Tpyowr UCIT PAH, mom 35, éwin. 3, 20192. //Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-7 @C-H

“Symcrete” Memory Model with Lazy Initialization
and Objects of Symbolic Sizes in KLEE

1S.A. Morozov, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 A.V. Misonizhnik, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>
$D.A. Mordvinov, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru=
4D.A. lvanov, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>

! National Research University ‘Higher School of Economics’,
16, Soyuza Pechatnikov Street, Saint Petersburg, 190121, Russia.
21T Solutions Inc.,

41, Novoslobodskaya Street, Moscow, 127055, Russia.

3St. Petersburg State University,
7/9, Universitetskaya Embankment, Saint Petersburg, 199034, Russia.

4Huawei Technologies Co., Ltd.,

69-71, Marata Street, Saint Petersburg, 191119, Russia

Abstract. Dynamic symbolic execution is a well-known technique for testing applications. It introduces
symbolic variables — program data with no concrete value at the moment of instantiation — and uses them to
systematically explore the execution paths in a program under analysis. However, not every value can be
easily modelled as symbolic: for instance, some values may take values from restricted domains or have
complex invariants, hard enough to model using existing logic theories, despite it is not a problem for
concrete computations. In this paper, we propose an implementation of infrastructure for dealing with such
“hard-to-be-modelled” values. We take the approach known as symcrete execution and implement its robust
and scalable version in the well-known KLEE symbolic execution engine. We use this infrastructure to
support the symbolic execution of LLVM programs with complex input data structures and input buffers with
indeterminate sizes.

Keywords: symbolic execution; software analysis; lazy initialization; symcrete execution; smt-solvers.

For citation: Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete”
memory model with lazy initialization and objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS,
vol. 35, issue 3, 2023. pp. 91-108. DOI: 10.15514/ISPRAS-2023-35(3)-7

Acknowledgements. This work is supported by the grant of the Russian Science Foundation (RSF) Ne 22-21-
00697.

91

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

CumMmKpeTHasa moaenb NaMATU C IEHUBOW MHULMaNM3aumen mn
06beKkTaMu CUMBOJSILHOIO pa3Mmepa B CUMBOJSILHOW BUPTyaribHOM
mawuHe KLEE

L C.A. Moposos, ORCID: 0000-0003-1160-5614 <morozov.serg901@gmail.com>
2 A.B. Muconuxcnux, ORCID: 0000-0002-5907-0324 <misonijnik@gmail.com>
3 J1.A. Moposunos, ORCID: 0000-0002-6437-3020 <mordvinov.dmitry@gmail.com>
3 J1.B. Kosnos, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
4 I.A. Hsanos, ORCID: 0000-0002-0420-9077 <korifey@gmail.com>

! Hayuonanonwuii uccnedosamenvckuii ynusepcumem “‘Boicuias wixona sxonomuxu”,
Poccus, 190121, Cankm-Ilemepoype, Corsa [leuamnukog yu., 0.16.
Z|T Solutions Inc.,
Poccus, 127055, Mocksa, Hoéocroboockas ya., 0.41.

8 Canxm-Ilemepbypackuii 20cydapcmeennvlil yHusepcumen,

Poccus, 199034, Canxm-Ilemepoype, Yuusepcumemckas nab., o. 7-9.
4Huawei Technologies Co., Ltd.,
Poccus, 191119, Cankm-Ilemepoype, Mapama yn., 0. 69-71.

AHHOTauus. JIMHAMHYECKOe CHMBOJBHOE BBINOJHEHHE — XOPOIIO M3BECTHBIH METOJ] TECTHPOBAHUS
npuwioxeHniH. OH BBOAUT IOHSATHE CHMBOJIBHOW IEPEMEHHOH — [aHHBIX IPOTPaMMblI, HE HMMEIOIMINX
KOHKPETHOTO 3HAYEHHSI B MOMEHT OOBSBICHHUS, — U UCTIOIB3YET UX ISl CHCTEMAaTHYECKOTO N3ydeHHs ITyTel
BBINOJHEHUS B aHamu3upyemoil mporpamme. Onnako He Cankt-IlerepOyprekmii rocyaapcTBeHHbIN
YHUBEPCHTET Ka)KI0€ 3HAUCHHE MOXKET OBITH JIETKO CMOJCIMPOBAHO KaK CHMBOJIMYECKOE: HalpHuMep,
HEKOTOpBIC 3HAYEHHS] MOTYT NPHHUMATh OTPAaHUYCHHOE YHCIIO 3HAUCHUH WIM UMETh CJI0)KHBIC HHBApPHAHTH,
KOTOpBIE JOCTaTOYHO CJIOXKHO CMOJEIHPOBATh C HCIHOJIb30BAHMEM CYIIECTBYIOIIUX JIOTHYECKHX TEOpHH
HECMOTpPSI Ha TO, YTO 3TO HE SBIACTCS MpoOIEeMOW I KOHKPETHBIX BBIYHCICHUI. B 3Toi craThe MBI
MpeyiaracM peaan3annio HHPPACTPYKTYPHI 11 pabOThl ¢ TAKUMH “‘TPYAHO MOACTHPYEMBIMU™ 3HAYCHUSIMHU.
Msbl ucmonb3yeM IMOAXOM, HM3BECTHBI KaK CHMKPETHOE HCIIONHEHME, M pPealn3yeM €ro HaJeXkHYI H
MacIITadHPYEMYIO BEPCUIO B XOPOLIO U3BECTHOM JIBM)KKE CUMBOJIBHOTO BhImoHeHHs1 KLEE. MbI necnonbzyem
9Ty MHPPACTPYKTYPY UL HOAIEPIKKH CUMBOJIBHOTO MCHONHEHUs mporpamMM Ha sizbike LLVM co croxubIME
CTPYKTYpaMH BXOJHBIX TaHHBIX M BXOJHBIMH Oydepamu HeoIpe/ieIeHHBIX pa3MepOB.

KiwueBble c¢j0oBa: CHMBOJbHOC HCIOJNHCHHE; aHANW3 MPOTPAMMHOTO oOeclieueHHs; JICHHBAs
WHUIMATTU3a1us]; CAMKPETHOE UCIIOIHEHUe; SMt-permares.

