
Труды ИСП РАН, том 35, вып. 3, 2023 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

109

DOI: 10.15514/ISPRAS-2023-35(3)-8

REDoS Detection in “Domino” Regular
Expressions by Ambiguity Analysis

1 Antonina Nepeivoda, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru>
2 Yulia Belikova, ORCID: 0009-0007-7829-1249, <ju.belikova@gmail.com>

 2 Kirill Shevchenko, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru>
2 Mikhail Teriukha, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 Danila Knyazihin, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>

2 Aleksandr Delman, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 Anna Terentyeva, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

1 Aylamazyan Program Systems Institute of the Russian Academy of Sciences,

4a, Petra I st., Veskovo, Pereslavsky District, Yaroslavl Oblast, 152024, Russia.
2 Bauman Moscow State Technical University,

5, 2-nd Baumanskaya, Moscow, 105005, Russia.

Abstract: The Regular Expression Denial of Service (REDoS) problem refers to a time explosion caused by

the high computational complexity of matching a string against a regex pattern. This issue is prevalent in

popular regex engines, such as PYTHON, JAVASCRIPT, and C++. In this paper, we examine several existing open-

source tools for detecting REDoS and identify a class of regexes that can create REDoS situations in popular

regex engines but are not detected by these tools. To address this gap, we propose a new approach based on

ambiguity analysis, which combines a strong star-normal form test with an analysis of the transformation

monoids of Glushkov automata orbits. Our experiments demonstrate that our implementation outperforms the

existing tools on regexes with polynomial matching complexity and complex subexpression overlap structures.

Keywords: regular expressions; ambiguity; REDoS; Glushkov automaton; transformation monoid; strong star-

normal form.

For citation: Nepeivoda A.N., Belikova Yu.A., Shevchenko K.K., Teriukha M.R., Knyazihin D.P., Delman

A.D., Terentyeva A.S. REDoS Detection in “Domino” Regular Expressions by Ambiguity Analysis. Труды

ИСП РАН, том 35, вып. 3, 2023 г., стр. 109–124. DOI: 10.15514/ISPRAS–2023–35(3)–8

Acknowledgements: The first author was partially supported by Russian Academy of Sciences, research

project No. 122012700089-0.

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

110

Выявление REDoS cитуаций в регулярных выражениях
структуры «домино»

1 А.Н. Непейвода, ORCID: 0000-0003-3949-2164 <a_nevod@mail.ru>,
2 Ю.А. Беликова, ORCID: 0009-0007-7829-1249 <ju.belikova@gmail.com>

2 К.К. Шевченко, ORCID: 0009-0007-2868-153X <k.sh3vch3nko@yandex.ru>
2 М.Р. Терюха, ORCID: 0009-0005-2825-8171 <misha37a999@yandex.ru>
2 Д.П. Князихин, ORCID: 0009-0009-6343-6809 <dak151449@gmail.com>

2 А.Д. Дельман, ORCID: 0009-0009-6885-8429 <adelman2112@gmail.com>
2 А.С. Терентьева, ORCID: 0009-0006-8547-3959 <mathhyyn@gmail.com>

1 Институт программных систем РАН им. А.К. Айламазяна,

Россия, 152024, Ярославская обл., с. Веськово, ул. Петра I, д. 4a.
2 Московский государственный технический университет имени Н.Э. Баумана,

105005, Россия, Москва, ул. Бауманская 2-я, д. 5/1.

Аннотация. Ситуация отказа в обслуживания регулярных выражений (REDoS) возникает в случае

высокой вычислительной сложности сопоставления строки с выражением и встречается во многих

библиотеках регулярных выражений таких языков, как PYTHON, JAVASCRIPT, C++. В данной статье

рассматривается класс регулярных выражений, которые создают угрозу возникновения REDoS, однако

не распознаются как уязвимые рядом существующих программных систем. Предлагается производить

оценку степени неоднозначности таких выражений посредством комбинирования проверки на строгую

звёздную нормальную форму и анализа трансформационного моноида автомата Глушкова,

построенного по входному регулярному выражению. Эксперименты показывают, что данный подход

оказывается эффективен при оценке полиномиальных неоднозначностей в регулярных выражениях со

сложной структурой перекрытий.

Ключевые слова: регулярные выражения; неоднозначность; REDoS; автомат Глушкова;

трансформационный моноид; сильная звёздная нормальная форма.

Для цитирования: Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П.,

Дельман А.Д., Терентьева А.С. Выявление REDoS cитуаций в регулярных выражениях структуры

«домино». Труды ИСП РАН, том 35, вып. 3, 2023 г., стр. 109–124 (на английском языке). DOI:

10.15514/ISPRAS–2023–35(3)–8

Благодарности. Первый автор осуществлял работу над проектом при частичной поддержке

Российской Академии Наук, номер НИР 122012700089-0.

1. Introduction

Popular regular expression (regex) engines typically use non-deterministic finite automata (NFA) as

their internal representation for regexes. This choice is motivated by the flexibility of the NFA

concept, which can be extended to support a wider range of regex operations with little effort. For

instance, back-references and lookaheads can be easily added to the NFA model. Although, in

theory, every string can be matched against a regex in linear time using deterministic finite automata

(DFA) conversion, popular regex engines may admit exponential matching time due to a

phenomenon called “catastrophic backtracking”.

This phenomenon occurs only for a specific class of regular expressions. For example, consider the

regex (a|b)*a, which is non-deterministic due to the unavoidable non-determinism in the

transition to the last occurrence of the letter a. However, every string has a unique parsing tree with

respect to this regex. In contrast, the regex (a*b*)* has an infinite number of accepting parsing

trees for any given string, as inner Kleene stars can degenerate to the empty word, causing a

combinatorial explosion of parse paths. Intuitively, the latter regex can be considered “bad”, while

the former is considered “good”.

