Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-10 @C-EH

Application of Design Patterns in the Development
of the Architecture of Monitoring Systems

A.A. Pasynkova, ORCID: 0009-0006-4842-1105 <aapasynkoval@yandex.ru>
O.L. Vikentyeva, ORCID: 0000-0002-8991-4719 <ovikenteva@hse.ru>

HSE University, 38 Studencheskaya str., Perm, 614070 Russian Federation

Abstract. This article explores the relevance of using design patterns in the development of the architecture of
monitoring systems. The increasing complexity of modern monitoring systems has made it challenging to
maintain and evolve them. The use of design patterns can address these challenges by providing reusable
solutions to common problems in monitoring system architecture. This article reviews the literature on
monitoring systems and design patterns and identifies appropriate design patterns for monitoring system
architecture. The article also analysis the requirements for monitoring systems and demonstrates how design
patterns can be used to meet these requirements. The results show that the use of design patterns can improve
the maintainability, flexibility, reliability, compatibility and scalability of monitoring systems. This article is
relevant to software architects, developers, and system administrators who are involved in the development and
maintenance of monitoring systems.

Keywords: design patterns; monitoring systems; architecture; monitoring system requirements.

For citation: Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the
architecture of monitoring systems. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150. DOI:
10.15514/ISPRAS-2023-35(3)-10

MpoekTupoBaHMe apXUTEKTYpPbl CUCTEMbl MOHUTOPUHIA HA OCHOBE
naTTepHOB NPOEKTUPOBAHUS

A.A. Iacwinkosa, ORCID: 0009-0006-4842-1105 <aapasynkoval@yandex.ru>
O.JI. Buxenmwesa, ORCID: 0000-0002-8991-4719 <ovikenteva@hse.ru>

Hayuonanvnoiii uccnedosamenvcxuti ynugepcumem BIIID,
614070, Poccus, 2. Ilepmo, yn. Cmyoenueckas, 0. 38.

AHHOTanms. B naHHOI craThe nuccnenyeTcs akTyaabHOCTb UCIOJIB30BAHUS IA0JIOHOB IIPOSKTUPOBAHUS IIPU
pa3paboTKe apXUTEKTYpbl CHUCTEM MOHHUTOpUHra. BoszpacTamomias CI0XXHOCTH COBPEMEHHBIX CHCTEM
MOHHTOPHHTA YCIOXHJIET MX OOCIy)KHBaHHE W 3BONIONMIO. Mcronb3oBaHue MAOIOHOB NPOEKTHPOBAHUS
MOJKET PEeIIHUTh 3TH IIPOOIEMBI, TPETOCTABISST MHOTOKPATHO UCIIONB3yEMbIE PEIIEHHs IS PACTIPOCTPAaHEHHBIX
npoOsieM B apXUTEKType CHCTEM MOHHTOpWHTa. B 3TO# craTthe fqaeTcss 0030p JUTEpaTypsl IO CHCTEMaM
MOHHTOPHHTA ¥ ITa0JI0HAM IPOSKTUPOBAHMS U OMPEIEISIOTCS MTOAXOAAIINE MAa0IOHBI TPOSKTUPOBAHUS IS
apXUTEKTYpPBI CHCTEM MOHUTOPHHTA. B cTaThe Taroke aHAIM3UPYIOTCS TPeOOBaHMS K CHCTEMaM MOHMTOPHHTA
M JIEMOHCTPUPYETCS, KaKk MOXKHO HCIOJB30BaTh IIAOIOHBI IPOSKTUPOBAHMS JUIS YIOBJIETBOPCHHS AITHUX
TpeboBaHuil. Pe3ynbTaThl MOKa3bIBAIOT, YTO MCIOIB30BaHHUE IIA0JOHOB MPOSKTUPOBAHUS MOXKET YIIYUIIHTh
ynoOcTBO 00CTyKHMBaHMS, T'MOKOCTb, HAIEKHOCTb, COBMECTUMOCTh M MAacCIITa0HPYEeMOCTb CHCTEM
MOHHTOpPHHTA. DTa CTaThs NPeAHa3HAUYEHA JUIS apXUTEKTOPOB MPOTPAMMHOT0 o0ecedeH s, pa3paboTINKOB 1
CHCTEMHBIX aIMHHICTPAaTOPOB, KOTOPHIE 3aHUMAIOTCS Pa3paboTKON M 00CITy)KHBaHHEM CHCTEM MOHUTOPHHTA.

137

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

KioueBble ciaoBa: 1abOHBI NPOCKTUPOBAHHUS, CHUCTECMbl MOHHUTOPHHIA; APXHUTCKTYpa, TpeﬁOBaHI/Iﬂ K
CHUCTEMC MOHUTOPHUHTIA.

