Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-8 M

REDoS Detection in “Domino” Regular
Expressions by Ambiguity Analysis

1 Antonina Nepeivoda, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru>
2Yulia Belikova, ORCID: 0009-0007-7829-1249, <ju.belikova@gmail.com>
2Kirill Shevchenko, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru=
2Mikhail Teriukha, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 Danila Knyazihin, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>
2 Aleksandr Delman, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 Anna Terentyeva, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

! Aylamazyan Program Systems Institute of the Russian Academy of Sciences,
4a, Petra | st., Veskovo, Pereslavsky District, Yaroslavl Oblast, 152024, Russia.
2Bauman Moscow State Technical University,

5, 2-nd Baumanskaya, Moscow, 105005, Russia.

Abstract: The Regular Expression Denial of Service (REDoS) problem refers to a time explosion caused by
the high computational complexity of matching a string against a regex pattern. This issue is prevalent in
popular regex engines, such as PYTHON, JAVASCRIPT, and C++. In this paper, we examine several existing open-
source tools for detecting REDoS and identify a class of regexes that can create REDoS situations in popular
regex engines but are not detected by these tools. To address this gap, we propose a new approach based on
ambiguity analysis, which combines a strong star-normal form test with an analysis of the transformation
monoids of Glushkov automata orbits. Our experiments demonstrate that our implementation outperforms the
existing tools on regexes with polynomial matching complexity and complex subexpression overlap structures.

Keywords: regular expressions; ambiguity; REDoS; Glushkov automaton; transformation monoid; strong star-
normal form.

For citation: Nepeivoda A.N., Belikova Yu.A., Shevchenko K.K., Teriukha M.R., Knyazihin D.P., Delman
A.D., Terentyeva A.S. REDoS Detection in “Domino” Regular Expressions by Ambiguity Analysis. Tpyast
HWCII PAH, Tom 35, B 3, 2023 1., ctp. 109-124. DOI: 10.15514/ISPRAS-2023-35(3)-8

Acknowledgements: The first author was partially supported by Russian Academy of Sciences, research
project No. 122012700089-0.

109

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

BbisBneHne REDOS cutyaumm B perynsipHbiX BbIpaXXeHUAX
CTPYKTYpPbl «(4OMUHO»

Y A.H. Heneiisooa, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru=>,
2J0.A. Beauxosa, ORCID: 0009-0007-7829-1249 <ju.belikova@gmail.com>
2 K.K. Illeguenxo, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru=>
2 M_.P. Teproxa, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 J1.IT. Kussuxun, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>
2 A 1. Jenoman, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 A.C. Tepenmvesa, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

Y Unemumym npozpammmvix cucmem PAH um. A.K. Atinamassana,
Poccus, 152024, Apocrasckas o6x., c. Becvkoso, yu. Ilempa l, 0. 4a.
2 Mockoeckuii 2ocydapcmeennviii mexuudeckutl ynusepcumem umenu H.O. Baymana,
105005, Poccus, Mockea, yr. baymanckas 2-1, 0. 5/1.

AunHotaums. Cutyanusi oTkasa B oOCIHyKUBaHHs peryisipHbix Boipakenuit (REDO0S) Bo3nukaer B ciydae
BBICOKOH BBIYHCIUTENHHOH CI0KHOCTH COIIOCTABJICHUS CTPOKH C BBIPQKEHHEM M BCTPEYaeTCS BO MHOTHUX
OHOJIMOTEKaX PEryNIAPHBIX BRIpaKECHUH Takux s3b1koB, kak PY THON, JAVASCRIPT, C++. B nanHo#i ctaThe
paccMaTpHUBaeTCs KIIace PeryJsIpHBIX BRIPOKEHUH, KOTOpBIE CO31at0T yrpo3y Bo3HukHOoBeHHss REDOS, onHako
HE PACIIO3HAIOTCS KaK ysSI3BUMBIC PSIOM CYIIECTBYIOIIMX MPOrpaMMHEIX cucTeM. [IpemaraeTcst mpon3BoJuTh
OLICHKY CTEIIEeHH HEOJJHO3HAYHOCTH TAKHUX BBIPAKEHUH IIOCPEACTBOM KOMOMHHUPOBAHHMS IPOBEPKH HA CTPOTYIO
3BE3HYI0 HOpManbHYI0 (OopMy H aHauW3a TpaHC(HOPMANMOHHOTO MOHOHMIA aBToMara [Irymkosa,
MIOCTPOCHHOTO TI0 BXOJHOMY PETYIISPHOMY BBIPAXEHHIO. DKCIIEPUMEHTHI ITOKA3bIBAIOT, YTO JAHHBIH MOAXO0]
OKa3bIBaeTCs 3 (PEKTHBEH MIPU OIEHKE MOJMHOMHANBHBIX HEOAHO3HAYHOCTEH B PEryIIPHBIX BBIPAKEHHUAX CO
CJI0XHOM CTPYKTYpPOH MEPEKPHITHIA.

KnroueBble cioBa: perymsipHble BBIpaXEHHS; HeoxHo3HayHocTh; REDOS; aBromar Iirymikosa;
TpaHc(hOPMAIMOHHBIA MOHOW; CHIIbHAS 3BE3/[HAsT HOPpMasbHas popma.

Jas uurupoBanusi: HenetiBoga A.H., benukosa 10.A., lllesuenko, K.K. Teproxa M.P., Kuszuxun J1.I1.,
Henmbman A.Jl., TepentheBa A.C. BriaBnenne REDoS cutryanuii B perynspHbIX BBIPAXEHUSX CTPYKTYpBI
«momuHO». Tpymer MUCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 109-124 (ma amrmmiickom s3pike). DOI:
10.15514/ISPRAS-2023-35(3)-8

Baaronapuoctu. IlepBerii aBTOp OCYIIECTBISUT Pa0OTy HaA TMPOEKTOM TIPH YAaCTHUYHOM TOIAEPIKKE
Poccwuiickoit Akagemuu Hayk, Homep HUP 122012700089-0.

