Tpydei UCTT PAH, mom 35, ebin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-11 M

Finding More Bugs with Software Model Checking
using Delta Debugging

120.M. Petrov, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru=

! Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.
2 lvannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.

Abstract. Many verification tasks in model checking (one of the formal software verification approaches) can’t be
solved within bounded time requirements due to combinatorial state space explosion. In order to find a bug in the
verified program in a given time, a simplified version of it can be analyzed. This paper presents DD** algorithms
(based on the Delta Debugging approach) to iterate over simplified versions of the given program. These algorithms
were implemented in software-verification tool CPAchecker. Our experiments showed that this technique might be
used to find new bugs in real software.

Keywords: formal software verification; software model checking; delta debugging; CPAchecker.

For citation: Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP
RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 151-162. DOI: 10.15514/ISPRAS-2023-35(3)-11

Acknowledgements. The author thanks his colleagues Anton Vasilyev and Vadim Mutilin for their useful advices
on the article topic.

NMounck HOBLIX OLIMOGOK MeToAOM Bepucukauum mogesrien ¢ NOMoOLLbIO
noaxoaa AenbTa-oTnanku

12 0.M. Ilempos, ORCID: 0009-0004-6245-9615 <o.petrov@ispras.ru=

! Mockoeckuii 2ocyoapcmeenntii ynusepcumem umenu M.B. Jlomonocoea,
Poccus, 119991, Mocksa, Jlenunckue 2opwl, 0. 1.
2 Unucmumym cucmemnozo npozpammuposarnus um. B.I1. Hsannuxoea PAH,
Poccus, 109004, 2. Mockea, yn. A. Comicenuybina, 0. 25.

AHHOTaIuA. 3a9acTyl0 MHCTPYMEHT (hOpMaNbHOW BepHUHKanuy Mojenedl NporpaMM HE MOXKET IOIyYHTh
BEPAMKT 33 OTPAaHNIECHHOE BpeMsI N3-3a KOMOMHATOPHOTO B3PhIBA IPOCTPAHCTBA COCTOSTHUH. UTOOBI HANTH OIIHOKH
B BepH(UIMPYEMOi MporpaMMe 3a BEIIETIEHHOE BPeMsI, MOXKET OBITh IPOAHAIN3HPOBaHA YIIPOMEHHAs €€ BepCusl.
B at0it paboTte mpencrasnens anroputMbl DD**, ocHoBaHHBIe Ha ogxoe Delta Debugging, ¢ TOMOIIBEIO0 KOTOPBIX
HPOU3BOAUTCS MepeOop YMPOMEHHBIX BEPCHil TPOrpaMMbl. DTH alrOPUTMBI OBUTH peann30BaHbl B HHCTPYMEHTE
cratuueckoil Bepudukamuu nporpamm CPAchecker. Hami sxcriepuMeHTBI MOKa3ald, 4TO MPET0KEHHbIH METO.T
MOJKET OBITh UCTIOIB30BaH ISl HAXOXK/ICHHS OLIMOOK B MPOTPaMMHBIX CUCTEMaX, HCIIOJIb3YEMBbIX Ha MPAKTHKE.

KimioueBble ciioBa: QopmanbHas Bepudukaius mnporpamyM; Bepubukamms wMozenei; delta debugging;
CPAchecker.

151

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Jst mutupoBanus: [lerpos O.M. ITonck HOBBIX OIIMOOK METOIOM BepH(pUKanuK MOJeNIeH ¢ ITOMOIIBIO ITOX0Aa
nenbra orinanku. Tpymst UCIT PAH, tom 35, Bem. 3, 2023 r., ctp. 151-162 (ma anrmmiickom si3eike). DOI:
10.15514/ISPRAS-2023-35(3)-11.

Buaaronapaoctu. ABrop 61arogaput cBoux kojuter A.A. Bacunbesa u B.C. MyTununa 3a COBETHI IO TeME CTAaThbH.

1. Introduction

A ssignificant portion of tasks and problems today are solved with the aid of software. With the increase
in the scale and complexity of tasks, the scale and complexity of the software systems that solve
them increase, as does the difficulty of preventing, detecting, and eliminating errors in them.
Approaches to detecting errors in programs can be divided into three types: expertise, dynamic
analysis, and static analysis. Expertise is the manual review of code (or other development artifacts)
by a human with a high enough level of expertise and is not scalable. Dynamic analysis methods
involve the analysis of a sufficiently long run of the software system or the analysis of test runs. It
can be automated, but it can only detect bugs on paths that were included in the test suite and cannot
prove program correctness.