Jas nurupoBanusi: IlaceinkoBa A. A., BuxentseBa O. JI. IlpoexTupoBaHHE apXUTEKTYPHl CHCTEMBI
MOHHUTOPHHTa Ha OCHOBe marTepHoB npoekTupoBanus. Tpyast UCIT PAH, Tom 35, Bem. 3, 2023 r., ctp. 137—
150 (ua anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2023-35(3)-10

1. Introduction

Monitoring systems have become an essential part of various industries, providing real-time
information about the health and performance of critical systems. These systems are complex and
require sophisticated architectures to handle the data flow, processing, and storage [1]. However, as
the systems grow and evolve, they become increasingly challenging to maintain, and changes can
have unforeseen consequences [2]. This is where the use of design patterns can be invaluable.
Design patterns are reusable solutions to commonly occurring problems in software design. By
applying design patterns, developers can address specific design issues and improve the quality of
the system [3-5]. Design patterns have proven to be effective tools in software development,
providing solutions to common problems and ensuring that software systems are scalable,
maintainable, and flexible [6-8].

The problem is that without using design patterns, the maintenance of monitoring systems can be
difficult, time-consuming and prone to errors [9-11]. As the system grows, the complexity increases,
and it becomes harder to make changes without causing unintended consequences. Therefore, it is
essential to assess the possibility of using design patterns in the development of monitoring system
architecture.

Also, the relevance of developing own architecture independently, without using ready-made open-
source solutions is justified by the fact that some enterprises cannot do this because of high secrecy
and the need to ensure security when working with a monitoring system. Therefore, the use of
foreign solutions cannot be chosen.

This article will analyze the possibility of using design patterns to develop the architecture of
monitoring systems and provide examples of design patterns that are well-suited to monitoring
systems. Bo wusbexkaHue OmUOOK mpu (OPMATHPOBAHHH TEKCTAa CTAThH HACTOSTEIBLHO
PEKOMEHIYETCSl UCTIONIb30BaTh JAaHHBIN JTIOKYMEHT B KayeCTBE MA0J0HA. DTO MO3BOJHT MOJIy4YaTh
BCE 3aJ[aHHBIC MapaMeTphl (HOpPMATHPOBAHMS TEKCTa ABTOMATHUYCCKH. B TPOTHBHOM ciiydae
H606XOZ[I/IMO CaMOCTOSITEILHO O0ECIEYUTDH BBIITOJIHEHHE BCEX Tpe60BaHPII>i JAHHOT'O IOKYMCHTA
(pa3mep CTpaHHIIBL, OIS U OTCTYIBI, MIPUQPT, PACCTOSHHUE MEXAY KOJOHKAaMH U T. 1.).

2. Motivation

The motivation for exploring the topic of the use of design patterns in the development of the
architecture of monitoring systems comes from the increasing demand for robust and scalable
monitoring systems in various industries such as finance, healthcare, and telecommunications. The
rapid growth of technology has led to the development of more complex and distributed systems,
which require advanced monitoring capabilities to ensure their proper functioning.

However, building a monitoring system that is both scalable and maintainable can be a challenging
task. It is difficult to predict all possible scenarios and requirements that the system may face in the
future, making it hard to maintain and update the system over time. This is where design patterns
come into play. By using proven design patterns, developers can build monitoring systems that are
easier to maintain, more flexible, and more scalable [12].

The main goal of this article is to assess the possibility of using design patterns in the development
of the architecture of monitoring systems, and to demonstrate their relevance and effectiveness [13-
15]. By exploring different design patterns and their applications in monitoring systems, this article
aims to provide a comprehensive overview of the benefits of using design patterns in monitoring
systems development [16].

138

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

This article will be valuable to developers and architects who are involved in the development of
monitoring systems, as well as to anyone interested in learning about the benefits of using design
patterns in software development.

3. Problem statement

Requirements analysis is an important part of the software development process. It involves
collecting and documenting the needs and constraints of stakeholders to ensure that the final product
meets their expectations. At this stage, it is necessary to analyze and document the requirements for
the monitoring system.

System requirements are the most detailed technical requirements, and they describe how the system
will be designed and implemented. System requirements are often expressed in the form of
functional and non-functional requirements, and they represent a plan that the development team
should follow. System requirements are usually collected during design sessions, technical reviews,
and other development processes.

3.1 Functional requirements

Functional requirements describe what the system should do and how it should behave. Examples

of functional requirements may include:

1) Data collection and storage: The system should be able to collect data from various sources, such
as sensors, devices, and databases, and store them in a centralized location.

2) Data analysis: The system should be able to analyze the collected data and provide information
about controlled processes in real time. This can include data aggregation, filtering, and
visualization.