Matching against “bad” regexes can yield a situation called a Regular Expression Denial of Service

(REDoS), when the matching time grows super-linearly and can cause performance issues in, for

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

111

instance, a web service that uses such a regex to parse user input. To avoid these situations, it is

essential to detect unsafe regexes and replace them with safe equivalents.

The number of research papers mentioning the REDoS problem has increased rapidly in the last

decade [1]–[7]. Several tools have been developed to detect REDoS, using both static analysis and

random search. Some of these tools aim to detect the entire class of extended regexes, while others

focus on academic ones. However, for a class of simple regexes, which are not safe in theory, the

tools considered either take too long time to process, or give an incorrect answer, falsely witnessing

their safety. These regexes usually have overlapping, but not completely coinciding, structure of the

expressions under the Kleene stars (being a simple analogue of dominoes in the Post Correspondence

Problem). An example of such a regex is (baa|ab)*(b|ε)(a(ba|a)ba*b)*(aab)*: the

ambiguity occurs both in prefixes (baa)𝑛 and (ab)𝑛, which can be constructed in several ways

from primitive “dominoes”.

Thus, the two natural research questions arise:

 do the “domino” regexes really contain REDoS situations w.r.t. the modern regex

engines?

 if the answer is yes, what methods can deal with such regexes in order to analyse them

without blow-up of the analysis time because of the overlaps?

The main contributions of the paper are:

 a method for REDoS situations detection, utilizing properties of non-deterministic finite

automata and their transition monoids. This approach is novel, since previous static-

analysis-based methods use NFA intersection. For “domino” regexes our method is

shown to perform better than the open-source analogues REGEX STATIC ANALYZER [3],

RESCUE [5], and REVEALER [2].

 experimental testing of the relevance of the NFA model used and the vulnerabilities

found, by investigating real regex engines behaviour on the attack strings.

The method is implemented only for the academic regexes for now. Surprisingly, for this case, the

tested open-source tools perform significantly worse on domino tests, especially for polynomial

REDoS situations.

The paper is organized as follows. Section 2 contains preliminaries on finite automata, and

theoretical concepts that are used further. The proposed REDoS detection method is given in Section

3, preceded by lemmas used for its optimisation. Section 4 discusses relevance of the chosen model

with respect to the real regex matching engines, and provides a result of comparative testing of our

method and three other open-source REDoS detection tools. We discuss the results of the

experiments and the related works in more detail in Section 5. Section 6 concludes the paper.

2. Preliminaries

We denote automata with calligraphic A; states are denoted with the letters q and Q, or with the set

of these letters (if an automaton is a result of a closure operation). The empty word is denoted by ε;

concrete elements from the input alphabet are denoted with a, b, c, ..., and letter parameters are

denoted with γ; ω and η denote word parameters. We use only the basic academic regular expression

constructing operations: concatenation (which is omitted in notation), alternation (denoted with |),

and Kleene star (denoted with *). If r is a regex, L (r) denotes its language.

Let us recall basic definitions and describe the finite automata models used in this paper.

2.1 Finite Automata

Definition 1. A non-deterministic finite automaton (NFA) is a tuple <S, Ʃ, q0, F, δ>, where:

 S is a state set;

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

112

 Ʃ is a terminal alphabet;

 δ is a set of transitions of the form <qi, (γi | ε), Mi>, where qi  S, γi  Ʃ, Mi  2S;

 q0  S is the initial state;

 F  S, is a set of final states.

Every transition in an NFA maps a pair <qi, (γi | ε)> into a set of states, contrary to transitions in a

deterministic finite automaton (DFA), which map every pair (qi, γi) (where γi is essentially not equal

to ε) to a single state. Thus, if a word is parsed by a DFA, the parse trace is always unique (i.e.,

DFAs are unambiguous); in an NFA, there can be a set of parse traces for a single word. This set

can even be infinite in case of NFA with ε-transitions. The notation qi →γ … is overloaded to denote

either NFA transition <qi, γ, Mi> (written as qi →γ Mi) or a transition to a single state belonging to

Mi (written as qi→γ qj). Existence of a path from qi to qj marked by ω in Ʃ* is also denoted by qi →ω

qj.

An NFA can be transformed into an equivalent DFA using a textbook subset-constructing algorithm

Determinize, which generates states of the DFA corresponding to the sets of the states of the

initial NFA resulted in the transitions along the same input symbols.

The NFA models used in regex engines are primarily based on the classical Thompson construction,

which provides an algorithm for transforming a regex into an NFA that recognizes the same

language. While the implementation details of the transformation may vary, the experiments

presented in Section 4 provide evidence that the Thompson model remains relevant for identifying

inefficient regexes with respect to NFA-based parsing engines.

In the following descriptions, we only give details of the constructed NFAs in terms of their states

and transitions, without mentioning the alphabet construction.

Definition 2. Thompson NFA (denoted with Thompson(r)) is constructed from a regex r as

follows. At any construction step except processing concatenations, the new initial state qr and the

new final state Qr are introduced, and the transition set is updated depending on the regex operation.

 Every single letter γ generates a primitive automaton with the only transition qγ →γ{Qγ}.

 If A 1 = Thompson(r1), A 2 =Thompson(r2), and qi and Qi are their initial and final

states, respectively, then Thompson(r1 | r2) is constructed by merging the A 1 and A 2

states sets and transitions sets, and introducing the transitions qalt →ε {q1, q2};

Q1 →ε {Qalt}; Q2 →ε {Qalt}.

 Thompson(r1r2) is again constructed by merging Thompson(ri) states and transitions

sets, and making q1 the initial state, Q2 the final state, with the additional transition

Q1 →ε{q2}.

 Thompson(r1
) is constructed introducing transitions q →ε {q1,Q*}, Q1 →ε {q1, Q*}.

The Thompson construction algorithm ensures that any NFA produced by the algorithm has a unique

final state and that each state has at most two outgoing and two incoming transition arcs. The

uniqueness of the final state implies that the reverse NFA for Thompson(r) is exactly

Thompson(rR), where rR is the reverse of the regex r. Additionally, all subregex automata can be

treated as isolated directed acyclic graphs, which makes the construction easily extensible and

decomposable. An example of a Thompson automaton for a regex is shown in Fig. 1. The states

labels follow the corresponding regex operations given in Definition 2.