1. Introduction

Popular regular expression (regex) engines typically use non-deterministic finite automata (NFA) as
their internal representation for regexes. This choice is motivated by the flexibility of the NFA
concept, which can be extended to support a wider range of regex operations with little effort. For
instance, back-references and lookaheads can be easily added to the NFA model. Although, in
theory, every string can be matched against a regex in linear time using deterministic finite automata
(DFA) conversion, popular regex engines may admit exponential matching time due to a
phenomenon called “catastrophic backtracking”.

This phenomenon occurs only for a specific class of regular expressions. For example, consider the
regex (alb)*a, which is non-deterministic due to the unavoidable non-determinism in the
transition to the last occurrence of the letter a. However, every string has a unique parsing tree with
respect to this regex. In contrast, the regex (a*b*) * has an infinite number of accepting parsing
trees for any given string, as inner Kleene stars can degenerate to the empty word, causing a
combinatorial explosion of parse paths. Intuitively, the latter regex can be considered “bad”, while
the former is considered “good”.

Matching against “bad” regexes can yield a situation called a Regular Expression Denial of Service
(REDo0S), when the matching time grows super-linearly and can cause performance issues in, for
110

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

instance, a web service that uses such a regex to parse user input. To avoid these situations, it is
essential to detect unsafe regexes and replace them with safe equivalents.

The number of research papers mentioning the REDoS problem has increased rapidly in the last
decade [1]-[7]. Several tools have been developed to detect RED0S, using both static analysis and
random search. Some of these tools aim to detect the entire class of extended regexes, while others
focus on academic ones. However, for a class of simple regexes, which are not safe in theory, the
tools considered either take too long time to process, or give an incorrect answer, falsely witnessing
their safety. These regexes usually have overlapping, but not completely coinciding, structure of the
expressions under the Kleene stars (being a simple analogue of dominoes in the Post Correspondence
Problem). An example of such a regex is (baalab)*(b|¢) (a(bala)ba*b)* (aab)*: the
ambiguity occurs both in prefixes (baa)™ and (ab)®, which can be constructed in several ways
from primitive “dominoes”.

Thus, the two natural research questions arise:

e do the “domino” regexes really contain REDoS situations w.r.t. the modern regex
engines?

o if the answer is yes, what methods can deal with such regexes in order to analyse them
without blow-up of the analysis time because of the overlaps?

The main contributions of the paper are:

e amethod for REDoS situations detection, utilizing properties of non-deterministic finite
automata and their transition monoids. This approach is novel, since previous static-
analysis-based methods use NFA intersection. For “domino” regexes our method is
shown to perform better than the open-source analogues REGEX STATIC ANALYZER [3],
RESCUE [5], and REVEALER [2].

e experimental testing of the relevance of the NFA model used and the vulnerabilities
found, by investigating real regex engines behaviour on the attack strings.

The method is implemented only for the academic regexes for now. Surprisingly, for this case, the
tested open-source tools perform significantly worse on domino tests, especially for polynomial
REDOS situations.

The paper is organized as follows. Section 2 contains preliminaries on finite automata, and
theoretical concepts that are used further. The proposed REDoS detection method is given in Section
3, preceded by lemmas used for its optimisation. Section 4 discusses relevance of the chosen model
with respect to the real regex matching engines, and provides a result of comparative testing of our
method and three other open-source REDoS detection tools. We discuss the results of the
experiments and the related works in more detail in Section 5. Section 6 concludes the paper.

2. Preliminaries

We denote automata with calligraphic _7; states are denoted with the letters gand O, or with the set
of these letters (if an automaton is a result of a closure operation). The empty word is denoted by «;
concrete elements from the input alphabet are denoted with a, b, ¢, ..., and letter parameters are
denoted with y; wand n denote word parameters. We use only the basic academic regular expression
constructing operations: concatenation (which is omitted in notation), alternation (denoted with |),
and Kleene star (denoted with *). If ris a regex, £(r) denotes its language.

Let us recall basic definitions and describe the finite automata models used in this paper.

2.1 Finite Automata
Definition 1. A non-deterministic finite automaton (NFA) is a tuple <S, X, qo, F, 6>, where:
e Sisa state set;

111

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

e X isaterminal alphabet;

e Jisa set of transitions of the form <q;, (vi| €), Mi>, where gi € S, vi € Z, M € 25;
e (o € Sis the initial state;

e F < S, isasetof final states.

Every transition in an NFA maps a pair <g;, (vi | £)> into a set of states, contrary to transitions in a
deterministic finite automaton (DFA), which map every pair (q;, vi) (where v; is essentially not equal
to ¢) to a single state. Thus, if a word is parsed by a DFA, the parse trace is always unique (i.e.,
DFAs are unambiguous); in an NFA, there can be a set of parse traces for a single word. This set
can even be infinite in case of NFA with e-transitions. The notation ¢; — ... is overloaded to denote
either NFA transition <g;, y, Mi> (written as gi —" M;) or a transition to a single state belonging to
Mi (written as gi—Y q;). Existence of a path from g; to g; marked by w in X" is also denoted by gi —®
a;-

An NFA can be transformed into an equivalent DFA using a textbook subset-constructing algorithm
Determinize, which generates states of the DFA corresponding to the sets of the states of the
initial NFA resulted in the transitions along the same input symbols.

The NFA models used in regex engines are primarily based on the classical Thompson construction,
which provides an algorithm for transforming a regex into an NFA that recognizes the same
language. While the implementation details of the transformation may vary, the experiments
presented in Section 4 provide evidence that the Thompson model remains relevant for identifying
inefficient regexes with respect to NFA-based parsing engines.

In the following descriptions, we only give details of the constructed NFAs in terms of their states
and transitions, without mentioning the alphabet construction.

Definition 2. Thompson NFA (denoted with Thompson(r)) is constructed from a regex r as
follows. At any construction step except processing concatenations, the new initial state g, and the
new final state Qr are introduced, and the transition set is updated depending on the regex operation.

e Everysingle letter y generates a primitive automaton with the only transition q, —{Q,}.

e If 4, =Thompson(ri), A2 =Thompson(rz), and gi and Q; are their initial and final
states, respectively, then Thompson(ri | r2) is constructed by merging the 4, and 4>
states sets and transitions sets, and introducing the transitions qaxr —° {01, Q2};
Q1 —¢ {Qar}; Q2—¢ {Qan}.

e Thompson(riry) is again constructed by merging Thompson(r;) states and transitions
sets, and making i the initial state, Q. the final state, with the additional transition
Q1 —{02}.

e Thompson(zy”) is constructed introducing transitions g« —¢ {g:1,Q+}, Q1 —¢{q1, Q+}.