Static analysis includes methods for analyzing the source or binary code of a program without
running the program. Lightweight static analysis techniques such as control flow analysis and data
flow analysis are thoroughly used in compilers [1] and can be used to detect probable defects in a
short time. On the other hand, formal verification methods make it possible to reliably obtain
evidence of an error (counterexample) or even prove the absence of errors (correctness of a program
with respect to a given formal specification), but this may require significant computational resources
or human aid. One of the most successful tools for automatic model checking of C programs is
CPAchecker® [2], [3]. With its help, several hundred errors were found in the code of the Linux
operating system drivers?[4], [5].

The tool is actively developed and wins medals in the software verification competitions SV-COMP
several years in a row [6]-[8].

Although at the SV-COMP 2022 competition this tool received second place in the summary category
Overall, it was unable to complete the verification of a considerable number of programs due to a 15-
minute CPU time limit. Table 1 compares the CPAchecker verification tool and the winners in the
corresponding competition categories in terms of the number of programs that were verified within
the allotted time.

The table shows that even the winners in the respective categories failed to verify a significant
portion of programs, especially in the SoftwareSystems category, which consists of complex
programs that are close to the real software systems used. The obvious solution to the lack of
resources for verification is to allocate more resources, but often this does not help to get a verdict.
In this work, we use the approach of simplifying the verified program. This approach is known, but
we have proposed an automatic approach to the systematic enumeration of simplified versions of
the program. For this, algorithms based on the Delta Debugging algorithm are proposed. The
implementation manipulates (removes) function bodies from the internal representation of the
program in CPAchecker, a control flow automation.

The proposed enumeration of simplified program versions takes a significant amount of time, and
the technique’s limitations lead to the loss of up to 38%?2 of verdicts that the baseline analysis
could find. However, this way it is possible to get an unsafe verdict for the 32% of the programs,
for which respective baseline analysis can not obtain a verdict in the same amount of time. Due to
the complexity of proving the correctness of the original program on the basis of the correctness
of simplified programs, the search for safe verdicts remains outside the scope of this work.

! https://gitlab.ispras.ru/verification/cpachecker
2 http://linuxtesting.org/ldv
3 See evaluation on Linux USB drivers in section 4.2.

152

http://linuxtesting.org/ldv

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

2. Related work

The following two subsections describe techniques that can be applied in model checking in order to
obtain results: specific to the problem of combinatorial explosion in model checking, general-purpose
techniques for reduction of the software to be verified, and reuse of partial results of verification. The
third subsection describes Delta Debugging approach that is used to enumerate simplified versions of
the program to be verified.

Table 1. Programs verified, SV-COMP 2022.

Category Prc(;gtzz?rsym C\:/F?RZESCEgr Winner in category | Verified by winner
ReachSafety 5400 3477 (64%) VeriAbs 4476 (83%)
MemSafety 3321 2992 (90%) Symbiotic 3264 (98%)

ConcurrencySafety 763 377 (49%) Deagle 559 (74%)
NoOverflows 454 369 (81%) CPAchecker ——
Termination 2293 1023 (45%) UAutomizer 1589 (69%)

SoftwareSystems 3417 1830 (54%) Symbiotic 1261 (37%)

FalsificationOverall? 13355 3726 (28%) CPAchecker ——

Overall® 15648 10195 (65%) Symbiotic 8962 (57%)

aAll previous categories except Termination.
PAII previous categories including Termination.

2.1 Model checking techniques

Model checking is a formal software verification technique, i.e. a program is checked against
specification — some formally expressed property (often in a from of a temporal logic formula [9]).
Model checker explores state space of the given program and checks seen states against the given
specification. The program state represents values of all program variables and the current control
location (the value of the instruction pointer).

When a state violates the given specification, model checker can export a counterexample — a trace to
this state — as a specification violation witness. This ability of systematic search for error paths
makes model checkers useful tools for bug-finding.

One of the well-known techniques to reduce generic software model is abstraction. Explicit model
of a program is overapproximated by an abstract model in a way that does not lose
counterexamples. Abstraction is often paired with counterexample-guided abstraction refinement
[10]. This way, model checker starts with the most abstract model; when a spurious counterexample
is present in the abstract model, but is not feasible in the verified software, it is used to make the
abstraction more precise. The abstract model is refined this way until a feasible counterexample is
found or the whole model is checked.

