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Аннотация. Ситуация отказа в обслуживания регулярных выражений (REDoS) возникает в случае 

высокой вычислительной сложности сопоставления строки с выражением и встречается во многих 

библиотеках регулярных выражений таких языков, как PYTHON, JAVASCRIPT, C++. В данной статье 

рассматривается класс регулярных выражений, которые создают угрозу возникновения REDoS, однако 

не распознаются как уязвимые рядом существующих программных систем. Предлагается производить 

оценку степени неоднозначности таких выражений посредством комбинирования проверки на строгую 

звёздную нормальную форму и анализа трансформационного моноида автомата Глушкова, 

построенного по входному регулярному выражению. Эксперименты показывают, что данный подход 

оказывается эффективен при оценке полиномиальных неоднозначностей в регулярных выражениях со 

сложной структурой перекрытий. 

Ключевые слова: регулярные выражения; неоднозначность; REDoS; автомат Глушкова; 

трансформационный моноид; сильная звёздная нормальная форма. 
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1. Introduction  

Popular regular expression (regex) engines typically use non-deterministic finite automata (NFA) as 

their internal representation for regexes. This choice is motivated by the flexibility of the NFA 

concept, which can be extended to support a wider range of regex operations with little effort. For 

instance, back-references and lookaheads can be easily added to the NFA model. Although, in 

theory, every string can be matched against a regex in linear time using deterministic finite automata 

(DFA) conversion, popular regex engines may admit exponential matching time due to a 

phenomenon called “catastrophic backtracking”. 

This phenomenon occurs only for a specific class of regular expressions. For example, consider the 

regex (a|b)*a, which is non-deterministic due to the unavoidable non-determinism in the 

transition to the last occurrence of the letter a. However, every string has a unique parsing tree with 

respect to this regex. In contrast, the regex (a*b*)* has an infinite number of accepting parsing 

trees for any given string, as inner Kleene stars can degenerate to the empty word, causing a 

combinatorial explosion of parse paths. Intuitively, the latter regex can be considered “bad”, while 

the former is considered “good”. 

Matching against “bad” regexes can yield a situation called a Regular Expression Denial of Service 

(REDoS), when the matching time grows super-linearly and can cause performance issues in, for 
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instance, a web service that uses such a regex to parse user input. To avoid these situations, it is 

essential to detect unsafe regexes and replace them with safe equivalents. 

The number of research papers mentioning the REDoS problem has increased rapidly in the last 

decade [1]–[7]. Several tools have been developed to detect REDoS, using both static analysis and 

random search. Some of these tools aim to detect the entire class of extended regexes, while others 

focus on academic ones. However, for a class of simple regexes, which are not safe in theory, the 

tools considered either take too long time to process, or give an incorrect answer, falsely witnessing 

their safety. These regexes usually have overlapping, but not completely coinciding, structure of the 

expressions under the Kleene stars (being a simple analogue of dominoes in the Post Correspondence 

Problem). An example of such a regex is (baa|ab)*(b|ε)(a(ba|a)ba*b)*(aab)*: the 

ambiguity occurs both in prefixes (baa)𝑛 and (ab)𝑛, which can be constructed in several ways 

from primitive “dominoes”. 

Thus, the two natural research questions arise: 

 do the “domino” regexes really contain REDoS situations w.r.t. the modern regex 

engines? 

 if the answer is yes, what methods can deal with such regexes in order to analyse them 

without blow-up of the analysis time because of the overlaps? 

The main contributions of the paper are: 

 a method for REDoS situations detection, utilizing properties of non-deterministic finite 

automata and their transition monoids. This approach is novel, since previous static-

analysis-based methods use NFA intersection. For “domino” regexes our method is 

shown to perform better than the open-source analogues REGEX STATIC ANALYZER [3], 

RESCUE [5], and REVEALER [2]. 

 experimental testing of the relevance of the NFA model used and the vulnerabilities 

found, by investigating real regex engines behaviour on the attack strings. 

The method is implemented only for the academic regexes for now. Surprisingly, for this case, the 

tested open-source tools perform significantly worse on domino tests, especially for polynomial 

REDoS situations. 

The paper is organized as follows. Section 2 contains preliminaries on finite automata, and 

theoretical concepts that are used further. The proposed REDoS detection method is given in Section 

3, preceded by lemmas used for its optimisation. Section 4 discusses relevance of the chosen model 

with respect to the real regex matching engines, and provides a result of comparative testing of our 

method and three other open-source REDoS detection tools. We discuss the results of the 

experiments and the related works in more detail in Section 5. Section 6 concludes the paper.  