The Thompson construction algorithm ensures that any NFA produced by the algorithm has a unique
final state and that each state has at most two outgoing and two incoming transition arcs. The
uniqueness of the final state implies that the reverse NFA for Thompson(r) is exactly
Thompson(r®), where % is the reverse of the regex r. Additionally, all subregex automata can be
treated as isolated directed acyclic graphs, which makes the construction easily extensible and
decomposable. An example of a Thompson automaton for a regex is shown in Fig. 1. The states
labels follow the corresponding regex operations given in Definition 2.

112

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Fig. 1. Thompson automaton for (a|b) *a

One drawback of the Thompson construction is that it introduces non-deterministic transitions
corresponding to alternating operations (i.e., alternatives or Kleene stars), even in the cases when
the regex itself imposes no non-determinism (e.g. for the regex a (a | b) *, which is a reverse of the
regex shown in Fig. 1). To avoid the redundant non-determinism, the regex engine RE2 [8] processes
such strongly deterministic regexes (also known as 1-unambiguous regexes [9]) constructing another
NFA based on the regex structure, but without e-transitions. This automaton is known as the
Glushkov automaton since 1960s, and in the last two decades it attracted considerable interest,
shown to be efficient and extensible to construct deterministic parsing engines for a larger class of
regexes (such as memory finite automata for the regexes with back-references [10]). The Glushkov
automaton is shown in Fig. 2.

Figure 2b. Glushkov(a (alb)”)

The classical Glushkov construction is based on so-called follow-relation on linearised regexes. By
construction, every state in the Glushkov automaton except the initial state corresponds to an
occurrence of some y in X in the input regex r; conversely, any letter occurrence in the regex r
corresponds to exactly one state in G1ushkov(r), whose incoming arcs are all marked with y. Now
we can reformulate this property in the terms of Thompson and Glushkov automata.

Proposition 1. There is a bijection from state set in Glushkov(zr) minus the initial state to state
set Q, in Thompson(r) (wWhere Q, are final states of the primitive automata reading v).

In the paper [11], it was shown that Glushkov(r) could also be obtained from Thompson(r)
merging its e-closures.

Definition 3. Given an NFA _4 and its state g, e-closure of g is the maximal set of states reachable
from g following only e-transitions.

113

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

Closure-merging! e-free automaton (denoted with RemEps(.4)) is constructed from _4 as follows:
e itsstates are e-closures of the states of 7,

o if state g1 belongs to closure C;, state g. belongs to Cj, and there is a transition g1 — {...,
0z, ...} (y# &) in A4 then there is a transition C; —/{..., C;, ...} in RemEps(.4).

An example of closure-merging operation is given in Fig. 1 and Fig. 2, the nodes belonging to a
closure are highlighted with the same color.

2.2 Transformation Monoid of NFA

Let us consider an automaton with no useless states and e-transitions. Its transitions over the
alphabet X and the states set 29 form the function F : X x S — 25 taking a pair <y, gi>. This function,

when curried and specialized in the first argument, becomes F,: S — 25 (where y € X). We can
form a monoid over the set of such partially specialized functions (transformations) if we continue
them on strings as follows: Fe; © Fu2 = Fu2er. Then associativity is provided “for free”, given
associativity of string concatenation, and becomes the monoid unit, because F, c F-: = F,. = F, =
F:w = F: ° F,holds. The state transformations are denoted by the corresponding strings w.

The formal definition is as follows [12].

Definition 4. Given an e-free automaton _4 over the alphabet Z, its transformation monoid A/ =
TransMonoid(.A) is the monoid of transformations imposed by elements of =" on the states of 4.

The monoid construction does not depend on the choice of the final or initial states of _7 (except the
condition that all the states are useful, i.e. reachable and producing), thus, instead of classical NFAs,
the monoid is based on a labelled transition system. Since the set of functions S — 25 is finite, the
transformation monoid of an NFA always contains a finite number of equivalence classes. The pair
<M, R>, where M is a finite set of lexicographically minimal elements of the equivalence classes
and R is a set of simplification rules is considered a standard representation of the transformation
monoid. Such a representation for TransMonoid(Glushkov(a (alb) *)) is given in Fig. 3a,
Fig. 3b, and Table 1. The monoid representation uncovers some useful NFA properties. For example,
we can immediately conclude that the words aa and ab are synchronizing, since for all g;, gi —a2
g2, §i —2P (3, and no other transition is possible.

Fig. 3a. Labelled transition system of NFA

bb - b aaa — aa
aab - ab aba - aa
baa - ba bab - bb

Fig. 3b. Rewriting rules of NFA

1 This e-removal construction differs from the standard textbook e-removal algorithm, since it changes states, and not only
transitions. This strategy allows the algorithm to succeed in conversion from Thompson to Glushkov.

114

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Table 1. Equivalence classes of NFA

Jo 01 02 Q3
a {a:} {az} {2} {q2}
b {} {as} {as} {q3}
aa {g2} {az} {2} {q2}
ab {ags} {as} {as} {qa}
ba {} {9z} {92} {q2}

2.3. Ambiguity of NFAs and REDoS

Intuitively, the worst-case scenario for backtracking-based matching of a string against a regex r
occurs when the matched string has a prefix 1 with a large set of parse paths, and a suffix 7> such
that 172 & L(r). Inthis case, in order to determine that 7172 is not recognizable by r, a regex engine
must backtrack through all the parse variants of #1. Obviously, we can choose such a suffix #s that
mns € L(r), and n1ns will still have a large number of parse trees (although the regex engine will
report a success after finding a first one).

Therefore, worst-case matching time depends on the upper bound on the parse paths in a regex.

In the domain of finite automata, the following definition is used [13], [14].

Definition 5. A degree of ambiguity of an NFA A is a worst-case bound on the number of paths
recognizing an input string (in a length of the string).