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

113

Fig. 1. Thompson automaton for (a|b)*a

One drawback of the Thompson construction is that it introduces non-deterministic transitions

corresponding to alternating operations (i.e., alternatives or Kleene stars), even in the cases when

the regex itself imposes no non-determinism (e.g. for the regex a(a|b)*, which is a reverse of the

regex shown in Fig. 1). To avoid the redundant non-determinism, the regex engine RE2 [8] processes

such strongly deterministic regexes (also known as 1-unambiguous regexes [9]) constructing another

NFA based on the regex structure, but without ε-transitions. This automaton is known as the

Glushkov automaton since 1960s, and in the last two decades it attracted considerable interest,

shown to be efficient and extensible to construct deterministic parsing engines for a larger class of

regexes (such as memory finite automata for the regexes with back-references [10]). The Glushkov

automaton is shown in Fig. 2.

Fig. 2a. Thompson(a(a|b)*) with colored ε-closures

Figure 2b. Glushkov(a(a|b)*)

The classical Glushkov construction is based on so-called follow-relation on linearised regexes. By

construction, every state in the Glushkov automaton except the initial state corresponds to an

occurrence of some γ in Ʃ in the input regex r; conversely, any letter occurrence in the regex r

corresponds to exactly one state in Glushkov(r), whose incoming arcs are all marked with γ. Now

we can reformulate this property in the terms of Thompson and Glushkov automata.

Proposition 1. There is a bijection from state set in Glushkov(r) minus the initial state to state

set Qγ in Thompson(r) (where Qγ are final states of the primitive automata reading γ).

In the paper [11], it was shown that Glushkov(r) could also be obtained from Thompson(r)

merging its ε-closures.

Definition 3. Given an NFA A and its state q, ε-closure of q is the maximal set of states reachable

from q following only ε-transitions.

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

114

Closure-merging1 ε-free automaton (denoted with RemEps(A)) is constructed from A as follows:

 its states are ε-closures of the states of A;

 if state q1 belongs to closure Ci, state q2 belongs to Cj, and there is a transition q1 →γ {...,

q2 , ...} (γ ≠ ε) in A, then there is a transition Ci →{..., Cj, ...} in RemEps(A).

An example of closure-merging operation is given in Fig. 1 and Fig. 2, the nodes belonging to a

closure are highlighted with the same color.

2.2 Transformation Monoid of NFA

Let us consider an automaton with no useless states and ε-transitions. Its transitions over the

alphabet Ʃ and the states set 2Q form the function F : Ʃ  S → 2S taking a pair <γ, qi>. This function,

when curried and specialized in the first argument, becomes Fγ: S → 2S (where γ  Ʃ). We can

form a monoid over the set of such partially specialized functions (transformations) if we continue

them on strings as follows: Fω1 ◦ Fω2 = Fω2ω1. Then associativity is provided “for free”, given

associativity of string concatenation, and ε becomes the monoid unit, because Fω ◦ Fε = Fωε = Fω =

Fεω = Fε ◦ Fω holds. The state transformations are denoted by the corresponding strings ω.

The formal definition is as follows [12].

Definition 4. Given an ε-free automaton A over the alphabet Ʃ, its transformation monoid M =

TransMonoid(A) is the monoid of transformations imposed by elements of Ʃ* on the states of A.

The monoid construction does not depend on the choice of the final or initial states of A (except the

condition that all the states are useful, i.e. reachable and producing), thus, instead of classical NFAs,

the monoid is based on a labelled transition system. Since the set of functions S → 2S is finite, the

transformation monoid of an NFA always contains a finite number of equivalence classes. The pair

<M, R>, where M is a finite set of lexicographically minimal elements of the equivalence classes

and R is a set of simplification rules is considered a standard representation of the transformation

monoid. Such a representation for TransMonoid(Glushkov(a(a|b)*)) is given in Fig. 3a,

Fig. 3b, and Table 1. The monoid representation uncovers some useful NFA properties. For example,

we can immediately conclude that the words aa and ab are synchronizing, since for all qi, qi →aa

q2, qi →ab q3, and no other transition is possible.

Fig. 3a. Labelled transition system of NFA

bb → b aaa → aa

aab → ab aba → aa

baa → ba bab → bb

Fig. 3b. Rewriting rules of NFA

1

This 𝜀-removal construction differs from the standard textbook 𝜀-removal algorithm, since it changes states, and not only

transitions. This strategy allows the algorithm to succeed in conversion from Thompson to Glushkov.

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

115

Table 1. Equivalence classes of NFA

 q0 q1 q2 q3

a {q1} {q2} {q2} {q2}

b { } {q3} {q3} {q3}

aa {q2} {q2} {q2} {q2}

ab {q3} {q3} {q3} {q3}

ba { } {q2} {q2} {q2}

2.3. Ambiguity of NFAs and REDoS

Intuitively, the worst-case scenario for backtracking-based matching of a string against a regex r

occurs when the matched string has a prefix η1 with a large set of parse paths, and a suffix η2 such

that η1η2  L(r). In this case, in order to determine that η1η2 is not recognizable by r, a regex engine

must backtrack through all the parse variants of η1. Obviously, we can choose such a suffix η3 that

η1η3  L(r), and η1η3 will still have a large number of parse trees (although the regex engine will

report a success after finding a first one).
Therefore, worst-case matching time depends on the upper bound on the parse paths in a regex.

In the domain of finite automata, the following definition is used [13], [14].

Definition 5. A degree of ambiguity of an NFA A is a worst-case bound on the number of paths

recognizing an input string (in a length of the string).

The ambiguity of NFAs is known to be either a constant, an exponential, or a polynomial [13]. If

the ambiguity degree of A is non-constant, it is said A has an infinite degree of ambiguity (IDA).

