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Abstract. Dynamic symbolic execution is a well-known technique for testing applications. It introduces 
symbolic variables – program data with no concrete value at the moment of instantiation – and uses them to 
systematically explore the execution paths in a program under analysis. However, not every value can be 
easily modelled as symbolic: for instance, some values may take values from restricted domains or have 
complex invariants, hard enough to model using existing logic theories, despite it is not a problem for 
concrete computations. In this paper, we propose an implementation of infrastructure for dealing with such 
“hard-to-be-modelled” values. We take the approach known as symcrete execution and implement its robust 
and scalable version in the well-known KLEE symbolic execution engine. We use this infrastructure to 
support the symbolic execution of LLVM programs with complex input data structures and input buffers with 
indeterminate sizes. 
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Аннотация. Динамическое символьное выполнение – хорошо известный метод тестирования 

приложений. Он вводит понятие символьной переменной – данных программы, не имеющих 

конкретного значения в момент объявления, – и использует их для систематического изучения путей 

выполнения в анализируемой программе. Однако не Санкт-Петербургский государственный 

университет каждое значение может быть легко смоделировано как символическое: например, 

некоторые значения могут принимать ограниченное число значений или иметь сложные инварианты, 

которые достаточно сложно смоделировать с использованием существующих логических теорий 

несмотря на то, что это не является проблемой для конкретных вычислений. В этой статье мы 

предлагаем реализацию инфраструктуры для работы с такими “трудно моделируемыми” значениями. 

Мы используем подход, известный как симкретное исполнение, и реализуем его надежную и 

масштабируемую версию в хорошо известном движке символьного выполнения KLEE. Мы используем 

эту инфраструктуру для поддержки символьного исполнения программ на языке LLVM со сложными 

структурами входных данных и входными буферами неопределенных размеров. 

Ключевые слова: символьное исполнение; анализ программного обеспечения; ленивая 

инициализация; симкретное исполнение; smt-решатели. 
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1. Introduction 

Dynamic symbolic execution is a software testing technique that allows exploring execution paths 

in a program under analysis, generates test coverage, and finding bugs in a given source code (e.g. 

out of bound memory errors or signed integer overflows) [1]. This is done by marking some program 

variables as symbolics, in other words, variables with no specific value. During analysis, a symbolic 

engine adds logical constraints to them, which possibly restrict values in different paths. To prove 

the satisfiability or unsatisfiability of a set of constraints, symbolic engines widely use SMT-solvers 

[2], such as Z3 [3], CVC5 [4], bitwuzla [5] and many others. 
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Encoding a set of values with logical constraints for each symbolic variable is one of the crucial 

ideas in symbolic execution. This approach enables keeping several program executions as a single 

execution state at the current position in the exploration path. All possible solutions for these 

constraints then become the values of symbolic variables in corresponding execution states. Since 

solving such formulas is an NP-hard problem, the performance and completeness of the solution 

heavily rely on the number and size of the logical formulas passed to the SMT-solver. 

However, some values in a program can be hard to model by decidable logical constraints. The 

problem arises from the fact that the values of a variable may belong to a restricted domain. Such 

domains can have implicit and complex rules to encode in a logical formula. Let us provide some 

examples in which the described problem appears: 

 Objects with symbolic sizes. Program under analysis may dynamically allocate memory on 

the heap (e.g. with malloc(n) in C language or operator new[n] in C++). If we 

treat the argument passed to that function as symbolic, we will allocate an object whose 

size may have different values depending on the current execution path (object with 

symbolic size). Consider an example presented in Listing 1. 

int foo (int n) { 

   char * s = (char *) malloc (n); 

   if (n == 1) { 

      s [0] = 0; 

   } else if (n > 1) { 

      s [1] = 10; 

   } 

   return 1; 

} 

Listing 1. Dynamic allocation 

If we pass a symbolic argument to that function, we will allocate an object with symbolic 

size at the first line. Then the allocated object will have different sizes at the distinct 

branches of if-statement. Modelling objects with symbolic size might take many 

computational resources. Each allocated memory object is represented as a separate entity 

and cannot intersect with other objects. Naïve modelling of these restrictions may result in 

SMT solvers needing to handle O(n2) constraints, where n is the number of memory 

objects. Such modelling can significantly impact the performance of symbolic execution. 

 External calls. During program exploration, the symbolic execution engine may meet calls 

to undefined or external functions, i.e. functions with no sources provided. As the 

engine does not have any information about the encountered function, it cannot properly 

model function behaviour to continue accurate analysis: for instance, the return value of 

this function may take a limited number of values. Interpreting return value as a symbolic 

value may be too excessive to model function behaviour, and the symbolic engine is 

doomed to lose precision in this case. 

One possible behavior is plain modelling of all such behaviors described in the bullets above. 

In this case, the engine over-approximates program behavior, i.e. explores more paths than there 

are. Therefore, it degrades performance and accuracy. 