2. Preliminaries 

We denote automata with calligraphic A; states are denoted with the letters q and Q, or with the set 

of these letters (if an automaton is a result of a closure operation). The empty word is denoted by ε; 

concrete elements from the input alphabet are denoted with a, b, c, ..., and letter parameters are 

denoted with γ; ω and η denote word parameters. We use only the basic academic regular expression 

constructing operations: concatenation (which is omitted in notation), alternation (denoted with |), 

and Kleene star (denoted with *). If r is a regex, L (r) denotes its language. 

Let us recall basic definitions and describe the finite automata models used in this paper. 

2.1 Finite Automata  

Definition 1. A non-deterministic finite automaton (NFA) is a tuple <S, Ʃ, q0, F, δ>, where:  

 S is a state set;  
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 Ʃ is a terminal alphabet; 

 δ is a set of transitions of the form <qi, (γi | ε), Mi>, where qi  S, γi  Ʃ, Mi  2S; 

 q0  S is the initial state; 

 F  S, is a set of final states. 

Every transition in an NFA maps a pair <qi, (γi | ε)> into a set of states, contrary to transitions in a 

deterministic finite automaton (DFA), which map every pair (qi, γi) (where γi is essentially not equal 

to ε) to a single state. Thus, if a word is parsed by a DFA, the parse trace is always unique (i.e., 

DFAs are unambiguous); in an NFA, there can be a set of parse traces for a single word. This set 

can even be infinite in case of NFA with ε-transitions. The notation qi →γ … is overloaded to denote 

either NFA transition <qi, γ, Mi> (written as qi →γ Mi) or a transition to a single state belonging to 

Mi (written as qi→γ qj). Existence of a path from qi to qj marked by ω in Ʃ* is also denoted by qi →ω 

qj. 

An NFA can be transformed into an equivalent DFA using a textbook subset-constructing algorithm 

Determinize, which generates states of the DFA corresponding to the sets of the states of the 

initial NFA resulted in the transitions along the same input symbols. 

The NFA models used in regex engines are primarily based on the classical Thompson construction, 

which provides an algorithm for transforming a regex into an NFA that recognizes the same 

language. While the implementation details of the transformation may vary, the experiments 

presented in Section 4 provide evidence that the Thompson model remains relevant for identifying 

inefficient regexes with respect to NFA-based parsing engines. 

In the following descriptions, we only give details of the constructed NFAs in terms of their states 

and transitions, without mentioning the alphabet construction. 

Definition 2. Thompson NFA (denoted with Thompson(r)) is constructed from a regex r as 

follows. At any construction step except processing concatenations, the new initial state qr and the 

new final state Qr are introduced, and the transition set is updated depending on the regex operation. 

 Every single letter γ generates a primitive automaton with the only transition qγ →γ{Qγ}. 

 If A 1 = Thompson(r1), A 2 =Thompson(r2), and qi and Qi are their initial and final 

states, respectively, then Thompson(r1 | r2) is constructed by merging the A 1 and A 2 

states sets and transitions sets, and introducing the transitions qalt →ε {q1, q2}; 

Q1 →ε {Qalt}; Q2 →ε {Qalt}. 

 Thompson(r1r2) is again constructed by merging Thompson(ri) states and transitions 

sets, and making q1 the initial state, Q2 the final state, with the additional transition 

Q1 →ε{q2}. 

 Thompson(r1
*) is constructed introducing transitions q* →ε {q1,Q*}, Q1 →ε {q1, Q*}. 

The Thompson construction algorithm ensures that any NFA produced by the algorithm has a unique 

final state and that each state has at most two outgoing and two incoming transition arcs. The 

uniqueness of the final state implies that the reverse NFA for Thompson(r) is exactly 

Thompson(rR), where rR is the reverse of the regex r. Additionally, all subregex automata can be 

treated as isolated directed acyclic graphs, which makes the construction easily extensible and 

decomposable. An example of a Thompson automaton for a regex is shown in Fig. 1. The states 

labels follow the corresponding regex operations given in Definition 2. 
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Fig. 1. Thompson automaton for (a|b)*a 

One drawback of the Thompson construction is that it introduces non-deterministic transitions 

corresponding to alternating operations (i.e., alternatives or Kleene stars), even in the cases when 

the regex itself imposes no non-determinism (e.g. for the regex a(a|b)*, which is a reverse of the 

regex shown in Fig. 1). To avoid the redundant non-determinism, the regex engine RE2 [8] processes 

such strongly deterministic regexes (also known as 1-unambiguous regexes [9]) constructing another 

NFA based on the regex structure, but without ε-transitions. This automaton is known as the 

Glushkov automaton since 1960s, and in the last two decades it attracted considerable interest, 

shown to be efficient and extensible to construct deterministic parsing engines for a larger class of 

regexes (such as memory finite automata for the regexes with back-references [10]). The Glushkov 

automaton is shown in Fig. 2. 