Other classic techniques include partial order reduction (taking into account that some asynchronous
events simulated in a different order lead to the same state [11]), and symmetry reduction (using
symmetry in systems with multiple identical components [12]), both of which are used for model
checking of concurrent systems; and symbolic model checking, i.e. using binary decision diagrams as
compact encoding of state space [13].

Another well-known technique is bounded model checking [14]. In order to avoid state-space
explosion, the length of explored traces in the model is bounded, and therefore model checker
either provides a counterexample that is shorter than the imposed limit, or proves that there are no such
counterexamples. This technique is thoroughly improved and is used in practice for bug-finding.

2.2 Partial verification and verification of parts

Another way for state space reduction is to reduce the input program that needs to be modelled. This
can be done using component-based approach or reusing previous verification results.

153

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Usually large-scale software systems are divided into components. Software verification can benefit off
this structure via interface rule, assume-guaranty reasoning, or other techniques oriented on component-
based software verification [15]. Contrarily, decomposition of specification can also be useful [16].
Incremental verification [15] and extreme model checking [17] can be used with incremental software
system development and extreme programming, respectively. This way software verification benefits
from the fact that most part of the software system was already verified, therefore verification of the
new version of the software is approachable.

Another technique that is especially useful for regression verification is precision reuse [18]. In
similar fashion, the precision of abstract model of the software older version can be used to achieve
efficient verification of the newer version. Conditional model checking [19] proposes to export partial
results of a verification run as a predicate describing safe (explored) part of the verified software
and add such predicate as an input to a verification tool. Safe verdict is represented as true, and
unsafe verdict is represented as false. This way different tools can exchange information.

The state-of-the-art verification tools make it possible in practice to increase the efficiency of
verification by transferring information between two tools (or a tool running in different configurations).
A tool and language “for the composition of cooperative approaches” have been proposed [20]. At
the SV-COMP 2022 competition [7], such a tool could have taken second place in the ReachSafety,
MemSafety, and Termination categories and first place in the NoOverflow category, but it did not
participate in the rating because it used other participating instruments.

Another well-known approach that can be viewed as program simplification technique is program
slicing [21]: only statements that affect values of the given variables at the given instructions through
control or data flow remain in program. This technique was evaluated with CPAchecker [22], [23] with
mixed results, and was implemented [24] as a configurable program analysis inside CPAchecker
(i.e. it can be used alongside other CPA to construct and refine an abstract model of a given program

[3D-

2.3 Delta Debugging

This paper proposes the automatic enumeration of simplified versions of the program being verified.
This technique is closer to the verification of parts of the program. The most known approach to
changing input data, program version, or other startup conditions is Delta Debugging, proposed by
[25]. These algorithms iterate over subsets of a set of arbitrary homogenous atomic elements that
make up the “changeable circumstances”. The initial set is split into smaller parts, deltas, and for both
deltas and their complements the interesting property can be checked. Then deltas are split into ever
smaller parts, until they consist of one element.

In this paper, function bodies of an original analyzed program are considered elements, i.e., simplified
versions of the same program miss some function bodies. Lines of code, blocks, and operators can
also be considered as less coarse elements.

Delta Debugging distinguishes three outcomes in terms of a test run outcome. Let original full set
of input elements holds some property fail (i.e., test run produces a failure; here, a model checker
cannot verify a given program in a given time). Let empty set of input elements (baseline) holds
some property pass (i.e., test run succeeds; here, a model checker provides a safe or unsafe verdict,
which is the case for an “empty” C program of int main(){ return 0; }). These two
properties must be mutually exclusive (test cannot succeed and fail simultaneously). The case when
neither is held is considered unresolved (here, an error occurred in the verification tool). Seminal
work proposes three DD algorithms based on the same approach:

e ddmin: minimization of fail-inducing subset;
e ddmax: maximization of passing subset;
e dd: isolation of a fail-inducing difference (“cause”).

154

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

As these algorithms do not enumerate all of the subsets, the minimum (maximum) found by ddmin
(ddmax) is local. The authors call it 1-minimal (1-maximal), as no element in the found subset can
be removed so that fail holds (no element can be added so that pass holds). When dd finds a
“cause”, that means that there is some “safe” subset for which pass holds, but for the “safe” subset
together with the “cause” the fail holds.

Delta Debugging improvements: The DD algorithms can work with an unstructured set of elements,
whether they are commits, user actions, files, lines, HTML tags, tokens, characters. Ignoring the
internal structure of the input allows the algorithm to be used in a wide range of situations, but also
allows a large number of unnecessary runs due to ignoring information about internal dependencies.
A Hierarchical Delta Debugging (HDD) algorithm has been proposed that is capable of minimizing
tree-structured data faster and more effective than ddmin [26]. This algorithm uses ddmin to minimize
each level of the input tree, starting from the root, and removes nodes with their entire subtrees. Authors
applied HDD to minimize C programs in form of an abstract syntax tree.