Another behavior, taken, for instance, in KLEE symbolic execution engine [1], is to fix one 

possible solution during analysis. When the engine meets specific code constructions, it picks up 

the solution for all symbolic variables involved in one. Then it restricts taken variables with values 
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from the received concrete solution for the following exploration. For instance, the constructs 

described above are modelled as follows: 

 Objects with symbolic sizes. We might avoid performance issues by choosing one exemplar 

of a symbolic size fitting current constraints at the moment of the allocation. For example, 

while executing the malloc(n) statement at Listing 1, KLEE would choose some 

concrete value of n fitting the current path constraints, say, n = 1. But then, 

branchings on n would be evaluated only within this concrete assignment, leading to 

missed branches. In this case, KLEE misses covering the s[1] = 10; statement. 

 External calls. Calls to external or undefined functions may be modelled as actual calls 

to these functions. As such functions might take arguments, which were marked as 

symbolic variables before, the symbolic execution engine needs to find a solution for them 

to satisfy previously added logical constraints. Return value then will be a constant value 

and cannot be treated as a symbolic value. 

In these cases, the engine explores fewer paths than actually exist. On the one hand, it leads to 

performance improvements, as the engine analyses a  smaller  number of possible program 

behaviours. On the other hand, it impairs the engine’s ability to find vulnerabilities in a program 

under analysis, leading to a non-exhaustive search through the program inputs space. In other 

words, this approach under-approximates program behaviors. 

The idea that can be applied to resolve problems discussed above is to use a well-known approach 

of symcrete1 [6, 7] execution. This feature allows a symbolic execution engine to mark variables 

as symbolic, but additionally keep a concrete value (concretization) for it satisfying some set of 

logical constraints. This concretization might be given by an algorithm different from the SMT-

solver. Therefore, if such algorithms maintain some invariants inside, then they will be 

automatically satisfied for produced models. 

The described idea gives several opportunities to the KLEE execution engine, but one of the most 

interesting is the support of objects with indeterminate sizes. It is achieved due to the property of 

allocators to allocate non-intersecting objects and the property of symcretes to keep concrete values 

fitting current constraints. Hence, we can dynamically maintain memory layout with no significant 

impact on performance. The feature of objects with symbolic sizes would increase the engine’s 

precision for detecting buffer overflows and other memory issues in LLVM programs. 

Symcretes should be fully compatible with the existing features of the symbolic virtual machine, 

such as lazy initialization [8, 9]. This technique enables the exploration of program behaviors 

with complex input data structures. 

In summary, the main contributions of this paper are: 

1) Implementation of the infrastructure of symcrete execution in KLEE. 

2) Application of this infrastructure to model objects of symbolic sizes. 

3) Application of this infrastructure to improve the currently existing mechanism of lazy 

initialization. 

2. Background 

Before discussing the main ideas of this paper, let us introduce the basic concepts of symbolic 

execution used throughout this paper. 

                                                           
1 “Symcrete” = symbolic + concrete. 
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2.1 Execution and forking 

Dynamic symbolic execution executes a program with symbolic variables, i.e. values that represent 

all possible concrete program inputs. During program exploration, the execution engine operates 

with execution states, which can step over one instruction and fork. For these states, the symbolic 

execution engine maintains the inner representation of programs memory model. Also, every 

execution state maintains path constraints (PC) –  a set of logical formulas describing the 

explored path. When the execution engine meets a conditional operator, it queries the solver with 

constraint and its negation, and forks state if solutions for both constraints exist. If only one 

statement is true, it does not fork and simply proceeds the execution of a reachable path. 

Take a look at the example in Listing 1: let n be a symbolic parameter of the function. In the 

beginning, path constraints are empty, and the inner memory representation contains only one 

record: n ← λ. After execution state meets the line if (n == 1) { ... }, it queries solver 

about the validity of PC with λ = 1 and PC with ¬(λ = 1). As they are both satisfiable, it 

splits the current execution state into two states with the same objects in memory and path 

constraints PC’ = PC ∧ λ = 1, PC” = PC ∧ ¬(λ = 1) correspondingly. 

2.2 Memory model 

Objects in memory have addresses, which represent their location in the symbolic engine’s address 

space, sizes, representing the number of allocated bytes for their content in address space, 

alignment, which makes restrictions on an address (for instance in source code user can call 

posix_memalign and memalign functions), and contents, an array of (potentially symbolic) 

bytes. To handle all that information, symbolic engines maintain memory model, which stores 

required information about all currently existing objects: addresses, sizes, contents, and so on. 

 

2.3 Constraints Representation 

Every constraint in KLEE is an expression. Expression is a tree, each node of those is an 

operation, and children are operands. Every leaf of these trees is either constant or read from 

a symbolic array. A symbolic array is an array from the SMT theory of arrays, i.e. unbounded 

storage of symbolic integers, supporting both load and store operations. Each store operation 

creates a new version of an array with a value changed by a specified index, therefore arrays can 

be considered immutable. 

For brevity, we use the term “array” instead of “symbolic array”. 