The ambiguity of NFAs is known to be either a constant, an exponential, or a polynomial [13]. If
the ambiguity degree of _4 is non-constant, it is said .4 has an infinite degree of ambiguity (IDA).
A standard acronym for exponential ambiguity degree is EDA.

A minimal EDA-generating regex example is (a|a) *. A minimal example of a regex producing
IDA but not EDA automaton is a*a*. For regexes such that (a*b*)*, Glushkov(r) is
unambiguous, despite Thompson(r) is EDA. We can notice that in Thompson((a*b*)*), a
special situation occurs: there is a loop inside an e-closure of a state (i.e., there is at least one Kleene
star in a regex iterating over an expression re s.t. ¢ € L(rg)). Further we show that such a case is
one of the few possible exceptions when Thompson(r) and Glushkov(r) have distinct ambiguity
degrees.

The following criterion estimates the degree of ambiguity in any NFA.

Theorem 1. « NFA A satisfies IDA condition iff there exist states qi, g2 in A, and a word w such
that A contains paths from g: and g, to themselves, and a path from qg: to g2 all accepting the
word o.

o NFA A satisfies EDA condition iff there exists a state q: in A, and a word w such that A
contains two distinct loops from qu fo itself both accepting the word w.

We can also say than if EDA occurs in an NFA, then 3 g, gj, qx, Where g; and gx are distinct, such
that there exist words w1 and w. such that both g« and g; are reachable from g; following a path
reading the word w1, and ¢; is reachable from both g« and g; following a path reading the word w;
(see Fig. 4).

After the work [9], we use the term “orbit of state g” for the maximal strongly connected component
containing g. We assume that orbits are non-trivial, i.e. contain at least one transition. If a state g of
A satisfies EDA criterion for some w, then all states belonging to its orbit also satisfy EDA. Thus,
to check the EDA condition, it is sufficient to check if any state of some strongly connected

115

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

component of an NFA satisfies EDA, for the IDA condition, it is sufficient to check if there are two
strongly connected components satisfying it.

Fig. 4b. The IDA situation

An approach to the IDA and EDA detection used in the REDoS analysers [3], [4] tests the above
criterion constructing single or double intersections of automaton ‘A with itself. Although the
intersection construction can be done in polynomial time on an NFA size, it may lead to large NFAs
if there are many crossing components (i.e., matching the same string sets) in the initial NFA.

The IDA criterion can be also reformulated in the terms of transformation monoids.

Proposition 2. An e-free automaton A satisfies IDA iff its transformation monoid contains an
equivalence class w such that for some states Ui, q;, 0i € Fo(Qi), ; € Fo(dj), and q; € Fo(0).

Using this criterion for an initial NFA “as is” is highly impractical: if the NFA contains non-crossing
components, the transformation monoid becomes exponentially huge. However, with some
refinements, we observed that the monoid criterion can be applied (and even be fast) in the cases
when the intersection criterion is slow. Moreover, Proposition 2 provides explicit construction of a
string with the ambiguity, allowing the analysing algorithm to reconstruct the REDoS situation
easily. First, take any NFA path from the initial state of A to g;, recognizing some prefix #1. Then
pump o to construct an infix with superlinear number of parse trees, and then take some string 7>
such that any path from g; recognizing #. does not end in a final state of “A. The string n1w™;2 will
force an NFA parsing device to do superlinear backtracking.

If the monoid criterion is applied to the orbit automaton of state g, the REDoS pump can be
constructed as well. Just choose some #1, 72 such that qo —" g, and ¥ qe € F in the condition g —"°
Qe is not satisfied.

3. Our approach

As a starting point, we prefer to use the Thompson automaton as a preliminary NFA model for a
regex since regex matching engines rely on it in their internal algorithms, and experiments in Section
4 demonstrate that the Thompson construction is suitable for analysing real REDoS. However, in
order to apply the monoid criterion, we must first eliminate e-transitions in the regex and ensure
that the removal of e-transitions does not affect the degree of ambiguity.

Definition 6. A regular expression r is said to be in a star-normal form (SNF) if for each its
subexpression (r’) e & L(r”).

116

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Let us say that r is in the strong star-normal form (SSNF) if it is in SNF and none of its
subexpressions (r”) * contains an alternation r:| r2, where ¢ € L(r:1) & ¢ € L(r>).

The following theorem is the main theoretical result of the paper.

Theorem 2. If r is SSNF, and Thompson(r) is infinitely ambiguous, then Glushkov(r) is also
infinitely ambiguous. Moreover, the overall ambiguity degrees (exponential or polynomial) of
Thompson(r) and Glushkov(r) coincide.

In order to prove Theorem 2, we use the statement proven in [11] mentioned above:
RemEps(Thompson(r)) = Glushkov(r), where RemEps is the transformation described in
Section 2, and the following auxiliary proposition.

Proposition 3. If a; and a; are distinct letter occurrences in r, and ga1, and qa2 are final states of
the elementary Thompson automata for a; and ay, then ga1 and ga2 never belong to a single e-closure
of a state in Thompson(r).

Proof of Proposition 3:

Every final state of the elementary automaton for a single letter has a unique ingoing edge, marked
with the given letter. No other construction adds ingoing edges to the final states of the subautomata
used in the construction. Thus, the states ga: cannot be reached from ga» along e-transitions, and
vice versa.

Proposition 3 allows us to construct the bijection between final states of the elementary subautomata
of Thompson(r) and all the states except the initial one in GLlushkov(r), mentioned in Section 2.
Proof of Theorem 2:

Let r be in the strong star-normal form. All the strongly connected components of Thompson(r)
and Glushkov(r) correspond to expressions under Kleene stars.

If some strongly connected component of Thompson(z) contains an EDA, then there exists a state
g, two distinct states g1 u gz and a1, € X \{e}, words w1, w; such that <q, a1, 1>€ 6, <(, a2,
02> € 6, 01 —' g, g2 —“2q, satisfying caw1 = aw>. Let us denote the path from q to itself following
through g1 by P1, and the similar path following through gz by Pa.

If cuw1 = ¢, then there is an e-loop from g to itself, which contradicts the SSNF condition. Thus,
we can take the first letter of caw1 belonging to X, say a. Let us consider the final states q:’, g»” of
elementary Thompson automata for a in the paths P1 u Pa.