 

Fig. 2a. Thompson(a(a|b)*) with colored ε-closures 

 

Figure 2b. Glushkov(a(a|b)*) 

The classical Glushkov construction is based on so-called follow-relation on linearised regexes. By 

construction, every state in the Glushkov automaton except the initial state corresponds to an 

occurrence of some γ in Ʃ in the input regex r; conversely, any letter occurrence in the regex r 

corresponds to exactly one state in Glushkov(r), whose incoming arcs are all marked with γ. Now 

we can reformulate this property in the terms of Thompson and Glushkov automata. 

Proposition 1. There is a bijection from state set in Glushkov(r) minus the initial state to state 

set Qγ in Thompson(r) (where Qγ are final states of the primitive automata reading γ). 

In the paper [11], it was shown that Glushkov(r) could also be obtained from Thompson(r) 

merging its ε-closures. 

Definition 3. Given an NFA A and its state q, ε-closure of q is the maximal set of states reachable 

from q following only ε-transitions. 
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Closure-merging1 ε-free automaton (denoted with RemEps(A)) is constructed from A as follows: 

 its states are ε-closures of the states of A; 

 if state q1 belongs to closure Ci, state q2 belongs to Cj, and there is a transition q1 →γ {..., 

q2 , ...} (γ ≠ ε) in A, then there is a transition Ci →{..., Cj, ...} in RemEps(A). 

An example of closure-merging operation is given in Fig. 1 and Fig. 2, the nodes belonging to a 

closure are highlighted with the same color. 

2.2 Transformation Monoid of NFA 

Let us consider an automaton with no useless states and ε-transitions. Its transitions over the 

alphabet Ʃ and the states set 2Q form the function F : Ʃ  S → 2S taking a pair <γ, qi>. This function, 

when curried and specialized in the first argument, becomes Fγ: S → 2S (where γ  Ʃ). We can 

form a monoid over the set of such partially specialized functions (transformations) if we continue 

them on strings as follows: Fω1 ◦ Fω2 = Fω2ω1. Then associativity is provided “for free”, given 

associativity of string concatenation, and ε becomes the monoid unit, because Fω ◦ Fε = Fωε = Fω = 

Fεω = Fε ◦ Fω holds. The state transformations are denoted by the corresponding strings ω. 

The formal definition is as follows [12]. 

Definition 4. Given an ε-free automaton A over the alphabet Ʃ, its transformation monoid M = 

TransMonoid(A) is the monoid of transformations imposed by elements of Ʃ* on the states of A. 

The monoid construction does not depend on the choice of the final or initial states of A (except the 

condition that all the states are useful, i.e. reachable and producing), thus, instead of classical NFAs, 

the monoid is based on a labelled transition system. Since the set of functions S → 2S is finite, the 

transformation monoid of an NFA always contains a finite number of equivalence classes. The pair 

<M, R>, where M is a finite set of lexicographically minimal elements of the equivalence classes 

and R is a set of simplification rules is considered a standard representation of the transformation 

monoid. Such a representation for TransMonoid(Glushkov(a(a|b)*)) is given in Fig. 3a, 

Fig. 3b, and Table 1. The monoid representation uncovers some useful NFA properties. For example, 

we can immediately conclude that the words aa and ab are synchronizing, since for all qi, qi →aa 

q2, qi →ab q3, and no other transition is possible. 

 

Fig. 3a. Labelled transition system of NFA 

bb → b  aaa → aa 

aab → ab  aba → aa 

baa → ba  bab → bb 

Fig. 3b. Rewriting rules of NFA 

                                                 
1 

This 𝜀-removal construction differs from the standard textbook 𝜀-removal algorithm, since it changes states, and not only 

transitions. This strategy allows the algorithm to succeed in conversion from Thompson to Glushkov. 
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Table 1. Equivalence classes of NFA 

 q0 q1 q2 q3 

a {q1} {q2} {q2} {q2} 

b { } {q3} {q3} {q3} 

aa {q2} {q2} {q2} {q2} 

ab {q3} {q3} {q3} {q3} 

ba { } {q2} {q2} {q2} 

2.3. Ambiguity of NFAs and REDoS 

Intuitively, the worst-case scenario for backtracking-based matching of a string against a regex r 

occurs when the matched string has a prefix η1 with a large set of parse paths, and a suffix η2 such 

that η1η2  L(r). In this case, in order to determine that η1η2 is not recognizable by r, a regex engine 

must backtrack through all the parse variants of η1. Obviously, we can choose such a suffix η3 that 

η1η3  L(r), and η1η3 will still have a large number of parse trees (although the regex engine will 

report a success after finding a first one). 
Therefore, worst-case matching time depends on the upper bound on the parse paths in a regex. 