3) Alerts and notifications: The system should be able to notify the relevant stakeholders when
certain conditions or thresholds are met, for example, when an anomaly or process inconsistency
is detected.

4) Reporting and dashboards: The system should provide customized reports and dashboards that
allow users to view key performance indicators (KPIs), track progress towards achieving goals
and identify areas for improvement.

3.2 Non-functional requirements

Non-functional requirements describe system qualities such as performance, reliability, and security.
Next, examples of non-functional requirements will be analyzed:

1) Scalability: The system should be able to handle a large amount of data and users and be able to
zoom in and out as needed. Vertical scaling is characterized by an increase in the bandwidth of
an individual server or resource, for example, by increasing computing power or memory, which
allows you to handle a large load. Horizontal scaling involves adding more servers or resources
to handle the increasing load by distributing the workload across multiple machines.

2) Flexibility: The system should be designed in such a way that it can easily adapt to changing
requirements without requiring significant changes in its underlying architecture. In the context
of monitoring systems, flexibility is important because monitoring requirements can change over
time. For example, it may be necessary to add new sensors or devices, as well as to reconfigure
the system considering changes in the controlled environment. Flexibility allows for greater
maintainability and extensibility.

3) Reliability: The system should be able to work 24/7 without any downtime and provide accurate
and reliable data. In the context of monitoring systems, this is important, since any failure can
lead to large financial losses, downtime and potentially dangerous situations. One of the ways to
achieve reliability is redundancy. Redundancy involves the duplication of critical components
or subsystems in the system to ensure that if one component fails, another can take its place. For

139

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

example, backup power supplies, network interfaces or data storage devices can be added to the
monitoring system to increase reliability. Another way to achieve reliability is fault tolerance,
which involves designing the system in such a way that it continues to function even when a
component fails. Fault tolerance can be achieved by adding mechanisms such as error detection
and correction or automatic failover. In general, reliability engineering involves considering all
potential points of failure in the system and developing mechanisms to prevent or mitigate the
consequences of these failures.

4) Compatibility: The system must be able to interact with other systems and devices using open
standards and protocols. In the context of monitoring systems, compatibility can be used to
achieve integration with other software components, devices, or platforms to perform their
functions effectively. For example, a monitoring system in a manufacturing facility may need
integration with sensors, programmable logic controllers (PLCs) and other industrial automation
systems to collect data and perform analysis. The monitoring system must be designed in such a
way as to be compatible with these various systems. In addition, the use of standard
communication protocols, such as MQTT, REST, can help to implement compatibility between
different systems.

5) Maintainability: Maintainability is the ability of a system to remain in good condition over time,
which covers all actions related to maintaining and improving the quality of the system, including
bug fixes, code refactoring and system updates. The serviced system is easy to understand,
modify and expand, and it is less prone to errors and defects.

4. Implementation

The architecture of the platform for intelligent environmental monitoring “Digital Ecomonitoring”
is presented using a component diagram (Fig. 1).

A ‘ loT devices

~
User 1‘
1
!]
| JSON !
[REST API | HTTP
i HITP ModbuxTCP
1 XML ¢ MQTT
| Csv :
!]
: : Web Engine
— Y § Y
| InfluxDB Web Server NGINX MQTT Broker Mosquitto ReactJS
- RS . \\ - ”)
~ . N e B
~ _InfluxQL » HTTP . HTTP APl
- =~ ~ ra _ - -
__ T= Y ¥ -
(< 3 saL g]}
FV_PUstgreSQL_V |‘ -7 Java Service
o - £ A S -
- s \ ~ .
_ - AP AP AP S~ APl
- - 7 \ -~ -
Analytic Engine ’ i‘QT Engine ~ o
- /‘ 7/ . N ~ N
= = e o
Python MQTT Service CSV/XML Service Modbus Service

Fig. 1. Component diagram for the platform for intelligent environmental monitoring “Digital Ecomonitoring”’

The “Digital Ecomonitoring” platform is designed to provide monitoring and analysis of
environmental data in real time, as well as the implementation of emission forecasting. Users also

140

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

have the ability to configure alerts based on predefined thresholds, which allows them to take
proactive measures in response to environmental changes.

The platform has a multi-level architecture with several components working together. The
InfluxDB time series database is used to store measurements read from controllers or uploaded by
the user to the platform. The PostgreSQL relational database management system is used to store
dashboard and widget settings, accounts and roles, as well as the assignment of access rights.
ReactJS is used to create user interfaces in the digital platform. Python is used as an analytical tool
for processing data collected by the monitoring system, as well as for predicting values for
emissions. NGINX web server is used to process incoming requests from clients and forward them
to the corresponding components of the digital platform.

