
Труды ИСП РАН, том 35, вып. 3, 2023 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

125

DOI: 10.15514/ISPRAS-2023-35(3)-9

 Alias Analysis and Calculus based on
Segmentation Address Memory Model

 I.A. Parfenov, ORCID: 0009-0004-2889-0380 <parfenov_2001@mail.ru>
 Innopolis University

1, Universitetskaya Str., Innopolis, 420500, Russia

Abstract. We present a straightforward implementation of a simplified imperative programming language

with direct memory access and address arithmetic, and a simple static analyzer for memory leaks. Our study

continues a line of research attempted (in Innopolis University in years 2016-2022) on alias calculi for

imperative programming languages with decidable pointer arithmetic but differs by memory address

model – we study segmented memory model instead linear one.

Keywords: Imperative programming; memory address model; memory safety; memory leaks; static analysis

For citation: Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model.

Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 125-136. DOI: 10.15514/ISPRAS-2023-35(3)-9.

Анализ и исчисление алиасов, основанное на сегментированной
модели адресации памяти

 И.А. Парфенов, ORCID: 0009-0004-2889-0380 <parfenov_2001@mail.ru>
 Университет Иннополис,

Россия, 420500, Татарстан Республика, г. Казань, г. Иннополис, ул. Университетская, д. 1

Аннотация. Мы представляем простую реализацию упрощенного императивного языка

программирования с прямым доступом к памяти и адресной арифметикой, а также простой статический

анализатор утечек памяти. Наше исследование продолжает линию исследований, предпринятых (в

Университете Иннополис в 2016-2022 годах) по исчислению алиасов для императивных языков

программирования с разрешимой арифметикой указателей, но отличается моделью адресации памяти

— мы изучаем сегментированную модель памяти вместо линейной.

Ключевые слова: императивное программирование; модель адресации памяти; безопасность памяти;

утечки памяти; статический анализ.

Для цитирования: Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной

модели адресации памяти. Труды ИСП РАН, том 35, вып. 3, 2023 г., стр. 125–136 (на английском языке).

DOI: 10.15514/ISPRAS–2023–35(3)–9.

1. Introduction

There are various different instruments for program code development. One of the areas that has to

be improved for programming languages is the safety and correctness of successfully compiled

programs. The C programming language, like some others, has pointers and direct memory access,

which is a powerful and, at the same time, uncontrollable instrument, whose safety depends only on

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

126

the programmer. Those programming languages need some validation techniques for checking the

safety and correctness of using those features.

The alias calculus is the mathematical model which operates on an abstract, simplified programming

language with dynamic memory (accessible by explicit or implicit pointers) and some rules, using

which it can validate if the program is memory safe. This theory can be expanded to real

programming languages.

In this paper, firstly, a new variant of the alias calculus is suggested and studied up to some extent.

Then, based on this theory, we present a compiler for a simple model C-like programming language

with direct memory access (via pointers). The compiler has been implemented from scratches. For

this programming language, a set of programs has been written, and some metrics and statistics of

their executions have been collected and studied. Finally, we present a static validator for memory

leak safety for programs (with pointers) written in our model language. We hope that this instrument

can be successfully used in real programming.

2. Literature review

2.1 Anderson’s Model

Andersen’s pointer analysis model [1] is the most closest to alias calculus among commonly used

static analysis models. However, it describes a little different, more simplified, pointer-to model.

Nevertheless, definitions and properties introduced there are necessary for this scope’s analysis.

Roughly speaking, Andersen’ pointer analysis is based on theory of equality for uninterpreted

functional symbols. The algorithm traverses the program by statements and calculates for every

pointer set of other pointers, to which it can be equal. Such a set is called points-to set. During

traversing, once an assignment is met, a constraint “point-to set of sources is subset of point-to set

of destination” is created. After the constraints are collected, they are solved. The content of the

work is overcomplicated, though.

2.2 Alias Calculus

A simplified description of alias calculus and some other information out of this scope is described

in [2]. Informally, alias relation is a structure, which specifies for every variable, to which pointer

variable does it belong. The cited paper presents a set of simple operations: assignment, allocation

and deallocation, if-statements and loops, which affect the alias relation. The purpose of calculus

rules is static over approximation Q of actual alias relation after execution of a program S for a given

alias relation P before the program execution, i.e., such relation Q that Hoare triple [P]S[Q] to be

true. For example, assignment statement copies aliases to destination replaced by source and

removes aliases, which contain source; if-statements calculate relations for all branches and unite

them.