In the domain of finite automata, the following definition is used [13], [14]. 

Definition 5. A degree of ambiguity of an NFA A is a worst-case bound on the number of paths 

recognizing an input string (in a length of the string). 

The ambiguity of NFAs is known to be either a constant, an exponential, or a polynomial [13]. If 

the ambiguity degree of A is non-constant, it is said A has an infinite degree of ambiguity (IDA). 

A standard acronym for exponential ambiguity degree is EDA. 
A minimal EDA-generating regex example is (a|a)*. A minimal example of a regex producing 

IDA but not EDA automaton is a*a*. For regexes such that (a*b*)*, Glushkov(r) is 

unambiguous, despite Thompson(r) is EDA. We can notice that in Thompson((a*b*)*), a 

special situation occurs: there is a loop inside an ε-closure of a state (i.e., there is at least one Kleene 

star in a regex iterating over an expression rE s.t. ε  L(rE)). Further we show that such a case is 

one of the few possible exceptions when Thompson(r) and Glushkov(r) have distinct ambiguity 

degrees. 
The following criterion estimates the degree of ambiguity in any NFA. 

Theorem 1.  NFA A satisfies IDA condition iff there exist states q1, q2 in A, and a word ω such 

that A contains paths from q1 and q2 to themselves, and a path from q1 to q2 all accepting the 

word ω. 

 NFA A satisfies EDA condition iff there exists a state q1 in A, and a word ω such that A 

contains two distinct loops from q1 to itself both accepting the word ω. 

We can also say than if EDA occurs in an NFA, then  qi, qj, qk, where qj and qk are distinct, such 

that there exist words ω1 and ω2 such that both qk and qj are reachable from qi following a path 

reading the word ω1, and qi is reachable from both qk and qj following a path reading the word ω2 

(see Fig. 4). 
After the work [9], we use the term “orbit of state q” for the maximal strongly connected component 

containing q. We assume that orbits are non-trivial, i.e. contain at least one transition. If a state q of 

A satisfies EDA criterion for some ω, then all states belonging to its orbit also satisfy EDA. Thus, 

to check the EDA condition, it is sufficient to check if any state of some strongly connected 
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component of an NFA satisfies EDA; for the IDA condition, it is sufficient to check if there are two 

strongly connected components satisfying it. 

 

Fig. 4a. The EDA situation 

 

Fig. 4b. The IDA situation 

An approach to the IDA and EDA detection used in the REDoS analysers [3], [4] tests the above 

criterion constructing single or double intersections of automaton A with itself. Although the 

intersection construction can be done in polynomial time on an NFA size, it may lead to large NFAs 

if there are many crossing components (i.e., matching the same string sets) in the initial NFA. 

The IDA criterion can be also reformulated in the terms of transformation monoids. 

Proposition 2. An ε-free automaton A satisfies IDA iff its transformation monoid contains an 

equivalence class ω such that for some states qi, qj, qi  Fω(qi), qj  Fω(qj), and qj  Fω(qi). 

Using this criterion for an initial NFA “as is” is highly impractical: if the NFA contains non-crossing 

components, the transformation monoid becomes exponentially huge. However, with some 

refinements, we observed that the monoid criterion can be applied (and even be fast) in the cases 

when the intersection criterion is slow. Moreover, Proposition 2 provides explicit construction of a 

string with the ambiguity, allowing the analysing algorithm to reconstruct the REDoS situation 

easily. First, take any NFA path from the initial state of A to qi, recognizing some prefix η1. Then 

pump ω to construct an infix with superlinear number of parse trees, and then take some string η2 

such that any path from qj recognizing η2 does not end in a final state of A. The string η1ωnη2 will 

force an NFA parsing device to do superlinear backtracking. 
If the monoid criterion is applied to the orbit automaton of state q, the REDoS pump can be 

constructed as well. Just choose some η1, η2 such that q0 →η1 q, and qF F in the condition q →η2 

qF is not satisfied. 

3. Our approach 

As a starting point, we prefer to use the Thompson automaton as a preliminary NFA model for a 

regex since regex matching engines rely on it in their internal algorithms, and experiments in Section 

4 demonstrate that the Thompson construction is suitable for analysing real REDoS. However, in 

order to apply the monoid criterion, we must first eliminate ε-transitions in the regex and ensure 

that the removal of ε-transitions does not affect the degree of ambiguity. 