Jas uutupoBanusi: MopozoB M.A., Muconmwkauk A.B., Mopasuraos [I.A., Koznos /I.B., MBanos [I.A.
CuMKpeTHas MOJIENb MTaMSTH C JICHHBOH MHAIIMAIH3aNeH 1 00bEKTaMI CHMBOJIBHOTO pa3Mepa B CHMBOJIBHON
upryanpHoil MammHe KLEE. Tpyner UCIT PAH, tom 35, Beim. 3, 2023 r., ctp. 91-108 (Ha aHTIHiicKOM
si3bike). DOI: 10.15514/ISPRAS-2023-35(3)-7

BaaromapnocTn. PaGora noxnepxana rpantom Poccuiickoro Hayunoro donna (PH®) Ne 22-21-00697.

1. Introduction

Dynamic symbolic execution is a software testing technique that allows exploring execution paths
in a program under analysis, generates test coverage, and finding bugs in a given source code (e.g.
out of bound memory errors or signed integer overflows) [1]. This is done by marking some program
variables as symbolics, in other words, variables with no specific value. During analysis, a symbolic
engine adds logical constraints to them, which possibly restrict values in different paths. To prove
the satisfiability or unsatisfiability of a set of constraints, symbolic engines widely use SMT-solvers
[2], such as Z3 [3], CVC5 [4], bitwuzla [5] and many others.

92

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

Encoding a set of values with logical constraints for each symbolic variable is one of the crucial
ideas in symbolic execution. This approach enables keeping several program executions as a single
execution state at the current position in the exploration path. All possible solutions for these
constraints then become the values of symbolic variables in corresponding execution states. Since
solving such formulas is an NP-hard problem, the performance and completeness of the solution
heavily rely on the number and size of the logical formulas passed to the SMT-solver.

However, some values in a program can be hard to model by decidable logical constraints. The
problem arises from the fact that the values of a variable may belong to a restricted domain. Such
domains can have implicit and complex rules to encode in a logical formula. Let us provide some
examples in which the described problem appears:

o Objects with symbolic sizes. Program under analysis may dynamically allocate memory on
the heap (e.g. withmalloc (n) in C language or operator new[n] in C++). If we
treat the argument passed to that function as symbolic, we will allocate an object whose
size may have different values depending on the current execution path (object with
symbolic size). Consider an example presented in Listing 1.

int foo (int n) {

char » s = (char *) malloc (n);
if (n == 1) {
s [0] = 0;

} else if (n > 1) {
s [1] = 10;
}

return 1;

Listing 1. Dynamic allocation

If we pass a symbolic argument to that function, we will allocate an object with symbolic
size at the first line. Then the allocated object will have different sizes at the distinct
branches of if-statement. Modelling objects with symbolic size might take many
computational resources. Each allocated memory object is represented as a separate entity
and cannot intersect with other objects. Naive modelling of these restrictions may result in

SMT solvers needing to handle 0 (n?) constraints, where n is the number of memory
objects. Such modelling can significantly impact the performance of symbolic execution.

e External calls. During program exploration, the symbolic execution engine may meet calls
to undefined or external functions, i.e. functions with no sources provided. As the
engine does not have any information about the encountered function, it cannot properly
model function behaviour to continue accurate analysis: for instance, the return value of
this function may take a limited number of values. Interpreting return value as a symbolic
value may be too excessive to model function behaviour, and the symbolic engine is
doomed to lose precision in this case.

One possible behavior is plain modelling of all such behaviors described in the bullets above.
In this case, the engine over-approximates program behavior, i.e. explores more paths than there
are. Therefore, it degrades performance and accuracy.

Another behavior, taken, for instance, in KLEE symbolic execution engine [1], is to fix one
possible solution during analysis. When the engine meets specific code constructions, it picks up
the solution for all symbolic variables involved in one. Then it restricts taken variables with values

93

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

from the received concrete solution for the following exploration. For instance, the constructs
described above are modelled as follows:

e Obijects with symbolic sizes. We might avoid performance issues by choosing one exemplar
of asymbolic size fitting current constraints at the moment of the allocation. For example,
while executing the malloc (n) statement at Listing 1, KLEE would choose some
concrete value of n fitting the current path constraints, say, n = 1. But then,
branchings on n would be evaluated only within this concrete assignment, leading to
missed branches. In this case, KLEE misses covering the s[1] = 10, statement.

e External calls. Calls to external or undefined functions may be modelled as actual calls
to these functions. As such functions might take arguments, which were marked as
symbolic variables before, the symbolic execution engine needs to find a solution for them
to satisfy previously added logical constraints. Return value then will be a constant value
and cannot be treated as a symbolic value.

In these cases, the engine explores fewer paths than actually exist. On the one hand, it leads to
performance improvements, as the engine analyses a smaller number of possible program
behaviours. On the other hand, it impairs the engine’s ability to find vulnerabilities in a program
under analysis, leading to a non-exhaustive search through the program inputs space. In other
words, this approach under-approximates program behaviors.

The idea that can be applied to resolve problems discussed above is to use a well-known approach
of symcrete® [6, 7] execution. This feature allows a symbolic execution engine to mark variables
as symbolic, but additionally keep a concrete value (concretization) for it satisfying some set of
logical constraints. This concretization might be given by an algorithm different from the SMT-
solver. Therefore, if such algorithms maintain some invariants inside, then they will be
automatically satisfied for produced models.

The described idea gives several opportunities to the KLEE execution engine, but one of the most
interesting is the support of objects with indeterminate sizes. It is achieved due to the property of
allocators to allocate non-intersecting objects and the property of symcretes to keep concrete values
fitting current constraints. Hence, we can dynamically maintain memory layout with no significant
impact on performance. The feature of objects with symbolic sizes would increase the engine’s
precision for detecting buffer overflows and other memory issues in LLVM programs.
Symcretes should be fully compatible with the existing features of the symbolic virtual machine,
such as lazy initialization [8, 9]. This technique enables the exploration of program behaviors
with complex input data structures.

In summary, the main contributions of this paper are:

1) Implementation of the infrastructure of symcrete execution in KLEE.

2) Application of this infrastructure to model objects of symbolic sizes.

3) Application of this infrastructure to improve the currently existing mechanism of lazy
initialization.