Other improvements and applications of the DD algorithms include subtree hoisting [27] and binary
reduction of dependency graphs (e.g. applicable for Java classes) [28].

3. General design

We simplify the verified program (by removing its parts) in order to find an unsafe that is also
feasible in the original program. Accounting for both of these problems, we need to mutate
original program until an unsafe occurs; then the resulting counterexample is checked against the
restored control flow automaton. If the unsafe is confirmed, the algorithm terminates, otherwise the
enumeration process continues.

As a result, the following cycle was implemented inside the CPAchecker tool.
1) CPAchecker parses the program and builds its control flow automaton (CFA).

2) CPAchecker starts verification of the program with the time limit specified for one
verification round.

3) If a verdict is produced, CPAchecker returns it; otherwise timeout has occured (fail outcome
in terms of Delta Debugging)*.

4) If there is no way to mutate the CFA of the program or the time allotted for the whole process
has run out, exit with the unknown result.

5) Otherwise, change the program CFA. dd chooses what to do based on the results of previous
verification round.

6) CPAchecker starts verification with the time limit specified for one verification round.
7) If an unsafe verdict is produced, check the counterexample.

8) If the counterexample is confirmed against the original program, CPAchecker returns the
unsafe verdict.

9) Otherwise, go to step 4. For dd, unsafe and safe mean pass outcome, and timeout means
fail.

3.1 Simplification problem

The main question is how to arrange a sufficiently fast enumeration of simplified versions of the
program. In the following, we are considering only removing function bodies, as it makes sense to
remove coarser elements of the input program before removing more fine-grained elements like
blocks and statements, and this case has been implemented and evaluated.

4 In practice, other problems may occur (such as exceptions thrown by the verification tool), but here we consider only safe,
unsafe, and timeout possible for simplicity.

155

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

On the one hand, the more complex the function, the more likely it (or the code that uses it) has a bug.
On the other hand, the analysis of complex functions is also resource intensive. In addition, it is worth
considering that a large number of simple functions can be worse than a few complex ones.

The complexity of a function can be estimated through the characteristics of its control flow
automaton as a graph: the number of vertices, edges, cycles, its cyclomatic complexity, whether
there are sink vertices in the function (the possibility of early termination of the entire program); the
semantic characteristics of a function as a program: the number of variables, pointers, function calls
in it and whether it calls itself, is it a pure function or does it have side effects; finally, how many
times the analysis entered certain locations of the function.

The presented problem can be reformulated as the knapsack problem: it is necessary to choose as
many interesting (here value is probability of an unsafe) functions as possible so that the analysis does
not exceed resource constraints (i.e. weight is an estimate of the is complexity of a function for
analysis). In such setting, it is enough to enumerate the largest sets of functions, for which the
verification completes before the allotted time limit, since smaller subsets of such a set can only miss
an unsafe. Such a maximum set can be found using Delta Debugging, with timeout being the fail
outcome, and verdicts safe and unsafe being the pass outcome.

Contrarily, it may be interesting to find a minimum set of functions that can be called a core of
complexity, as the verification of this set ends in a timeout. As the ddmin algorithm approaches
minimum, it tries some of its subsets too, including removing each function from minimum set
individually.

Thus, the proposed algorithm for enumerating simplified versions is based on the previously
implemented dd algorithm, which localizes the cause. Based on it, algorithms dd*min* and dd*max*
were developed for searching for a suitable configuration by enumeration of minima and, accordingly,
maxima.

3.2 Iterative algorithms DD**

The ddmin algorithm can be used to find the minimum set of functions each of which is required
to reproduce the timeout. Below a dd*min algorithm is proposed for finding the minimum set of
causes, since we may be interested in the structure of the minimum set of functions, i.e., which functions
together form “causes”. dd*min showed speed comparable to ddmin.

To search for functions without which a timeout does not occur, the dd algorithm can be used. The
first run of dd will split the set of functions into three sets: the set of removed functions, the set
of “safe” functions (which the verification tool manages to analyze in the allotted time), and the
isolated “cause”, i.e., the set of functions, after adding which to the set of “safe” functions a timeout
reappears.

By repeating dd on the set of safe functions, we can isolate a new cause among them (and remove some
of these functions, adding them to the set of removed functions). dd is repeated until the set of safe
functions is empty; now we have a set of removed functions and a set of isolated causes, which makes
up the minimum program that the verification tool can not verify in the allotted time.