The algorithm from [2] was implemented in the Eiffel Verification Environment and can be used

through the AutoProof module. The approach used in the algorithm, presented in our paper, is,

however, different and will be explained in detail in the corresponding section. One of the main

differences is the memory model used: in [2] memory consists of abstract addresses while in our

model, for every state and for every variable, alias relation describes the meta-identifier of allocated

space and shift relative to the meta-identifier. This allows swapping allocated space for variables

without triggering the validator.

2.3 Separation Logic

Separation logic [3] and [4] is an extension of the first-order logic for specification of the programs

over dynamic memory (heap) in Hoare assertions [P]S[Q]. It operates on a heap, which is addressed,

using a “separating conjunction” operator, which checks if objects hold different parts of the heap.

There were proposed ways to handle unrestricted memory access with not only static arrays, but also

Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной модели адресации памяти. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 125-136.

127

dynamic arrays and recursive functions. The concept of separation logic is widely used in different

proof assistants and frameworks; hence, it can also be used for validating programs in this scope.

Separation logic semantics is based on a model comprising stores (to represent static memory) and

heaps (to represent dynamic memory), which are finite-domain maps from variables’ identifiers and,

respectively, locations (accessible via pointers or addresses which are particular numbers), to data

values (e.g. integers). There are two major heap models in use: linear or flat (where each location is

capable of storing simple data values), and segmented (where locations can store compound data

like arrays with static size).

2.4 MoRe Language

[5] presents and describes the MoRe language, which allows more flexible actions on pointers’

addresses in comparison to Andersen’s one. The cited paper describes the target theory in the clearest

and most understandable way, so this was the starting point for our research. MoRe language

presents the linear address arithmetic and has a separate stack and heap address spaces. The language

has direct memory access and address arithmetic; hence its memory model fully represents C

programming language address memory model. There are only integer and pointer data types in

MoRe. The algorithm traverses the program and calculates a set of configurations at every moment.

The configuration consists of three objects: a set of address variables, a set of address expressions

and a set of pairs of “synonyms” – variables, which point to one cell in current configuration. For

recalculation the state an operator “aft” was introduced, which for every possible state and statement

properly defines a new state after execution of the statement. The syntax grammar of this language

is given in Fig. 1. Bachelor Thesis [6] presents simple implementation and analysis of MoRe

language. Bachelor Thesis [7] implements simplified C language with MoRe language interface,

which can be compiled using LLVM. The syntax and semantics of this thesis’ implemented language

is close to MoRe’s.

P ::= skip | var V = C | V := T | V ::= cons(C∗) |

 | [V] := V | V := [V] | dispose(V)| (P ; P) |

 | (if then P else P) | (while do P)

Fig. 1. The syntax grammar of MoRe language: start variable is P, C is constant integer,

and C* is list of integers with ”,” character between them

3. Methodology

In this section we informally introduce and overview a simplified model language Alias. Though

the real implemented language has same syntax as presented here, it’s semantic is developed more

practically oriented and proposes new instruments.

3.1 Alias Programming Language Overview

The implemented version of the Alias language has/offers

 Two types – integer and pointer (to be tracked in analysis)

 Variable definitions, assignments, and annotations (assumptions)

 Blocks, If- and While-statements, Procedures.

Program may be split on multiple files. BNF syntax definition of language is given in Fig. 2.

However, the semantics are very restricted.

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

128

 Type ::= int | ptr

 Program ::= Block

 Block ::= {[Statement]}

 Statement ::=

– Block Block

– def Ident Type Definition

– Ident := Expression Assignment

– Ident <- Expression Movement

– free(Ident) Deallocation operator

– if (Expression) Block If statement

– if (Expression) Block else Block If/Else statement

– while (Expression) Block While statement

– func([int Ident | ptr Ident Integer Integer] Block Function definition

– call Ident([Ident]) Function call

 Expression ::=

– Ident

– Integer

– $Ident Dereference

– Expression + Expression

– alloc(Int) Allocation operator

Fig. 2. The syntax grammar of implemented language

3.2 Outlines of validation algorithm (static semantics)

Memory safety validation is done using the following method (algorithm).