2. Background

Before discussing the main ideas of this paper, let us introduce the basic concepts of symbolic
execution used throughout this paper.

crete” = i .
1 «Symcrete” = symbolic + concrete

94

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

2.1 Execution and forking

Dynamic symbolic execution executes a program with symbolic variables, i.e. values that represent
all possible concrete program inputs. During program exploration, the execution engine operates
with execution states, which can step over one instruction and fork. For these states, the symbolic
execution engine maintains the inner representation of programs memory model. Also, every
execution state maintains path constraints (PC) — a set of logical formulas describing the
explored path. When the execution engine meets a conditional operator, it queries the solver with
constraint and its negation, and forks state if solutions for both constraints exist. If only one
statement is true, it does not fork and simply proceeds the execution of a reachable path.
Take a look at the example in Listing 1: let n be a symbolic parameter of the function. In the
beginning, path constraints are empty, and the inner memory representation contains only one
record: n — A. After execution state meets the line if (n==1) { ..}, it queries solver
about the validity of PC with A =1 and PC with = (A =1). As they are both satisfiable, it
splits the current execution state into two states with the same objects in memory and path
constraints PC’/ = PCAA=1, PC”=PCA—- (A= 1) correspondingly.

2.2 Memory model

Objects in memory have addresses, which represent their location in the symbolic engine’s address
space, sizes, representing the number of allocated bytes for their content in address space,
alignment, which makes restrictions on an address (for instance in source code user can call
posix memalign and memalign functions), and contents, an array of (potentially symbolic)
bytes. To handle all that information, symbolic engines maintain memory model, which stores
required information about all currently existing objects: addresses, sizes, contents, and so on.

2.3 Constraints Representation

Every constraint in KLEE is an expression. Expression is a tree, each node of those is an
operation, and children are operands. Every leaf of these trees is either constant or read from
a symbolic array. A symbolic array is an array from the SMT theory of arrays, i.e. unbounded
storage of symbolic integers, supporting both load and store operations. Each store operation
creates a new version of an array with a value changed by a specified index, therefore arrays can
be considered immutable.

For brevity, we use the term “array” instead of “symbolic array”.

2.4 Validity Cores

A set of constraints with a statement may be valid, that is, no counterexample can be found for it,
and invalid otherwise. To check the validity of expressions, the engine queries SMT-solver with
a given set of assumptions and negation of the provided statement. If SMT-solver gives a
solution that satisfies the received query, then a counterexample is found and the initial statement
in the assumption of constraints from the set is invalid. Otherwise, it may return a validity core,
a subset of constraints “explaining” the validity.

For instance, consider the set of assumptions {A < 10,A > «} and a statement A >10. We
would like to check the validity of a statement within the assumptions, that is, the validity
of the formula

VA, a : A < 1I0A A > a=>A > 10

To show it, we might prove that the negation is unsatisfiable, i.e.

95

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

INLa:A<10AA> aA (2> 10)

SMT-solver would find a satisfying assignment, for example, {A1-1,21-0}. It means
that we have found acounterexample for the initial statement.

In contrast, if we check a statement A <11 with the same assumptions, we would query the
satisfiability of {A <10,A>a,— (A <11) } and receive from SMT solver the “unsatisfiable”
verdict. State-of-the-art SMT solvers can compute unsatisfiable cores, a subset of conflicting
statements. In this case, one unsatisfiable core is {A <10,- (A <11) }. It can be converted to
validity core: just take assumptions from the unsatisfiable core as-is, and convert the negated
statements from the unsatisfiable core to the original ones. In our example, the validity core
includes the assumption A < 10 and the statement A < 11.

2.5 Optimizing solvers

As mentioned above, solving logical formulas, which have been constructed during program
analysis, is the NP-hard problem. Hence, the complexity of the formulas in the query and the
number of such queries becomes a bottleneck of symbolic execution. To simplify the queries to the
solver, execution engines apply many optimizations for logical constraints. One way to provide such
optimizations is to use optimizing solvers — solvers that can modify, separate, construct additional
logical formulas, or even resolve received queries without calling an expensive SMT-solver. Such
a solvers can form a chain ending with the SMT-solver.

2.6 Pointer resolution

Many languages, like C or C++, allow storing addresses directly into locations and dereference
them. The resolution of concrete pointers is trivial, but symbolic execution engines might
encounter programs with symbolic pointers. Consider the example in Listing 2.

int x = 10;
int v = 20;
void bar (int * s) {

* s = 0y

Listing 2. Pointer resolution

As we do not know, at what address pointer s should be resolved, we must check every
possible memory object, including the pointer variable itself. To handle these cases, the vanilla
KLEE engine makes a pointer resolution operation: it iterates over all existing memory objects
in memory and attempts to dereference given pointer into them: query the solver if a formula
ptr+ idx>addressNptr+ idx+ type _size< address + size, with the formulas
from path constraints, where pt r is a dereferencing pointer, i dx is a relative offset (e.g. if we
access the array by some index, ptr[10] in C or C++ languages), type size is the size
of the type we are trying access through, address is the address of the memory object we are
trying to access, size is the size of that memory object. If the pointer can be dereferenced to
the chosen memory object, KLEE forks the current execution state and modifies path constraints
pc of the received state with the above constraint.

In the example in Listing 2, pointer s can be resolved to at least two existing objects: x or y. After
storing operation *s = 0; KLEE will maintain at least two execution states, in which 0 is
written to x or .

96

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

2.7 Lazy initialization

However, pointer resolution might not be enough to model all possible execution paths in a
program. Suppose, you need to test a code for a linked list presented in Listing 3.

typedef struct Node ({
int x;
Node * next;

} Node;

int baz (Node 1) {
l.next -> x = 1;
assert ((l.x + l.next -> x) % 2 ==0);

Listing 3. Linked list

In this code snippet struct Node contains a pointer to the next element in the linked list,
which will be a symbolic value if we pass a symbolic argument to function baz. Consequently,
pointer resolution at the line 1.next->x = 1 will proceed for the symbolic pointer in the
same manner as described above. As we do not have any other objects of type struct Node,
this code example will only test circular linked lists at most of length 1.

The problem here arises from the fact, that analyzing program does not contain explicitly
initialized additional linked list nodes. We will face a similar problem if we try to analyze any
recursive data structures, like Binary Search Trees, Linked Lists, and so on.