Similarly, you can find the maximum program not with the ddmax algorithm, but by iteratively
removing causes with dd*max. To do this, the cause is deleted after each run, and all the functions that
were removed on this run are returned. This way a new cause can be isolated among all other
functions. The process continues as long as the timeout continues to occur after the return of the
removed functions. Thus, we get a set of causes that have been removed from the program, and a set
of safe functions.

It is possible to construct an algorithm that enumerates the optimums based on algorithms that find
a local optimum. In the following, two such algorithms, dd*min* and dd*max*, are described.

To iterate over minima, it is enough to return all removed functions and remove one of the isolated
causes. If the timeout does not occur without this cause, then we return it and try to remove another
one. If the timeout reoccurs, then we can find another minimum, since it will not have the cause

156

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

that we removed. This way all the causes found can be removed one by one. Similarly, it is enough
to add one of the causes to the found maximum to find another maximum by isolating another cause.
Taking into account that dd’s complexity with respect to the number of analysis runs performed is
linear in the number of considered elements, we obtain, in the worst case, a quadratic dependence on
the number of elements. Assuming that the number of causes in the found minimum is bounded from
above by some constant, we obtain a linear complexity estimate (with the indicated constant as a
factor).

3.3 Counterexample check

CPAchecker has three implementations for checking counterexamples: using CBMC (Bounded Model
Checker for C and C++ programs®), concrete execution, and using CPAchecker itself. In the first two
cases, the found counterexample is exported as a C program. In the latter case, it is exported as a
violation witness in the form of a special automaton that directs the analysis along the already
found trace [29]. Since translated programs or a violation witness significantly limit the number of
possible execution paths of the program, their analysis is much easier than the analysis of the complete
original program. Because of that, more complex analyses may be used to confirm unsafes found with
simple analyses.

When checking a counterexample, it is necessary to correct the representation of the error trace in
order to compensate for the fact that it was found on a modified program. For representation as
a program, definitions of removed functions have to be added.

To check a counterexample found for a simplified version of the program, the following was
implemented. The counterexample is translated into C in much the same way as for CBMC, but the
definitions of the removed functions are added to the resulting text. Then re-verification is started
from within CPAchecker (by default with the same configuration). Although there is now a potentially
complex function, the rest of the program has been simplified to a single trace, so this check requires
much less resources compared to the entire program.

4. Evaluation

Two experiments were conducted to evaluate implemented algorithms, both compare dd*min* and
dd*max* against the baseline CPAchecker analysis with the same CPU time limit. Effectiveness is
evaluated as amount of found unsafes, efficiency is evaluated as time spent for the tasks.

4.1 A few programs from SV-COMP/ReachSafety

29 programs were chosen arbitrarily for the first experiment from ReachSafety category of the SV-
COMP benchmark®. These programs are checked for reachability of specified function call (reachable
call is considered a bug). 21 of the chosen programs have an error (the call is reachable) and

8 of the programs do not have an error (the call is not reachable). Most of the programs consist of a
few functions, some have a lot of branching. For each of the chosen programs, CPAchecker did not
provide a verdict in the 2022 competition due to timeout (15 minutes of CPU time).

The time limit was increased from 15 minutes (900 seconds) to 2.5 hours (9000 seconds) of CPU time
for verification of one program. The run was performed using BenchExec’ on a machine with a
16-core 11th generation Intel Core i7-11700 processor at 2.50 GHz, with 32 GB of RAM (of which
CPAchecker had allocated 10 MB on the heap and default 1 MB on the stack), and 64-bit operating
system Ubuntu 20.04.6 LTS.

5 http://www.cprover.org/chme/

6 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
" https://github.com/sosy-lab/benchexec
157

http://www.cprover.org/cbmc/

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

Baseline configuration (-svcomp22 -benchmark with extended timelimit) uses sequential
combination of different analyses [30]. dd*min* and dd*max* configurations used same analyses with
time limit of 200 seconds for each verification round.

As seen in Fig. 1 and Table 2, baseline analysis found 6 unsafes (out of 21 programs with an error) and
0 safes (out of 8 programs without an error), while both dd*min* and dd*max* found only two unsafes.
For one program with error, an unsafe was found by all three configurations. For another program
with error, only dd*min* found an unsafe. For yet another one program with error, only dd*max*
found an unsafe.