If g1 is not equal to g2’, then their e-closures are also distinct, which implies the EDA situation in
Glushkov(r).

Let g1’ and g2’ coincide. We recall that we chose the states q, g1, gz, such that the first edges in the
paths P; and P, outgoing from g (and ingoing in q: and qz), are distinct.

Let g1’=q¢1 (or g1’=¢2). The state g1 has a single ingoing edge, namely the one outgoing from q and
marked with a. But g1 ’=¢>’, and q, being a predecessor of g2 in the path P, must occur in its initial
fragment twice, thus, there is a path from q to g recognizing <. This contradicts the SSNF condition.
Let g1’ to be distinct both from g; and g3, but to coincide with g, . Let us again consider the ingoing
edge in g1” marked with a. Let this edge to outgo from some state go. Then there are the two distinct
paths from q into qo reading the empty word, again contradicting SSNF. Thus, EDA in the Thompson
automaton leads to EDA in the Glushkov automaton.

Now let Thompson(r) contain IDA, but not an EDA. Then r contains the distinct subexpressions
r1and r» under the Kleene stars, both recognizing a same word w, such that the states corresponding
to r; are not reachable from the states generated by r,. Thus, r; and r, contain the same letter a
with occurrences in the positions i and j, i<j, and the state for aj in Glushkov(r) is not reachable
from the state for a;. Then Glushkov(r) contains an IDA, which is not an EDA. This completes
the proof.

117

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

Thus, itis sufficient to test r for the strong star-normal form property and then, if necessary, continue
the ambiguity analysis operating with the Glushkov automaton, having significantly less states. If
there are loops in e-closures, the further analysis is not needed: these loops already produce EDA
situations.

Given a state g in .4 and its orbit M, an orbit automaton of q is automaton Mg including all states
and transitions from M, having q as is the initial state, and whose final states are either final states
of 4 or states with outgoing transitions outside the orbit M in 4.

If we choose one state ¢i from each strongly connected component C; of _4, then testing an IDA
criterion for TransMonoid(Myg;) is enough to reveal all EDA situations.

However, in the case of a polynomial IDA, we must test pairs of the strongly connected components
(together with the transitions from one component to another) and building a monoid for any such
pair-generated NFA is too time- consuming. Thus, we use the following simple necessary condition
for the polynomial IDA.

Proposition 4. Let Ci, C, be distinct strongly connected components of 4. If _4 contains a
polynomial IDA within the components, then there exist two states, g1 € Ci, g2 € Cy, such that
Determinize(.A4) contains a subset state including both g: and q.. Moreover, such a subset state
occurs also in Determinize(Reverse(A)).

Although the determinization algorithm is exponentially hard in the worst case, it is known to be
fast in most practical cases [16]. Thus, the subset test accelerates candidates search for the
polynomial IDA. However, it is not sufficient, which can be shown by analysing regex
(alb)*(blc) (alc)* whose Thompson automaton contains no IDA.

The pseudocode of the complete algorithm? is given in Fig. 5. There 4y includes the orbit
automata Mq1 and Mg of g; and g2, and all states reachable from Mq; and reaching Mg together with
their transitions. Its initial state coincides with initial state of Mgy, and its final states are final states
of Mg (ignoring final states of _4belonging either to Mgz or to the intermediate states). The condition
“Cci reaches Cy” ensures that the component C; is reachable from cy, and they do not coincide.
Operator c[1] takes a first state from the component ¢ (since the Ambiguity.TransMonoid and
determinization tests results do not depend on the choice of the initial state in the orbit automata®).
Function scc(.A4) returns all strongly connected components of 4.

4. Experiments

4.1 Data Set

In order to evaluate the effectiveness of our approach on the “domino” regexes, a dataset of 100
academic regexes was generated. The regexes satisfy the following properties:

o their length and alphabet are small (not more than 50 terms and not more than 5 distinct
letters);

e they have iterated elements;
e all are in SSNF.

The first condition allows significant subexpression languages overlap, without blowing up the
regex length. However, the test set contains not only complex dominoes, but also regexes with
simple ambiguity situations like b*c (ac| (aala)*d) *. The second condition is necessary for

2 The trial implementation of the method is given on https://github.com/bmstu-iu9/Chipo-Kleene/tree/ambiguity.

8 Absence of any useless states is guaranteed, because all the states are reachable from each other.

118

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

REDoS situations. The third condition mostly excludes the trivial SSNF test, returning EDA value
using our method too quickly.

if = SSNF(r) then
return EDA
A < Glushkov(r)
end if
C « sCC(4)
for ce C do
a0 < c[1]
if Ambiguity(TransMonoid(M,,)) then
return EDA
end if
end for
for c1.c2 € C do
if ¢ reaches ¢ then
a1 < ai[l]
42 — ca[1]
if SubsetPairs(Determinize(Ay, +4,))
N SubsetPairs(Determinize(Reverse(Ay +4,))) # O
then
if Ambiguity(TransMonoid(Ag +4,)) then
return DA
end if
end if
end if
end for
return Safe

Fig. 5. The overall algorithm schema

We explored the dependence of the regexes matching time from the input length on the popular
engines in PYTHON, JAVASCRIPT, C++, JAVA 8, JAVA 11, Go, and RusT.

In order to detect super-linear dependencies, it is necessary to generate potentially attacking input,
for which the string pumping method is used. The attacking input must match a pattern of the three
components: a prefix that satisfies the regular expression, a pumping core whose repetition can lead
to a rapid increase in the number of parsing paths (i.e., malicious pump), and a suffix whose
mismatch leads to catastrophic backtracking.

The results obtained by applying JAVASCRIPT, PYTHON, C++ and JAVA 8 standard regex engines are
the same, according to them, the data set contains 34 exponential, 36 polynomial and 30 safe regexes.
In addition, the experiments indicated that JAVA 11 standard regex engine handles some polynomial
and exponential cases, but when the length of the input data increases significantly, it throws a stack
overflow exception, which may be due to the introduction of the local storage of indexes to the regex
module in the 11 version of JAVA.

The regexes are safe for Go and RUST engines, which are based on the deterministic structures.
Nevertheless, it was noted that there are frequent single outliers in trends when matching strings in
Go.