 Program (text) is parsed line by line maintaining (in form of states) a set of known relations

“pointer points to cell in heap” but ignoring any information about integer variables.

– At some stages the states (known relations “pointer points to cell in heap”) can

split, as there is no information about integer variables.

– If in a current line there is no pointer variable, which points to any heap cell, then

it means memory leak happened.

– if there is a dereference of a pointer variable, which at some state points out of

allocated area, then access violation happened.

3.3 Configuration

Every configuration contains

I: A set of local variables/identifiers, which have pointer type.

A: A set of allocated cells in the heap (each cell in the form “Meta-variable + Integer-phase”)

S: For every identifier in I appointed cell in A, or an exceptional value “OUT”.

3.4 Legal Types of Assignments

There are three types of assignments:

1) int := int – i.e., an integer expression is assigned to an integer variable

2) [ptr -> ptr] := ptr – i.e., a pointer expression is assigned to a pointer

Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной модели адресации памяти. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 125-136.

129

3) [ptr -> int] := int – i.e., an indirect assignment to integer variable

Only the second type effects on configuration.

Note that storage pointer variables on heap doesn’t effect on configuration. Hence validation of

multidimensional arrays of structures, for example, is not supported by our analysis.

3.5 Some optimizing assumptions

We make the following (informal) assumptions about programs (for boosting of validator).

 The number of local variables is not very big, while the number of heap cells can be very

big, but (as now) is assumed constant.

 Since the number of configurations grows exponentially, we implement ‘assume’

statement, which filters the configurations which pass given condition (but programmer is

responsible for the correctness of this assumption).

 The current number of configurations is counted, so the programmer can get number of

configurations in real time in IDE.

3.6 Static semantics for pointers

Program traversed recursively. For the following statements corresponding actions made:

 Block affects only on visibility scopes of variables. It doesn’t change state.

 Definition affects only on visibility scopes of variables. It doesn’t change state.

 Assignment depending on types does following:

– Destination has pointer type, and source has pointer type. If assignment has form

a := b + x and in some configuration a = av + ap and b = bv + bp then in new state

this configuration has a = bv +(bp +x). For example, if there was configuration

with (b = _0+3) and statement a := b + (−1) was executed, the next configuration

will be with (b = _0 + 2). If after this in some configuration there is no av, then

memory leak happened.

– Destination has pointer type, and source has integer type. For every configuration

and every allocated cell new configuration created where destination points to such

cell.

– If destination has integer type, the state is not changed.

 Assumption works as a guard, i.e., it removes configurations, where the assumption

condition is false. If assumption has form assume(a = b + x) and in some configuration a

= av + ap and b = bv + bp, then if av ≠ bv or ap ≠ bp + x, then condition is false. If assumption

has form assume(a < b + x) and in some configuration a = av +ap and b = bv +bp, then if

av ≠ bv or ap ≥ bp + x, then condition is false.

 If-statement is traversed in the following steps. Firstly, the first branch is validated. Then

the sizes of all lists, which were allocated during this are saved and set to 0. Finally, the

second branch is validated, and finally the sizes of lists are restored. If there is allocation

in one branch, then the list will be added to states, but it won’t appear in any configuration

in second branch, hence it is guaranteed, that an alert will be shown. (Probably it is a

solvable problem, we can force to allocate to the variable the same size at the last

assignment in both branches.)

 While-statement is traversed in the following steps. The body is validated, and if state has

been changed, the body validated again. There is a threshold (set in validator) for number

of these iterations, after exceeding which, it is assumed that the loop is infinite. The

variables declared in a loop are scoped in the loop.

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

130

 A function actually is a procedure, its definition contains set of formal parameters (as

arguments) in its signature. Each pointer parameter has two associated integer values,

which guarantee the minimal number of sells before and after a call. The function doesn’t

return values, but can change its pointer arguments (i.e., actual arguments are passed name

to function).

 Function call contains parameters as actual arguments of function. If in some configuration

some pointer variable (passed to the function as an actual argument) doesn’t satisfy the

minimal size of allocated space, then it causes a run-time error.