To overcome described obstacle modern symbolic engines apply a technique called lazy
initialization. This method allows initializing additional objects in memory, if so required, to
explore more program behaviors. Return to the example at Listing 3: during pointer resolution
the symbolic execution engine will allocate one more additional object of type struct Node
to model linked list with length at least 2 and fail the assertion assert ((1.x + 1l.next-
>x) % 2 == 0); (as for circular linked list we summed two equal numbers before).

3. Design principles

During infrastructure design, we agreed on a set of principles to create a maintainable and easily
extensible framework. These principles are as follows: (a) clear separation of public and private
interfaces, (b) recompute only the demanded values, and (c) concretization should always exist.
Let’s consider them in more detail.

a) Clear separation of public and private interfaces: One of the most important
requirements for symcretes architecture was to keep the symcretes public interface as simple as
possible. Thus, to prevent the developers from implementing complex logic in various spots of
symbolic engine code, the public interface of symcretes infrastructure should only provide
methods to add a symcrete value to the execution state and to receive a current concretization
for symcrete. All the internal architecture of symcretes and any processing details made by
its infrastructure should not be accessible from the symbolic engine code.

b) Recompute only demanded values: Since the symcrete variable is the symbolic variable
paired with the concrete value fitting some constraint set, then this concrete value may become
obsolete with the addition of a new statement. As it might be difficult to receive a new

97

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

model for all symcrete variables in such situations, we require recomputing concrete values
only for symcretes, which affects the validity of the query.

c) Concretization should always exist: At every moment, we should be able to receive an
actual model for the symcretes used in the current constraint set. In other words, symcretes
architecture should be similar to the “Observer” pattern, where the observable object is the
solver and it should provide a possibility to subscribe to the solver updates.

4. Implementation

We have built our implementation on top of the KLEE of version 2.3 [10].

Followed by the principles described above we have separated symcretes and internal
mechanisms to handle them, which we called concretizing solver. In our implementation
symcrete is a pair of an array and a concrete value. To make a symcrete expressions we assign
a read from created array to that expression. Concretization of symcretes is represented by the
map from such arrays to bits storages.

To distinguish different symcretes we equipped all arrays with a new characteristic — arrays
sources. These sources should reflect how the current array was received. For instance, an array
that has been made to handle the addresses of memory objects should differ from arrays that are
used to handle the content of memory objects. Also, these sources can carry useful properties for
algorithms, which are used to generate values for them. Wewill show the application of these
properties below.

The main logic for symcretes located in concretizing solver. It is one of the optimizing solvers, that
can modify and handle received queries properly. In particular, concretizing solver modifies each
query with constraints over symcretes: it adds equalities in form of (Eq (Read width 0
symcrete array), Constant), where Read width offset source is the read
expression of width width at offset offset and array source —and passes them to the
underlying solver. However, such modifications are not enough to handle symcretes.

Let us consider the following example. Suppose, we have a symcretes values x and y with
concretization x = 5, y = 10, query with the set of assumptions [x < 10, y < 20] and the
statement x < y. Concretizing solver at the preprocessing stage will make additional constraints
x =5,y =10, and consequently, the query will transform into a new query with the set of
assumptions [x<10,y<20,x=5, y=10] and statement x < y. Note, that this query is valid
according to “validity logic”, as to compute validity we negate the statement, which results in x >
y. Existing concretization cannot satisfy all assumptions with negated statement.

Therefore, existing concretization might add constraints, which force a given theorem to become
valid, despite the original query being invalid. To solve such a problem, we process a symcretes
relaxation after receiving a valid response from the solver. Symcretes relaxation is the algorithm
that aims to recompute values for symcretes to receive an invalid response if so exists.

To implement it according to our principles, we need to find all symcretes that have inappropriate
values (see principle “Recompute only required values™). Such values may be found in the validity
core, which might be received from the solver. For that purpose, we extended the interface of
KLEE’s solver with functions that may return validity cores on valid responses. Since then, we
can process a relaxation after receiving a valid response with current concretization.

The relaxation algorithm is provided in Algorithm 1. More detailed, the core part of the algorithm

is located inthe do { ... } while(...); loop. It firstly constructs a concretized query by adding
equality constraints on symcretes (line 5) and queries the solver with this query (line 6). If the
response is already invalid, the loop can be completed (lines 7-9), and all we need is to assign
appropriate values to symcretes, which have lost concretizations (lines 24-30). Otherwise, we
will look at the validity core from the valid response and collect all symcrete arrays, those

98

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

concretizations affected validity (this is done by collecting all arrays and filtering them by predicate
isSymcrete at line 11). After that, we check if we removed concretization, which was not
removed before (lines 15-17). If so, we continue the process. Otherwise, the current validity core
proves, that the initial query is valid.

In the general case, the presented process can take more than one iteration. This might happen,
as SMT-solver does not guarantee to return all unsatisfiable sets of formulas from the given query:
usually, they return any set of formulas that cannot be satisfied.

Let’s see that in the example. For instance, we have symcretes x and y with concretizations 0
and 1 correspondingly, and statement [x < y 1. The concretized query will have aform of [x <
y, x=0, y=11.Then we will query the solver with the statement x < 0. According to “validity
logic” query will transform to a set of formulas [x <y, x=0, y =1, x> 0], which cannot
be satisfied, and we can highlight at least three unsatisfiable subsets: [x= 0, x>0], [x <
y,x>0,y=1] and [x<y,x=0,y=1,x>0]. SMT-solver can return any of these. If it
returns the first subset, the algorithm will remove concretization only for x, but the query will
remain valid. Then on the second iteration, the SMT-solver return the second subset of
formulas from the presented subsets. Consequently, the algorithm will remove concretization for
y and after that find a counterexample to the initial statement, say, x=1, y = 2.

After removing all outdated concretizations for symcretes we need to assign new values to them.
To do that we query the registered algorithms (lines 24-26). After receiving new concretizations,
we check if the solution for the entire query invalidates the received statement in the assumption
of the given constraint set. If still not, we admit that the query is valid (lines 28-30). This can
happen when concrete values for symcrete variables received from registered algorithms cannot
provide values invalidating the query.

