
Труды ИСП РАН, том 35, вып. 3, 2019 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

91

DOI: 10.15514/ISPRAS-2023-35(3)-7

“Symcrete” Memory Model with Lazy Initialization
and Objects of Symbolic Sizes in KLEE

1 S.A. Morozov, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 A.V. Misonizhnik, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>

3 D.A. Mordvinov, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
3 D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
4 D.A. Ivanov, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>

1 National Research University ‘Higher School of Economics’,

16, Soyuza Pechatnikov Street, Saint Petersburg, 190121, Russia.
2 IT Solutions Inc.,

41, Novoslobodskaya Street, Moscow, 127055, Russia.
3 St. Petersburg State University,

7/9, Universitetskaya Embankment, Saint Petersburg, 199034, Russia.
4 Huawei Technologies Co., Ltd.,

69-71, Marata Street, Saint Petersburg, 191119, Russia

Abstract. Dynamic symbolic execution is a well-known technique for testing applications. It introduces
symbolic variables – program data with no concrete value at the moment of instantiation – and uses them to
systematically explore the execution paths in a program under analysis. However, not every value can be
easily modelled as symbolic: for instance, some values may take values from restricted domains or have
complex invariants, hard enough to model using existing logic theories, despite it is not a problem for
concrete computations. In this paper, we propose an implementation of infrastructure for dealing with such
“hard-to-be-modelled” values. We take the approach known as symcrete execution and implement its robust
and scalable version in the well-known KLEE symbolic execution engine. We use this infrastructure to
support the symbolic execution of LLVM programs with complex input data structures and input buffers with
indeterminate sizes.

Keywords: symbolic execution; software analysis; lazy initialization; symcrete execution; smt-solvers.

For citation: Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete”

memory model with lazy initialization and objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS,

vol. 35, issue 3, 2023. pp. 91-108. DOI: 10.15514/ISPRAS-2023-35(3)-7

Acknowledgements. This work is supported by the grant of the Russian Science Foundation (RSF) № 22-21-

00697.

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

92

Симкретная модель памяти с ленивой инициализацией и
объектами символьного размера в символьной виртуальной

машине KLEE

1 С.А. Морозов, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 А.В. Мисонижник, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>

3 Д.А. Мордвинов, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
3 Д.В. Кознов, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>

4 Д.А. Иванов, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>
1 Национальный исследовательский университет “Высшая школа экономики”,

Россия, 190121, Санкт-Петербург, Союза Печатников ул., д.16.
2 IT Solutions Inc.,

Россия, 127055, Москва, Новослободская ул., д.41.
3 Санкт-Петербургский государственный университет,

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7-9.
4 Huawei Technologies Co., Ltd.,

Россия, 191119, Санкт-Петербург, Марата ул., д. 69-71.

Аннотация. Динамическое символьное выполнение – хорошо известный метод тестирования

приложений. Он вводит понятие символьной переменной – данных программы, не имеющих

конкретного значения в момент объявления, – и использует их для систематического изучения путей

выполнения в анализируемой программе. Однако не Санкт-Петербургский государственный

университет каждое значение может быть легко смоделировано как символическое: например,

некоторые значения могут принимать ограниченное число значений или иметь сложные инварианты,

которые достаточно сложно смоделировать с использованием существующих логических теорий

несмотря на то, что это не является проблемой для конкретных вычислений. В этой статье мы

предлагаем реализацию инфраструктуры для работы с такими “трудно моделируемыми” значениями.

Мы используем подход, известный как симкретное исполнение, и реализуем его надежную и

масштабируемую версию в хорошо известном движке символьного выполнения KLEE. Мы используем

эту инфраструктуру для поддержки символьного исполнения программ на языке LLVM со сложными

структурами входных данных и входными буферами неопределенных размеров.

Ключевые слова: символьное исполнение; анализ программного обеспечения; ленивая

инициализация; симкретное исполнение; smt-решатели.

Для цитирования: Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А.

Симкретная модель памяти с ленивой инициализацией и объектами символьного размера в символьной

виртуальной машине KLEE. Труды ИСП РАН, том 35, вып. 3, 2023 г., стр. 91–108 (на английском

языке). DOI: 10.15514/ISPRAS–2023–35(3)–7

Благодарности. Работа поддержана грантом Российского научного фонда (РНФ) № 22-21-00697.

1. Introduction

Dynamic symbolic execution is a software testing technique that allows exploring execution paths

in a program under analysis, generates test coverage, and finding bugs in a given source code (e.g.

out of bound memory errors or signed integer overflows) [1]. This is done by marking some program

variables as symbolics, in other words, variables with no specific value. During analysis, a symbolic

engine adds logical constraints to them, which possibly restrict values in different paths. To prove

the satisfiability or unsatisfiability of a set of constraints, symbolic engines widely use SMT-solvers

[2], such as Z3 [3], CVC5 [4], bitwuzla [5] and many others.

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

93

Encoding a set of values with logical constraints for each symbolic variable is one of the crucial

ideas in symbolic execution. This approach enables keeping several program executions as a single

execution state at the current position in the exploration path. All possible solutions for these

constraints then become the values of symbolic variables in corresponding execution states. Since

solving such formulas is an NP-hard problem, the performance and completeness of the solution

heavily rely on the number and size of the logical formulas passed to the SMT-solver.