2.4 Validity Cores 

A set of constraints with a statement may be valid, that is, no counterexample can be found for it, 

and invalid otherwise. To check the validity of expressions, the engine queries SMT-solver with 

a given set of assumptions and negation of the provided statement. If SMT-solver gives a 

solution that satisfies the received query, then a counterexample is found and the initial statement 

in the assumption of constraints from the set is invalid. Otherwise, it may return a validity core, 

a subset of constraints “explaining” the validity. 

For instance, consider the set of assumptions {λ < 10, λ > α} and a statement λ > 10. We 

would like to check the validity of a statement within the assumptions, that is, the validity 

of the formula 

∀λ, α : λ < 10 ∧ λ > α =⇒ λ > 10 

To show it, we might prove that the negation is unsatisfiable, i.e. 
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∃ λ, α : λ < 10 ∧ λ > α ∧ ¬(λ > 10) 

SMT-solver would find a satisfying assignment, for example, {λ 1→ 1, α 1→ 0}. It means 

that we have found a counterexample for the initial statement. 

In contrast, if we check a statement λ < 11 with the same assumptions, we would query the 

satisfiability of {λ < 10, λ > α, ¬(λ < 11)} and receive from SMT solver the “unsatisfiable” 

verdict. State-of-the-art SMT solvers can compute unsatisfiable cores, a subset of conflicting 

statements. In this case, one unsatisfiable core is {λ < 10, ¬(λ < 11)}. It can be converted to 

validity core: just take assumptions from the unsatisfiable core as-is, and convert the negated 

statements from the unsatisfiable core to the original ones. In our example, the validity core 

includes the assumption λ < 10 and the statement λ < 11. 

2.5 Optimizing solvers 

As mentioned above, solving logical formulas, which have been constructed during program 

analysis, is the NP-hard problem. Hence, the complexity of the formulas in the query and the 

number of such queries becomes a bottleneck of symbolic execution. To simplify the queries to the 

solver, execution engines apply many optimizations for logical constraints. One way to provide such 

optimizations is to use optimizing solvers – solvers that can modify, separate, construct additional 

logical formulas, or even resolve received queries without calling an expensive SMT-solver. Such 

a  solvers can form a chain ending with the SMT-solver. 

2.6 Pointer resolution 

Many languages, like C or C++, allow storing addresses directly into locations and dereference 

them. The resolution of concrete pointers is trivial, but symbolic execution engines might 

encounter programs with symbolic pointers. Consider the example in Listing 2. 

int x = 10; 

int y = 20; 

void bar (int * s) { 

   * s = 0; 

} 

Listing 2. Pointer resolution 

As we do not know, at what address pointer s should be resolved, we must check every 

possible memory object, including the pointer variable itself. To handle these cases, the vanilla 

KLEE engine makes a pointer resolution operation: it iterates over all existing memory objects 

in memory and attempts to dereference given pointer into them: query the solver if a formula 

ptr + idx > address ∩ ptr + idx + type_size < address + size, with the formulas 

from path constraints, where ptr is a dereferencing pointer, idx is a relative offset (e.g. if we 

access the array by some index, ptr[10] in C or C++ languages), type_size is the size 

of the type we are trying access through, address is the address of the memory object we are 

trying to access, size is the size of that memory object. If the pointer can be dereferenced to 

the chosen memory object, KLEE forks the current execution state and modifies path constraints 

PC’ of the received state with the above constraint. 

In the example in Listing 2, pointer s can be resolved to at least two existing objects: x or y. After 

storing operation *s = 0; KLEE will maintain at least two execution states, in which 0 is 

written to x or y. 
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2.7 Lazy initialization 

However, pointer resolution might not be enough to model all possible execution paths in a 

program. Suppose, you need to test a code for a linked list presented in Listing 3. 

 

typedef struct Node { 

   int x; 

   Node * next; 

}  Node; 

int baz (Node l) { 

   l.next -> x = 1; 

   assert ((l.x + l.next -> x) % 2 ==0); 

} 

Listing 3. Linked list 

In this code snippet struct Node contains a pointer to the next element in the linked list, 

which will be a symbolic value if we pass a symbolic argument to function baz. Consequently, 

pointer resolution at the line l.next->x = 1 will proceed for the symbolic pointer in the 

same manner as described above. As we do not have any other objects of type struct Node, 

this code example will only test circular linked lists at most of length 1. 

The problem here arises from the fact, that analyzing program does not contain explicitly 

initialized additional linked list nodes. We will face a similar problem if we try to analyze any 

recursive data structures, like Binary Search Trees, Linked Lists, and so on. 

To overcome described obstacle modern symbolic engines apply a technique called lazy 

initialization. This method allows initializing additional objects in memory, if so required, to 

explore more program behaviors. Return to the example at Listing 3: during pointer resolution 

the symbolic execution engine will allocate one more additional object of type struct Node 

to model linked list with length at least 2 and fail the assertion assert((l.x + l.next-

>x) % 2 == 0); (as for circular linked list we summed two equal numbers before). 

