to that node. Conversely, when a handler is
removed, the handler distribution service removes information about the handler from the handler
distribution storage and sends a handler shutdown command to the handler management service.
However, removing handlers may cause an imbalance in the number of handlers on each working
node.

73

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

To solve this issue, the handler distribution service periodically balances the number of handlers on
each working node. The service first determines the maximum number of handlers allowed on each
working node using the following formula:
v= s
lw

In (1) H is the number of event handlers and W — the number of working nodes. It then sequentially
traverses the sorted list of working nodes, and if the number of running handlers on the working
node is more than the maximum number allowed, the service searches for working nodes with a
number of handlers less than the maximum allowed. The excess handlers from the current working
node are transferred to the new working nodes. The handlers redistribution algorithm will look like
this:

Algorithm 1 Function RedistributeHandlers(W,H)
1 Wepart 0

2 Weng + len(W) —1

3 n « len(H)/len(W)

4: for warart < Weng do

5. if W{wstart] number_of_handlers < n then

6: for wart < Wepng do

7 if Wwepna]-number_of_handlers > n then
8: Redistribute(W [wstart], W [wend])

9: if W(wgtare] number_of_handlers > n then
10: break

11: end if

12: end if

13: Wend 4 Wend — 1

14: end for

15: end if

16: Wstart ¢ Wstart + 1

17: end for

The asymptotic complexity of the algorithm in such an implementation is equal to O(max(W,H)).
Although this approach is easy to implement and allows for horizontal scaling of handlers, it has
some inherent disadvantages. For instance, it does not take into account the internal complexity of
each handler or possible differences in the number of resources on the working node. Each handler
may contain a different number of rules, and the frequency of rule triggering may vary. Additionally,
working nodes may have differing amounts of resources, which can lead to low efficiency in the
distribution of handlers across working nodes.

2.2. Distribution of handlers based on the number of rules

This approach shares similarities with the previous one, but there is a key difference in how the
handlers are distributed. Instead of relying on a simple criterion, such as the number of active
handlers, this approach takes into account the number of handlers running on each working node.
To accomplish this, the handler distribution storage is expanded to include information about the
number of rules in each handler. The extended data schema in DBML format for that approach might
look like this:
Table handlers {

id integer [primary key]

number_of rules integer

w_node_id integer

74

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

other_data data

}

Table working_nodes {
id integer [primary key]
other_data data

}

Ref: working_nodes.id > handlers.w_node _id

This allows for a more nuanced approach to balancing the workload between working nodes, which
is illustrated on fig. 2.

Warking node 1
Handler
management
service [y H,
Rn e R4y -
Handler distribution
service
l Riz o Ry oy
Handler
distribution
" Working node 2
SEHA00 Handler
management
service Hy ; Hy
Ray -~
Raa - R31 \ 5
Ra -

Fig. 2. Distribution of handlers based on the number of rules

The volume of the information storage depends on the number of working nodes and handlers as for
the previous approach. Therefore, the memory cost for storing the information can be estimated in
O(W+H). The redistribution algorithm requires an analysis of the number of rules executed on the
working node, instead of calculating the number of handlers. The complexity of the algorithm
corresponds to the complexity of the previous algorithm and is equal to O(max(W,H)).

One of the main advantages of this approach is that the handler distribution service can monitor the
total number of handler rules running on each working node. Like the previous approach, the handler
distribution service performs balancing at fixed intervals. However, the key difference is the
inclusion of additional information about the number of rules, which allows for a more complex
balancing algorithm to be used. By evenly distributing handlers, this approach minimizes the number
of rules executed on each working node, which can lead to more efficient processing. However, it's
important to note that this approach still does not take into account the frequency of rule firing or
the different amounts of available resources on working nodes, which could impact overall
performance. Therefore, it may be necessary to explore additional strategies for optimizing the
workload distribution in the future.

2.3. Distribution of handlers based on the configuration of the required
resources

This approach involves a preliminary configuration of the necessary resources for each handler. The
system administrator adds information about the resources that are needed for each handler and also

75

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

adds information about the resources available on each working node. With the help of this
information, the distribution of handlers between working nodes takes place. The distribution
process ensures that the resources of working nodes are utilized as much as possible. Before
launching a network of handlers, the configuration of the resources required by each handler and the
resources available on each working node is performed. The configurable resources can be the
number of CPU cores and the size of RAM. In addition to being able to configure resources, this
approach also allows for consideration of the frequency of execution of the rules by each handler.
This frequency data could be used to optimize the distribution of handlers.