Definition 6. A regular expression r is said to be in a star-normal form (SNF) if for each its 

subexpression (r’)* ε  L(r’). 
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Let us say that r is in the strong star-normal form (SSNF) if it is in SNF and none of its 

subexpressions (r’)* contains an alternation r1|r2, where ε ∈  L(r1) & ε ∈  L(r2). 

The following theorem is the main theoretical result of the paper. 

Theorem 2. If r is SSNF, and Thompson(r) is infinitely ambiguous, then Glushkov(r) is also 

infinitely ambiguous. Moreover, the overall ambiguity degrees (exponential or polynomial) of 

Thompson(r) and Glushkov(r) coincide. 

In order to prove Theorem 2, we use the statement proven in [11] mentioned above: 

RemEps(Thompson(r)) = Glushkov(r), where RemEps is the transformation described in 

Section 2, and the following auxiliary proposition. 

Proposition 3. If a1 and a2 are distinct letter occurrences in r, and qA1, and qA2 are final states of 

the elementary Thompson automata for a1 and a2, then qA1 and qA2 never belong to a single ε-closure 

of a state in Thompson(r). 

Proof of Proposition 3: 

Every final state of the elementary automaton for a single letter has a unique ingoing edge, marked 

with the given letter. No other construction adds ingoing edges to the final states of the subautomata 

used in the construction. Thus, the states qA1 cannot be reached from qA2 along ε-transitions, and 

vice versa. 

Proposition 3 allows us to construct the bijection between final states of the elementary subautomata 

of Thompson(r) and all the states except the initial one in Glushkov(r), mentioned in Section 2.  

Proof of Theorem 2: 

Let r be in the strong star-normal form. All the strongly connected components of Thompson(r) 

and Glushkov(r) correspond to expressions under Kleene stars. 

If some strongly connected component of Thompson(r) contains an EDA, then there exists a state 

q, two distinct states q1 и q2 and 1,2 ∈  Ʃ {ε}, words ω1, ω2 such that <q, 1, q1>∈  , <q, 2, 

q2> ∈  , q1 →ω1 q, q2 →ω2 q, satisfying 1ω1 = 2ω2. Let us denote the path from q to itself following 

through q1 by P1, and the similar path following through q2 by P2.  

If 1ω1 = ε, then there is an ε-loop from q to itself, which contradicts the SSNF condition. Thus, 

we can take the first letter of 1ω1 belonging to Ʃ, say a. Let us consider the final states q1’, q2’ of 

elementary Thompson automata for a in the paths P1 и P2. 

If q1’ is not equal to q2’, then their ε-closures are also distinct, which implies the EDA situation in 

Glushkov(r). 

Let q1’ and q2’ coincide. We recall that we chose the states q, q1, q2, such that the first edges in the 

paths P1 and P2 outgoing from q (and ingoing in q1 and q2), are distinct.  
Let q1’=q1 (or q1’=q2). The state q1’ has a single ingoing edge, namely the one outgoing from q and 

marked with a. But q1’=q2’, and q, being a predecessor of q2’ in the path P2, must occur in its initial 

fragment twice, thus, there is a path from q to q recognizing ε. This contradicts the SSNF condition. 

Let q1’ to be distinct both from q1 and q2, but to coincide with q2’. Let us again consider the ingoing 

edge in q1’ marked with a. Let this edge to outgo from some state q0. Then there are the two distinct 

paths from q into q0 reading the empty word, again contradicting SSNF. Thus, EDA in the Thompson 

automaton leads to EDA in the Glushkov automaton. 

Now let Thompson(r) contain IDA, but not an EDA. Then r contains the distinct subexpressions 

r1 and r2 under the Kleene stars, both recognizing a same word ω, such that the states corresponding 

to r1 are not reachable from the states generated by r2. Thus, r1 and r2 contain the same letter a 

with occurrences in the positions i and j, i<j, and the state for ai in Glushkov(r) is not reachable 

from the state for aj. Then Glushkov(r) contains an IDA, which is not an EDA. This completes 

the proof. 
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Thus, it is sufficient to test r for the strong star-normal form property and then, if necessary, continue 

the ambiguity analysis operating with the Glushkov automaton, having significantly less states. If 

there are loops in ε-closures, the further analysis is not needed: these loops already produce EDA 

situations. 

Given a state q in A and its orbit M, an orbit automaton of q is automaton Mq including all states 

and transitions from M, having q as is the initial state, and whose final states are either final states 

of A or states with outgoing transitions outside the orbit M in A. 

If we choose one state qi from each strongly connected component Ci of A, then testing an IDA 

criterion for TransMonoid(Mqi) is enough to reveal all EDA situations. 