® baseline # (found unsafe) ® dd'min* 4 (found unsafe) @ dd*max* @ (found unsafe)
100000
.
.
50000 .
.
.
. o
.
10000:.-'_ . R
*
2 5000 . . . : 2 .
£
= .
2 Cet? :
@] N .) *
1000 . * H :
. . » . . - . L]
500 * . . o LI . .
*
100
g §F 5 S e dF d a8 XN a0y X od N N & N X ¢ X N X g & N g o
§ ¥ & £ HF P P &5 g L » 2 A S A A A R - R U R A A N R AR -
SEFIFT e FEF I FETEFEEFIEFFFSFEFESFF ¢
FOSEFESE S £ ¢ &
€ & st e & §

Fig. 1. CPU time for analysis of a few benchmark programs (sorted by baseline time)

Table 2. Results for 29 ReachSafety programs.

Baseline analysis dd*max* dd*min*
Total CPU time, h 161 19.0 234
Total wall time, h 44.8 7.5 13.3
Safe (8 expected) 0 0 0
Unsafe (21 exp.) 6 2 2
Enumeration completed — 27 27
Timeout 23 0 0

Small amount of obtained baseline verdicts is not unexpected, as the programs were chosen
because CPAchecker could not verify them in time in competition. As these programs consist of
small amount of functions, DD** algorithms need more granular elements to manipulate in order to
simplify program more precisely and not lose a verdict.

As shown in the table, dd*min* and dd*max* in sum took 26% of CPU time of the baseline analysis
(46% of wall time).

4.1 Linux USB drivers

In the second experiment, 284 modules of Linux operating system kernel USB device drivers, version
5.10.27, were verified against memory leaks, incorrect dereferences and use after free. It was carried
out using Klever system [31] on an 8-core Intel Xeon E3-12xx v2 (lvy Bridge, IBRS) machine
with 32 GB of RAM, and a 64-bit Debian 4.9.246-2 OS.

Baseline analysis configuration (-smg-1dv) uses symbolic memory graphs [32].

dd*min* and dd*max* configurations used same analysis with time limit of 350 seconds for each
verification round.

158

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

Fig. 2 shows a quantile graph of the spent CPU time; baseline analysis found 62 unsafes (13 of them
regired more than 5 minutes of CPU time), and found 90 safes (16 of them required more than 5
minutes of CPU time). Verdict was not produced (result is unknown) for other 132 modules:

e for 5 modules, due to encountered recursive functions in module;
e for 100 modules, because of timeout;
o for 6 modules, because more memory was needed:;

o for 21 modules, verification was not conducted at all due to a problem outside of verification
tool (these are not shown on the figure).

@ baseline analysis @ with dd*max* @ with dd*min*

10000 . _’_‘_/
- -
5000 i -
—
w1000 - -
fij 500 e _
E .‘-. .-
O - rﬂ"
100 s -
-
- -
’ /‘—’J
10
0 50 100 150 200 250

Fig. 2. CPU time for analysis of Linux device driver modules (quantile graph)

It can be seen that for modules whose verification takes 15-35 seconds, the time for the proposed
algorithms will most likely also be 15-35 seconds; the time for modules with baseline analysis longer
than 35 seconds averages 40-50 minutes for dd*max* and 40-90 minutes for dd*min*. Difference
under first 350 seconds is explained by the fact that DD** algorithms do not stop verification after
first error found, while baseline analysis does. This change in analysis was introduced in order to find
all errors that can be present in the original program.

The results for the Linux drivers are presented in Table 3 and Table 4. dd*max* and dd*min*
obtained 74 and 75 safe verdicts, respectively, in cases where verification took less than 350
seconds of CPU time. There was not enough time to verify 100 modules by baseline analysis;
there was not enough time for one module to analyze using dd*min*. For dd*max* and dd*min*,
the analysis of 130 and 50 modules, respectively, ended because enumeration of simplified versions of
the module ended without a verdict.

The dd*max* algorithm consumed just 29% of the total CPU time (31% of the total wall time)
of the baseline. 26 unsafes (42% as percentage of unsafes obtained by baseline analysis) were found
in programs for which baseline analysis can not obtain a verdict.

The dd*min* algorithm spent 49% of the total CPU time (51% of the total wall time) of the baseline
analysis and found 38 unsafes (61% as percentage of unsafes by baseline analysis) in modules for which
baseline analysis can not obtain a verdict.

In total, DD** algoritms obtained new unsafes for 42 modules out of 132 modules with unknown
baseline verdict. Both algorithms obtained an unsafe for 23 of these modules.