During testing, we observed that polynomial regexes only lead to critical matching times (more than
1 minute) with significant input string lengths (approximately more than 500 characters), while
expressions that have exponential matching complexity can reach critical time when parsing even

119

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

relatively small input strings. In the simplest case, such a time explosion can be achieved with
regexes that have large star nesting or multiple alternatives under a star quantifier. For instance, the
PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines are vulnerable to attacks in the case of the
((a*) ™) * regex, and even the optimized JAVA 11 engine, which successfully handles double star
nesting, reaches critical time processing such an expression.

However, more non-trivial cases were encountered in the proposed data set. For example, the regex
b(ab((alb(a*a)*)a’b*) *|a*aaaa”) *, when matched against the input of 32 characters that
satisfies the pattern with prefix — b, pump — abab, suffix — bbd, achieves the following timings:
PYTHON engine — over 3 minutes, JAVA 8 — over 3 minutes, JAVA 11 — 0.80 minutes, C++ — over 3
minutes, JAVASCRIPT — 1.73 minutes.

In general, the REDoS vulnerability degree coincides with the theoretical expectations, taking into
account the asymptotic growth of the ambiguity function for the corresponding Thompson automata.
Non-SSNF regexes cause critical time explosion, which is evidence that the regex engines do not
apply SSNF transformation to their input. In addition to non-SSNF regexes, critical RED0S
situations occur on polynomial ambiguities iterated under a Kleene star.

4.2 Comparing with other tools

We evaluated the effectiveness of the proposed approach by comparing it with three state-of-the-art
open-source tools for detecting vulnerabilities in regexes: RSA [3], [17], a static analysis tool,
RESCUE [5], [18], a genetic fuzzing tool, REVEALER [2], [19], an automated hybrid analysis tool that
uses static and dynamic approaches.

The qualitative results of the experiments are described in Table 2. To evaluate the effectiveness of
detection of vulnerable and safe regexes, we used Fi-score, where true positive values are all
vulnerable regular expressions that were classified as exponential or polynomial, the absence of
results due to a timeout is taken into account as a false result, also we used the error rate, where a
cumulative error on all classes of regexes — total error rate and a classification error among
vulnerable regexes — vulnerable error rate. It should be noted that RESCUE does not support the
exponential-polynomial classification, therefore, not all values were calculated for this tool.

Table 2. Evaluation results

Tool Fi-score Total error rate Vulnerable error rate
RSA 0.90 0.13 0.00
ReScue 0.39 - -
Revealer 0.55 0.45 0.04
Our method 1.00 0.00 0.00

The results of measuring the execution time for the considered tools are shown in Table 3. When
measuring time, all extended features of the tools were disabled, and their parameters were
optimized. For each class of correctly classified regexes: exponential, polynomial, safe, unsafe
(union of vulnerable regexes), the average running time (x) and the standard deviation (o) of this
value were estimated, the number of timeouts was also calculated.

Additionally, we chose 25 regexes with non-SSNF structure, which are analysed in our method by
the preliminary s-loop test. While our approach proved to be the fastest (which is not a surprise,
provided the algorithm structure), the static part of REVEALER also had 100% success rate on this
set, although, taking at average 4x more time.

It is important to note that the theoretical results obtained by using static analysis methods,
determining ambiguity degree of the Thompson automata, completely coincide with the
experimental results obtained when testing the domino regexes on the PYTHON, JAVASCRIPT,
JAVA 8, and C++ regex engines. This is a strong witness that regexes declared safe by dynamic or
combined methods are their false negatives.

120

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

Table 3. Time measurements

Exp Poly Safe Unsafe Timeouts

Tool us) o) us) o) u) o) us) ofs)
RSA 1.895 2.614 3.480 3.748 0.836 0.341 2578 3.221 13

ReScue - - - - 0.940 1.724 8.803 6.263 43
Revealer 0.410 0.035 0.402 0.021 0.320 0.065 0.409 0.033 0
Our method 0.836 1.059 1.178 1.259 0.484 0.400 1.014 1.169 0

From the test results, we can conclude that the detection efficiency of the static analyser is high, but
in non-trivial exponential or polynomial cases such as (baalab)*b(a(b|a)ba*b” (aab)’,
timeouts occur. The recognition efficiency of RESCUE and REVEALER tools on this data set is low.
However, the proposed approach has the maximum quality of vulnerability detection, the average
execution time is also superior to other implementations. This is partly explained by its narrow
domain: testing only academic regexes. But RSA also aims at the academic regexes, and still has
several timeouts; on the other hand, it seems that extension of REDoS-detection tools to non-
academic regexes made them to miss almost all polynomial REDoS with domino structure.

5. Discussion and Related Works

Initially, our finite automata transforming tool was not designed to reveal REDoS situations.
However, attempts to use open-source tools like Regex Static Analyser or RESCUE to analyze simple
academic regexes with non-trivial ambiguity structure failed. The main purpose of the work was
educational, so we designed our algorithm in such a way that it not only detects vulnerabilities, but
also demonstrates them on the automata graphs, at the cost of longer execution

time. Since the tool was initially designed for demonstrations, only core academic regexes were
considered. The algorithms used in the monoid-based approach have poor worst-case complexity,
s0 its efficiency, compared to RSA and RESCUE, was a real surprise.

What features of the analysers caused such a situation? RSA uses NFA intersection construction,
based on the well-known paper of Mohri et al [14]. To detect polynomial ambiguities, the algorithm
requires self-intersecting an NFA twice. The automata intersection problem is known to be
PSPACE-complete [20], [21], thus, every additional intersection results in a significant slowdown.
Maybe that is the main cause why the polynomial detection results in timeouts in RSA. The monoid
and determinization algorithms are known to be worst-case exponential. However, the
determinization is proven to be fast 4 in average [16], while the monoid representation depends
heavily on the automata structure and, implemented to orbit automata, generates significantly fewer
equivalence classes, compared to the case when automata are not cyclic. Another well-known
problem in static analysers is dealing with e-transitions, which can ruin the intersection construction,
as well as the monoid. Surprisingly, the tools do not use the simple and natural conversion to the
Glushkov construction preceded by the SSNF test.