However, in the case of a polynomial IDA, we must test pairs of the strongly connected components 

(together with the transitions from one component to another) and building a monoid for any such 

pair-generated NFA is too time- consuming. Thus, we use the following simple necessary condition 

for the polynomial IDA. 

Proposition 4. Let C1, C2 be distinct strongly connected components of A. If A contains a 

polynomial IDA within the components, then there exist two states, q1 ∈  C1, q2 ∈  C2, such that 

Determinize(A) contains a subset state including both q1 and q2. Moreover, such a subset state 

occurs also in Determinize(Reverse(A)). 

Although the determinization algorithm is exponentially hard in the worst case, it is known to be 

fast in most practical cases [16]. Thus, the subset test accelerates candidates search for the 

polynomial IDA. However, it is not sufficient, which can be shown by analysing regex 

(a|b)*(b|c)(a|c)* whose Thompson automaton contains no IDA. 

The pseudocode of the complete algorithm2 is given in Fig. 5. There Aq1+q2 includes the orbit 

automata Mq1 and Mq2 of q1 and q2, and all states reachable from Mq1 and reaching Mq2 together with 

their transitions. Its initial state coincides with initial state of Mq1, and its final states are final states 

of Mq2 (ignoring final states of A belonging either to Mq1 or to the intermediate states). The condition 

“c1 reaches c2” ensures that the component c2 is reachable from c1, and they do not coincide. 

Operator c[1] takes a first state from the component c (since the Ambiguity.TransMonoid and 

determinization tests results do not depend on the choice of the initial state in the orbit automata3). 

Function SCC(A) returns all strongly connected components of A. 

4. Experiments 

4.1 Data Set 

In order to evaluate the effectiveness of our approach on the “domino” regexes, a dataset of 100 

academic regexes was generated. The regexes satisfy the following properties: 

 their length and alphabet are small (not more than 50 terms and not more than 5 distinct 

letters); 

 they have iterated elements; 

 all are in SSNF. 

The first condition allows significant subexpression languages overlap, without blowing up the 

regex length. However, the test set contains not only complex dominoes, but also regexes with 

simple ambiguity situations like b*c(ac|(aa|a)*d)*. The second condition is necessary for 

                                                 
2

 The trial implementation of the method is given on https://github.com/bmstu-iu9/Chipo-Kleene/tree/ambiguity. 

3
 Absence of any useless states is guaranteed, because all the states are reachable from each other. 



Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS 

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124. 

119 

REDoS situations. The third condition mostly excludes the trivial SSNF test, returning EDA value 

using our method too quickly. 

 

Fig. 5. The overall algorithm schema 

We explored the dependence of the regexes matching time from the input length on the popular 

engines in PYTHON, JAVASCRIPT, C++, JAVA 8, JAVA 11, GO, and RUST. 

In order to detect super-linear dependencies, it is necessary to generate potentially attacking input, 

for which the string pumping method is used. The attacking input must match a pattern of the three 

components: a prefix that satisfies the regular expression, a pumping core whose repetition can lead 

to a rapid increase in the number of parsing paths (i.e., malicious pump), and a suffix whose 

mismatch leads to catastrophic backtracking. 
The results obtained by applying JAVASCRIPT, PYTHON, C++ and JAVA 8 standard regex engines are 

the same, according to them, the data set contains 34 exponential, 36 polynomial and 30 safe regexes. 

In addition, the experiments indicated that JAVA 11 standard regex engine handles some polynomial 

and exponential cases, but when the length of the input data increases significantly, it throws a stack 

overflow exception, which may be due to the introduction of the local storage of indexes to the regex 

module in the 11 version of JAVA. 

The regexes are safe for GO and RUST engines, which are based on the deterministic structures. 

Nevertheless, it was noted that there are frequent single outliers in trends when matching strings in 

GO. 

During testing, we observed that polynomial regexes only lead to critical matching times (more than 

1 minute) with significant input string lengths (approximately more than 500 characters), while 

expressions that have exponential matching complexity can reach critical time when parsing even 
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relatively small input strings. In the simplest case, such a time explosion can be achieved with 

regexes that have large star nesting or multiple alternatives under a star quantifier. For instance, the 

PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines are vulnerable to attacks in the case of the 

((a*)*)* regex, and even the optimized JAVA 11 engine, which successfully handles double star 

nesting, reaches critical time processing such an expression. 