 

3. Design principles 

During infrastructure design, we agreed on a set of principles to create a maintainable and easily 

extensible framework. These principles are as follows: (a) clear separation of public and private 

interfaces, (b) recompute only the demanded values, and (c) concretization should always exist. 

Let’s consider them in more detail. 

a) Clear separation of public and private interfaces: One of the most important 

requirements for symcretes architecture was to keep the symcretes public interface as simple as 

possible. Thus, to prevent the developers from implementing complex logic in various spots of 

symbolic engine code, the public interface of symcretes infrastructure should only provide 

methods to add a symcrete value to the execution state and to receive a current concretization 

for symcrete. All the internal architecture of symcretes and any processing details made by 

its infrastructure should not be accessible from the symbolic engine code. 

b) Recompute only demanded values: Since the symcrete variable is the symbolic variable 

paired with the concrete value fitting some constraint set, then this concrete value may become 

obsolete with the addition of a new statement. As it might be difficult to receive a new 
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model for all symcrete variables in such situations, we require recomputing concrete values 

only for symcretes, which affects the validity of the query. 

c) Concretization should always exist: At every moment, we should be able to receive an 

actual model for the symcretes used in the current constraint set. In other words, symcretes 

architecture should be similar to the “Observer” pattern, where the observable object is the 

solver and it should provide a possibility to subscribe to the solver updates. 

4. Implementation 

We have built our implementation on top of the KLEE of version 2.3 [10]. 

Followed by the principles described above we have separated symcretes and internal 

mechanisms to handle them, which we called concretizing solver. In our implementation 

symcrete is a pair of an array and a concrete value. To make a symcrete expressions we assign 

a read from created array to that expression. Concretization of symcretes is represented by the 

map from such arrays to bits storages. 

To distinguish different symcretes we equipped all arrays with a new characteristic –  arrays 

sources. These sources should reflect how the current array was received. For instance, an array 

that has been made to handle the addresses of memory objects should differ from arrays that are 

used to handle the content of memory objects. Also, these sources can carry useful properties for 

algorithms, which are used to generate values for them. We will show the application of these 

properties below. 

The main logic for symcretes located in concretizing solver. It is one of the optimizing solvers, that 

can modify and handle received queries properly. In particular, concretizing solver modifies each 

query with constraints over symcretes: it adds equalities in form of (Eq (Read width 0 

symcrete_array),  Constant), where Read width offset source is the read 

expression of width width at offset offset and array source – and passes them to the 

underlying solver. However, such modifications are not enough to handle symcretes. 

Let us consider the following example. Suppose, we have a symcretes values x and y with 

concretization x = 5,  y = 10, query with the set of assumptions [x ≤ 10,  y ≤ 20] and the 

statement x ≤ y. Concretizing solver at the preprocessing stage will make additional constraints 

x = 5, y = 10, and consequently, the query will transform into a new query with the set of 

assumptions [x ≤ 10, y ≤ 20, x = 5, y = 10] and statement x ≤ y. Note, that this query is valid 

according to “validity logic”, as to compute validity we negate the statement, which results in x > 

y. Existing concretization cannot satisfy all assumptions with negated statement. 

Therefore, existing concretization might add constraints, which force a given theorem to become 

valid, despite the original query being invalid. To solve such a problem, we process a symcretes 

relaxation after receiving a valid response from the solver. Symcretes relaxation is the algorithm 

that aims to recompute values for symcretes to receive an invalid response if so exists. 

To implement it according to our principles, we need to find all symcretes that have inappropriate 

values (see principle “Recompute only required values”). Such values may be found in the validity 

core, which might be received from the solver. For that purpose, we extended the interface of 

KLEE’s solver with functions that may return validity cores on valid responses. Since then, we 

can process a relaxation after receiving a valid response with current concretization. 

The relaxation algorithm is provided in Algorithm 1. More detailed, the core part of the algorithm 

is located in the do { ... } while(...); loop. It firstly constructs a concretized query by adding 

equality constraints on symcretes (line 5) and queries the solver with this query (line 6). If the 

response is already invalid, the loop can be completed (lines 7-9), and all we need is to assign 

appropriate values to symcretes, which have lost concretizations (lines 24-30). Otherwise, we 

will look at the validity core from the valid response and collect all symcrete arrays, those 
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concretizations affected validity (this is done by collecting all arrays and filtering them by predicate 

isSymcrete at line 11). After that, we check if we removed concretization, which was not 

removed before (lines 15-17). If so, we continue the process. Otherwise, the current validity core 

proves, that the initial query is valid. 

In the general case, the presented process can take more than one iteration. This might happen, 

as SMT-solver does not guarantee to return all unsatisfiable sets of formulas from the given query: 

usually, they return any set of formulas that cannot be satisfied. 