If the statement in the assumption of a set of given constraints is provably invalid, i.e. has a
counterexample, then we store concretizations of symcretes involved in that query in a
concretization manager. The concretization manager is the structure that stores concrete values
for symcretes for all encountered invalid queries. It may be accessed from the symbolic execution
engine to get the current concrete value for symcrete.

If we want to add a constraint without an explicit call to a solver, then we may lose the record
to the concretization manager. In this case, we need to update it manually from the code location
where the constraint is added.

Summing up all implementation details and principles, in KLEE to mark a variable as symcrete
we need to create a new array. For that array, we need to specify its source. For arrays with
such a source, we need to provide an algorithm which will be used to generate concrete values.
To access the concrete value of the symcrete variable we may query the concretization manager
with the constraint set and statement we are interested in.

In the next sections, we will show how we can use symcretes to support objects of symbolic sizes
and improve the existing mechanism of lazy initialization.

4.1 Properties of objects of symbolic size

Before discussing the implementation of objects with symbolic sizes we need to discuss some of
their properties. As we said before, every object has 3 main parameters: address from enclosing
address space, size, and content. The content of memory objects can be considered independently
from address and size, therefore we will not take it into account in the reasoning below.

Algorithm 1 Relaxation algorithm

1: function RELAX (query, symcretes)
2: relaxationProceeded — true;

3: removedSymcretes « [];

4: do

99

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

5: concretizedQuery — query, symcretes;

6: resp « SOLVER.CHECK (concretizedQuery) ;

7 if ReEsSP.ISINVALID() then

8: break;

9: end if

10: relaxationProceeded false;

11: validSymcretes — RESP.VALIDITYCORE () .ALLARRAYS () .FILTER (isSymcrete) ;
12: if (validSymcretes\symcretes) .ISEMPTY () then

13: break;

14: end if

15: relaxationProceeded — VALIDSYMCRETES.INTERSECT (symcretes) .ISEMPTY () ;
16: removedSymcretes « REMOVEDSYMCRETES .UNION (validSymcretes) ;
17: symcretes « symcretes \ validSymcretes;

18: while relaxationProceeded;

19:

20: if —relaxationProceeded then

21: return Valid

22 end if

23:

24: for sym € removedSymcretes do

25: sym « GETVALUEBYSOURCE (sym.source) ;

26: end for

27:

28: concretizedQuery — query, symcretes

29: resp — SOLVER.CHECK (concretizedQuery)

30: return RESP.VALIDITY ()

31: end function

Firstly, we may suppose, that addresses of objects with symbolic size may be considered as symbolic
values. The idea comes from the fact, that two allocations with different sizes at the same location
in source code will likely receive different addresses.

Secondly, we may assume that the size and address of one object are dependent values, i.e.
changing of object’s size may affect the address in the enclosing address space.

Also, we need present several requirements for our implementation:

1) it should allow to dynamically resize objects

2) if several states maintain the same objects with different actual sizes, they must appear
identically

3) it should consume as less memory, as possible

The logic behind the first requirement can be seen in the example at Listing 4.

char * s = malloc(n);
if (n > 1) {
if (n > 2) {

Listing 4. Reallocation

In the assumption of n to be a symbolic variable, at the first line, we allocate an object with
symbolic size. The most inner i f£-statement must be reachable with the object of size at least 3
addressable by pointer s.

The second requirement says, that states containing the same object with different concretized sizes
must keep its properties: ID, alignment, allocation site, address and size expressions, and so on.

100

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

This requirement arises from the fact, that all actions are done with the specified object, and its
properties cannot be violated or become outdated. Hence, after state forks, we must be able to
use old constraints with new ones to find a solution for addresses and sizes in different branches
of execution.

The last requirement states, that our implementation should use as less memory as possible. More
detailed, since SMT-solvers work with variables as with numbers without any additional
information, they might give huge models for objects with symbolic size. That may cause
performance issues. Another problem is that the test case, that the symbolic engine will generate to
report a bug, also can be huge enough. Usually, users want to receive the smallest test case to find
the issue, therefore, we need to take care of that requirement.

4.2 Implementation of objects of symbolic size

As noted above, addresses of objects with symbolic sizes may be considered symbolic. Also, in
the Section 1, we have already noticed, that we can use symcrete variables in this case.

To use them we added a new array source, which we called AddressSource and an algorithm,
that will be able to generate solutions for such arrays. We introduced an AddressGenerator
interface for that purpose. It has only one method allocate (addressArray, size). All
the classes implementing AddressGenerator should provide appropriate (e.g. non-
overlapping) addresses for specified address array addressArray from the arguments list
each time the allocate (addressArray, size) method is called.

We implement this interface in AddressManager class, which provides an additional method
allocateMemoryObject (addressArray, size).

This class is used in both concretizing solver and the execution engine. On call to allocate it
allocates the memory, and ceiling size to the nearest power of 2. Then it creates a new memory
object, that should copy all properties of the already existing memory object, that utilizes the
same array as the address array and caches created object. It is also optimized for multiple
allocations. Therefore, if the solver requests a size less than at least one of the cached memory
objects, then it will return it (that optimizes memory consumption). Note, that in the worst case,
this manager will use 21 bytes of memory, there ¥ = 2[1°% Sland S is the size of the biggest
memory object. An approach with the powers of 2 for allocated sizes has been chosen not to change
concretizations of addresses for all other states, that use the same memory object. This is because
certain states may force expressions to take concrete values (for instance, during the execution of
an external call), and changing of address value for a group of states will invalidate such states.
allocateMemoryObject (addressArray, size) method is used to receive a memory
objects created at allocate method. These memory objects are required to update an address
space of execution state after recomputation of concretization for symcretes in its path constraints.
Since now, as we can maintain objects with symbolic addresses, we may apply symcretes to handle
the model for objects with symbolic size. For that, we introduce symcretes with array source
SizeSource. Symcretes with such source will contain values, corresponding to the size of memory
objects, and therefore, their sum should be minimized (as we said in the requirements above). We
extended KLEE’s solver interface with a minimization algorithm, that solves an optimization
problem and computes minimal possible values for a expression. This is done by the binary
search on the answer for a given expression with a set of given assumptions.