The process of data collection and storage in the Digital Ecomonitoring platform is implemented
using the Factory pattern. The abstract Data Collector class is a base class that allows you to create
new classes responsible for new sensors without diving into the specific details of their
implementation. Data Collector is part of Java Service. In the same way, the abstract Data Storage
class is able to create new instances of data warehouses.

The process of data processing, analysis and visualization in the platform is implemented using the
Decorator pattern, which allows you to add behavior to a single object without affecting the behavior
of other objects in the system. In this case, all additional methods for analysis and forecasting are
located in the analytical component implemented by Python [18].

The visualization process in the platform is implemented with an architecture similar to the MVC
pattern. In this case, Java Service is a controller that manages communication between databases
and ReactJS, which are a Model and a View, respectively [19-20].

The notification process is not clearly expressed in this architecture and is part of the Java Service,
which does not allow it to be attributed to any pattern.

For those who want to build monitoring system architecture, there is such a solution as ThingsBoard.
ThingsBoard is an open-source solution for 10T platforms. ThingsBoard is used to manage devices,
data collection, processing and visualization of collected information. ThingsBoard allows to
conveniently organize the process of collecting data from various devices, use a large number of
widgets to build informative dashboards that can help with managerial decision-making.
Component diagram for monolithic architecture of ThingsBoard (Fig. 2).

The monolithic architecture of ThingsBoard is very popular as it makes it cheaper and faster to
develop a monitoring system, which can help to implement it faster. With the help of various
protocols, such as HTTP(S), MQTT, CoAP, data enters systems from various devices. Each
transport protocol allows to send data to the Rule Engine, which allows devices to change behavior
according to the information received, and through the ThingsBoard Core service there is an
opportunity to access databases to evaluate the correctness of the information and make appropriate
changes. It is assumed that the data collection process is implemented using the Decorator or Factory
patterns.

Rule Engine is responsible for processing incoming information according to user-defined logic. It
is possible to create a filter, configure alerts when threshold values are reached. This component is
responsible for notifying users, which is implemented using the Observer pattern.

The ThingsBoard Core component is responsible for calling the corresponding APls, managing via
WebSocket and tracking the status of connecting devices to the developed system. This component
allows to implement devices, users, management rules and connections in the system. It uses the
gRPC framework to interact with other components. Also, interaction with databases for storing the
received information is implemented through this component, and represents one of the following
patterns by architecture: Factory or Decorator.

The ThingsBoard Core component is responsible for processing, analysis and forecasting, the
implementation of which also corresponds to the Decorator or Factory patterns.

141

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

External systems can receive information from the system using the Rule Engine, which uses gRPC

to transfer data to external systems, process data and create processing reports for visualization in
ThingsBoard.

£ ©1| HTIPIS)
Third-Partly Apps | ThingsBoard Web Ul A
v ' L End User
' s
\ !
\WebSockets , REST API
) ’
’ — ———
] ’ —— E—
\ L Database
i 4K
~ THTTR(S) § NosaL T T a I
Devices ~ ~gorr 1 ThingsBoard Core €~ 7 Timescale/Cassandra (NoSQL) PostgresQL
- X «__ 2= e T = 5
| - e - - -
]
1
lgRPC

! External Systems

Il gRPC
Rule Engine [~ ~ 2

Kafka RebbitMQ | Email

sMs AWS SQS/SNS |

Fig.2. Component diagram for monolithic architecture of ThingsBoard

To organize visualization with the presented system, the MVC pattern is used, which is represented
by the following components: Controller — ThingsBoard Core, View — ThingsBoard Web Ul, Model
— Database.

Component diagram for microservices architecture of ThingsBoard (Fig. 3).

Devices
End Users

i
s} (HTTPIS)
¢ WSIS)

T

Lead Balancer

- TETTR HTTP

MoTT W3 L
i ¥ Tea
ThingsEoard Transport Microsensices ThingsBoard Core Microsensices i ThingsEoard Web Ul Microsensices T
A2 x
" Kafka . “Kafka
Queve |
B
- I ~ o
-~ Tkafka Kafka - xafea
| =
! -
F ; F i)
ThingsBeard Javascript Executor Microsenvices ThingsBoard Rule Engine Microservices Third-party services

Fig.3. Component diagram for microservices architecture of ThingsBoard

The microservices architecture of ThingsBoard allows to implement a monitoring system with
greater flexibility and maintainability. Data from devices is collected using HTTP(S) and MQTT
protocols through the corresponding components that are part of Load Balancer. Then the data is

142

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

sent to the corresponding services, which transmit them further to other services, process or visualize
for users in the system itself.

The applied patterns for the implementation of the monitoring system necessary for the functioning
remain the same as for the monolithic architecture, but now there is a separation between the
components implementing them into various services, which contributes to easy scalability and
increased maintainability.