Let’s see that in the example. For instance, we have symcretes x and y with concretizations 0 

and 1 correspondingly, and statement [x < y]. The concretized query will have a form of [x < 

y, x = 0, y = 1]. Then we will query the solver with the statement x ≤ 0. According to “validity 

logic” query will transform to a set of formulas [x < y, x = 0, y = 1, x > 0], which cannot 

be satisfied, and we can highlight at least three unsatisfiable subsets: [x = 0, x > 0], [x < 

y, x > 0, y = 1] and [x < y, x = 0, y = 1, x > 0]. SMT-solver can return any of these. If it 

returns the first subset, the algorithm will remove concretization only for x, but the query will 

remain valid. Then on the second iteration, the SMT-solver return the second subset of 

formulas from the presented subsets. Consequently, the algorithm will remove concretization for 

y and after that find a counterexample to the initial statement, say, x = 1, y = 2. 

After removing all outdated concretizations for symcretes we need to assign new values to them. 

To do that we query the registered algorithms (lines 24-26). After receiving new concretizations, 

we check if the solution for the entire query invalidates the received statement in the assumption 

of the given constraint set. If still not, we admit that the query is valid (lines 28-30). This can 

happen when concrete values for symcrete variables received from registered algorithms cannot 

provide values invalidating the query. 

If the statement in the assumption of a set of given constraints is provably invalid, i.e. has a 

counterexample, then we store concretizations of symcretes involved in that query in a 

concretization manager. The concretization manager is the structure that stores concrete values 

for symcretes for all encountered invalid queries. It may be accessed from the symbolic execution 

engine to get the current concrete value for symcrete. 

If we want to add a constraint without an explicit call to a solver, then we may lose the record 

to the concretization manager. In this case, we need to update it manually from the code location 

where the constraint is added. 

Summing up all implementation details and principles, in KLEE to mark a variable as symcrete 

we need to create a new array. For that array, we need to specify its source. For arrays with 

such a source, we need to provide an algorithm which will be used to generate concrete values. 

To access the concrete value of the symcrete variable we may query the concretization manager 

with the constraint set and statement we are interested in. 

In the next sections, we will show how we can use symcretes to support objects of symbolic sizes 

and improve the existing mechanism of lazy initialization. 

4.1 Properties of objects of symbolic size 

Before discussing the implementation of objects with symbolic sizes we need to discuss some of 

their properties. As we said before, every object has 3 main parameters: address from enclosing 

address space, size, and content. The content of memory objects can be considered independently 

from address and size, therefore we will not take it into account in the reasoning below. 
 

 

Algorithm 1 Relaxation algorithm 
 

 

1: function RELAX(query, symcretes) 

2: relaxationProceeded ← true; 
3: removedSymcretes ← []; 

4: do 
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5: concretizedQuery ← query, symcretes; 

6: resp ← SOLVER.CHECK(concretizedQuery); 

7: if RESP.ISINVALID() then 

8: break; 

9: end if 

10: relaxationProceeded ← false; 
11: validSymcretes ← RESP.VALIDITYCORE().ALLARRAYS().FILTER(isSymcrete); 

12: if (validSymcretes\symcretes).ISEMPTY() then 

13: break; 

14: end if 

15: relaxationProceeded ← VALIDSYMCRETES.INTERSECT(symcretes).ISEMPTY(); 

16: removedSymcretes ← REMOVEDSYMCRETES.UNION(validSymcretes); 

17: symcretes ← symcretes \ validSymcretes; 

18: while relaxationProceeded; 

19: 

20: if ¬relaxationProceeded then 

21: return Valid 

22: end if 

23: 

24: for sym ∈ removedSymcretes do 
25: sym ← GETVALUEBYSOURCE(sym.source); 

26: end for 

27: 

28: concretizedQuery ← query, symcretes 

29: resp ← SOLVER.CHECK(concretizedQuery) 

30: return RESP.VALIDITY() 

31: end function 
 

 

Firstly, we may suppose, that addresses of objects with symbolic size may be considered as symbolic 

values. The idea comes from the fact, that two allocations with different sizes at the same location 

in source code will likely receive different addresses. 

Secondly, we may assume that the size and address of one object are dependent values, i.e. 

changing of object’s size may affect the address in the enclosing address space. 

Also, we need present several requirements for our implementation: 

1) it should allow to dynamically resize objects 

2) if several states maintain the same objects with different actual sizes, they must appear 

identically 

3) it should consume as less memory, as possible 

The logic behind the first requirement can be seen in the example at Listing 4. 

char * s = malloc(n); 

if (n > 1) { 

   if (n > 2) { 

      s [n – 1] = 2; 

   } 

} 

Listing 4. Reallocation 

In the assumption of n to be a symbolic variable, at the first line, we allocate an object with 

symbolic size. The most inner if-statement must be reachable with the object of size at least 3 

addressable by pointer s. 

The second requirement says, that states containing the same object with different concretized sizes 

must keep its properties: ID, alignment, allocation site, address and size expressions, and so on. 
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This requirement arises from the fact, that all actions are done with the specified object, and its 

properties cannot be violated or become outdated. Hence, after state forks, we must be able to 

use old constraints with new ones to find a solution for addresses and sizes in different branches 

of execution. 