One more important thing about this implementation is that address symcrete cannot become the
reason for symcretes recomputation. It means that if in the algorithm at the Listing 5 we received
an address symcrete as a symcrete with a non-appropriate value and did not receive the size symcrete
for the same object, we will not recompute the address and size. This is done for reasons that as we
are using the system’s allocator, we are not able to choose the values for addresses and ourselves.

101

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

Hence, if some concretization for some addresses violates constraints, then it is likely constraints on
addresses were added and we cannot continue analysis for that execution path (except null check,
in our implementation it is checked separately). For now, we cannot handle such situations
properly, but for real-world problems, it covers most of the use cases.

Let’s see an example presented in Listing 5. In this example, we dynamically allocate memory
objects of size n. At the moment of allocation n might take any possible value of type unsigned,
and we do not know the exact size of allocated objects. As we are applying a minimization strategy
for objects of symbolic sizes, the minimal possible value for the size of allocated objects is 0.
Hence, before first if-statement exact size of allocated memory object in address space of
enclosing execution state will be 0, and we will have two known symcretes: size and address with
concretizations 0 and $(malloc(0)) (return value of call to malloc function),
correspondingly, and PC= [n=ssize]. Condition in the first i f-statement adds constraint
on the symcrete address of allocated memory object. Since then, in the unsatisfiable core we
will have two constraints: [saddress = $(malloc(0)), saddress < 101.As it
contains only symcrete for address, we say that we are not able to do anything if the current
model is inappropriate. To execute the next if-statement we need to discuss one more
optimization.

It may turn out, that from the given constraints we can deduce, that the size of the objects is
a huge enough number. At Listing 5 size of the allocated object in the then branch of second i f-
statement might take values not less than 100001. If we try to get a model for such arrays in the
execution engine, we will receive problems with performance and memory consumption. To solve
such problems, we extended KLEE with structure SparseStorage — it is a byte buffer with the
specified default value. To fill it we query the solver only about bytes in the array that were
used for reads that were applied to receive a model within this query. Is allowed to greatly
reduce memory usage and increase performance.

unsigned n <- symbolic;

char * s = (char *) malloc(n);
if (s < 10) {
exit (1);
}
if (n > 100000) {
printf ("Huge!");
} else {
printf ("Small!");

Listing 5. Symbolic size allocation

Returning to the example, both branches of second if-statement are reachable with our
execution state. In the then branch we will have an object of size 100001, and inthe e1se branch
— an object of size 0.

The last implementation detail is related to default values of uninitialized memory objects not
marked as symbolic. In the real world almost always content of memory allocation consists of
undefined bytes. In the initial KLEE implementation, this problem did not receive attention and all
allocations were filled with 0 by default for objects with constant content. To save that semantics,
we engaged Z3-functionality of constant arrays, i.e. arrays with a default value. Therefore, we
introduced an additional array source ConstantWithSymbolicSize. This source indicates, that the
underlying objects are a constant array (not symbolic), but have symbolic size. Therefore, in

102

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

translation to the solver, it should receive a Z3’s constant array with a default value specified in that
source.

4.3 Improved lazy initialization

In Section 2 we described previously existing implementation of the lazy initialization
mechanism within our fork of KLEE. In that implementation, we were forced to add additional
constraints to restrict overlappings of lazily initialized memory object with any other objects.
Once we added symcretes functionality, we may apply that technique to lazy initialization. The
usage scheme is quite similar to the objects of symbolic size, but for now, we have explicitly defined
symbolic address. Moreover, we can also use extensions with objects of symbolic size to lazily
initialize memory objects as we do not know the exact size of the object, which we are
dereferencing at the moment of lazy initialization. Thus, it turns out, that to lazily initialize a
memory object all we need is to create a new object with symbolic size and add an equality
constraint between the symcrete address and address, which have been used for dereferencing.

5. Evaluation

5.1 Experiment

For evaluation of the described features, we have used the test sets from TestComp-2022
competition [11]. Our main goal was to test the proposed approach implemented on top of the
KLEE (KLEE-SYM) and make a comparison with the version of KLEE extended with lazy
initialization (KLEE-LI).

We have used KLEE-LI based on the KLEE of version 2.3 with Z3 of version 4.12.1 as SMT-
solver [12].

We have selected 5 different test sets with over 2000 tests per each — MemSafety-Arrays (MS-
A), MemSafety-Heap (MS-H), MemSafety-LinkedLists (MS-LL), ReachSafety-Arrays (RS-A) and
Termination-MainHeap (T-MH). Comparison has been made by the following metrics: instruction
coverage (icov), branch coverage percentage (bcov), and numbers of found vulnerabilities (errs).
Coverage has been measured with gcov [13] util.

Experiments were conducted on a workstation with CPU AMD Ryzen 7 3800X 8-Core with 16
gigabytes of RAM under the control of Linux. Execution of each test was bounded with 30 seconds
timeout. As Z3 may receive complex queries, its execution time also has been bounded with 5
seconds timeout to prevent memory and time issues.

5.2 Results

Average results for tests in each source set are presented in Table 1.

We can notice significant improvements at ReachSafety-Arrays and MemSafety-Arrays for all
parameters. These test cases used dynamic allocations of blocks with indeterminate sizes and
therefore received much better results in contrast with KLEE-LI. In addition, the amount of found
vulnerabilities also increased since it became possible to explore more paths that had been beyond
the abilities of the engine before.

Nonetheless, we did not receive full coverage of these two test sets. One of the reasons that symbolic
execution is sensible to strategies of path selection: these strategies navigate the engine through
the exponential branching space. For presented test sets, the problems may come from constructions
of a form presented in Listing 6.

Our goal is to cover the return 0 statement. But to do that KLEE-LI should get information,
that this line is reachable only if 256 is a factor of n. As it cannot infer such information, it will

103

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

brute force all possible variants on n until it will be able to reach the selected line of code. For
larger programs, it may take a while to reach such statements.

On the other hand, we might see a slight deterioration in the instruction coverage and the number
of errors detected on the Termination-MainHeap test set. This issue is connected to the imprecision
of modelling the allocated buffer’s contents: while in reality the memory of allocated buffers is
guaranteed to be initialized, KLEE models the newly allocated buffers as filled with some fixed
concrete value.