Change of safe to unsafe can be explained by incorrect counterexample check: the used analysis
does not stop after target state is reached. Additionally, incorrect translation of C enum types induces
raise of exceptions.

159

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

From the results of the experiments, we can conclude that it may be more effective to use the proposed
technique together with a trivial increase of the time limit. For example, simply running the proposed
algorithms after the baseline analysis, it is possible to get a linear increase in the number of unsafes
found (according to the results of the second experiment, 32% of new unsafes for additional 29% of
total CPU time).

Table 3. Results for 29 Linux USB drivers.

Baseline analysis dd*max* dd*min*

Total CPU time, h 493 142 240

Total wall time, h 427 131 218
Safe 90 74 75

Unsafe 62 49 77
Enumeration completed — 130 50
Timeout 100 0 1

Out of memory 6 3 12
Recursion in module 5 5 5
Other exceptions 0 7 46
Other problems 21 21 21

Table 4. Changed verdicts for Linux USB drivers.

dd*max* dd*min*
Baseline analysis
safe unsafe | unknown safe unsafe | unknown
safe, 90 in total 74 3 13 75 9 6
unsafe, 62 in total 0 20 42 0 30 32
unknown, 132 in total 0 26 106 0 38 94

5. Conclusion

In this paper, the problem of software model checking is considered from the point of view of
resource constraints.

Modern methods and approaches for verification of program models were considered. The problem
of finding unsafes in programs by simplifying the verified program is stated.

Two algorithms, dd*min* and dd*max*, were proposed for enumerating simplified versions of
programs based on Delta Debugging approach. These algorithms were implemented in the static
verification framework CPAchecker, and evaluated on a small set of programs from SV-COMP
benchmark and whole set of 5.10 Linux kernel USB device driver modules.

Experiments have shown that the proposed technique takes less than half the total time of baseline
analysis and is able to find unsafes in programs that are too difficult for baseline analysis, although
the total number of verdicts obtained may be less than that of baseline analysis.

There are several directions for a future work: a) program blocks and statements manipulation, b)
improvement of counterexample translation, c) reuse of partial results obtained in the analysis of the
original program or its simplified versions, d) the optimal time for one round of verification, and e)
the optimal order of functions and causes in DD** enumeration.

160

MNetpos O.M. Mouck HOBbIX OLIMBOK METOAOM BepUbUKALLIMM MOAE/EN C MOMOLLBIO NOAX0AA AeNbTa OTAafKu. Tpydel MCI PAH, Tom 35, Bbin. 3,
2023 r., cTp. 151-162.

References

[1].
[2].

(3.

[4].

(5].

(6].
[71.
(8l
(91

[10].
[11].
[12].

[13].

[14].

[15].

[16].

[17].
[18].
[19].
[20].
[21].
[22].

[23].

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986.
D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable software verification,” in Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings 23. Springer, 2011, pp. 184-190.

D. Beyer, S. Gulwani, and D. A. Schmidt, Combining Model Checking and Data-Flow Analysis. in E. M.
Clarke, T. A. Henzinger, H. Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer
International Publishing, 2018, pp. 493-540.

A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov, “Establishing linux driver verification process,”
in Perspectives of Systems Informatics: 7th International Andrei Ershov Memorial Conference, PSI 2009,
Novosibirsk, Russia, June 15-19, 2009. Revised Papers 7. Springer, 2010, pp. 165-176.

I. S. Zakharov, M. U. Mandrykin, V. S. Mdutilin, E. Novikov, A. K. Petrenko, and A. V. Khoroshilov,
“Configurable toolset for static verification of operating systems kernel modules,” Programming and
Computer Software, vol. 41, pp. 49-64, 2015.

D. Beyer, “Software verification: 10th comparative evaluation (SVCOMP 2021),” Tools and Algorithms for
the Construction and Analysis of Systems, vol. 12652, pp. 401 — 422, 2021.

“Progress on software verification: SV-COMP 2022,” in International Conference on Tools and Algorithms
for Construction and Analysis of Systems, 2022.

“Competition on software verification and witness validation: SVCOMP 2023,” in International Conference
on Tools and Algorithms for Construction and Analysis of Systems, 2023.

N. Piterman and A. Pnueli, Temporal Logic and Fair Discrete Systems, in E. M. Clarke, T. A. Henzinger, H.
Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing,
2018, p. 27-73.

A. V. Khoroshilov, M. U. Mandrykin, and V. S. Mutilin, “Introduction to CEGAR — counter-example guided
abstraction refinement”, Trudy ISP RAN/Proc. ISP RAS, vol. 24, 2013, (in Russian).