However, some values in a program can be hard to model by decidable logical constraints. The

problem arises from the fact that the values of a variable may belong to a restricted domain. Such

domains can have implicit and complex rules to encode in a logical formula. Let us provide some

examples in which the described problem appears:

 Objects with symbolic sizes. Program under analysis may dynamically allocate memory on

the heap (e.g. with malloc(n) in C language or operator new[n] in C++). If we

treat the argument passed to that function as symbolic, we will allocate an object whose

size may have different values depending on the current execution path (object with

symbolic size). Consider an example presented in Listing 1.

int foo (int n) {

 char * s = (char *) malloc (n);

 if (n == 1) {

 s [0] = 0;

 } else if (n > 1) {

 s [1] = 10;

 }

 return 1;

}

Listing 1. Dynamic allocation

If we pass a symbolic argument to that function, we will allocate an object with symbolic

size at the first line. Then the allocated object will have different sizes at the distinct

branches of if-statement. Modelling objects with symbolic size might take many

computational resources. Each allocated memory object is represented as a separate entity

and cannot intersect with other objects. Naïve modelling of these restrictions may result in

SMT solvers needing to handle O(n2) constraints, where n is the number of memory

objects. Such modelling can significantly impact the performance of symbolic execution.

 External calls. During program exploration, the symbolic execution engine may meet calls

to undefined or external functions, i.e. functions with no sources provided. As the

engine does not have any information about the encountered function, it cannot properly

model function behaviour to continue accurate analysis: for instance, the return value of

this function may take a limited number of values. Interpreting return value as a symbolic

value may be too excessive to model function behaviour, and the symbolic engine is

doomed to lose precision in this case.

One possible behavior is plain modelling of all such behaviors described in the bullets above.

In this case, the engine over-approximates program behavior, i.e. explores more paths than there

are. Therefore, it degrades performance and accuracy.

Another behavior, taken, for instance, in KLEE symbolic execution engine [1], is to fix one

possible solution during analysis. When the engine meets specific code constructions, it picks up

the solution for all symbolic variables involved in one. Then it restricts taken variables with values

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

94

from the received concrete solution for the following exploration. For instance, the constructs

described above are modelled as follows:

 Objects with symbolic sizes. We might avoid performance issues by choosing one exemplar

of a symbolic size fitting current constraints at the moment of the allocation. For example,

while executing the malloc(n) statement at Listing 1, KLEE would choose some

concrete value of n fitting the current path constraints, say, n = 1. But then,

branchings on n would be evaluated only within this concrete assignment, leading to

missed branches. In this case, KLEE misses covering the s[1] = 10; statement.

 External calls. Calls to external or undefined functions may be modelled as actual calls

to these functions. As such functions might take arguments, which were marked as

symbolic variables before, the symbolic execution engine needs to find a solution for them

to satisfy previously added logical constraints. Return value then will be a constant value

and cannot be treated as a symbolic value.

In these cases, the engine explores fewer paths than actually exist. On the one hand, it leads to

performance improvements, as the engine analyses a smaller number of possible program

behaviours. On the other hand, it impairs the engine’s ability to find vulnerabilities in a program

under analysis, leading to a non-exhaustive search through the program inputs space. In other

words, this approach under-approximates program behaviors.

The idea that can be applied to resolve problems discussed above is to use a well-known approach

of symcrete1 [6, 7] execution. This feature allows a symbolic execution engine to mark variables

as symbolic, but additionally keep a concrete value (concretization) for it satisfying some set of

logical constraints. This concretization might be given by an algorithm different from the SMT-

solver. Therefore, if such algorithms maintain some invariants inside, then they will be

automatically satisfied for produced models.

The described idea gives several opportunities to the KLEE execution engine, but one of the most

interesting is the support of objects with indeterminate sizes. It is achieved due to the property of

allocators to allocate non-intersecting objects and the property of symcretes to keep concrete values

fitting current constraints. Hence, we can dynamically maintain memory layout with no significant

impact on performance. The feature of objects with symbolic sizes would increase the engine’s

precision for detecting buffer overflows and other memory issues in LLVM programs.

Symcretes should be fully compatible with the existing features of the symbolic virtual machine,

such as lazy initialization [8, 9]. This technique enables the exploration of program behaviors

with complex input data structures.

In summary, the main contributions of this paper are:

1) Implementation of the infrastructure of symcrete execution in KLEE.

2) Application of this infrastructure to model objects of symbolic sizes.

3) Application of this infrastructure to improve the currently existing mechanism of lazy

initialization.

2. Background

Before discussing the main ideas of this paper, let us introduce the basic concepts of symbolic

execution used throughout this paper.

1 “Symcrete” = symbolic + concrete.

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

95

2.1 Execution and forking

Dynamic symbolic execution executes a program with symbolic variables, i.e. values that represent

all possible concrete program inputs. During program exploration, the execution engine operates

with execution states, which can step over one instruction and fork. For these states, the symbolic

execution engine maintains the inner representation of programs memory model. Also, every

execution state maintains path constraints (PC) – a set of logical formulas describing the

explored path. When the execution engine meets a conditional operator, it queries the solver with

constraint and its negation, and forks state if solutions for both constraints exist. If only one

statement is true, it does not fork and simply proceeds the execution of a reachable path.

Take a look at the example in Listing 1: let n be a symbolic parameter of the function. In the

beginning, path constraints are empty, and the inner memory representation contains only one

record: n ← λ. After execution state meets the line if (n == 1) { ... }, it queries solver

about the validity of PC with λ = 1 and PC with ¬(λ = 1). As they are both satisfiable, it

splits the current execution state into two states with the same objects in memory and path

constraints PC’ = PC ∧ λ = 1, PC” = PC ∧ ¬(λ = 1) correspondingly.

2.2 Memory model

Objects in memory have addresses, which represent their location in the symbolic engine’s address

space, sizes, representing the number of allocated bytes for their content in address space,

alignment, which makes restrictions on an address (for instance in source code user can call

posix_memalign and memalign functions), and contents, an array of (potentially symbolic)

bytes. To handle all that information, symbolic engines maintain memory model, which stores

required information about all currently existing objects: addresses, sizes, contents, and so on.