However, more non-trivial cases were encountered in the proposed data set. For example, the regex 

b(ab((a|b(a*a)*)a*b*)*|a*aaaa*)*, when matched against the input of 32 characters that 

satisfies the pattern with prefix – b, pump – abab, suffix – bbd, achieves the following timings: 

PYTHON engine – over 3 minutes, JAVA 8 – over 3 minutes, JAVA 11 – 0.80 minutes, C++ – over 3 

minutes, JAVASCRIPT – 1.73 minutes. 
In general, the REDoS vulnerability degree coincides with the theoretical expectations, taking into 

account the asymptotic growth of the ambiguity function for the corresponding Thompson automata. 

Non-SSNF regexes cause critical time explosion, which is evidence that the regex engines do not 

apply SSNF transformation to their input. In addition to non-SSNF regexes, critical REDoS 

situations occur on polynomial ambiguities iterated under a Kleene star. 

4.2 Comparing with other tools 

We evaluated the effectiveness of the proposed approach by comparing it with three state-of-the-art 

open-source tools for detecting vulnerabilities in regexes: RSA [3], [17], a static analysis tool, 

RESCUE [5], [18], a genetic fuzzing tool, REVEALER [2], [19], an automated hybrid analysis tool that 

uses static and dynamic approaches. 

The qualitative results of the experiments are described in Table 2. To evaluate the effectiveness of 

detection of vulnerable and safe regexes, we used F1-score, where true positive values are all 

vulnerable regular expressions that were classified as exponential or polynomial, the absence of 

results due to a timeout is taken into account as a false result, also we used the error rate, where a 

cumulative error on all classes of regexes – total error rate and a classification error among 

vulnerable regexes – vulnerable error rate. It should be noted that RESCUE does not support the 

exponential-polynomial classification, therefore, not all values were calculated for this tool. 

Table 2. Evaluation results 

Tool F1-score Total error rate Vulnerable error rate 

RSA 0.90 0.13 0.00 

ReScue 0.39 - - 

Revealer 0.55 0.45 0.04 

Our method 1.00 0.00 0.00 

The results of measuring the execution time for the considered tools are shown in Table 3. When 

measuring time, all extended features of the tools were disabled, and their parameters were 

optimized. For each class of correctly classified regexes: exponential, polynomial, safe, unsafe 

(union of vulnerable regexes), the average running time (μ) and the standard deviation (σ) of this 

value were estimated, the number of timeouts was also calculated. 

Additionally, we chose 25 regexes with non-SSNF structure, which are analysed in our method by 

the preliminary ε-loop test. While our approach proved to be the fastest (which is not a surprise, 

provided the algorithm structure), the static part of REVEALER also had 100% success rate on this 

set, although, taking at average 4x more time. 

It is important to note that the theoretical results obtained by using static analysis methods, 

determining ambiguity degree of the Thompson automata, completely coincide with the 

experimental results obtained when testing the domino regexes on the PYTHON, JAVASCRIPT, 

JAVA 8, and C++ regex engines. This is a strong witness that regexes declared safe by dynamic or 

combined methods are their false negatives. 
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Table 3. Time measurements 

 Exp Poly Safe Unsafe Timeouts 

Tool μ(s) σ(s) μ(s) σ(s) μ(s) σ(s) μ(s) σ(s)  

RSA 1.895 2.614 3.480 3.748 0.836 0.341 2.578 3.221 13 

ReScue - - - - 0.940 1.724 8.803 6.263 43 

Revealer 0.410 0.035 0.402 0.021 0.320 0.065 0.409 0.033 0 

Our method 0.836 1.059 1.178 1.259 0.484 0.400 1.014 1.169 0 

From the test results, we can conclude that the detection efficiency of the static analyser is high, but 

in non-trivial exponential or polynomial cases such as (baa|ab)*b(a(b|a)ba*b*(aab)*, 

timeouts occur. The recognition efficiency of RESCUE and REVEALER tools on this data set is low. 

However, the proposed approach has the maximum quality of vulnerability detection, the average 

execution time is also superior to other implementations. This is partly explained by its narrow 

domain: testing only academic regexes. But RSA also aims at the academic regexes, and still has 

several timeouts; on the other hand, it seems that extension of REDoS-detection tools to non-

academic regexes made them to miss almost all polynomial REDoS with domino structure. 

5. Discussion and Related Works 

Initially, our finite automata transforming tool was not designed to reveal REDoS situations. 

However, attempts to use open-source tools like Regex Static Analyser or RESCUE to analyze simple 

academic regexes with non-trivial ambiguity structure failed. The main purpose of the work was 

educational, so we designed our algorithm in such a way that it not only detects vulnerabilities, but 

also demonstrates them on the automata graphs, at the cost of longer execution 

time. Since the tool was initially designed for demonstrations, only core academic regexes were 

considered. The algorithms used in the monoid-based approach have poor worst-case complexity, 

so its efficiency, compared to RSA and RESCUE, was a real surprise. 