The volume of the information storage depends on the number of working nodes and handlers as for
the previous approach. Therefore, the memory cost for storing the information can be estimated in
O(W+H). The extended data schema in DBML format for that approach might look like this:

Table handlers {
id integer [primary key]
cpu_required integer
memory_required integer
w_node_id integer
other_data data

Table working_nodes {
id integer [primary key]
cpu integer
memory integer
other_data data

}

Ref: working_nodes.id > handlers.w_node_id

The task of efficiently placing handlers in this approach is an NP challenge. Therefore, a resource
allocation approach from kubernetes can be used to provide a trade-off between speed and efficiency
[9]. In this case, the algorithm is reduced to calculating the estimate of the deployment of the handler
on each of the working nodes [10]. The algorithmic complexity of this algorithm is O(W * H).

The scheme of this approach is shown in fig. 3.

Handier
management m
h

Working node 1

- a1 \ ol

Handler distribution c o
service N

} — ==

Handler

distribution Working node 2
storage Handier
management o
2

Rz

L™

Fig. 3. Distribution of handlers based on the configuration of the required resources

However, one disadvantage of this approach is the need for manual configuration of allocated
resources, which can be time-consuming. Another disadvantage is that this approach does not take

76

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

into account the dynamic nature of resource availability, which could lead to suboptimal resource
utilization. To address these limitations, future research could explore the use of machine learning
algorithms to automate the allocation of resources and dynamically adjust to changes in resource
availability.

2.4. Distribution of handlers based on statistics collected during operation

All previous diagrams are based on information obtained from starting the entire system and creating
new handlers. However, it is not always possible to determine how many resources to allocate to a
handler and on which working node it is most efficient to place them. This problem is due to the fact
that at the time the handlers are launched, there is no information about the frequency of the rule's
operation. It is important to consider the frequency of rule execution when allocating resources
because it can affect the efficiency of the handler. A handler may contain a large number of rules,
but these rules are fired quite rarely [11]. In contrast, a handler may contain only one rule, but fire
on most events. These scenarios can lead to resource waste or inefficient allocation. One way to
solve this problem is to collect analytics from handlers while the system is running. Collecting
statistics on the execution time and frequency of rules can help in balancing handlers with
infrequently executed rules on less productive working nodes and those with the longest rule
execution time and high execution frequency on high-performance working nodes. To collect
statistics, it is most efficient to run the statistics storage locally on each working node. This will
ensure the shortest time to send statistics from the handler to the statistics storage. Each handler
sends all necessary statistics to the local statistics storage on the working node. The handler
distribution service collects handler statistics from each working node through the handler
management service during balancing. After that, the service aggregates the collected statistics and,
based on the results, redistributes highly loaded processors to the most high-performance working
nodes. This ensures that the system is balanced and optimized for efficient execution. The extended
data schema in DBML format for that approach might look like this:
Table rules {

id integer [primary key]

processing_time_q95 integer

number_of activations integer

h_id integer
}

Table handlers {
id integer [primary key]
w_node_id integer
other_data data

}

Table working_nodes {
id integer [primary key]
cpu integer
memory integer
other_data data

}

Ref: working_nodes.id > handlers.w_node_id
Ref: handlers.id > rules.h_id

77

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

The volume of the information storage depends on the number of working nodes, handlers and rules.
Therefore, the memory cost for storing the information can be estimated in O(W+H+R), where W
is the number of working nodes, H is the number of handlers and R is the number of rules. Also, this
approach uses local storage for rule execution statistic. This collected statistic can be collapsed, so
the space used does not exceed O(R), since all statistics are duplicated in the handler distribution
storage.

Working node 1

Handier
Hy He Hy

T management
service

— "
- [R W
Hander dswbuton |_— 5 R \ o
service
R
2)y R
Statistics
storage
Handlet
distribution
Working node 2
o Handier m <
management d
R
21 -
R
—
R,
Statistics = —

storage

i \
Fig. 4. Distribution of handlers based on statistics collected during operation

On fig. 4, we can see the distribution of handlers based on the statistics collected during the work.
The diagram shows that each working node has local statistics storage. The handler distribution
service, at the time of balancing, collects and aggregates data from local statistics storages and
creates it. So, as shown in fig. 4, the handler distribution service receives information about the 95
percentile of the rule execution time and the number of rule firings. Based on the aggregated
statistics, the handler distribution service performs balancing and places the most loaded H; handler
on a separate working node 2. This algorithm also reduces to solving the bin packing problem, like
the previous one, and has a similar complexity - O(W * H).