2.3 Constraints Representation

Every constraint in KLEE is an expression. Expression is a tree, each node of those is an

operation, and children are operands. Every leaf of these trees is either constant or read from

a symbolic array. A symbolic array is an array from the SMT theory of arrays, i.e. unbounded

storage of symbolic integers, supporting both load and store operations. Each store operation

creates a new version of an array with a value changed by a specified index, therefore arrays can

be considered immutable.

For brevity, we use the term “array” instead of “symbolic array”.

2.4 Validity Cores

A set of constraints with a statement may be valid, that is, no counterexample can be found for it,

and invalid otherwise. To check the validity of expressions, the engine queries SMT-solver with

a given set of assumptions and negation of the provided statement. If SMT-solver gives a

solution that satisfies the received query, then a counterexample is found and the initial statement

in the assumption of constraints from the set is invalid. Otherwise, it may return a validity core,

a subset of constraints “explaining” the validity.

For instance, consider the set of assumptions {λ < 10, λ > α} and a statement λ > 10. We

would like to check the validity of a statement within the assumptions, that is, the validity

of the formula

∀λ, α : λ < 10 ∧ λ > α =⇒ λ > 10

To show it, we might prove that the negation is unsatisfiable, i.e.

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

96

∃ λ, α : λ < 10 ∧ λ > α ∧ ¬(λ > 10)

SMT-solver would find a satisfying assignment, for example, {λ 1→ 1, α 1→ 0}. It means

that we have found a counterexample for the initial statement.

In contrast, if we check a statement λ < 11 with the same assumptions, we would query the

satisfiability of {λ < 10, λ > α, ¬(λ < 11)} and receive from SMT solver the “unsatisfiable”

verdict. State-of-the-art SMT solvers can compute unsatisfiable cores, a subset of conflicting

statements. In this case, one unsatisfiable core is {λ < 10, ¬(λ < 11)}. It can be converted to

validity core: just take assumptions from the unsatisfiable core as-is, and convert the negated

statements from the unsatisfiable core to the original ones. In our example, the validity core

includes the assumption λ < 10 and the statement λ < 11.

2.5 Optimizing solvers

As mentioned above, solving logical formulas, which have been constructed during program

analysis, is the NP-hard problem. Hence, the complexity of the formulas in the query and the

number of such queries becomes a bottleneck of symbolic execution. To simplify the queries to the

solver, execution engines apply many optimizations for logical constraints. One way to provide such

optimizations is to use optimizing solvers – solvers that can modify, separate, construct additional

logical formulas, or even resolve received queries without calling an expensive SMT-solver. Such

a solvers can form a chain ending with the SMT-solver.

2.6 Pointer resolution

Many languages, like C or C++, allow storing addresses directly into locations and dereference

them. The resolution of concrete pointers is trivial, but symbolic execution engines might

encounter programs with symbolic pointers. Consider the example in Listing 2.

int x = 10;

int y = 20;

void bar (int * s) {

 * s = 0;

}

Listing 2. Pointer resolution

As we do not know, at what address pointer s should be resolved, we must check every

possible memory object, including the pointer variable itself. To handle these cases, the vanilla

KLEE engine makes a pointer resolution operation: it iterates over all existing memory objects

in memory and attempts to dereference given pointer into them: query the solver if a formula

ptr + idx > address ∩ ptr + idx + type_size < address + size, with the formulas

from path constraints, where ptr is a dereferencing pointer, idx is a relative offset (e.g. if we

access the array by some index, ptr[10] in C or C++ languages), type_size is the size

of the type we are trying access through, address is the address of the memory object we are

trying to access, size is the size of that memory object. If the pointer can be dereferenced to

the chosen memory object, KLEE forks the current execution state and modifies path constraints

PC’ of the received state with the above constraint.

In the example in Listing 2, pointer s can be resolved to at least two existing objects: x or y. After

storing operation *s = 0; KLEE will maintain at least two execution states, in which 0 is

written to x or y.

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

97

2.7 Lazy initialization

However, pointer resolution might not be enough to model all possible execution paths in a

program. Suppose, you need to test a code for a linked list presented in Listing 3.

typedef struct Node {

 int x;

 Node * next;

} Node;

int baz (Node l) {

 l.next -> x = 1;

 assert ((l.x + l.next -> x) % 2 ==0);

}

Listing 3. Linked list

In this code snippet struct Node contains a pointer to the next element in the linked list,

which will be a symbolic value if we pass a symbolic argument to function baz. Consequently,

pointer resolution at the line l.next->x = 1 will proceed for the symbolic pointer in the

same manner as described above. As we do not have any other objects of type struct Node,

this code example will only test circular linked lists at most of length 1.

The problem here arises from the fact, that analyzing program does not contain explicitly

initialized additional linked list nodes. We will face a similar problem if we try to analyze any

recursive data structures, like Binary Search Trees, Linked Lists, and so on.

To overcome described obstacle modern symbolic engines apply a technique called lazy

initialization. This method allows initializing additional objects in memory, if so required, to

explore more program behaviors. Return to the example at Listing 3: during pointer resolution

the symbolic execution engine will allocate one more additional object of type struct Node

to model linked list with length at least 2 and fail the assertion assert((l.x + l.next-

>x) % 2 == 0); (as for circular linked list we summed two equal numbers before).

3. Design principles

During infrastructure design, we agreed on a set of principles to create a maintainable and easily

extensible framework. These principles are as follows: (a) clear separation of public and private

interfaces, (b) recompute only the demanded values, and (c) concretization should always exist.