A standard acronym for exponential ambiguity degree is EDA.
A minimal EDA-generating regex example is (a|a)*. A minimal example of a regex producing

IDA but not EDA automaton is a*a*. For regexes such that (a*b*)*, Glushkov(r) is

unambiguous, despite Thompson(r) is EDA. We can notice that in Thompson((a*b*)*), a

special situation occurs: there is a loop inside an ε-closure of a state (i.e., there is at least one Kleene

star in a regex iterating over an expression rE s.t. ε  L(rE)). Further we show that such a case is

one of the few possible exceptions when Thompson(r) and Glushkov(r) have distinct ambiguity

degrees.
The following criterion estimates the degree of ambiguity in any NFA.

Theorem 1.  NFA A satisfies IDA condition iff there exist states q1, q2 in A, and a word ω such

that A contains paths from q1 and q2 to themselves, and a path from q1 to q2 all accepting the

word ω.

 NFA A satisfies EDA condition iff there exists a state q1 in A, and a word ω such that A

contains two distinct loops from q1 to itself both accepting the word ω.

We can also say than if EDA occurs in an NFA, then  qi, qj, qk, where qj and qk are distinct, such

that there exist words ω1 and ω2 such that both qk and qj are reachable from qi following a path

reading the word ω1, and qi is reachable from both qk and qj following a path reading the word ω2

(see Fig. 4).
After the work [9], we use the term “orbit of state q” for the maximal strongly connected component

containing q. We assume that orbits are non-trivial, i.e. contain at least one transition. If a state q of

A satisfies EDA criterion for some ω, then all states belonging to its orbit also satisfy EDA. Thus,

to check the EDA condition, it is sufficient to check if any state of some strongly connected

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

116

component of an NFA satisfies EDA; for the IDA condition, it is sufficient to check if there are two

strongly connected components satisfying it.

Fig. 4a. The EDA situation

Fig. 4b. The IDA situation

An approach to the IDA and EDA detection used in the REDoS analysers [3], [4] tests the above

criterion constructing single or double intersections of automaton A with itself. Although the

intersection construction can be done in polynomial time on an NFA size, it may lead to large NFAs

if there are many crossing components (i.e., matching the same string sets) in the initial NFA.

The IDA criterion can be also reformulated in the terms of transformation monoids.

Proposition 2. An ε-free automaton A satisfies IDA iff its transformation monoid contains an

equivalence class ω such that for some states qi, qj, qi  Fω(qi), qj  Fω(qj), and qj  Fω(qi).

Using this criterion for an initial NFA “as is” is highly impractical: if the NFA contains non-crossing

components, the transformation monoid becomes exponentially huge. However, with some

refinements, we observed that the monoid criterion can be applied (and even be fast) in the cases

when the intersection criterion is slow. Moreover, Proposition 2 provides explicit construction of a

string with the ambiguity, allowing the analysing algorithm to reconstruct the REDoS situation

easily. First, take any NFA path from the initial state of A to qi, recognizing some prefix η1. Then

pump ω to construct an infix with superlinear number of parse trees, and then take some string η2

such that any path from qj recognizing η2 does not end in a final state of A. The string η1ωnη2 will

force an NFA parsing device to do superlinear backtracking.
If the monoid criterion is applied to the orbit automaton of state q, the REDoS pump can be

constructed as well. Just choose some η1, η2 such that q0 →η1 q, and qF F in the condition q →η2

qF is not satisfied.

3. Our approach

As a starting point, we prefer to use the Thompson automaton as a preliminary NFA model for a

regex since regex matching engines rely on it in their internal algorithms, and experiments in Section

4 demonstrate that the Thompson construction is suitable for analysing real REDoS. However, in

order to apply the monoid criterion, we must first eliminate ε-transitions in the regex and ensure

that the removal of ε-transitions does not affect the degree of ambiguity.

Definition 6. A regular expression r is said to be in a star-normal form (SNF) if for each its

subexpression (r’)* ε  L(r’).

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

117

Let us say that r is in the strong star-normal form (SSNF) if it is in SNF and none of its

subexpressions (r’)* contains an alternation r1|r2, where ε ∈ L(r1) & ε ∈ L(r2).

The following theorem is the main theoretical result of the paper.

Theorem 2. If r is SSNF, and Thompson(r) is infinitely ambiguous, then Glushkov(r) is also

infinitely ambiguous. Moreover, the overall ambiguity degrees (exponential or polynomial) of

Thompson(r) and Glushkov(r) coincide.

In order to prove Theorem 2, we use the statement proven in [11] mentioned above:

RemEps(Thompson(r)) = Glushkov(r), where RemEps is the transformation described in

Section 2, and the following auxiliary proposition.

Proposition 3. If a1 and a2 are distinct letter occurrences in r, and qA1, and qA2 are final states of

the elementary Thompson automata for a1 and a2, then qA1 and qA2 never belong to a single ε-closure

of a state in Thompson(r).

Proof of Proposition 3:

Every final state of the elementary automaton for a single letter has a unique ingoing edge, marked

with the given letter. No other construction adds ingoing edges to the final states of the subautomata

used in the construction. Thus, the states qA1 cannot be reached from qA2 along ε-transitions, and

vice versa.

Proposition 3 allows us to construct the bijection between final states of the elementary subautomata

of Thompson(r) and all the states except the initial one in Glushkov(r), mentioned in Section 2.

Proof of Theorem 2:

Let r be in the strong star-normal form. All the strongly connected components of Thompson(r)

and Glushkov(r) correspond to expressions under Kleene stars.

If some strongly connected component of Thompson(r) contains an EDA, then there exists a state

q, two distinct states q1 и q2 and 1,2 ∈ Ʃ {ε}, words ω1, ω2 such that <q, 1, q1>∈ , <q, 2,

q2> ∈ , q1 →ω1 q, q2 →ω2 q, satisfying 1ω1 = 2ω2. Let us denote the path from q to itself following

through q1 by P1, and the similar path following through q2 by P2.