Error rate of static tools is usually much lower than in tools using genetic algorithms and fuzzing,
since REDoS-provoking strings can be disguised, requiring several explicit iterations to construct,
or be combined from several alternative subexpressions under an iteration. Even using two
approaches in REVEALER cannot help to find vulnerabilities, if the malicious pump is hidden in
overlaps and crossing occurrences. For example, in paper [6], four REDoS classes are provided,
based on a regex structure, and the regex a* (ab) *a (ba) * satisfies neither of them, because the
vulnerability appears due to the crossing occurrence of the string ab on the border of the two orbits,
whereas the expressions under Kleene stars have languages with empty intersection, which makes
the regex “seemingly safe”. A similar pattern-based approach is used in [7], resulting in the same
sort of false negatives. So, regex-based heuristics showed themselves to be too weak as compared
to the model NFA analysis in the domino ambiguity cases.

121

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

If a malicious pump for a regex is found, the natural question arises: how to correct the regex? We
did not consider the whole implementation of the regex correction, but implemented a trial algorithm
constructing a 1-unambiguous regex, if it exists [9]. However, for most regexes with overlaps, even
if the equivalent 1l-unambiguous regex can be built, the algorithm given in [9] produces
exponentially longer result, as compared to the input, processing all overlap combinations
separately. A more optimistic regex correcting heuristic is the Star Normal Form transformation: it
is performed in linear time and produces regexes approximately of the same length. Moreover, the
SSNF transformation is rather local, does not require transition to NFA, and can be applied even to
extended regexes, which is useful, taking in account that non-SSNF regexes cause critical REDoS
w.r.t. PYTHON and JAVASCRIPT regex engines. In general, the question what theoretical results can
be used to fix REDoS regexes, is still a subject of research.

6. Conclusion
The research resulted in the following answers to our research questions.
e RQ1: how relevant is NFA static analysis w.r.t. to popular regex engines?

Our experiments demonstrated that the Thompson NFA model is entirely suitable for
evaluating REDoOS situations concerning the most widely used regex engines, including
PYTHON, JAVASCRIPT, JAVA, and C++. Interestingly, although the Go regex machine uses
conversion to DFA, it still produces surges on some ambiguous regexes with complex
structures. The RusT DFA engine proved to be the most stable.

e RQ2: what features of the REDoS analysers considered cause errors and time explosion
on the regexes with complex overlap structure? How they can be processed reliably with
less risk of time explosion?

We found out that considering orbit automata (instead of performing ambiguity analysis on
the entire NFA) and using the Glushkov construction, preceded by the Strong Star Normal
Form test, do not result in any loss of relevance, but significantly speed up the static
analysis.
Another interesting approach is to use monoid analysis as the primary ambiguity-detecting
algorithm instead of NFA intersection analysis. If there are multiple substring overlaps in
the orbits, this method performs significantly faster. However, if the overlaps are small, the
number of equivalence classes in the monoid increases dramatically, making the
intersection method more preferable.
We also provided experimental evidence that the genetic search REDoS detection methods
still miss complex REDoS cases, easily detected by static NFA analysis approaches.
Despite our approach proved itself to be efficient and reliable on the test set of domino regexes, it
still requires many refinements. First, the monoid construction may explode if we take large
alphabets, so the input regexes may need some alphabet factorization. E.g., if no overlaps are
contained within a long string, then this string sometimes can be considered as a single letter.
Second, it would be interesting to test the method on extended regexes approximation, and to
combine the monoid-based and intersection-based ambiguity detection algorithms.

References

[1]. Davis J. C., Coghlan C. A., Servant F., and Lee D. The impact of regular expression denial of service
(ReDoS) in practice: an empirical study at the ecosystem scale. In Proc. of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018. pp. 246-256. DOI: 10.1145/3236024.3236027.

[2]. Liu Y., Zhang M., and Meng W. Revealer: Detecting and exploiting regular expression denial-of-service
vulnerabilities. In Proc. of the 2021 IEEE Symposium on Security and Privacy (SP), 2021. pp. 1468-1484.
DOI: 10.1109/SP40001.2021.00062.

122

HeneiiBona A.H., benukosa FO.A., llleuenko, K.K. Teproxa M.P., Kusisuxun [.I1., densman A.Jl., Tepertoea A.C. Boissnenne REDoS
CHUTYalHUii B PEryIIPHBIX BEIPAXKCHUSIX CTPYKTYPBI «1oMHHO». Tpyost UCIT PAH, 2023, Tom 35, Beim. 3, c. 109-124.

(31

[4].

(5]

[6].

[7].

[8].

[9].
[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].
[18].
[19].

[20].

[21].

Van der Merwe B., Weideman N., and Berglund M. Turning evil regexes harmless. In Proc. of the South
African Institute of Computer Scientists and Information Technologists, 2017. pp. 1-10. DOI:
10.1145/3129416.3129440.

Weideman N., van der Merwe B., Berglund M., Watson B. W. Analyzing matching time behavior of
backtracking regular expression matchers by using ambiguity of NFA. In Proc. of the Implementation and
Application of Automata - 21st International Conference. 2016. pp. 322-334. DOI: 10.1007/978-3-319-
40946-7_27.

Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. ReScue: Crafting regular expression DoS attacks. In Proc.
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018. pp. 225-235.
DOI: 10.1145/3238147.3238159.

LiY., SunY., XuZ, Caol., LiY., LiR., ChenH., Cheung S.-C., Liu Y., Xiao Y. RegexScalpel: Regular
expression denial of service (ReDoS) defense by Localize-and-Fix. In Proc. of the 31st USENIX Security
Symposium (USENIX Security 22), 2022. pp. 4183-4200.

Li Y., Chen Z., Cao J., Xu Z., Peng Q., Chen H., Chen L., Cheung S. ReDoSHunter: A combined static
and dynamic approach for regular expression DoS detection. In Proc. of the 30th USENIX Security
Symposium (USENIX Security 21), 2021. pp. 3847-3864.

Google. Official public repository of RE2 library. Available at: https://github.com/google/re2, accessed
01.07.2023.

Bruggemann-Klein A. and Wood D. One-unambiguous regular languages. Information and Computation,
vol. 140, no. 2, 1998. pp. 229-253. DOI: 10.1006/inc0.1997.2688.