After analyzing component diagrams for various monitoring systems, a universal component
diagram for monitoring systems was designed, which can help in designing your own monitoring
system architecture (Fig. 4).

User

interfaces

A 4

SMs Service Email Service Web Server IoT Device2 | 0T Device 1

1
1

. i HTTF | i -

Ay AP ! AP AP , Communication ; Communication

e ' WebSockets | protocol ‘ protocol
" 0 Apache Kafka | !
~ I] -
4 ¥) ¥ i
i1 am 20 AP b

I€ IoT Service

* Data Processor
¥ AT

Notification Service |

.7 ARl 2P T AP

Y
.
E S| F:
Data Visualization Data Storage Analytic Service
.
¢ .
+sal "l
‘ \
¢ A
|_RelationalDB Time series DB

Fig.4. Component diagram of the monitoring system architecture

In the diagram presented, you can see that the system is composed of microservices, which ensures
stable operation, maintainability and easy scalability of the monitoring system. The user
communicates with the system via a Web Server, so that the Data Processor component knows
exactly what the user wants to do.

The list of Data Processor functions also includes communications with Analytic Service, loT
Service, Data Visualization, Data Storage and Notification Service. Analytic Service organizes the
analysis and forecasting of the data available in the system. 10T Service communicates with different
10T devices that the monitoring system is connected. Data Visualization displays the data in user-
friendly format. Data Storage stores the data in the monitoring system. Notification Service is
responsible for informing users of the exceedance of thresholds or for regularly communicating the
status of the monitoring system and related objects.

The process of data collection and storage for the monitoring system, implemented using the Factory
pattern, it presented using the class diagram (Fig. 5).

On the class diagram, there are several abstract classes that allow to easily add new elements to the
monitoring system without making changes to its structure. So, Data Collector defines the methods
that will be used when implementing specific Collector classes. And Data Storage records what

143

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

functional features databases connected to the monitoring system, both relational and time series
databases should have.

@ Data Collector

o collectDatal()

©|DT Device2 Collector @ loT Devicel Collector
o loTDevice2 o loTDevicel
o collectData() o collectData()
N s
A s
N s
hY s
Ay rs
@Data P — @RelatlanB Storage

~ > o relationDB

o processData()

o storeData()

¥
@Time series DB Storage @Data Storage
o time series DB —=
o storeData() (e S

Fig.5. Class diagram of the process of data collection and storage for the monitoring system

Sequence diagram of the process of data collection and storage for the monitoring systems (Fig. 6).

4. Es
Es

A L A A =

k l_ J IoT IoT L l_ /

1aT Data Device 1 Dawvice 2 Data Data RelationalDB Time series DB
Serice Collector Collector Collectar Processor Storage

Storage Storage

apt] [need to crente Data Collector] |
CreateDatatolector) V

CraataloTLColleckel] '
e e

CollectTatat)

CollestDazaly

opt__J [need ta crente Data Starags]
CreataDAtAStoranel |

CreancRelatianalDEstorage|),

| (ERUIN BuCcess message

Creee TimeSeries0BSLoragel] |

| refum success message

Savedatal] '

PRl S |_|

Savelatal]

T Cata loT T Data Cata RelationalDE Time series DB
seryice Collectar Dewice 1 Oeviee 2 Processar

Storage Starage Storage
Col Itil:tcr col iegtor A 8 @

Fig. 6. Sequence diagram of the process of data collection and storage for the monitoring system

144

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

In the sequence diagram shown above, there is not only the process of data collection and storage,
but also the creation of instances from an abstract base class that implement the appropriate
collection method or database to save the collected data.

The process of analyzing and predicting data in the system can be implemented using the Decorator
pattern that will allow to add behavior to a separate object without affecting the behavior of other
objects in the system. Thus, it’s possible to add new methods for data processing and forecasting
without the risk of disabling existing methods.

Class diagram of the process of analyzing and forecasting data for the monitoring system (Fig. 7).

Method for
process data

Method for
predict data 2

@ process() o predict()

@Anafytrc SERAES @Data Processor

o process()

o predict() e process()
Method for Method for @Data Storage @Tlme SEES BIE SHEa
process data predict data 1 | o time series DB
0 dict() e -z
rocess redic ;
e p °p o retrieve() e ()

Fig. 7. Class diagram of the process of analyzing and forecasting data for the monitoring system

Methods for data processing and forecasting are extended using the Decorator pattern using the basic
abstract class Analytic Service. Similarly, the Time Series DB Storage class is implemented, created
according to the abstract Data Storage class.