The last requirement states, that our implementation should use as less memory as possible. More 

detailed, since SMT-solvers work with variables as with numbers without any additional 

information, they might give huge models for objects with symbolic size. That may cause 

performance issues. Another problem is that the test case, that the symbolic engine will generate to 

report a bug, also can be huge enough. Usually, users want to receive the smallest test case to find 

the issue, therefore, we need to take care of that requirement. 

4.2 Implementation of objects of symbolic size 

As noted above, addresses of objects with symbolic sizes may be considered symbolic. Also, in 

the Section 1, we have already noticed, that we can use symcrete variables in this case. 

To use them we added a new array source, which we called AddressSource and an algorithm, 

that will be able to generate solutions for such arrays. We introduced an AddressGenerator 

interface for that purpose. It has only one method allocate(addressArray, size). All 

the classes implementing AddressGenerator should provide appropriate (e.g. non-

overlapping) addresses for specified address array addressArray from the arguments list 

each time the allocate(addressArray, size) method is called. 

We implement this interface in AddressManager class, which provides an additional method 

allocateMemoryObject(addressArray, size). 

This class is used in both concretizing solver and the execution engine. On call to allocate it 

allocates the memory, and ceiling size to the nearest power of 2. Then it creates a new memory 

object, that should copy all properties of the already existing memory object, that utilizes the 

same array as the address array and caches created object. It is also optimized for multiple 

allocations. Therefore, if the solver requests a size less than at least one of the cached memory 

objects, then it will return it (that optimizes memory consumption). Note, that in the worst case, 

this manager will use 2M bytes of memory, there M = 2⌈log2 S⌉ and S is the size of the biggest 

memory object. An approach with the powers of 2 for allocated sizes has been chosen not to change 

concretizations of addresses for all other states, that use the same memory object. This is because 

certain states may force expressions to take concrete values (for instance, during the execution of 

an external call), and changing of address value for a group of states will invalidate such states. 

allocateMemoryObject(addressArray, size) method is used to receive a memory 

objects created at allocate method. These memory objects are required to update an address 

space of execution state after recomputation of concretization for symcretes in its path constraints. 

Since now, as we can maintain objects with symbolic addresses, we may apply symcretes to handle 

the model for objects with symbolic size. For that, we introduce symcretes with array source 

SizeSource. Symcretes with such source will contain values, corresponding to the size of memory 

objects, and therefore, their sum should be minimized (as we said in the requirements above). We 

extended KLEE’s solver interface with a minimization algorithm, that solves an optimization 

problem and computes minimal possible values for a expression. This is done by the binary 

search on the answer for a given expression with a set of given assumptions. 

One more important thing about this implementation is that address symcrete cannot become the 

reason for symcretes recomputation. It means that if in the algorithm at the Listing 5 we received 

an address symcrete as a symcrete with a non-appropriate value and did not receive the size symcrete 

for the same object, we will not recompute the address and size. This is done for reasons that as we 

are using the system’s allocator, we are not able to choose the values for addresses and ourselves. 
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Hence, if some concretization for some addresses violates constraints, then it is likely constraints on 

addresses were added and we cannot continue analysis for that execution path (except null check, 

in our implementation it is checked separately). For now, we cannot handle such situations 

properly, but for real-world problems, it covers most of the use cases. 

Let’s see an example presented in Listing 5. In this example, we dynamically allocate memory 

objects of size n. At the moment of allocation n might take any possible value of type unsigned, 

and we do not know the exact size of allocated objects. As we are applying a minimization strategy 

for objects of symbolic sizes, the minimal possible value for the size of allocated objects is 0. 

Hence, before first if-statement exact size of allocated memory object in address space of 

enclosing execution state will be 0, and we will have two known symcretes: size and address with 

concretizations 0 and $(malloc(0)) (return value of call to malloc function), 

correspondingly, and PC = [n = ssize]. Condition in the first if-statement adds constraint 

on the symcrete address of allocated memory object. Since then, in the unsatisfiable core we 

will have two constraints: [saddress = $(malloc(0)), saddress < 10]. As it 

contains only symcrete for address, we say that we are not able to do anything if the current 

model is inappropriate. To execute the next if-statement we need to discuss one more 

optimization. 

It may turn out, that from the given constraints we can deduce, that the size of the objects is 

a huge enough number. At Listing 5 size of the allocated object in the then branch of second if-

statement might take values not less than 100001. If we try to get a model for such arrays in the 

execution engine, we will receive problems with performance and memory consumption. To solve 

such problems, we extended KLEE with structure SparseStorage — it is a byte buffer with the 

specified default value. To fill it we query the solver only about bytes in the array that were 

used for reads that were applied to receive a model within this query. Is allowed to greatly 

reduce memory usage and increase performance. 

unsigned n <- symbolic; 

char * s = (char *) malloc(n); 

if (s < 10) { 

   exit (1); 

} 

if (n > 100000) { 

   printf ("Huge!"); 

} else { 

   printf ("Small!"); 

} 

Listing 5. Symbolic size allocation 

Returning to the example, both branches of second if-statement are reachable with our 

execution state. In the then branch we will have an object of size 100001, and in the else branch 

— an object of size 0. 