4. Implementation

This section describes implemented language, which is based on model language described

previously, but mostly oriented on practical usage.

4.1 Overview

By default, the whole process of building and execution consists of the following sequential stages.

 Parsing calias parses input files and builds abstract syntax tree;

 Validation calias traverses tree and does static analysis;

 Compilation calias traverses tree and writes equivalent x86 assembly code;

 Assembly nasm builds object file;

 Linking gcc links object file and provides its malloc and free functions.

4.2 Tool-chain for the Alias Language

The compiler is implemented using language C++ for GNU G++ compiler and preferably uses

C++17 standard. The implementation can be found in corresponding GitHub repository. The output

executable is called calias.

For front-end no lexical and parser generating tools, or a framework for development of domain

specific languages were used, both lexer and syntax parser were implemented from scratches.

4.3 Validation

The validation is done as traversing the abstract syntax tree with passing and modification a context.

A context consists of the following components (though its implementation is a bit more

complicated):

 stack of variables;

 stack of functions;

 vector of sizes of packets;

 set of states.

A state is a vector, which for every declared variable contains

 either the pair consisting of a packet, in which it lays, and a phase (i.e. a shift relative to the

beginning of packet, to which the variable points);

 or a special value OUT.

Note, that here we use a terminology that differs from terminology in the section 3: context here is

used instead of state, and state here is used instead of configuration (since this terminology is

commonly adopted in program languages implementation community).

https://github.com/ParfenovIgor/alias
https://github.com/ParfenovIgor/alias

Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной модели адресации памяти. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 125-136.

131

4.4 Rules definitions

This is a formal description of working process of validator. It omits some non-important cases, for

more clear understanding.

The rule is described in two lines. Conclusions are written in the bottom line A ⊢ B → C and premises

– in the top line D ⊢ E → F. This means, that if we have to traverse node B of abstract syntax tree

and the current context is A, then we have to create new context D, do recursive call on node E,

which will return context F and then return context C. If a rule has no premises, it is an axiom (i.e.,

no further recursive calls).

Let us introduce some notation conventions. Meta-variable V S stands for variable stack, FS – for

function stack, PS – for vector of packet sizes, and SS – for set of states. If the actual value of some

of the listed meta-variables does not change in a rule, then it is presented implicitly, while any change

of actual value must be specified in the rule explicitly. For example, if there is a line C[FS] ⊢

statement → C[FS : foo], then it means that the output context is almost the same as input, but the

value of FS (to which foo is appended to the end of the function stack).

Operation ”:” appends the value to the end of the stack; it is also used to denote, that the element

has instances in the structure. Operation ”::” concatenates two stacks or vectors; it is also used to

denote, that the elements of second list are presented in the first list (neglecting the order). As usual,

(x, y) stays for a pair of two elements and x := y denotes an update assigning the value of y to variable

x.

There are following additional operators:

 packet(x, S) returns the identifier of the packet, to which the variable x is bound in state S;

 phase(x, S) returns the phase with respect to the beginning of the packet, to which variable

x is bounded in state S;

 value(x, S) returns a pair consisting of packet(x, S) and phase(x, S);

 packet_size(x) returns the size of packet x (remark that it is unique in all states).

The CHECK operator works as a guard, i.e., it is used to evaluate the expression (after CHECK),

and if it is false, stops validation with corresponding error message.

4.5 List of Rules

1) Block: Remember the size of stack of variables. Traverse all statements in body, and crop stack

of variables to previous size.

C ⊢ S1 → C1; . . . ; Cn−1 ⊢ Sn → Cn

C[V S, FS] ⊢ {S1, . . . Sn} → Cn[VS, FS]

2) Definition: Append the variable name to the stack of variables.

C[V S] ⊢ def a type → C2[V S : a]

3) Assignment: Different behavior for integer and pointer types.

For integer we just need to check the right part is a valid expression.

C[V S : a] ⊢ expr → C

C ⊢ a := expr → C

There are three options for assignments with pointers – alloc, shift by a constant, and more

complicated expressions in the right-hand side.

Alloc expression creates an additional packet.