Let’s consider them in more detail.

a) Clear separation of public and private interfaces: One of the most important

requirements for symcretes architecture was to keep the symcretes public interface as simple as

possible. Thus, to prevent the developers from implementing complex logic in various spots of

symbolic engine code, the public interface of symcretes infrastructure should only provide

methods to add a symcrete value to the execution state and to receive a current concretization

for symcrete. All the internal architecture of symcretes and any processing details made by

its infrastructure should not be accessible from the symbolic engine code.

b) Recompute only demanded values: Since the symcrete variable is the symbolic variable

paired with the concrete value fitting some constraint set, then this concrete value may become

obsolete with the addition of a new statement. As it might be difficult to receive a new

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

98

model for all symcrete variables in such situations, we require recomputing concrete values

only for symcretes, which affects the validity of the query.

c) Concretization should always exist: At every moment, we should be able to receive an

actual model for the symcretes used in the current constraint set. In other words, symcretes

architecture should be similar to the “Observer” pattern, where the observable object is the

solver and it should provide a possibility to subscribe to the solver updates.

4. Implementation

We have built our implementation on top of the KLEE of version 2.3 [10].

Followed by the principles described above we have separated symcretes and internal

mechanisms to handle them, which we called concretizing solver. In our implementation

symcrete is a pair of an array and a concrete value. To make a symcrete expressions we assign

a read from created array to that expression. Concretization of symcretes is represented by the

map from such arrays to bits storages.

To distinguish different symcretes we equipped all arrays with a new characteristic – arrays

sources. These sources should reflect how the current array was received. For instance, an array

that has been made to handle the addresses of memory objects should differ from arrays that are

used to handle the content of memory objects. Also, these sources can carry useful properties for

algorithms, which are used to generate values for them. We will show the application of these

properties below.

The main logic for symcretes located in concretizing solver. It is one of the optimizing solvers, that

can modify and handle received queries properly. In particular, concretizing solver modifies each

query with constraints over symcretes: it adds equalities in form of (Eq (Read width 0

symcrete_array), Constant), where Read width offset source is the read

expression of width width at offset offset and array source – and passes them to the

underlying solver. However, such modifications are not enough to handle symcretes.

Let us consider the following example. Suppose, we have a symcretes values x and y with

concretization x = 5, y = 10, query with the set of assumptions [x ≤ 10, y ≤ 20] and the

statement x ≤ y. Concretizing solver at the preprocessing stage will make additional constraints

x = 5, y = 10, and consequently, the query will transform into a new query with the set of

assumptions [x ≤ 10, y ≤ 20, x = 5, y = 10] and statement x ≤ y. Note, that this query is valid

according to “validity logic”, as to compute validity we negate the statement, which results in x >

y. Existing concretization cannot satisfy all assumptions with negated statement.

Therefore, existing concretization might add constraints, which force a given theorem to become

valid, despite the original query being invalid. To solve such a problem, we process a symcretes

relaxation after receiving a valid response from the solver. Symcretes relaxation is the algorithm

that aims to recompute values for symcretes to receive an invalid response if so exists.

To implement it according to our principles, we need to find all symcretes that have inappropriate

values (see principle “Recompute only required values”). Such values may be found in the validity

core, which might be received from the solver. For that purpose, we extended the interface of

KLEE’s solver with functions that may return validity cores on valid responses. Since then, we

can process a relaxation after receiving a valid response with current concretization.

The relaxation algorithm is provided in Algorithm 1. More detailed, the core part of the algorithm

is located in the do { ... } while(...); loop. It firstly constructs a concretized query by adding

equality constraints on symcretes (line 5) and queries the solver with this query (line 6). If the

response is already invalid, the loop can be completed (lines 7-9), and all we need is to assign

appropriate values to symcretes, which have lost concretizations (lines 24-30). Otherwise, we

will look at the validity core from the valid response and collect all symcrete arrays, those

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

99

concretizations affected validity (this is done by collecting all arrays and filtering them by predicate

isSymcrete at line 11). After that, we check if we removed concretization, which was not

removed before (lines 15-17). If so, we continue the process. Otherwise, the current validity core

proves, that the initial query is valid.

In the general case, the presented process can take more than one iteration. This might happen,

as SMT-solver does not guarantee to return all unsatisfiable sets of formulas from the given query:

usually, they return any set of formulas that cannot be satisfied.

Let’s see that in the example. For instance, we have symcretes x and y with concretizations 0

and 1 correspondingly, and statement [x < y]. The concretized query will have a form of [x <

y, x = 0, y = 1]. Then we will query the solver with the statement x ≤ 0. According to “validity

logic” query will transform to a set of formulas [x < y, x = 0, y = 1, x > 0], which cannot

be satisfied, and we can highlight at least three unsatisfiable subsets: [x = 0, x > 0], [x <

y, x > 0, y = 1] and [x < y, x = 0, y = 1, x > 0]. SMT-solver can return any of these. If it

returns the first subset, the algorithm will remove concretization only for x, but the query will

remain valid. Then on the second iteration, the SMT-solver return the second subset of

formulas from the presented subsets. Consequently, the algorithm will remove concretization for

y and after that find a counterexample to the initial statement, say, x = 1, y = 2.

After removing all outdated concretizations for symcretes we need to assign new values to them.

To do that we query the registered algorithms (lines 24-26). After receiving new concretizations,

we check if the solution for the entire query invalidates the received statement in the assumption

of the given constraint set. If still not, we admit that the query is valid (lines 28-30). This can

happen when concrete values for symcrete variables received from registered algorithms cannot

provide values invalidating the query.

If the statement in the assumption of a set of given constraints is provably invalid, i.e. has a

counterexample, then we store concretizations of symcretes involved in that query in a

concretization manager. The concretization manager is the structure that stores concrete values

for symcretes for all encountered invalid queries. It may be accessed from the symbolic execution

engine to get the current concrete value for symcrete.