Sequence diagram of the process of analyzing and forecasting for the monitoring system (Fig. 8).

sy & A A
~ - RN O (@) (@))
= h Time Series DB Method for Method for Method for Method for
Data P r[l)csssor

O
Data Storage Storage Analytic Service process data 1 process data2 predictdatal predict data 2

opt

[need to create Data Storage] |

send to request to retrieve data_ |
[Ene iRm0 SN O

createTimescaleDBStorage(), |
pesteiescae Bt

| return success message

return success message

retrieve data

return retrieve data

send data processing and predict request with data

process data |
| retumn processed data J:I

process data

return processed data

summarising processed data |

predict data

return predicted data

predict data

return predicted data

summarising predicted data |

send processed and predict data’

save processed and predict data |

Time Series DB Analytic Service
Storage Iy
g .

Fig. 8. Sequence diagram of the process of analyzing and forecasting data for the monitoring system

return success message

Data Processor Method for Method for ~ Method for Method for
O process data 1l processdata2 predictdatal predict data2
> A A 2N o

Data Storage

O

)) (% ()

145

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

The diagram shows the process of data processing and forecasting, the process of which begins with
the creation of a data warehouse according to the abstract base class Data Storage for a time series
database. If such a database exists, the Data Processor immediately accesses the database and
extracts the necessary information. The received information is sent to the Analytic Service, when
it is processed and forecasted using previously established methods in the same way.

The visualization process can be performed using an MVC pattern. This can help to simplify
maintenance and system updates. Using this pattern can help achieve separation of the tasks.

Class diagram of the process of visualization data for the monitoring system (Fig. 9).

@ Dashboard

o0 widgets

e addWidget()
o removeWidget()
L@ render()

@Data visualization| © Data Processor @Widget
o data

o dataVisualization()

o render() o getData() o render() \
© Data Storage ©Type 2 of Widget @Type 1 of widget
o options o options
7?@% o render{) o render()
@Time Series DB Storage ©Re|ationaIDB Storage
o timeSeriesDB o relationalDB
o storeDatal() o storeData()

Fig.9. Class diagram of the process of visualization data for the monitoring system

In this case, the Data Processor will be a Controller that will interact between the Model and the
View, which are represented by Data Storage and Data Visualization, respectively. The Model is a
database repository that can support both relational databases and time series databases, the View is
associated with the Dashboard class, which implements widgets defined in the dashboard system.
Sequence diagram of the process of visualization data for the monitoring system (Fig. 10).

The diagram shows the interaction of the elements of the system built according to the MV C pattern.
The process of notifying users in the monitoring system can be implemented using the Observer
pattern. This pattern allows you to update the values of related objects when the observed objects
change [17-18].

Class diagram of the process of notification users for the monitoring system (Fig. 11).

This diagram shows the process of notifying users by applying the Observer pattern, which allows
to support instantons change in the state of an object with changes in the observed objects.
Sequence diagram of the process of notification users for the monitoring system (Fig. 12).

In this sequence diagram, the process of notifying users of the monitoring system occurs when the
values received from loT devices exceed the set range of acceptable values. Data Processor, Data
Storage and the databases themselves change their state when updates are required from 10T devices.
Also, the Notification Service can change its state in those situations when it is necessary to notify
the system user of the events that are taking place.

146

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

./(\‘. ./‘“'. .‘A\. . -
_ — - Time Series DB RelationalDB
Data Processor Data Storage Data Visualization Storage Storage
send request for data for visualization | | | |
retrieve data | - | ‘
return retrieved data | | ‘
retrieve data | | ‘
return retrieved data | ‘ |
return retrieved data | | |
. []]]]
send request for data visualization) - | |
] -]]
render dashboard	
render widgets	
return success message : : :
T T T | |
Data Processor Data Storage Data Visualization Time Series DB RelationalDB
Pas ™ ™ Storage Storage

)))
N/ o/ o/

Fig. 10. Sequence diagram of the process of visualization data for the monitoring system

@Nut\ﬁcat\un Service 2 @Nut\ﬁcat\on Service @ Notification Service 1

o options
e notify()

o options

@ notify()

o update()
o sendNotification()

© Data Processor

@ 10T2 Device Collector o observers @Re\at\onalDB Storage

> o attachi()
o detach()
o notify()

o processData()

(©)pata storage

o loT2

o collectDatal)

o relationalDB

o storeData()

@ storeDatal()

@IDTI Device Collector

@T\me series DB Storage

o loT1

o timeSeriesDB

o collectData()

o storeData()

Fig. 11. Class diagram of the process of notification users for the monitoring system

5. Evaluation

The design of the monitoring system architecture depends on the non-functional requirements that
will need to be implemented. The following is a list of patterns that can implement the non-functional
requirements listed above.

1) Observer pattern: to implement reliability and maintainability by monitoring the state of the
object and notifying its dependent elements of any changes.