In conclusion, collecting analytics can help in efficient resource allocation and balancing of
handlers, leading to a more optimized system. By running the statistics storage locally on each
worker node, the system can ensure the shortest time to send statistics from the handler to the
statistics storage.

3. Comparison of approaches

Let's make a comparative analysis of the described schemes for working with events according to
the following criteria [12]:

e Support for working with working nodes with different amounts of resources;

o Level of support for accounting for the frequency of operation of handler rules;

e The need to develop additional services and repositories with information storages;
e The complexity of the algorithm for redistributing handlers between working nodes.

Consider the rating scale for each criterion. The criterion for supporting work with working nodes
with different amounts of resources can be evaluated on the following scale:

e Present-1;
e Absent-0.

The criteria for the level of support for accounting for the frequency of triggering of handler rules
can be assessed on a scale:

e Dynamic support - 1;
e Static support - 0.5;

78

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

e Absent-0.

Dynamic support implies the ability of the system to independently collect statistics on the frequency

of rule triggering and, based on the collected data, balance handlers. Static support allows

configuration of the frequency of rule triggering at the system startup stage. This approach does not

allow efficient utilization of resources in the case of a changing frequency of rule firings over time.

The criteria for the need to develop additional services and repositories can be estimated based on

the assessment of overhead costs for information storage. Thus, the criterion can be assessed on the

following scale:

e Development of additional services and repositories is not required, no overhead - 1;

e Requires the development of information storage, the volume of which does not depend on the
number of rules specified - 0.5;

e Requires the development of information storage, the volume of which depends on the number
of rules or a value of a higher order - 0.

The criteria for the complexity of the algorithm for redistributing handlers between working nodes

can be estimated using the following scale:

e Algorithm complexity not exceeding O(max(W,H)) - 1;

e Algorithm complexity not exceeding O(W * H) - 0.5;

e Algorithm has quadratic complexity and higher - 0.

Criteria 1 and 2 are the most important as they affect the efficiency of resource utilization at working

nodes [13]. Therefore, the weight of criteria 1 and 2 is 0.3, and the weight of criterion 3 and 4 is 0.2.

The weighted sum method shows (Tab. 1) that the approach of distributing handlers based on run

time statistics is more appropriate.

Table 1. Comparison by weighted sum method

Approaches
Criteria

A B C D

Ci 0 0 1 1

C. 0 0 0.5 1

Cs 0.5 0.5 0.5 0

Cs 1 1 0.5 0.5
Weighted sum 0.35 0.35 0.65 0.7

It allows working with working nodes that have different amounts of resources and provides a
redistribution of handlers between working nodes, taking into account the actual frequency of rule
firing. This approach also has disadvantages in the form of the need to create additional local storage
of statistics and implement the aggregation of the collected statistics.

4. Conclusion and future work

Having thoroughly reviewed the state-of-the-art approaches that focus on efficient event handler
distribution and can be applied in CEP systems. We have come to the conclusion that the approach

79

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

using statistics collected during the operation of the system to redistribute handlers between working
nodes is the most suitable approach for modern systems. This approach utilizes not only the static
configuration of the distribution strategy at the stage of system startup but also dynamic
redistribution based on statistics collected during the operation of the system. This can improve the
efficiency of resource utilization in the system. Therefore, we recommend that future research focus
on the study of hybrid approaches to managing the distribution of handlers between working nodes,
where both static configuration and dynamic redistribution can be used to maximize system
efficiency.

In addition to this, we suggest that it would be beneficial to select the optimal set of metrics that can
effectively redistribute event handlers. Further research in this area may lead to the identification of
the most relevant metrics.

Although we have considered centralized approaches to managing the distribution of event handlers
in this work. There are also decentralized approaches that provide a higher level of fault tolerance
and have the potential to scale efficiently [14,15]. Therefore, we suggest that future work may
explore these decentralized approaches as well. By investigating both centralized and decentralized
approaches, we can gain a better understanding of the advantages and disadvantages of each and
ultimately identify the best approach for a given system.

References

[1]. Paschke A., Kozlenkov A. Rule-Based Event Processing and Reaction Rules: Lecture Notes in Computer
Science, 2009, pp. 53-66.

[2]. Cugola G., Margara A. Deployment strategies for distributed complex event processing: Computing, 2012,
vol. 95, no. 2, pp. 129-156.

[3]. Fardbastani M., Sharifi M. Scalable complex event processing using adaptive load balancing: Journal of
Systems and Software, 2019, v. 149, pp. 305-317.