Also, we’ve collected additional statistics about verdicts for the generated tests (see Table 2). We’ve
calculated the number of generated tests for each source set (column overall), the number of
execution paths that have been halted because of the inability of the old version to maintain objects
of symbolic size correctly (halted), and the number of solver errors happened during program
exploration, e.g. timeouts, internal errors, etc. (Serrs).

Table 1. TestComp benchmarks average results

TestSet KLEE-LI KLEE-SYM
icov bcov errs icov bcov errs
MS-A 71.8% 57.2% 346 79.5% 67.5% 680
RS-A 57.4% 45.0% 393 69.3% 61.5% 532
T-MH 91.2% 78.8% 317 90.1% 80.9% 215
MS-H 45.2% 46.2% 51 45.2% 45.7% 52
MS-LL 33.0% 30.2% 55 33.0% 30.2% 55
Table 2. Tests generated for TestComp benchmarks
TestSet KLEE-LI KLEE-SYM
overall halted serrs overall halted Serrs
MS-A 801 455 0 681 0 1
RS-A 649 238 18 539 0 7
T-MH 539 222 0 216 0 1
MS-H 58 7 0 52 0 0
MS-LL 55 0 0 55 0 0

This table demonstrates that our approach has reduced the number of internal errors in KLEE and
increased the amount of non-halted branches. For the last two test sets, we did not receive any
improvements in instruction and branch coverage (Table 1). However, for the test set MemSafety-
Heap number of errors, that we classified as halted, decreased to 0. For the test set MemSafety-
LinkedList, we’ve received identical results. The low percentage of coverage for these test sets
is explained by a significant number of syntactically unreachable code in tested programs.

unsigned n <- symbolic;

char * s = (char *) malloc (n);

for (int 1 = 0; i1 < n; i++) {
s [1] = 1 % 256;

}

if (s [n - 1] == 255) {

return O;

}

return 1;
Listing 6. Allocation and cycle

104

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

6. Related works

Symbolic execution with symcrete variables is an already known approach. For instance, the
authors of “Deferred Concretization in Symbolic Execution via Fuzzing” [7] describe a similar
approach, using symcretes to better approximate external calls with fuzzer (yet another application
of symcretes). Similar to symcrete variables ideas are also used in well-known techniques of
symcretic [14] and concolic [15] execution. The idea behind these methods is to combine a
symbolic and concrete execution to improve performance and increase code coverage in
comparison with plain symbolic execution. Unlike execution with symcrete variables, these
approaches use concrete values to guide an execution, while we use symcrete variables to increase
the accuracy of symbolic execution analysis.

However, the memory model can be improved without a symcrete variables approach. For
instance, authors of “A bounded symbolic-size model for symbolic execution” [16] propose an
approach for memory modelling, where all constraints restricting memory objects overlapping
are added explicitly. To solve a problem with excessive memory consumption the authors specify
a bound on size for objects with symbolic sizes. On the one hand, such a way of modelling
objects with symbolic size does not require additional queries to the solver to minimize object sizes,
as memory consumption becomes the responsibility of the users. On the other hand, that bound may
affect the completeness of a symbolic execution engine, i.e. restrict an engine from exploring
possibly reachable paths, as in some cases user will have to guess the bound to achieve higher
coverage. Therefore, memory consumption will increase and performance degrade.

Another possible implementation of objects with the symbolic size is presented in the work
“Symbolic-size memory allocation support for Klee” [17]. It introduces a segmented memory
layout approach for KLEE symbolic execution engine. The core difference is that this work
proposes a memory model, where each memory allocation lies in its memory segment. In contrast,
our implementation of objects with symbolic sizes does not significantly change the memory model
of vanilla KLEE, and therefore still can be considered flattened. To resolve a problem with
excessive memory consumption, the authors use the same methods as described in this article:
size minimization to reduce overall memory consumption and sparse structures to keep only useful
data for symbolic arrays.

7. Conclusions

Accurate modelling of specific code constructions with logical constraints might be too complicated
(recall the problem with external calls). We can make under or overapproximations to at least
continue analysis, but with a significant loss of precision. To get things slightly better we apply the
technique of symcrete variables — symbolic variables paired with concrete values for it, fitting the
current constraint set.

We have proposed our implementation of dynamically recomputed symcrete values in KLEE
for LLVM-programs analysis. For that, we have also enhanced the execution engine with the
validity cores. Then we have shown how to engage this feature to model objects with symbolic
size. To optimize the memory consumption problem, we have implemented a size minimization
algorithm for objects with symbolic size and sparse storage to store only the affected solution
bytes. Also, we have improved the existing mechanism of lazy initialization by address
symcretization and interpretation of initialized object size as symbolic. We’ve also presented an
implementation of this approach on top of KLEE and showed its effectiveness on several tests of
Test-Comp competition.

Symcretes infrastructure is a powerful foundation for other improvements. For instance, we may
use a similar approach to approximate the behaviour of external or undefined functions with
fuzzers, as described in “Deferred Concretization in Symbolic Execution via Fuzzing” [7]. The

105

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

return value and function arguments, in this case, should be marked as symcretes, and calls to
that function generate concrete values for symcretes.

Another interesting idea is to use a symcrete infrastructure with a type system. This might be
useful if we want to test a program, which operates with polymorphic objects. Types of such
objects may be considered symbolic, and therefore we have uncertainty in calls to virtual
functions and sizes of underlying objects. This uncertainty can be resolved with symcretes, as it
seems that we can model such behaviours with objects with symbolic sizes and calls to undefined
functions.

References

Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three decades later”. In:
Communications of the ACM 56.2 (2013), pp. 82-90.

Clark Barrett and Cesare Tinelli. “Satisfiability modulo theories”. In: Handbook of model checking.
Springer, 2018, pp. 305-343.

Leonardo de Moura and Nikolaj Bjerner. “Z3: An efficient SMT solver”. In: International conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer. 2008, pp. 337-340.

Haniel Barbosa et al. “cvcS: A versatile and industrial-strength SMT solver”. In: Tools and Algorithms for
the Construction and Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I. Springer. 2022, pp. 415-442.

Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020”. In: arXiv preprint
arXiv:2006.01621 (2020).

Corina S Pa’sareanu, Neha Rungta, and Willem Visser. “Symbolic execution with mixed concrete-
symbolic solving”. In: Proceedings of the 2011 International Symposium on Software Testing and Analysis.
2011, pp. 34-44.