Decorator pattern: to implement vertical scaling, flexibility and maintainability in order to
dynamically add functionality to an object without affecting the behavior of other objects.
Factory pattern: to implement vertical scaling, flexibility and maintainability in order to create
objects without specifying the exact class of the object to be created

Microservices pattern: to implement horizontal scaling.

Model-View-Control (MVC): to achieve maintainability dividing into three main components:
the model, view and control.

2)
3)

4)
5)

147

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

D) o) s s s
10T1 1oT2 L\) N HO HO
Device Device Data Data Time Series DB RelationalDB Notification Notification Notification

Collector Collector Processor Storage Storage Storage service Service 1 Setvice 2

U send data |

send data

send data

compare data with threshold_ |
e E—

return result

retrieve data about user

return retrieved data . ‘ ‘

return result

notify user by email

notify user by sms ' i ' '
IoT1 loT2 Data Data Time Ser\es DB Re\at\ona\DB Nnt\f\cat\on Not\flcatlon Notification
Device Device Processor Storage Storage Storage Servu:e Service 1 Service 2
Collector Collector ‘-""*-‘ ("'. }_“,-—.,“ }_‘.,.7.‘.‘
IA-KI ‘/4‘ A S L N

Fig. 12. Sequence diagram of the process of notification users for the monitoring system

6. Conclusion

1) Data collection and storage. The monitoring system should collect data from various sensors
and devices, process them and store them in a database for further analysis. The Decorator or
Factory patterns can be used to create objects representing different types of data.

2) Data analysis and processing. Once the data is collected, the monitoring system needs to analyse

it to extract meaningful information. The Decorator or Factory patterns can be used to add new

analysis capabilities to the system without changing the existing structure.
3) Data visualization. The monitoring system should present the data in a clear and understandable
form for the user. The Model-View-Controller (MVC) pattern can be used to separate data from

the user interface, allowing developers to create different representations of the same data

without affecting the underlying data model.
4) Notifying users about problems. The monitoring system should notify users when certain
conditions are met, for example, when the sensor detects an abnormal value or when the device
goes offline. The Observer pattern can be used to trigger alerts when certain events occur.

Conclusion: By considering and implementing best practices and design patterns, it is possible to
ensure that the architecture of the monitoring system is scalable, flexible and easy to maintain. This
will allow the system to effectively meet the needs of the organization over time as monitoring
requirements change.

References
[1]. D. Gurdur et al., ‘Knowledge Representation of Cyber-physical Systems for Monitoring Purpose’,
Procedia CIRP, 2018, vol. 72, pp. 468-473.

[2]. Cocuun IT.U. ApXUTEKTypHOE MOJICIMPOBAHHE aBTOMATH3MPOBaHHbIX cucTeM: yueOHuk / [1.1. CocHuH.
— Cankr-IletepOypr: Jlans, 2020. — 180 c.

[3]. N. Nazar, A. Aleti, and Y. Zheng, ‘Feature-based software design pattern detection’, Journal of Systems

and Software, 2022, vol. 185, pp. 1-12.

[4]. D. Yu, P. Zhang, J. Yang, Z. Chen, C. Liu, and J. Chen, ‘Efficiently detecting structural design pattern

instances based on ordered sequences’, Journal of Systems and Software, 2018, vol. 142, pp. 35-56.

[5]. S.K.Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang, ‘Architectural patterns for the design of federated

learning systems’, Journal of Systems and Software, 2022, vol. 191, p. 111357.

[6]. J. Arm, Z. Bradac, O. Bastan, J. Streit, and S. Misik, ‘Design pattern for the runtime model-based checking

of a real-time embedded system’, IFAC-PapersOnLine, 2019, vol. 52, no. 27, pp. 127-132.
148

TTacsirkoBa A. A., Buxentsesa O. JI. [IpoextupoBaHue apXUTEKTyPbI CHCTEMBI MOHHTOPHHTA HA OCHOBE IIATTCPHOB MPOCKTHPOBAHHS.
Tpyowr UCII PAH, 2023, tom 35, Beim. 3, ¢. 137-150.

[7]. Z. Moudam and N. Chenfour, ‘Design Pattern Support System: Help Making Decision in the Choice of
Appropriate Pattern’, Procedia Technology, 2012, vol. 4, pp. 355-359.

[8]. F. Pfister, V. Chapurlat, M. Huchard, and C. Nebut, ‘A Design Pattern meta model for Systems
Engineering’, IFAC Proceedings Volumes, 2011, vol. 44, no. 1, pp. 11967-11972.

[9]. A. Ampatzoglou, O. Michou, and 1. Stamelos, ‘Building and mining a repository of design pattern
instances: Practical and research benefits’, Entertainment Computing, 2013, vol. 4, no. 2, pp. 131-142.