If 1ω1 = ε, then there is an ε-loop from q to itself, which contradicts the SSNF condition. Thus,

we can take the first letter of 1ω1 belonging to Ʃ, say a. Let us consider the final states q1’, q2’ of

elementary Thompson automata for a in the paths P1 и P2.

If q1’ is not equal to q2’, then their ε-closures are also distinct, which implies the EDA situation in

Glushkov(r).

Let q1’ and q2’ coincide. We recall that we chose the states q, q1, q2, such that the first edges in the

paths P1 and P2 outgoing from q (and ingoing in q1 and q2), are distinct.
Let q1’=q1 (or q1’=q2). The state q1’ has a single ingoing edge, namely the one outgoing from q and

marked with a. But q1’=q2’, and q, being a predecessor of q2’ in the path P2, must occur in its initial

fragment twice, thus, there is a path from q to q recognizing ε. This contradicts the SSNF condition.

Let q1’ to be distinct both from q1 and q2, but to coincide with q2’. Let us again consider the ingoing

edge in q1’ marked with a. Let this edge to outgo from some state q0. Then there are the two distinct

paths from q into q0 reading the empty word, again contradicting SSNF. Thus, EDA in the Thompson

automaton leads to EDA in the Glushkov automaton.

Now let Thompson(r) contain IDA, but not an EDA. Then r contains the distinct subexpressions

r1 and r2 under the Kleene stars, both recognizing a same word ω, such that the states corresponding

to r1 are not reachable from the states generated by r2. Thus, r1 and r2 contain the same letter a

with occurrences in the positions i and j, i<j, and the state for ai in Glushkov(r) is not reachable

from the state for aj. Then Glushkov(r) contains an IDA, which is not an EDA. This completes

the proof.

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

118

Thus, it is sufficient to test r for the strong star-normal form property and then, if necessary, continue

the ambiguity analysis operating with the Glushkov automaton, having significantly less states. If

there are loops in ε-closures, the further analysis is not needed: these loops already produce EDA

situations.

Given a state q in A and its orbit M, an orbit automaton of q is automaton Mq including all states

and transitions from M, having q as is the initial state, and whose final states are either final states

of A or states with outgoing transitions outside the orbit M in A.

If we choose one state qi from each strongly connected component Ci of A, then testing an IDA

criterion for TransMonoid(Mqi) is enough to reveal all EDA situations.

However, in the case of a polynomial IDA, we must test pairs of the strongly connected components

(together with the transitions from one component to another) and building a monoid for any such

pair-generated NFA is too time- consuming. Thus, we use the following simple necessary condition

for the polynomial IDA.

Proposition 4. Let C1, C2 be distinct strongly connected components of A. If A contains a

polynomial IDA within the components, then there exist two states, q1 ∈ C1, q2 ∈ C2, such that

Determinize(A) contains a subset state including both q1 and q2. Moreover, such a subset state

occurs also in Determinize(Reverse(A)).

Although the determinization algorithm is exponentially hard in the worst case, it is known to be

fast in most practical cases [16]. Thus, the subset test accelerates candidates search for the

polynomial IDA. However, it is not sufficient, which can be shown by analysing regex

(a|b)*(b|c)(a|c)* whose Thompson automaton contains no IDA.

The pseudocode of the complete algorithm2 is given in Fig. 5. There Aq1+q2 includes the orbit

automata Mq1 and Mq2 of q1 and q2, and all states reachable from Mq1 and reaching Mq2 together with

their transitions. Its initial state coincides with initial state of Mq1, and its final states are final states

of Mq2 (ignoring final states of A belonging either to Mq1 or to the intermediate states). The condition

“c1 reaches c2” ensures that the component c2 is reachable from c1, and they do not coincide.

Operator c[1] takes a first state from the component c (since the Ambiguity.TransMonoid and

determinization tests results do not depend on the choice of the initial state in the orbit automata3).

Function SCC(A) returns all strongly connected components of A.

4. Experiments

4.1 Data Set

In order to evaluate the effectiveness of our approach on the “domino” regexes, a dataset of 100

academic regexes was generated. The regexes satisfy the following properties:

 their length and alphabet are small (not more than 50 terms and not more than 5 distinct

letters);

 they have iterated elements;

 all are in SSNF.

The first condition allows significant subexpression languages overlap, without blowing up the

regex length. However, the test set contains not only complex dominoes, but also regexes with

simple ambiguity situations like b*c(ac|(aa|a)*d)*. The second condition is necessary for

2

 The trial implementation of the method is given on https://github.com/bmstu-iu9/Chipo-Kleene/tree/ambiguity.

3
 Absence of any useless states is guaranteed, because all the states are reachable from each other.

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

119

REDoS situations. The third condition mostly excludes the trivial SSNF test, returning EDA value

using our method too quickly.

Fig. 5. The overall algorithm schema

We explored the dependence of the regexes matching time from the input length on the popular

engines in PYTHON, JAVASCRIPT, C++, JAVA 8, JAVA 11, GO, and RUST.

In order to detect super-linear dependencies, it is necessary to generate potentially attacking input,

for which the string pumping method is used. The attacking input must match a pattern of the three

components: a prefix that satisfies the regular expression, a pumping core whose repetition can lead

to a rapid increase in the number of parsing paths (i.e., malicious pump), and a suffix whose

mismatch leads to catastrophic backtracking.
The results obtained by applying JAVASCRIPT, PYTHON, C++ and JAVA 8 standard regex engines are

the same, according to them, the data set contains 34 exponential, 36 polynomial and 30 safe regexes.

In addition, the experiments indicated that JAVA 11 standard regex engine handles some polynomial

and exponential cases, but when the length of the input data increases significantly, it throws a stack

overflow exception, which may be due to the introduction of the local storage of indexes to the regex

module in the 11 version of JAVA.

The regexes are safe for GO and RUST engines, which are based on the deterministic structures.