C[V S : a, PS, SS] ⊢ a := alloc (x) →

C[[PS : x], ∀S ∈ SS → value(a, S) := (size(PS), 0)]

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

132

Shift (i.e., pointer + constant integer) assigns the corresponding value.

C[V S :: [a, b], SS] ⊢ a := b + x →

C[∀S ∈ SS → value(a, S) := (packet(b, S), phase(b, S) + x)]

For all other cases the state into states, where the variable points to one of all possible allocated cells,

and check right part expression.

C ⊢ expr → C

C[V S : a, SS] ⊢ a := expr →

C[∀S ∈ SS → ∀packet p, x ∈ [0, packet size(p)) → value(a, S) := (p, x)]

4) Movement: Check, that pointer at left size if correct, and check the right part expression.

C ⊢ expr → C C ⊢ a <- expr → C

CHECK∀S ∈ SS phase(a, S) ∈ [0, packet size(packet(a)))

5) Free: Check, that the pointer has phase zero, and have same packet in all states. Assign packets

of all pointers, which point to this packet, to OUT.

C[PS] ⊢ free(a) →

C[PS → packet(p) := 0, ∀S ∈ SS → ∀x, packet(x, S) = p → value(x, S) := (OUT, 0)]

CHECK∀S ∈ SS : packet(a, S) = p and phase(a, S) = 0

6) Function definition: Flush all variables and append argument variables. Each pointer variable

which has nonzero pre size lays in own packet with size equal to pre size. Check body. At the end

check that all pointer variables lays in different packets with at least post size distance from end of

packet and have same packet in all states. Restore variables and append function.

[[a, b], [foo], [ina, inb], a := (a, 0), b := (b, 0)] ⊢ block →C2

C[FS] ⊢

func foo (def a ptr in a out a, def b ptr in b out b) block) →C[FS : foo]

CHECK∀var x, S ∈ SS packet(x, S) =

x and phase(x, S) ∈ [0, packet size(x) −

outx) and ∀var x ≠var y packet(x, S) ≠ packet(y, S)

7) Function call: Check, that all pre conditions are satisfied: all argument variable lay in different

packets with at least pre size distance from end of packet and have same packet in all states. Remove

all passed packets, as if they were freed, and create new packet for each argument variable.

C[FS : foo, PS, SS] ⊢ call foo(args) → C[PS :: [outa, outb],
∀S ∈ SS → value(a, S) := (new a, 0), b := (new b, 0)]

CHECK∀x ∈ args S ∈ SS phase(x, S) ∈ [0, packet size(x) − inx) and ∀x≠ y ∈ args
packet(x, S) ≠ packet(y, S)

4.6 Compilation

The compilation is done into Intel x86 Assembly. The compiler using almost same structure as

validator. But its context is adapted for compilation. The compilation is done as traversing abstract

syntax tree and building assembly code, which is the assembled using nasm and linked using gcc,

which provides implementations of functions malloc and free.

Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной модели адресации памяти. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 125-136.

133

4.7 Assembly structure

There are rules for compilation, which are defined the same way, as for validation. Though, they are

not interested in scope of this thesis.

 There is an enter point of the program;

 There is declarations of functions malloc and free, their implementations have to be

provided;

 The System V ABI [8] is used, which makes this file compatible with programs written is

C language;

 The 32-bit assembly is used, thus the only data types have same size of four bytes;

 Only the simple general-purpose instructions are used;

 The expressions push calculated result on the top of current stack. The binary operators do

recursive call of one operand, then pushes stack and do recursive call of the other operand;

 There are no optimizations.

4.8 The IDE

The IDE is implemented from scratches in language C++ for GNU G++ compiler and preferably

uses C++17 standard. It widely uses NCurses library for implementation text editor. The

implementation can be found in corresponding GitHub repository. The output executable is called

ideal.