[4]. Sun A., Zhong Z., Jeong H., Yang Q. Building complex event processing capability for intelligent
environmental monitoring: Environmental Modelling and Software, 2019, v. 116, pp. 1-6.

[5]. Loreti D., Chesani F., Mello P., Roffia L., Antoniazzi F., Cinotti T., Paolini G., Masotti D., Costanzo A.
Complex reactive event processing for assisted living: The Habitat project case study: Expert Systems
with Applications, 2019, v. 126, pp. 200-217.

[6]. Brazalez E., Macia H., Diaz G., Baeza Romero M., Valero E., Valero V. FUME: An air quality decision
support system for cities based on CEP technology and fuzzy logic: Applied Soft Computing, 2022, v.
129, pp. 109536.

[7]. Paschke A., Kozlenkov A., Rule-Based Event Processing and Reaction Rules: Lecture Notes in Computer
Science, 2009, pp. 53-66.

[8]. Alakari A., Li K. F., Gebali F., A situation refinement model for complex event processing, Knowledge-
Based Systems [online] 198, 2020, 105881.

[9]. Hightower K., Burns B., and Beda J., Kubernetes: Up and Running: Dive into the Future of Infrastructure,
O'Reilly Media, 2017.

[10]. Luksa M., Kubernetes in Action, Hanser Fachbuchverlag, 2018, ISBN 9783446455108.

[11]. Wang D., Zhou M., Ali S., Zhou P., Liu Y., Wang X., A Novel Complex Event Processing Engine for
Intelligent Data Analysis in Integrated Information Systems: International Journal of Distributed Sensor
Networks, 2016, vol. 12, no. 3, pp. 6741401.

[12]. Alakari A., Li K. F., Gebali F., A situation refinement model for complex event processing, Knowledge-
Based Systems [online] 198, 2020, 105881.

[13]. Margara A., Cugola G., High-Performance Publish-Subscribe Matching Using Parallel Hardware: IEEE
Transactions on Parallel and Distributed Systems, 2014, vol. 25, no. 1, pp. 126-135.

[14]. Cugola G., Margara A., Complex event processing with T-REX: Journal of Systems and Software, 2012,
vol. 85, no. 8, pp. 1709-1728.

[15]. Jayasekara S., Kannangara S., Dahanayakage T., Ranawaka I., Perera S., Nanayakkara V., Wihidum:
Distributed complex event processing: Journal of Parallel and Distributed Computing, 2015, vol. 79-80,
pp. 42-51.

80

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

UHgpopmayusi 06 aemopax / Information about authors

Apcennit Aanpeesnd 30OPUH — acnimpanT xadeapbl BEIYUCIUTENbHON TexHUKH FOro-3amagHoro
rOCYAapCTBEHHOIO YHHBepcuTeTa. Ero HaydHble HHTEpEChl BKIIOYAIOT OOPA0OTKY CIIOMKHBIX
COOBITU B paCpeelICHHBIX CHCTEMaX, HHTEIUIEKTYalIbHbIE CHCTEMbI HA OCHOBE TIPABHIIL.

Arsenij Andreevich ZORIN is a post—graduate student of the Department of Computer Engineering
of Southwest State University. His research interests include processing complex events in
distributed systems, intelligent rule-based systems.

Wpuna Esrensena UEPHEIIKAS - 3aBemyrommii kadenpoil BRMHCIUTENbHOW TexHUKH HOro-
3amagHoOTO TOCYIapCTBEHHOTO YHUBEPCHUTETA, JOKTOP TEXHUUECKUX HayK. E€ HaydHbIC HHTEpECH
BKJTIOYA0T MAaTEeMaTHYeCKOe | alTOPUTMUYECKOE OIMCAHHE CIIOXKHBIX TEXHOJOTHIECKUX
MPOIIECCOB, Pa3paboTKa aBTOMAaTH3UPOBAHHBIX CUCTEM YIIPaBICHUS.

Irina Evgenyevha CHERNETSKAYA - Head of the Department of Computer Engineering of
Southwestern State University, Doctor of Technical Sciences. Her research interests include
mathematical and algorithmic description of complex technological processes, development of
automated control systems

81

https://scholar.google.ru/citations?view_op=search_authors&hl=ru&mauthors=label:%D1%80%D0%B0%D1%81%D0%BF%D0%BE%D0%B7%D0%BD%D0%B0%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2

Zorin A.A., Chernetskaya I.E. Deployment approaches in distributed complex event processing. Trudy ISP RAN/Proc. ISP RAS, vol. 35,
issue 3, 2023. pp. 71-82.

82