The last implementation detail is related to default values of uninitialized memory objects not 

marked as symbolic. In the real world almost always content of memory allocation consists of 

undefined bytes. In the initial KLEE implementation, this problem did not receive attention and all 

allocations were filled with 0 by default for objects with constant content. To save that semantics, 

we engaged Z3-functionality of constant arrays, i.e. arrays with a default value. Therefore, we 

introduced an additional array source ConstantWithSymbolicSize. This source indicates, that the 

underlying objects are a constant array (not symbolic), but have symbolic size. Therefore, in 
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translation to the solver, it should receive a Z3’s constant array with a default value specified in that 

source. 

4.3 Improved lazy initialization 

In Section 2 we described previously existing implementation of the lazy initialization 

mechanism within our fork of KLEE. In that implementation, we were forced to add additional 

constraints to restrict overlappings of lazily initialized memory object with any other objects. 

Once we added symcretes functionality, we may apply that technique to lazy initialization. The 

usage scheme is quite similar to the objects of symbolic size, but for now, we have explicitly defined 

symbolic address. Moreover, we can also use extensions with objects of symbolic size to lazily 

initialize memory objects as we do not know the exact size of the object, which we are 

dereferencing at the moment of lazy initialization. Thus, it turns out, that to lazily initialize a 

memory object all we need is to create a new object with symbolic size and add an equality 

constraint between the symcrete address and address, which have been used for dereferencing. 

5. Evaluation 

5.1 Experiment 

For evaluation of the described features, we have used the test sets from TestComp-2022 

competition [11]. Our main goal was to test the proposed approach implemented on top of the 

KLEE (KLEE-SYM) and make a comparison with the version of KLEE extended with lazy 

initialization (KLEE-LI). 

We have used KLEE-LI based on the KLEE of version 2.3 with Z3 of version 4.12.1 as SMT-

solver [12]. 

We have selected 5 different test sets with over 2000 tests per each — MemSafety-Arrays (MS-

A), MemSafety-Heap (MS-H), MemSafety-LinkedLists (MS-LL), ReachSafety-Arrays (RS-A) and 

Termination-MainHeap (T-MH). Comparison has been made by the following metrics: instruction 

coverage (icov), branch coverage percentage (bcov), and numbers of found vulnerabilities (errs). 

Coverage has been measured with gcov [13] util. 

Experiments were conducted on a workstation with CPU AMD Ryzen 7 3800X 8-Core with 16 

gigabytes of RAM under the control of Linux. Execution of each test was bounded with 30 seconds 

timeout. As Z3 may receive complex queries, its execution time also has been bounded with 5 

seconds timeout to prevent memory and time issues. 

5.2 Results 

Average results for tests in each source set are presented in Table 1. 

We can notice significant improvements at ReachSafety-Arrays and MemSafety-Arrays for all 

parameters. These test cases used dynamic allocations of blocks with indeterminate sizes and 

therefore received much better results in contrast with KLEE-LI. In addition, the amount of found 

vulnerabilities also increased since it became possible to explore more paths that had been beyond 

the abilities of the engine before. 

Nonetheless, we did not receive full coverage of these two test sets. One of the reasons that symbolic 

execution is sensible to strategies of path selection: these strategies navigate the engine through 

the exponential branching space. For presented test sets, the problems may come from constructions 

of a form presented in Listing 6. 

Our goal is to cover the return 0 statement. But to do that KLEE-LI should get information, 

that this line is reachable only if 256 is a factor of n. As it cannot infer such information, it will 
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brute force all possible variants on n until it will be able to reach the selected line of code. For 

larger programs, it may take a while to reach such statements. 

On the other hand, we might see a slight deterioration in the instruction coverage and the number 

of errors detected on the Termination-MainHeap test set. This issue is connected to the imprecision 

of modelling the allocated buffer’s contents: while in reality the memory of allocated buffers is 

guaranteed to be initialized, KLEE models the newly allocated buffers as filled with some fixed 

concrete value. 

Also, we’ve collected additional statistics about verdicts for the generated tests (see Table 2). We’ve 

calculated the number of generated tests for each source set (column overall), the number of 

execution paths that have been halted because of the inability of the old version to maintain objects 

of symbolic size correctly (halted), and the number of solver errors happened during program 

exploration, e.g. timeouts, internal errors, etc. (serrs). 