D. A. Peled, Partial-Order Reduction, in E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, eds.
Handbook of Model Checking, 1st ed. Cham: Springer International Publishing, 2018.

E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla, “Symmetry reductions in model checking,” in
International Conference on Computer Aided Verification, 1998.

S. Chaki and A. Gurfinkel, BDD-Based Symbolic Model Checking, in E. M. Clarke, T. A. Henzinger, H.
Veith, and R. Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing,
2018, p. 219-245.

A. Biere and D. Kroning, SAT-based model checking, in E. M. Clarke, T. A. Henzinger, H. Veith, and R.
Bloem, eds. Handbook of Model Checking, 1st ed. Cham: Springer International Publishing, 2018, ch. 10, pp.
277-303.

F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, “Handling state space explosion in component-based
software verification: A review,” IEEE Access, vol. 9, pp. 77 52677 544, 2021.

S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer, “On-the-fly decomposition of
specifications in software model checking,” Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2016.

T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido, “Extreme model checking,” in Theory and
Practice, 2003.

D. Beyer, S. Lo"we, E. Novikov, A. Stahlbauer, and P. Wendler, “Precision reuse for efficient regression
verification,” in ESEC/FSE 2013, 2013.

D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Conditional model checking: a technique to
pass information between verifiers,” in SIGSOFT FSE, 2012.

D. Beyer and S. Kanav, “CoVeriTeam: On-demand composition of cooperative verification systems,” in
International Conference on Tools and Algorithms for Construction and Analysis of Systems, 2022.

M. Weiser, “Program slicing,” IEEE Transactions on Software Engineering, vol. SE-10, no. 4, pp. 352-357,
1984.

M. Chalupa and J. Strejéek, “Evaluation of program slicing in software verification,” in International
Conference on Integrated Formal Methods, 2019.

P. Andrianov, V. Mutilin, M. Mandrykin, and A. Vasilyev, “CPA-BAM-Slicing: Block-abstraction
memoization and slicing with region-based dependency analysis,” in Tools and Algorithms for the
Construction and Analysis of Systems, D. Beyer and M. Huisman, Eds. Cham: Springer International
Publishing, 2018, pp. 427-431.

161

Petrov O.M. Finding More Bugs with Software Model Checking using Delta Debugging. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 151-162.

[24]

[25].
[26].
[27].

[28].

[29].

[30].

[31].

[32].

. M. Spiessl, “Configurable software verification based on slicing abstractions,” Master’s thesis, Ludwig-
Maximilians-Universita"t Mu nchen (LMU Munich), Mu nchen, Germany, Jun. 2018.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Trans. Software Eng.,
vol. 28, pp. 183-200, 2002.

G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” Proceedings of the 28th international
conference on Software engineering, 2006.

D. Vince, R. Hodovan, D. Barsony, and A. Kiss, “The effect of hoisting on variants of Hierarchical Delta
Debugging,” Journal of Software: Evolution and Process, vol. 34, 2022.

C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency graphs,” Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019.

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and T.
Lemberger, “Verification witnesses,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, pp. 1 - 69, 2022.

M. Dangl, S. Lowe, and P. Wendler, “CPAchecker with support for recursive programs and floating-point
arithmetic,” in Tools and Algorithms for the Construction and Analysis of Systems, C. Baier and C. Tinelli,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 423 425.

E. Novikov and 1. Zakharov, “Towards automated static verification of GNU C programs,” in Perspectives of
System Informatics: 11th International Andrei P. Ershov Informatics Conference, PSI 2017, Moscow, Russia,
June 27-29, 2017, Revised Selected Papers 11. Springer, 2018, pp. 402-416.

A. A. Vasilyev and V. S. Mutilin, “Predicate extension of symbolic memory graphs for the analysis of memory
safety correctness,” Programming and Computer Software, vol. 46, pp. 747 — 754, 2020.

Ungpopmayusi 06 aemopax / Information about authors

Oner MaxkcumoBna [IETPOB — crapmmuii nmaGopaHt, maructp ¢(akynpreTa BBEIYHCIUTEIBHON
MaTeMaTHKu U kuOepHeTtuku (2023). Ero HaydHBIE MHTEpeCHl BKIIIOYAIOT BEPUPHKANHNIO MOMAEICH
nporpamwm, delta debugging.

Oleg Maximovich PETROV is a senior laboratory assistant and a master of the Faculty of
Computational Mathematics and Cybernetics (2023). His research interests include software model
checking, delta debugging.

162