Nevertheless, it was noted that there are frequent single outliers in trends when matching strings in

GO.

During testing, we observed that polynomial regexes only lead to critical matching times (more than

1 minute) with significant input string lengths (approximately more than 500 characters), while

expressions that have exponential matching complexity can reach critical time when parsing even

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

120

relatively small input strings. In the simplest case, such a time explosion can be achieved with

regexes that have large star nesting or multiple alternatives under a star quantifier. For instance, the

PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines are vulnerable to attacks in the case of the

((a*)*)* regex, and even the optimized JAVA 11 engine, which successfully handles double star

nesting, reaches critical time processing such an expression.

However, more non-trivial cases were encountered in the proposed data set. For example, the regex

b(ab((a|b(a*a)*)a*b*)*|a*aaaa*)*, when matched against the input of 32 characters that

satisfies the pattern with prefix – b, pump – abab, suffix – bbd, achieves the following timings:

PYTHON engine – over 3 minutes, JAVA 8 – over 3 minutes, JAVA 11 – 0.80 minutes, C++ – over 3

minutes, JAVASCRIPT – 1.73 minutes.
In general, the REDoS vulnerability degree coincides with the theoretical expectations, taking into

account the asymptotic growth of the ambiguity function for the corresponding Thompson automata.

Non-SSNF regexes cause critical time explosion, which is evidence that the regex engines do not

apply SSNF transformation to their input. In addition to non-SSNF regexes, critical REDoS

situations occur on polynomial ambiguities iterated under a Kleene star.

4.2 Comparing with other tools

We evaluated the effectiveness of the proposed approach by comparing it with three state-of-the-art

open-source tools for detecting vulnerabilities in regexes: RSA [3], [17], a static analysis tool,

RESCUE [5], [18], a genetic fuzzing tool, REVEALER [2], [19], an automated hybrid analysis tool that

uses static and dynamic approaches.

The qualitative results of the experiments are described in Table 2. To evaluate the effectiveness of

detection of vulnerable and safe regexes, we used F1-score, where true positive values are all

vulnerable regular expressions that were classified as exponential or polynomial, the absence of

results due to a timeout is taken into account as a false result, also we used the error rate, where a

cumulative error on all classes of regexes – total error rate and a classification error among

vulnerable regexes – vulnerable error rate. It should be noted that RESCUE does not support the

exponential-polynomial classification, therefore, not all values were calculated for this tool.

Table 2. Evaluation results

Tool F1-score Total error rate Vulnerable error rate

RSA 0.90 0.13 0.00

ReScue 0.39 - -

Revealer 0.55 0.45 0.04

Our method 1.00 0.00 0.00

The results of measuring the execution time for the considered tools are shown in Table 3. When

measuring time, all extended features of the tools were disabled, and their parameters were

optimized. For each class of correctly classified regexes: exponential, polynomial, safe, unsafe

(union of vulnerable regexes), the average running time (μ) and the standard deviation (σ) of this

value were estimated, the number of timeouts was also calculated.

Additionally, we chose 25 regexes with non-SSNF structure, which are analysed in our method by

the preliminary ε-loop test. While our approach proved to be the fastest (which is not a surprise,

provided the algorithm structure), the static part of REVEALER also had 100% success rate on this

set, although, taking at average 4x more time.

It is important to note that the theoretical results obtained by using static analysis methods,

determining ambiguity degree of the Thompson automata, completely coincide with the

experimental results obtained when testing the domino regexes on the PYTHON, JAVASCRIPT,

JAVA 8, and C++ regex engines. This is a strong witness that regexes declared safe by dynamic or

combined methods are their false negatives.

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

121

Table 3. Time measurements

 Exp Poly Safe Unsafe Timeouts

Tool μ(s) σ(s) μ(s) σ(s) μ(s) σ(s) μ(s) σ(s)

RSA 1.895 2.614 3.480 3.748 0.836 0.341 2.578 3.221 13

ReScue - - - - 0.940 1.724 8.803 6.263 43

Revealer 0.410 0.035 0.402 0.021 0.320 0.065 0.409 0.033 0

Our method 0.836 1.059 1.178 1.259 0.484 0.400 1.014 1.169 0

From the test results, we can conclude that the detection efficiency of the static analyser is high, but

in non-trivial exponential or polynomial cases such as (baa|ab)*b(a(b|a)ba*b*(aab)*,

timeouts occur. The recognition efficiency of RESCUE and REVEALER tools on this data set is low.

However, the proposed approach has the maximum quality of vulnerability detection, the average

execution time is also superior to other implementations. This is partly explained by its narrow

domain: testing only academic regexes. But RSA also aims at the academic regexes, and still has

several timeouts; on the other hand, it seems that extension of REDoS-detection tools to non-

academic regexes made them to miss almost all polynomial REDoS with domino structure.

5. Discussion and Related Works

Initially, our finite automata transforming tool was not designed to reveal REDoS situations.

However, attempts to use open-source tools like Regex Static Analyser or RESCUE to analyze simple

academic regexes with non-trivial ambiguity structure failed. The main purpose of the work was

educational, so we designed our algorithm in such a way that it not only detects vulnerabilities, but

also demonstrates them on the automata graphs, at the cost of longer execution

time. Since the tool was initially designed for demonstrations, only core academic regexes were

considered. The algorithms used in the monoid-based approach have poor worst-case complexity,

so its efficiency, compared to RSA and RESCUE, was a real surprise.

What features of the analysers caused such a situation? RSA uses NFA intersection construction,

based on the well-known paper of Mohri et al [14]. To detect polynomial ambiguities, the algorithm

requires self-intersecting an NFA twice. The automata intersection problem is known to be

PSPACE-complete [20], [21], thus, every additional intersection results in a significant slowdown.