If we want to add a constraint without an explicit call to a solver, then we may lose the record

to the concretization manager. In this case, we need to update it manually from the code location

where the constraint is added.

Summing up all implementation details and principles, in KLEE to mark a variable as symcrete

we need to create a new array. For that array, we need to specify its source. For arrays with

such a source, we need to provide an algorithm which will be used to generate concrete values.

To access the concrete value of the symcrete variable we may query the concretization manager

with the constraint set and statement we are interested in.

In the next sections, we will show how we can use symcretes to support objects of symbolic sizes

and improve the existing mechanism of lazy initialization.

4.1 Properties of objects of symbolic size

Before discussing the implementation of objects with symbolic sizes we need to discuss some of

their properties. As we said before, every object has 3 main parameters: address from enclosing

address space, size, and content. The content of memory objects can be considered independently

from address and size, therefore we will not take it into account in the reasoning below.

Algorithm 1 Relaxation algorithm

1: function RELAX(query, symcretes)

2: relaxationProceeded ← true;
3: removedSymcretes ← [];

4: do

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

100

5: concretizedQuery ← query, symcretes;

6: resp ← SOLVER.CHECK(concretizedQuery);

7: if RESP.ISINVALID() then

8: break;

9: end if

10: relaxationProceeded ← false;
11: validSymcretes ← RESP.VALIDITYCORE().ALLARRAYS().FILTER(isSymcrete);

12: if (validSymcretes\symcretes).ISEMPTY() then

13: break;

14: end if

15: relaxationProceeded ← VALIDSYMCRETES.INTERSECT(symcretes).ISEMPTY();

16: removedSymcretes ← REMOVEDSYMCRETES.UNION(validSymcretes);

17: symcretes ← symcretes \ validSymcretes;

18: while relaxationProceeded;

19:

20: if ¬relaxationProceeded then

21: return Valid

22: end if

23:

24: for sym ∈ removedSymcretes do
25: sym ← GETVALUEBYSOURCE(sym.source);

26: end for

27:

28: concretizedQuery ← query, symcretes

29: resp ← SOLVER.CHECK(concretizedQuery)

30: return RESP.VALIDITY()

31: end function

Firstly, we may suppose, that addresses of objects with symbolic size may be considered as symbolic

values. The idea comes from the fact, that two allocations with different sizes at the same location

in source code will likely receive different addresses.

Secondly, we may assume that the size and address of one object are dependent values, i.e.

changing of object’s size may affect the address in the enclosing address space.

Also, we need present several requirements for our implementation:

1) it should allow to dynamically resize objects

2) if several states maintain the same objects with different actual sizes, they must appear

identically

3) it should consume as less memory, as possible

The logic behind the first requirement can be seen in the example at Listing 4.

char * s = malloc(n);

if (n > 1) {

 if (n > 2) {

 s [n – 1] = 2;

 }

}

Listing 4. Reallocation

In the assumption of n to be a symbolic variable, at the first line, we allocate an object with

symbolic size. The most inner if-statement must be reachable with the object of size at least 3

addressable by pointer s.

The second requirement says, that states containing the same object with different concretized sizes

must keep its properties: ID, alignment, allocation site, address and size expressions, and so on.

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

101

This requirement arises from the fact, that all actions are done with the specified object, and its

properties cannot be violated or become outdated. Hence, after state forks, we must be able to

use old constraints with new ones to find a solution for addresses and sizes in different branches

of execution.

The last requirement states, that our implementation should use as less memory as possible. More

detailed, since SMT-solvers work with variables as with numbers without any additional

information, they might give huge models for objects with symbolic size. That may cause

performance issues. Another problem is that the test case, that the symbolic engine will generate to

report a bug, also can be huge enough. Usually, users want to receive the smallest test case to find

the issue, therefore, we need to take care of that requirement.

4.2 Implementation of objects of symbolic size

As noted above, addresses of objects with symbolic sizes may be considered symbolic. Also, in

the Section 1, we have already noticed, that we can use symcrete variables in this case.

To use them we added a new array source, which we called AddressSource and an algorithm,

that will be able to generate solutions for such arrays. We introduced an AddressGenerator

interface for that purpose. It has only one method allocate(addressArray, size). All

the classes implementing AddressGenerator should provide appropriate (e.g. non-

overlapping) addresses for specified address array addressArray from the arguments list

each time the allocate(addressArray, size) method is called.

We implement this interface in AddressManager class, which provides an additional method

allocateMemoryObject(addressArray, size).

This class is used in both concretizing solver and the execution engine. On call to allocate it

allocates the memory, and ceiling size to the nearest power of 2. Then it creates a new memory

object, that should copy all properties of the already existing memory object, that utilizes the

same array as the address array and caches created object. It is also optimized for multiple

allocations. Therefore, if the solver requests a size less than at least one of the cached memory

objects, then it will return it (that optimizes memory consumption). Note, that in the worst case,

this manager will use 2M bytes of memory, there M = 2⌈log2 S⌉ and S is the size of the biggest

memory object. An approach with the powers of 2 for allocated sizes has been chosen not to change

concretizations of addresses for all other states, that use the same memory object. This is because

certain states may force expressions to take concrete values (for instance, during the execution of

an external call), and changing of address value for a group of states will invalidate such states.

allocateMemoryObject(addressArray, size) method is used to receive a memory

objects created at allocate method. These memory objects are required to update an address

space of execution state after recomputation of concretization for symcretes in its path constraints.

Since now, as we can maintain objects with symbolic addresses, we may apply symcretes to handle

the model for objects with symbolic size. For that, we introduce symcretes with array source

SizeSource. Symcretes with such source will contain values, corresponding to the size of memory

objects, and therefore, their sum should be minimized (as we said in the requirements above). We

extended KLEE’s solver interface with a minimization algorithm, that solves an optimization

problem and computes minimal possible values for a expression. This is done by the binary

search on the answer for a given expression with a set of given assumptions.