5. Evaluation: examples of memory errors

5.1 Detected Errors with one Configuration

In this section will be presented examples of programs (each with a simple error) that have only one

configuration on every state.

def a ptr

a := alloc (3)

a := alloc (2)

Listing 1. Example of memory leak

After the second assignment, there is a configuration (this is the only one configuration in this state),

where there is no page, which was allocated first. The validator will show corresponding error on

the third line.

def a ptr

a := alloc (3)

a := a + 4

def b int

b := $a

Listing 2. Example of access violation while dereference

In the fifth statement there an attempt to dereference the pointer, while there is a configuration,

where this pointer points out of page (this is the only one configuration in this state). The validator

will show corresponding error on the fifth line.

https://github.com/ParfenovIgor/ideal
https://github.com/ParfenovIgor/ideal

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

134

def a ptr

a <− 4

Listing 3. Example of access violation while movement

In the second statement there is an attempt to move value by pointer, while there is a configuration,

where this pointer out of page (this is the only one configuration in this state). The validator will

show corresponding error on the second line.

def a ptr

a := alloc (3)

a := a + 1

free (a)

Listing 4. Example of access violation while free

In the fourth statement there is an attempt to free page by pointer, while there is a configuration,

where this pointer is not at the beginning of page (this is the only one configuration in this state).

The validator will show corresponding error on the fourth line.

5.2 Detected Errors with multiple Configurations

Next let us discuss examples of programs which have multiple configurations in every state.

def a ptr

if (1) {

 a := alloc (3)

}

Listing 5. Example of memory leak on branching

In the end of body of if statement there is memory leak, since there is a configuration, where there

is no allocated page (there are two configurations: with if and without). In general, the allocations

can only be places at root blocks in function bodies.

def a ptr

def b ptr

a := alloc (3)

b := alloc (4)

def c ptr

if (1) {

 c := a + 0

}

else {

 c := b + 0

}

free (c)

Listing 6. Example of unpredictable free

In the free statement there are two configurations, but in these configurations the variable c points

to different pages. It is restricted, as there is no way to continue validation.

Парфенов И.А. Анализ и исчисление алиасов, основанное на сегментированной модели адресации памяти. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 125-136.

135

6. Conclusion

In this work in progress paper, firstly we briefly review some approaches to memory safety analysis.

Then we proceed to a new variant of alias calculus and propose several changes, stemmed from the

C programming language memory model. Finally, we describe our implementation of a model

language, our static analysis tool, and present several experiments showing analysis’ potential (as

we believe).

Still, we need to try validator on a “large” source code file containing more than 100 lines of code.

Right now, we foresee a problem with scaling our analysis to “large” programs and on programs in

a programming language from the real world. Additionally, a crucial missing piece in the theory is

the handling of dynamic arrays and recursive functions.

References
[1]. L. O. Andersen, “Program analysis and specialization for c programming language,” in DICU, [Online].

Available: http://www.cs.cornell.edu/courses/cs711/2005fa/papers/ andersen-thesis94.pdf, May 1994.

[2]. S. V. A. Kogtenkov B. Meyer, “Alias calculus, change calculus and frame inference,” in Science of

Computer Programming, [Online]. Available: http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf,

Nov. 2013.

[3]. J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in Carnegie Mellon

University, [Online]. Available: https://www.cs.cmu.edu/∼jcr/seplogic.pdf, Jul. 2022.

[4]. P. O’Hearn, “Communications of the ACM” in Carnegie Mellon University, [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/3211968, Feb. 2019.

[5]. A. V. N.V. Shilov A. Satekbayeva, “Alias calculus for a simple imperative language with decidable

pointer arithmetic,” in Novosibirsk Computing Center, [Online]. Available:

https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf, 2014.

[6]. L. I. Lygin, “Alias calculus in C-like languages,” 2021.

[7]. G. Dolgov, “Implementing alias calculus for c programming language using llvm,” 2022.

[8]. A. J. Michael Matz Jan Hubicka, System V application binary interface, [Online]. Available:

https://refspecs.linuxbase.org/elf/x86 64-abi-0.99.pdf, Jul. 2012.

Информация об авторах / Information about authors

Игорь Андреевич ПАРФЕНОВ – бакалавр в области информатики и вычислительной техники

университета Иннополис. Сфера научных интересов: низкоуровневое и системное

программирование.

Igor Andreevich PARFENOV – Bachelor of Informatics and Computer Engineering. Research

interests: low level and system programming.

http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://dl.acm.org/doi/pdf/10.1145/3211968
https://dl.acm.org/doi/pdf/10.1145/3211968
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

Parfenov I.A. Alias Analysis and Calculus based on Segmentation Address Memory Model. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3,

2035. pp. 125-136.

136