Maybe that is the main cause why the polynomial detection results in timeouts in RSA. The monoid

and determinization algorithms are known to be worst-case exponential. However, the

determinization is proven to be fast 4 in average [16], while the monoid representation depends

heavily on the automata structure and, implemented to orbit automata, generates significantly fewer

equivalence classes, compared to the case when automata are not cyclic. Another well-known

problem in static analysers is dealing with ε-transitions, which can ruin the intersection construction,

as well as the monoid. Surprisingly, the tools do not use the simple and natural conversion to the

Glushkov construction preceded by the SSNF test.

Error rate of static tools is usually much lower than in tools using genetic algorithms and fuzzing,

since REDoS-provoking strings can be disguised, requiring several explicit iterations to construct,

or be combined from several alternative subexpressions under an iteration. Even using two

approaches in REVEALER cannot help to find vulnerabilities, if the malicious pump is hidden in

overlaps and crossing occurrences. For example, in paper [6], four REDoS classes are provided,

based on a regex structure, and the regex a*(ab)*a(ba)* satisfies neither of them, because the

vulnerability appears due to the crossing occurrence of the string ab on the border of the two orbits,

whereas the expressions under Kleene stars have languages with empty intersection, which makes

the regex “seemingly safe”. A similar pattern-based approach is used in [7], resulting in the same

sort of false negatives. So, regex-based heuristics showed themselves to be too weak as compared

to the model NFA analysis in the domino ambiguity cases.

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

122

If a malicious pump for a regex is found, the natural question arises: how to correct the regex? We

did not consider the whole implementation of the regex correction, but implemented a trial algorithm

constructing a 1-unambiguous regex, if it exists [9]. However, for most regexes with overlaps, even

if the equivalent 1-unambiguous regex can be built, the algorithm given in [9] produces

exponentially longer result, as compared to the input, processing all overlap combinations

separately. A more optimistic regex correcting heuristic is the Star Normal Form transformation: it

is performed in linear time and produces regexes approximately of the same length. Moreover, the

SSNF transformation is rather local, does not require transition to NFA, and can be applied even to

extended regexes, which is useful, taking in account that non-SSNF regexes cause critical REDoS

w.r.t. PYTHON and JAVASCRIPT regex engines. In general, the question what theoretical results can

be used to fix REDoS regexes, is still a subject of research.

6. Conclusion

The research resulted in the following answers to our research questions.

 RQ1: how relevant is NFA static analysis w.r.t. to popular regex engines?

Our experiments demonstrated that the Thompson NFA model is entirely suitable for

evaluating REDoS situations concerning the most widely used regex engines, including

PYTHON, JAVASCRIPT, JAVA, and C++. Interestingly, although the GO regex machine uses

conversion to DFA, it still produces surges on some ambiguous regexes with complex

structures. The RUST DFA engine proved to be the most stable.

 RQ2: what features of the REDoS analysers considered cause errors and time explosion

on the regexes with complex overlap structure? How they can be processed reliably with

less risk of time explosion?

We found out that considering orbit automata (instead of performing ambiguity analysis on

the entire NFA) and using the Glushkov construction, preceded by the Strong Star Normal

Form test, do not result in any loss of relevance, but significantly speed up the static

analysis.
Another interesting approach is to use monoid analysis as the primary ambiguity-detecting

algorithm instead of NFA intersection analysis. If there are multiple substring overlaps in

the orbits, this method performs significantly faster. However, if the overlaps are small, the

number of equivalence classes in the monoid increases dramatically, making the

intersection method more preferable.

We also provided experimental evidence that the genetic search REDoS detection methods

still miss complex REDoS cases, easily detected by static NFA analysis approaches.

Despite our approach proved itself to be efficient and reliable on the test set of domino regexes, it

still requires many refinements. First, the monoid construction may explode if we take large

alphabets, so the input regexes may need some alphabet factorization. E.g., if no overlaps are

contained within a long string, then this string sometimes can be considered as a single letter.

Second, it would be interesting to test the method on extended regexes approximation, and to

combine the monoid-based and intersection-based ambiguity detection algorithms.

References
[1]. Davis J. C., Coghlan C. A., Servant F., and Lee D. The impact of regular expression denial of service

(ReDoS) in practice: an empirical study at the ecosystem scale. In Proc. of the 2018 ACM Joint Meeting

on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 2018. pp. 246-256. DOI: 10.1145/3236024.3236027.

[2]. Liu Y., Zhang M., and Meng W. Revealer: Detecting and exploiting regular expression denial-of-service

vulnerabilities. In Proc. of the 2021 IEEE Symposium on Security and Privacy (SP), 2021. pp. 1468-1484.

DOI: 10.1109/SP40001.2021.00062.

Непейвода А.Н., Беликова Ю.А., Шевченко, К.К. Терюха М.Р., Князихин Д.П., Дельман А.Д., Терентьева А.С. Выявление REDoS

cитуаций в регулярных выражениях структуры «домино». Труды ИСП РАН, 2023, том 35, вып. 3, с. 109-124.

123

[3]. Van der Merwe B., Weideman N., and Berglund M. Turning evil regexes harmless. In Proc. of the South

African Institute of Computer Scientists and Information Technologists, 2017. pp. 1-10. DOI:

10.1145/3129416.3129440.

[4]. Weideman N., van der Merwe B., Berglund M., Watson B. W. Analyzing matching time behavior of

backtracking regular expression matchers by using ambiguity of NFA. In Proc. of the Implementation and

Application of Automata - 21st International Conference. 2016. pp. 322-334. DOI: 10.1007/978-3-319-

40946-7_27.

[5]. Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. ReScue: Crafting regular expression DoS attacks. In Proc.

of the 33rd ACM/IEEE International Conference on Automated Software Engineering, 2018. pp. 225-235.

DOI: 10.1145/3238147.3238159.

[6]. Li Y., Sun Y., Xu Z., Cao J., Li Y., Li R., Chen H., Cheung S.-C., Liu Y., Xiao Y. RegexScalpel: Regular

expression denial of service (ReDoS) defense by Localize-and-Fix. In Proc. of the 31st USENIX Security

Symposium (USENIX Security 22), 2022. pp. 4183-4200.