One more important thing about this implementation is that address symcrete cannot become the

reason for symcretes recomputation. It means that if in the algorithm at the Listing 5 we received

an address symcrete as a symcrete with a non-appropriate value and did not receive the size symcrete

for the same object, we will not recompute the address and size. This is done for reasons that as we

are using the system’s allocator, we are not able to choose the values for addresses and ourselves.

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

102

Hence, if some concretization for some addresses violates constraints, then it is likely constraints on

addresses were added and we cannot continue analysis for that execution path (except null check,

in our implementation it is checked separately). For now, we cannot handle such situations

properly, but for real-world problems, it covers most of the use cases.

Let’s see an example presented in Listing 5. In this example, we dynamically allocate memory

objects of size n. At the moment of allocation n might take any possible value of type unsigned,

and we do not know the exact size of allocated objects. As we are applying a minimization strategy

for objects of symbolic sizes, the minimal possible value for the size of allocated objects is 0.

Hence, before first if-statement exact size of allocated memory object in address space of

enclosing execution state will be 0, and we will have two known symcretes: size and address with

concretizations 0 and $(malloc(0)) (return value of call to malloc function),

correspondingly, and PC = [n = ssize]. Condition in the first if-statement adds constraint

on the symcrete address of allocated memory object. Since then, in the unsatisfiable core we

will have two constraints: [saddress = $(malloc(0)), saddress < 10]. As it

contains only symcrete for address, we say that we are not able to do anything if the current

model is inappropriate. To execute the next if-statement we need to discuss one more

optimization.

It may turn out, that from the given constraints we can deduce, that the size of the objects is

a huge enough number. At Listing 5 size of the allocated object in the then branch of second if-

statement might take values not less than 100001. If we try to get a model for such arrays in the

execution engine, we will receive problems with performance and memory consumption. To solve

such problems, we extended KLEE with structure SparseStorage — it is a byte buffer with the

specified default value. To fill it we query the solver only about bytes in the array that were

used for reads that were applied to receive a model within this query. Is allowed to greatly

reduce memory usage and increase performance.

unsigned n <- symbolic;

char * s = (char *) malloc(n);

if (s < 10) {

 exit (1);

}

if (n > 100000) {

 printf ("Huge!");

} else {

 printf ("Small!");

}

Listing 5. Symbolic size allocation

Returning to the example, both branches of second if-statement are reachable with our

execution state. In the then branch we will have an object of size 100001, and in the else branch

— an object of size 0.

The last implementation detail is related to default values of uninitialized memory objects not

marked as symbolic. In the real world almost always content of memory allocation consists of

undefined bytes. In the initial KLEE implementation, this problem did not receive attention and all

allocations were filled with 0 by default for objects with constant content. To save that semantics,

we engaged Z3-functionality of constant arrays, i.e. arrays with a default value. Therefore, we

introduced an additional array source ConstantWithSymbolicSize. This source indicates, that the

underlying objects are a constant array (not symbolic), but have symbolic size. Therefore, in

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

103

translation to the solver, it should receive a Z3’s constant array with a default value specified in that

source.

4.3 Improved lazy initialization

In Section 2 we described previously existing implementation of the lazy initialization

mechanism within our fork of KLEE. In that implementation, we were forced to add additional

constraints to restrict overlappings of lazily initialized memory object with any other objects.

Once we added symcretes functionality, we may apply that technique to lazy initialization. The

usage scheme is quite similar to the objects of symbolic size, but for now, we have explicitly defined

symbolic address. Moreover, we can also use extensions with objects of symbolic size to lazily

initialize memory objects as we do not know the exact size of the object, which we are

dereferencing at the moment of lazy initialization. Thus, it turns out, that to lazily initialize a

memory object all we need is to create a new object with symbolic size and add an equality

constraint between the symcrete address and address, which have been used for dereferencing.

5. Evaluation

5.1 Experiment

For evaluation of the described features, we have used the test sets from TestComp-2022

competition [11]. Our main goal was to test the proposed approach implemented on top of the

KLEE (KLEE-SYM) and make a comparison with the version of KLEE extended with lazy

initialization (KLEE-LI).

We have used KLEE-LI based on the KLEE of version 2.3 with Z3 of version 4.12.1 as SMT-

solver [12].

We have selected 5 different test sets with over 2000 tests per each — MemSafety-Arrays (MS-

A), MemSafety-Heap (MS-H), MemSafety-LinkedLists (MS-LL), ReachSafety-Arrays (RS-A) and

Termination-MainHeap (T-MH). Comparison has been made by the following metrics: instruction

coverage (icov), branch coverage percentage (bcov), and numbers of found vulnerabilities (errs).

Coverage has been measured with gcov [13] util.

Experiments were conducted on a workstation with CPU AMD Ryzen 7 3800X 8-Core with 16

gigabytes of RAM under the control of Linux. Execution of each test was bounded with 30 seconds

timeout. As Z3 may receive complex queries, its execution time also has been bounded with 5

seconds timeout to prevent memory and time issues.

5.2 Results

Average results for tests in each source set are presented in Table 1.

We can notice significant improvements at ReachSafety-Arrays and MemSafety-Arrays for all

parameters. These test cases used dynamic allocations of blocks with indeterminate sizes and

therefore received much better results in contrast with KLEE-LI. In addition, the amount of found

vulnerabilities also increased since it became possible to explore more paths that had been beyond

the abilities of the engine before.

Nonetheless, we did not receive full coverage of these two test sets. One of the reasons that symbolic

execution is sensible to strategies of path selection: these strategies navigate the engine through

the exponential branching space. For presented test sets, the problems may come from constructions

of a form presented in Listing 6.