Awanish Pandey, Phani Raj Goutham Kotcharlakota, and Subhajit Roy. “Deferred concretization in
symbolic execution via fuzzing”. In: Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 2019, pp. 228-238.

Misonijnik A. et al. “Automated testing of LLVM programs with complex input data structures”. In:
Proceedings of ISP RAS 34.4 (2022), pp. 49-62.

Sarfraz Khurshid, Corina S Pa“sareanu, and Willem Visser. “Generalized symbolic execution for model
checking and testing”. In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2003, pp. 553-568.

Cristian Cadar and Daniel Dunbar. KLEE. Version 2.3. 2022. URL: https://github.com/klee/klee/tree/v2.3.
Dirk Beyer. “Advances in Automatic Software Testing: Test-Comp 2022.” In: FASE. 2022, pp. 321-335.
Leonardo de Moura and Nikolaj Bjerner. Z3 4.12.1. Version 4.12.1. 2023. URL:
https://github.com/Z3Prover/ z3/releases/tag/z3-4.12.1.

Brian Gough and Richard M Stallman. “An Introduction to GCC for the GNU Compilers gcc and g++”. In:
Network Theory Ltd 258 (2004).

Peter Dinges and Gul Agha. “Targeted test input generation using symbolic-concrete backward execution”.
In: Proceedings of the 29th ACM/IEEE international conference on Automated software engineering. 2014,
pp. 31-36.

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A concolic unit testing engine for C”. In: ACM
SIGSOFT Software Engineering Notes 30.5 (2005), pp. 263-272.

David Trabish, Shachar Itzhaky, and Noam Rinetzky. “A bounded symbolic-size model for symbolic
execution”. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 2021, pp. 1190-1201.

Michael Sima’cek. “Symbolic-size memory allocation support for Klee”. PhD thesis. Masarykova
univerzita, Fakulta informatiky, 2018.

UHpopmayusi 06 aesmopax / Information about authors

Cepreit Antonosmd MOPO30OB — crynment 3-ro kypca HarpoHampHOTO HCCIEIOBATENBCKOTO
yHuBepcuTeTa “Bricmmas mikona skoHOMHKH . Cdepa HaydHBIX WHTEPECOB: METOIBI aHAIN3a
IporpaMM U ONTHMHU3aLUKN CUMBOJIBHOTO HCIIOTHEHUS.

106

Mopo3zos U.A., Muconmxauk A.B., Mopasuuos /I.A., Kosuos /I.B., UBanos JI.A. CHUMKpeTHast MOZIENb MAMSITH C JICHUBOIT
MHHIHATU3aIMeH H 00BbEeKTaMH CHMBOJIBHOTO pa3Mepa B CHMBOJIbHOMW BUpTyasibHoil Mammue KLEE. Tpyowr ACIT PAH, 2023, Tom 35, BbiIL.
3, ¢. 91-108.

Sergey Antonovich MOROZOV - Higher School of Economics, third-year student. Research
interests: methods of program analysis and symbolic execution optimization.

Anexcarnp Bramumuposna MUCOHMXHUK — crapmmii nH)XeHep-porpaMMucT KoMmaauu | T
Solutions Inc. Cdepa HaydHBIX HHTEPECOB: METOABI 3((PEKTHBHOTO TOMCKA HETOCTHKUMBIX
COCTOSIHHI B CHMBOJIBHOM aHaJIM3€ IIPOTrPaMM.

Aleksandr Vladimirovich MISONIZHNIK — IT Solutions Inc., senior software engineer. Research
interests: efficient pruning of unreachable states in symbolic program analysis.

JOvutpmii Anexcanaposuy MOPJIBUHOB — xanaunat ¢gpusnko-mMareMaTH4ecKHX HayK, JTOLECHT
kadenpel cucreMHoro mporpammupoBaHuss Cankr-IlerepOyprckoro rocynapcTBEHHOTO
yauBepcuteTa. Cdepa HaydHBIX HHTEpecOB: (hopManbHas BepuU(UKAINI, CHHTE3 MPOrpaMM H
pelleHre CUCTEM TU3BbIOHKTOB XOpHA.

Dmitry Aleksandrovich MORDVINOV - PhD in Physics and Mathematics, Associate Professor at
the Department of System Programming of St. Petersburg State University (SPbSU), Research
interests: formal verification, program synthesis, and constraint Horn clause solving.

HOmurpuit Brmagmvmuposna KO3HOB — moktop TexXHHMYECKHMX HayK, mpodeccop Kadempsl
cucteMHOro nporpammupoBanust Caskr-IleTepOyprckoro rocyaapCTBEHHOI'O yHUBEPCHTETA,
Codepa HayuHBIX HHTEPECOB: ITPOTrpaMMHasi HHXXEHEPHS, MOJIEIbHO-OPUEHTUPOBaHHAs pa3padoTKa
NpOrpPaMMHOI0 00ecreYeH s, IPOrpaMMHBIE JaHHbIe, MAlIMHHOE 00y4eHHe.

Dmitry Vladimirovich KOZNOV — D. Sc., Associate Professor, Professor St.Petersburg State
University (SPbSU). Research interests: software engineering, model-driven software development,
program data, machine learning.

HOmurpuit ApkagpeBnd UBAHOB — HavajdpHUK JemapTaMeHTa WCCIEIOBaHHNA W pa3paboTok
UHCTpyMeHTaNbHBIX cpeactB kommanuu Huawei Technologies Co., Ltd. Cdepa naydnbIX
MHTEPECOB: HHCTPYMEHTHI pa3pabOTKH, aHAIN3 KOAa, CHMBOJIFHOE UCTIOTHEHUE, HHTETPUPOBAHHbIC
cpenbl pa3paboTKH.

Dmitry Arkadevich IVANOV — Huawei Technologies Co., Ltd, Director of R&D Toolchain
department. Research interests: Developer Tools, Code Analysis, Symbolic execution, IDE.

107

Morozov S.A., Misonizhnik A.V., Mordvinov D.A., Koznov D.V., Ivanov D.A. “Symcrete” memory model with lazy initialization and
objects of symbolic sizes in KLEE. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2019. pp. 91-108.

108