[10]. J. Dong, D. S. Lad, and Y. Zhao, ‘DP-Miner: Design Pattern Discovery Using Matrix’, in 14th Annual
IEEE International Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), Tucson, AZ, USA: IEEE, Mar. 2007, pp. 371-380.

[11]. A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, ‘A methodology to assess the impact of design patterns
on software quality’, Information and Software Technology, 2012, vol. 54, no. 4, pp. 331-346.

[12]. [IaGnoHBl TPOEKTHPOBAHHUSI MPOrPAMMHOTO obecredeHusi KHOep(hH3UUeCKUXx cucTeM 3manuii / A.B.
Keorukun [u ap.] // Ipuxnagnas nagopmatuka. — 2020. — T. 15. — Ne 86. — C. 48-62.

[13]. C. Liu and P. Jiang, ‘A Cyber-physical System Architecture in Shop Floor for Intelligent Manufacturing’,
Procedia CIRP, 2016, vol. 56, pp. 372-377.

[14]. J. E. Correa, R. Toro, and P. M. Ferreira, ‘A new paradigm for organizing networks of computer numerical
control manufacturing resources in cloud manufacturing’, Procedia Manufacturing, 2018, vol. 26, pp.
1318-1329.

[15]. S. J. Oks, M. Jalowski, A. Fritzsche, and K. M. Moslein, ‘Cyber-physical modeling and simulation: A
reference architecture for designing demonstrators for industrial cyber-physical systems’, Procedia CIRP,
2019, vol. 84, pp. 257-264.

[16]. M. M. Hamdan, M. S. Mahmoud, and U. A. Baroudi, ‘Event-triggering control scheme for discrete time
Cyberphysical Systems in the presence of simultaneous hybrid stochastic attacks’, ISA Transactions,
2021, vol. 122, pp. 1-12.

[17]. J. Hu, W. Wu, F. Zhang, T. Chen, and C. Wang, ‘Observer-based dynamical pattern recognition via
deterministic learning’, Neural Networks, 2023, vol. 159, pp. 161-174.

[18]. K. Aljasser, ‘Implementing design patterns as parametric aspects using ParaAJ: The case of the singleton,
observer, and decorator design patterns’, Computer Languages, Systems & Structures, 2016, vol. 45, pp.
1-15.

[19]. B. V. lvanovich, B. V. Vladimirovich, N. F. Victorovich, B. V. Viktorovich, and A. L. Vitalievna, ‘Using
MVC pattern in the software development to simulate production of high cylindrical steel ingots’, Journal
of Crystal Growth, 2019, vol. 526, p. 125240.

[20]. A. Sunardi and Suharjito, ‘MVC Architecture: A Comparative Study Between Laravel Framework and
Slim Framework in Freelancer Project Monitoring System Web Based’, Procedia Computer Science,
2019, vol. 157, pp. 134-141.

UHgpopmayusi 06 aemopax / Information about authors

Anexcanapa AunekceeBHa IIACBIHKOBA - waructp HHUY BIID Ha cnenuaibHOCTH
«HpopMaIMOHHAS aHATUTHKA B YIIPABICHUN PEATIPUITACMY.

Alexandra Alekseevna PASINKOVA holds a Master's degree from the Higher School of Economics
in the specialty "Information Analytics in Enterprise Management".

Oubra Jleonnnosna BUKEHTBEBA — nouent kadeaps! nHGpOpMaIMOHHBIX TEXHOJIOTHI B OM3HECe
Ha (akylbTeTe COIHATbHO-DKOHOMHYECKHX M KOMIbIOTepHbIX Hayk B HUY BIID B Ilepmu. B
chepy HayuHbix uHTepecoB BxomaT: CASE-TexHosOTHs, AHAaIH3 W MOICIHPOBAaHHE OW3HEC-
MPOIIECCOB, OOBEKTHO-OPHEHTHUPOBAHHOE MPOTPAMMHPOBAaHUE, OOBEKTHO-OPHUEHTHPOBAHHOE
MO/JICIUPOBaHNE, IPOSKTUPOBAHHUE CHCTEM, YIIPABICHHE IPOEKTAMH, aKTHBHBIE METOIBI O0yUCHHS.

Olga Leonidovha VIKENTYEVA is a docent of the Department of Information Technology in
Business at the Faculty of Socio—Economic and Computer Sciences at the HSE in Perm. Her
research interests include: CASE technology, Analysis and modeling of business processes, object-
oriented programming, object-oriented modeling, system design, project management, active
learning methods.

149

Pasynkova A.A., Vikentyeva O.L. Application of design patterns in the development of the architecture of monitoring systems. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 137-150.

150