Our goal is to cover the return 0 statement. But to do that KLEE-LI should get information,

that this line is reachable only if 256 is a factor of n. As it cannot infer such information, it will

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

104

brute force all possible variants on n until it will be able to reach the selected line of code. For

larger programs, it may take a while to reach such statements.

On the other hand, we might see a slight deterioration in the instruction coverage and the number

of errors detected on the Termination-MainHeap test set. This issue is connected to the imprecision

of modelling the allocated buffer’s contents: while in reality the memory of allocated buffers is

guaranteed to be initialized, KLEE models the newly allocated buffers as filled with some fixed

concrete value.

Also, we’ve collected additional statistics about verdicts for the generated tests (see Table 2). We’ve

calculated the number of generated tests for each source set (column overall), the number of

execution paths that have been halted because of the inability of the old version to maintain objects

of symbolic size correctly (halted), and the number of solver errors happened during program

exploration, e.g. timeouts, internal errors, etc. (serrs).

Table 1. TestComp benchmarks average results

TestSet KLEE-LI KLEE-SYM

 icov bcov errs icov bcov errs

MS-A 71.8% 57.2% 346 79.5% 67.5% 680

RS-A 57.4% 45.0% 393 69.3% 61.5% 532

T-MH 91.2% 78.8% 317 90.1% 80.9% 215

MS-H 45.2% 46.2% 51 45.2% 45.7% 52

MS-LL 33.0% 30.2% 55 33.0% 30.2% 55

Table 2. Tests generated for TestComp benchmarks

TestSet KLEE-LI KLEE-SYM

 overall halted serrs overall halted serrs

MS-A 801 455 0 681 0 1
RS-A 649 238 18 539 0 7

T-MH 539 222 0 216 0 1

MS-H 58 7 0 52 0 0
MS-LL 55 0 0 55 0 0

This table demonstrates that our approach has reduced the number of internal errors in KLEE and

increased the amount of non-halted branches. For the last two test sets, we did not receive any

improvements in instruction and branch coverage (Table 1). However, for the test set MemSafety-

Heap number of errors, that we classified as halted, decreased to 0. For the test set MemSafety-

LinkedList, we’ve received identical results. The low percentage of coverage for these test sets

is explained by a significant number of syntactically unreachable code in tested programs.

unsigned n <- symbolic;

char * s = (char *) malloc(n);

for (int i = 0; i < n; i++) {

 s [i] = i % 256;

}

if (s [n – 1] == 255) {

 return 0;

}

return 1;

Listing 6. Allocation and cycle

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

105

6. Related works

Symbolic execution with symcrete variables is an already known approach. For instance, the

authors of “Deferred Concretization in Symbolic Execution via Fuzzing” [7] describe a similar

approach, using symcretes to better approximate external calls with fuzzer (yet another application

of symcretes). Similar to symcrete variables ideas are also used in well-known techniques of

symcretic [14] and concolic [15] execution. The idea behind these methods is to combine a

symbolic and concrete execution to improve performance and increase code coverage in

comparison with plain symbolic execution. Unlike execution with symcrete variables, these

approaches use concrete values to guide an execution, while we use symcrete variables to increase

the accuracy of symbolic execution analysis.

However, the memory model can be improved without a symcrete variables approach. For

instance, authors of “A bounded symbolic-size model for symbolic execution” [16] propose an

approach for memory modelling, where all constraints restricting memory objects overlapping

are added explicitly. To solve a problem with excessive memory consumption the authors specify

a bound on size for objects with symbolic sizes. On the one hand, such a way of modelling

objects with symbolic size does not require additional queries to the solver to minimize object sizes,

as memory consumption becomes the responsibility of the users. On the other hand, that bound may

affect the completeness of a symbolic execution engine, i.e. restrict an engine from exploring

possibly reachable paths, as in some cases user will have to guess the bound to achieve higher

coverage. Therefore, memory consumption will increase and performance degrade.

Another possible implementation of objects with the symbolic size is presented in the work

“Symbolic-size memory allocation support for Klee” [17]. It introduces a segmented memory

layout approach for KLEE symbolic execution engine. The core difference is that this work

proposes a memory model, where each memory allocation lies in its memory segment. In contrast,

our implementation of objects with symbolic sizes does not significantly change the memory model

of vanilla KLEE, and therefore still can be considered flattened. To resolve a problem with

excessive memory consumption, the authors use the same methods as described in this article:

size minimization to reduce overall memory consumption and sparse structures to keep only useful

data for symbolic arrays.

7. Conclusions

Accurate modelling of specific code constructions with logical constraints might be too complicated

(recall the problem with external calls). We can make under or overapproximations to at least

continue analysis, but with a significant loss of precision. To get things slightly better we apply the

technique of symcrete variables – symbolic variables paired with concrete values for it, fitting the

current constraint set.

We have proposed our implementation of dynamically recomputed symcrete values in KLEE

for LLVM-programs analysis. For that, we have also enhanced the execution engine with the

validity cores. Then we have shown how to engage this feature to model objects with symbolic

size. To optimize the memory consumption problem, we have implemented a size minimization

algorithm for objects with symbolic size and sparse storage to store only the affected solution

bytes. Also, we have improved the existing mechanism of lazy initialization by address

symcretization and interpretation of initialized object size as symbolic. We’ve also presented an

implementation of this approach on top of KLEE and showed its effectiveness on several tests of

Test-Comp competition.

Symcretes infrastructure is a powerful foundation for other improvements. For instance, we may

use a similar approach to approximate the behaviour of external or undefined functions with

fuzzers, as described in “Deferred Concretization in Symbolic Execution via Fuzzing” [7]. The

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

106

return value and function arguments, in this case, should be marked as symcretes, and calls to

that function generate concrete values for symcretes.