Freydenberger D. D., Schmid M. L. Deterministic regular expressions with back-references. Journal of
Computer and System Sciences, vol. 105, 2019. pp. 1-39. DOI: 10.1016/j.jcss.2019.04.001.

Allauzen C., Mohri M. A unified construction of the Glushkov, Follow, and Antimirov automata. In Proc.
of the Mathematical Foundations of Computer Science, 2006. pp. 110-121. DOI: 10.1007/11821069_10.
Eric Pin J. Mathematical foundations of automata theory. Available at:
https://iwww.irif.fr/~jep/PDF/MPRI/MPRI.pdf, accessed 01.07.2023.

Weber A., Seidl H. On the degree of ambiguity of finite automata. Theoretical Computer Science, vol. 88,
no. 2, 1991. pp. 325-349. DOI: 10.1016/0304-3975(91)90381-B.

Allauzen C., Mohri M., Rastogi A. General algorithms for testing the ambiguity of finite automata. In
Proc. of the Developments in Language Theory, 2008. pp. 108-120. DOI: 10.1007/978-3-540-85780-8_8.
Bruggemann-Klein A. Regular expressions into finite automata. Theoretical Computer Science, vol. 120,
no. 2, 1993. pp. 197-213. DOI: 10.1016/0304-3975(93)90287-4.

Almeida M., Moreira N., Reis R. On the performance of automata minimization algorithms. In Proc. of
the 4th Conference on Computability in Europe, 2008. pp. 3-14.

Weideman N. Regex static analyzer. Available at:
https://github.com/NicolaasWeideman/RegexStaticAnalysis, accessed 01.07.2023.

Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. Rescue. Available at: https://github.com/2bdenny/ReScue,
accessed 01.07.2023.

Liu Y., Zhang M., Meng W. Revealer. Available at: https://github.com/cuhkseclab/Revealer, accessed
01.07.2023.

Gelade W., Neven F. Succinctness of the Complement and Intersection of Regular Expressions. In Proc.
of the 25th International Symposium on Theoretical Aspects of Computer Science, 2008. pp. 325-336.
DOI: 10.4230/LIPIcs.STACS.2008.1354.

Birget J., Margolis S. W., Meakin J. C., Weil P. Pspace-complete problems for subgroups of free groups
and inverse finite automata. Theoretical Computer Science, vol. 242, no. 1-2, 2000. pp. 247-281. DOI:
10.1016/S0304-3975(98)00225-4.

Unopmayusi 06 aemopax / Information about authors

Amntonuna Hukxonaesna HEIIEVMIBOJIA — nayunslit corpyaauk MuctutyTa [Iporpammusix Cucrem
PAH. Cdepa HaydHBIX HHTEpEcOB: TeopHs (OPMAaIBbHBIX S3BIKOB, MPOTPaMMHAs CEMAaHTHKA,
MaTeMaTH4YeCcKas JIOTHKA U (yHKIHOHAIBHOE ITPOrPaMMHPOBAHHE.

Antonina Nikolaevna NEPEIVVODA — researcher in the Program Systems Institute of RAS. Research
interests: formal language theory, program semantics, mathematical logic, and functional
programming.

123

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://github.com/2bdenny/ReScue
https://github.com/cuhkseclab/Revealer

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in
“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

IOmus Anppeesna BEJIMKOBA — cTyzeHT MOCKOBCKOrO TOCYAApCTBEHHOTO TEXHUYECKOTO
yHuBepcurera uM. H. O. baymana. Cdepa HaydyHBIX HHTEPECOB: TeOopHs (OPMaJIbHBIX S3BIKOB,
UCKYCCTBEHHBIM HHTEIUIEKT, aHAIU3 JAHHBIX.

Yulia Andreevna BELIKOVA - student of the Bauman Moscow State Technical University.
Research interests: formal language theory, artificial intelligence, data analysis.

Kupmnn KoncrantunoBna IIIEBUEHKO — cTymeHT MOCKOBCKOTO ToOCyAapCTBEHHOTO
TexHI4YecKoro yHusepcutera uM. H. O. baymana. Cdepa HaydHBIX HHTEPECOB: aHAIU3 JaHHBIX U
MaIIMHHOEe 00y4eHHe.

Kirill Konstantinovich SHEVCHENKO - student of the Bauman Moscow State Technical
University. Research interests: data science and machine learning.

Muxaun PomanoBuu TEPIOXA — ctymeHT MOCKOBCKOTO TOCYIapCTBEHHOTO TEXHHUYECKOTO
yauBepcutera uM. H. D. Baymana. Cdepa HayyHBIX HWHTEPECOB: HHTCPHET BEUICH WU
pacrnpenenéHHble BHIYUCIEHUS.

Mikhail Romanovich TERIUKHA — student of the Bauman Moscow State Technical University.
Research interests: internet of things and distributed systems.

Hanuna IlaBnosuu KHABUXUMH — cryneHT MOCKOBCKOrO TOCYyAapCTBEHHOI'O TEXHMYECKOTO
yauBepcureta uM. H. 3. baymana. Cdepa HaydHBIX HHTEpECOB: abcTpakTHAs anreopa.

Danila Pavlovich KNYAZIHIN — student of the Bauman Moscow State Technical University.
Research interests: abstract algebra.

Anexcannp Amurpuesud JEJIBMAH — ctyneHT MOCKOBCKOr0 rocy1apCTBEHHOIO TEXHUYECKOTO
yHuBepcureta uM. H. O. baymana. Cepa HaydHBIX HHTEPECOB: KOHCTPYHUPOBaHHE KOMITHIISITOPOB
1 00JIauHbIe BEIYUCIICHHUS.

Aleksandr Dmitrievich DELMAN - student of the Bauman Moscow State Technical University.
Research interests: compiler design and cloud computing.

Anna Cepreeena TEPEHTBEBA — crtymeHT MOCKOBCKOTO TOCyIapCTBEHHOTO TEXHHYECKOTO
yHuBepcutera uM. H. D. baymana. Cdepa HaydHBIX HHTEPECOB: KOHCTPYHPOBAaHHE KOMITHIISITOPOB.

Anna Sergeevna TERENTYEVA - student of the Bauman Moscow State Technical University.
Research interests: compiler design and optimisation.

124