Table 1. TestComp benchmarks average results 

TestSet KLEE-LI KLEE-SYM 

 icov bcov errs icov bcov errs 

MS-A 71.8% 57.2% 346 79.5% 67.5% 680 

RS-A 57.4% 45.0% 393 69.3% 61.5% 532 

T-MH 91.2% 78.8% 317 90.1% 80.9% 215 

MS-H 45.2% 46.2% 51 45.2% 45.7% 52 

MS-LL 33.0% 30.2% 55 33.0% 30.2% 55 

 

Table 2. Tests generated for TestComp benchmarks 

TestSet KLEE-LI KLEE-SYM 

 overall halted serrs overall halted serrs 

MS-A 801 455 0 681 0 1 
RS-A 649 238 18 539 0 7 

T-MH 539 222 0 216 0 1 

MS-H 58 7 0 52 0 0 
MS-LL 55 0 0 55 0 0 

 

This table demonstrates that our approach has reduced the number of internal errors in KLEE and 

increased the amount of non-halted branches. For the last two test sets, we did not receive any 

improvements in instruction and branch coverage (Table 1). However, for the test set MemSafety-

Heap number of errors, that we classified as halted, decreased to 0. For the test set MemSafety-

LinkedList, we’ve received identical results. The low percentage of coverage for these test sets 

is explained by a significant number of syntactically unreachable code in tested programs. 

unsigned n <- symbolic; 

char * s = (char *) malloc(n); 

for (int i = 0; i < n; i++) { 

   s [i] = i % 256; 

} 

if (s [n – 1] == 255) { 

   return 0; 

} 

return 1; 

Listing 6. Allocation and cycle 
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6. Related works 

Symbolic execution with symcrete variables is an already known approach. For instance, the 

authors of “Deferred Concretization in Symbolic Execution via Fuzzing” [7] describe a similar 

approach, using symcretes to better approximate external calls with fuzzer (yet another application 

of symcretes). Similar to symcrete variables ideas are also used in well-known techniques of 

symcretic [14] and concolic [15] execution. The idea behind these methods is to combine a 

symbolic and concrete execution to improve performance and increase code coverage in 

comparison with plain symbolic execution. Unlike execution with symcrete variables, these 

approaches use concrete values to guide an execution, while we use symcrete variables to increase 

the accuracy of symbolic execution analysis. 

However, the memory model can be improved without a symcrete variables approach. For 

instance, authors of “A bounded symbolic-size model for symbolic execution” [16] propose an 

approach for memory modelling, where all constraints restricting memory objects overlapping 

are added explicitly. To solve a problem with excessive memory consumption the authors specify 

a bound on size for objects with symbolic sizes. On the one hand, such a way of modelling 

objects with symbolic size does not require additional queries to the solver to minimize object sizes, 

as memory consumption becomes the responsibility of the users. On the other hand, that bound may 

affect the completeness of a symbolic execution engine, i.e. restrict an engine from exploring 

possibly reachable paths, as in some cases user will have to guess the bound to achieve higher 

coverage. Therefore, memory consumption will increase and performance degrade. 

Another possible implementation of objects with the symbolic size is presented in the work 

“Symbolic-size memory allocation support for Klee” [17]. It introduces a segmented memory 

layout approach for KLEE symbolic execution engine. The core difference is that this work 

proposes a memory model, where each memory allocation lies in its memory segment. In contrast, 

our implementation of objects with symbolic sizes does not significantly change the memory model 

of vanilla KLEE, and therefore still can be considered flattened. To resolve a problem with 

excessive memory consumption, the authors use the same methods as described in this article: 

size minimization to reduce overall memory consumption and sparse structures to keep only useful 

data for symbolic arrays. 

7. Conclusions 

Accurate modelling of specific code constructions with logical constraints might be too complicated 

(recall the problem with external calls). We can make under or overapproximations to at least 

continue analysis, but with a significant loss of precision. To get things slightly better we apply the 

technique of symcrete variables – symbolic variables paired with concrete values for it, fitting the 

current constraint set. 

We have proposed our implementation of dynamically recomputed symcrete values in KLEE 

for LLVM-programs analysis. For that, we have also enhanced the execution engine with the 

validity cores. Then we have shown how to engage this feature to model objects with symbolic 

size. To optimize the memory consumption problem, we have implemented a size minimization 

algorithm for objects with symbolic size and sparse storage to store only the affected solution 

bytes. Also, we have improved the existing mechanism of lazy initialization by address 

symcretization and interpretation of initialized object size as symbolic. We’ve also presented an 

implementation of this approach on top of KLEE and showed its effectiveness on several tests of 

Test-Comp competition. 

Symcretes infrastructure is a powerful foundation for other improvements. For instance, we may 

use a similar approach to approximate the behaviour of external or undefined functions with 

fuzzers, as described in “Deferred Concretization in Symbolic Execution via Fuzzing” [7]. The 
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return value and function arguments, in this case, should be marked as symcretes, and calls to 

that function generate concrete values for symcretes. 

Another interesting idea is to use a symcrete infrastructure with a type system. This might be 

useful if we want to test a program, which operates with polymorphic objects. Types of such 

objects may be considered symbolic, and therefore we have uncertainty in calls to virtual 

functions and sizes of underlying objects. This uncertainty can be resolved with symcretes, as it 

seems that we can model such behaviours with objects with symbolic sizes and calls to undefined 

functions. 
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