Another interesting idea is to use a symcrete infrastructure with a type system. This might be

useful if we want to test a program, which operates with polymorphic objects. Types of such

objects may be considered symbolic, and therefore we have uncertainty in calls to virtual

functions and sizes of underlying objects. This uncertainty can be resolved with symcretes, as it

seems that we can model such behaviours with objects with symbolic sizes and calls to undefined

functions.

References
Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three decades later”. In:

Communications of the ACM 56.2 (2013), pp. 82–90.

Clark Barrett and Cesare Tinelli. “Satisfiability modulo theories”. In: Handbook of model checking.

Springer, 2018, pp. 305–343.

Leonardo de Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In: International conference on

Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337–340.

Haniel Barbosa et al. “cvc5: A versatile and industrial-strength SMT solver”. In: Tools and Algorithms for

the Construction and Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,

April 2–7, 2022, Proceedings, Part I. Springer. 2022, pp. 415–442.

Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020”. In: arXiv preprint

arXiv:2006.01621 (2020).

Corina S Pa˘sa˘reanu, Neha Rungta, and Willem Visser. “Symbolic execution with mixed concrete-

symbolic solving”. In: Proceedings of the 2011 International Symposium on Software Testing and Analysis.

2011, pp. 34–44.

Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. “Deferred concretization in

symbolic execution via fuzzing”. In: Proceedings of the 28th ACM SIGSOFT International Symposium on

Software Testing and Analysis. 2019, pp. 228–238.

Misonijnik A. et al. “Automated testing of LLVM programs with complex input data structures”. In:

Proceedings of ISP RAS 34.4 (2022), pp. 49–62.

Sarfraz Khurshid, Corina S Pa˘sa˘reanu, and Willem Visser. “Generalized symbolic execution for model

checking and testing”. In: International Conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer. 2003, pp. 553–568.

Cristian Cadar and Daniel Dunbar. KLEE. Version 2.3. 2022. URL: https://github.com/klee/klee/tree/v2.3.

Dirk Beyer. “Advances in Automatic Software Testing: Test-Comp 2022.” In: FASE. 2022, pp. 321–335.

Leonardo de Moura and Nikolaj Bjørner. Z3 4.12.1. Version 4.12.1. 2023. URL:

https://github.com/Z3Prover/ z3/releases/tag/z3-4.12.1.

Brian Gough and Richard M Stallman. “An Introduction to GCC for the GNU Compilers gcc and g++”. In:

Network Theory Ltd 258 (2004).

Peter Dinges and Gul Agha. “Targeted test input generation using symbolic-concrete backward execution”.

In: Proceedings of the 29th ACM/IEEE international conference on Automated software engineering. 2014,

pp. 31–36.

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A concolic unit testing engine for C”. In: ACM

SIGSOFT Software Engineering Notes 30.5 (2005), pp. 263–272.

David Trabish, Shachar Itzhaky, and Noam Rinetzky. “A bounded symbolic-size model for symbolic

execution”. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. 2021, pp. 1190–1201.

Michael Sima´ˇcek. “Symbolic-size memory allocation support for Klee”. PhD thesis. Masarykova

univerzita, Fakulta informatiky, 2018.

Информация об авторах / Information about authors

Сергей Антонович МОРОЗОВ – студент 3-го курса Национального исследовательского

университета “Высшая школа экономики”. Сфера научных интересов: методы анализа

программ и оптимизации символьного исполнения.

Морозов И.А., Мисонижник А.В., Мордвинов Д.А., Кознов Д.В., Иванов Д.А. Симкретная модель памяти с ленивой

инициализацией и объектами символьного размера в символьной виртуальной машине KLEE. Труды ИСП РАН, 2023, том 35, вып.

3, с. 91-108.

107

Sergey Antonovich MOROZOV – Higher School of Economics, third-year student. Research

interests: methods of program analysis and symbolic execution optimization.

Александр Владимирович МИСОНИЖНИК – старший инженер-программист компании IT

Solutions Inc. Сфера научных интересов: методы эффективного поиска недостижимых

состояний в символьном анализе программ.

Aleksandr Vladimirovich MISONIZHNIK – IT Solutions Inc., senior software engineer. Research

interests: efficient pruning of unreachable states in symbolic program analysis.

Дмитрий Александрович МОРДВИНОВ – кандидат физико-математических наук, доцент

кафедры системного программирования Санкт-Петербургского государственного

университета. Сфера научных интересов: формальная верификация, синтез программ и

решение систем дизъюнктов Хорна.

Dmitry Aleksandrovich MORDVINOV – PhD in Physics and Mathematics, Associate Professor at

the Department of System Programming of St. Petersburg State University (SPbSU), Research

interests: formal verification, program synthesis, and constraint Horn clause solving.

Дмитрий Владимирович КОЗНОВ – доктор технических наук, профессор кафедры

системного программирования Санкт-Петербургского государственного университета,

Сфера научных интересов: программная инженерия, модельно-ориентированная разработка

программного обеспечения, программные данные, машинное обучение.

Dmitry Vladimirovich KOZNOV – D. Sc., Associate Professor, Professor St.Petersburg State

University (SPbSU). Research interests: software engineering, model-driven software development,

program data, machine learning.

Дмитрий Аркадьевич ИВАНОВ – начальник департамента исследований и разработок

инструментальных средств компании Huawei Technologies Co., Ltd. Сфера научных

интересов: инструменты разработки, анализ кода, символьное исполнение, интегрированные

среды разработки.

Dmitry Arkadevich IVANOV – Huawei Technologies Co., Ltd, Director of R&D Toolchain

department. Research interests: Developer Tools, Code Analysis, Symbolic execution, IDE.

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and

objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

108