[7]. Li Y., Chen Z., Cao J., Xu Z., Peng Q., Chen H., Chen L., Cheung S. ReDoSHunter: A combined static

and dynamic approach for regular expression DoS detection. In Proc. of the 30th USENIX Security

Symposium (USENIX Security 21), 2021. pp. 3847-3864.

[8]. Google. Official public repository of RE2 library. Available at: https://github.com/google/re2, accessed

01.07.2023.

[9]. Bruggemann-Klein A. and Wood D. One-unambiguous regular languages. Information and Computation,

vol. 140, no. 2, 1998. pp. 229-253. DOI: 10.1006/inco.1997.2688.

[10]. Freydenberger D. D., Schmid M. L. Deterministic regular expressions with back-references. Journal of

Computer and System Sciences, vol. 105, 2019. pp. 1-39. DOI: 10.1016/j.jcss.2019.04.001.

[11]. Allauzen C., Mohri M. A unified construction of the Glushkov, Follow, and Antimirov automata. In Proc.

of the Mathematical Foundations of Computer Science, 2006. pp. 110-121. DOI: 10.1007/11821069_10.

[12]. Eric Pin J. Mathematical foundations of automata theory. Available at:

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf, accessed 01.07.2023.

[13]. Weber A., Seidl H. On the degree of ambiguity of finite automata. Theoretical Computer Science, vol. 88,

no. 2, 1991. pp. 325-349. DOI: 10.1016/0304-3975(91)90381-B.

[14]. Allauzen C., Mohri M., Rastogi A. General algorithms for testing the ambiguity of finite automata. In

Proc. of the Developments in Language Theory, 2008. pp. 108-120. DOI: 10.1007/978-3-540-85780-8_8.

[15]. Bruggemann-Klein A. Regular expressions into finite automata. Theoretical Computer Science, vol. 120,

no. 2, 1993. pp. 197-213. DOI: 10.1016/0304-3975(93)90287-4.

[16]. Almeida M., Moreira N., Reis R. On the performance of automata minimization algorithms. In Proc. of

the 4th Conference on Computability in Europe, 2008. pp. 3-14.

[17]. Weideman N. Regex static analyzer. Available at:

https://github.com/NicolaasWeideman/RegexStaticAnalysis, accessed 01.07.2023.

[18]. Shen Y., Jiang Y., Xu C., Yu P., Ma X., Lu J. Rescue. Available at: https://github.com/2bdenny/ReScue,

accessed 01.07.2023.

[19]. Liu Y., Zhang M., Meng W. Revealer. Available at: https://github.com/cuhkseclab/Revealer, accessed

01.07.2023.

[20]. Gelade W., Neven F. Succinctness of the Complement and Intersection of Regular Expressions. In Proc.

of the 25th International Symposium on Theoretical Aspects of Computer Science, 2008. pp. 325-336.

DOI: 10.4230/LIPIcs.STACS.2008.1354.

[21]. Birget J., Margolis S. W., Meakin J. C., Weil P. Pspace-complete problems for subgroups of free groups

and inverse finite automata. Theoretical Computer Science, vol. 242, no. 1-2, 2000. pp. 247-281. DOI:

10.1016/S0304-3975(98)00225-4.

Информация об авторах / Information about authors

Антонина Николаевна НЕПЕЙВОДА – научный сотрудник Института Программных Систем

РАН. Сфера научных интересов: теория формальных языков, программная семантика,

математическая логика и функциональное программирование.

Antonina Nikolaevna NEPEIVODA – researcher in the Program Systems Institute of RAS. Research

interests: formal language theory, program semantics, mathematical logic, and functional

programming.

https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://github.com/2bdenny/ReScue
https://github.com/cuhkseclab/Revealer

Nepeivoda A.N., Belikova Yu. A, Shevchenko K.K, Teriukha M.R., Knyazihin D.P., Delman A.D, Terentyeva A.S. REDoS Detection in

“Domino” Regular Expressions by Ambiguity Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 109-124.

124

Юлия Андреевна БЕЛИКОВА – студент Московского государственного технического

университета им. Н. Э. Баумана. Сфера научных интересов: теория формальных языков,

искусственный интеллект, анализ данных.

Yulia Andreevna BELIKOVA – student of the Bauman Moscow State Technical University.

Research interests: formal language theory, artificial intelligence, data analysis.

Кирилл Константинович ШЕВЧЕНКО – студент Московского государственного

технического университета им. Н. Э. Баумана. Сфера научных интересов: анализ данных и

машинное обучение.

Kirill Konstantinovich SHEVCHENKO – student of the Bauman Moscow State Technical

University. Research interests: data science and machine learning.

Михаил Романович ТЕРЮХА – студент Московского государственного технического

университета им. Н. Э. Баумана. Сфера научных интересов: интернет вещей и

распределённые вычисления.

Mikhail Romanovich TERIUKHA – student of the Bauman Moscow State Technical University.

Research interests: internet of things and distributed systems.

Данила Павлович КНЯЗИХИН – студент Московского государственного технического

университета им. Н. Э. Баумана. Сфера научных интересов: абстрактная алгебра.

Danila Pavlovich KNYAZIHIN – student of the Bauman Moscow State Technical University.

Research interests: abstract algebra.

Александр Дмитриевич ДЕЛЬМАН – студент Московского государственного технического

университета им. Н. Э. Баумана. Сфера научных интересов: конструирование компиляторов

и облачные вычисления.

Aleksandr Dmitrievich DELMAN – student of the Bauman Moscow State Technical University.

Research interests: compiler design and cloud computing.

Анна Сергеевна ТЕРЕНТЬЕВА – студент Московского государственного технического

университета им. Н. Э. Баумана. Сфера научных интересов: конструирование компиляторов.

Anna Sergeevna TERENTYEVA – student of the Bauman Moscow State Technical University.

Research interests: compiler design and optimisation.