What features of the analysers caused such a situation? RSA uses NFA intersection construction, 

based on the well-known paper of Mohri et al [14]. To detect polynomial ambiguities, the algorithm 

requires self-intersecting an NFA twice. The automata intersection problem is known to be 

PSPACE-complete [20], [21], thus, every additional intersection results in a significant slowdown. 

Maybe that is the main cause why the polynomial detection results in timeouts in RSA. The monoid 

and determinization algorithms are known to be worst-case exponential. However, the 

determinization is proven to be fast 4 in average [16], while the monoid representation depends 

heavily on the automata structure and, implemented to orbit automata, generates significantly fewer 

equivalence classes, compared to the case when automata are not cyclic. Another well-known 

problem in static analysers is dealing with ε-transitions, which can ruin the intersection construction, 

as well as the monoid. Surprisingly, the tools do not use the simple and natural conversion to the 

Glushkov construction preceded by the SSNF test. 

Error rate of static tools is usually much lower than in tools using genetic algorithms and fuzzing, 

since REDoS-provoking strings can be disguised, requiring several explicit iterations to construct, 

or be combined from several alternative subexpressions under an iteration. Even using two 

approaches in REVEALER cannot help to find vulnerabilities, if the malicious pump is hidden in 

overlaps and crossing occurrences. For example, in paper [6], four REDoS classes are provided, 

based on a regex structure, and the regex a*(ab)*a(ba)* satisfies neither of them, because the 

vulnerability appears due to the crossing occurrence of the string ab on the border of the two orbits, 

whereas the expressions under Kleene stars have languages with empty intersection, which makes 

the regex “seemingly safe”. A similar pattern-based approach is used in [7], resulting in the same 

sort of false negatives. So, regex-based heuristics showed themselves to be too weak as compared 

to the model NFA analysis in the domino ambiguity cases. 
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If a malicious pump for a regex is found, the natural question arises: how to correct the regex? We 

did not consider the whole implementation of the regex correction, but implemented a trial algorithm 

constructing a 1-unambiguous regex, if it exists [9]. However, for most regexes with overlaps, even 

if the equivalent 1-unambiguous regex can be built, the algorithm given in [9] produces 

exponentially longer result, as compared to the input, processing all overlap combinations 

separately. A more optimistic regex correcting heuristic is the Star Normal Form transformation: it 

is performed in linear time and produces regexes approximately of the same length. Moreover, the 

SSNF transformation is rather local, does not require transition to NFA, and can be applied even to 

extended regexes, which is useful, taking in account that non-SSNF regexes cause critical REDoS 

w.r.t. PYTHON and JAVASCRIPT regex engines. In general, the question what theoretical results can 

be used to fix REDoS regexes, is still a subject of research. 

6. Conclusion 

The research resulted in the following answers to our research questions. 

 RQ1: how relevant is NFA static analysis w.r.t. to popular regex engines? 

Our experiments demonstrated that the Thompson NFA model is entirely suitable for 

evaluating REDoS situations concerning the most widely used regex engines, including 

PYTHON, JAVASCRIPT, JAVA, and C++. Interestingly, although the GO regex machine uses 

conversion to DFA, it still produces surges on some ambiguous regexes with complex 

structures. The RUST DFA engine proved to be the most stable. 

 RQ2: what features of the REDoS analysers considered cause errors and time explosion 

on the regexes with complex overlap structure? How they can be processed reliably with 

less risk of time explosion? 

We found out that considering orbit automata (instead of performing ambiguity analysis on 

the entire NFA) and using the Glushkov construction, preceded by the Strong Star Normal 

Form test, do not result in any loss of relevance, but significantly speed up the static 

analysis. 
Another interesting approach is to use monoid analysis as the primary ambiguity-detecting 

algorithm instead of NFA intersection analysis. If there are multiple substring overlaps in 

the orbits, this method performs significantly faster. However, if the overlaps are small, the 

number of equivalence classes in the monoid increases dramatically, making the 

intersection method more preferable. 

We also provided experimental evidence that the genetic search REDoS detection methods 

still miss complex REDoS cases, easily detected by static NFA analysis approaches. 

Despite our approach proved itself to be efficient and reliable on the test set of domino regexes, it 

still requires many refinements. First, the monoid construction may explode if we take large 

alphabets, so the input regexes may need some alphabet factorization. E.g., if no overlaps are 

contained within a long string, then this string sometimes can be considered as a single letter. 

Second, it would be interesting to test the method on extended regexes approximation, and to 

combine the monoid-based and intersection-based ambiguity detection algorithms. 
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