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Abstract. Thread-modular approach over predicate abstraction is an efficient technique for software 

verification of complicated real-world source code. One of the main problems in the technique is a predicate 

abstraction refinement in a multithreaded case. A default predicate refiner considers only a path related to one 

thread, and does not refine the thread-modular environment. For instance, if we have applied an effect from the 

second thread to the current one, then the path in the second thread to the applied effect is not refined. Our goal 

was to develop a more precise refinement procedure, reusing a default predicate refiner to refine both: a path 

in a current thread and a path to an effect in the environment. The idea is to construct a joined boolean formula 

from these two paths. Since some variables may be common, a key challenge is to correctly rename and equate 

variables in two parts of the formula to accurately represent the way threads interact. It is essential to get reliable 

predicates that can potentially prove spuriousness of the path. 

The proposed approach is implemented on top of CPAchecker framework. It is evaluated on standard SV-

COMP benchmark set, and the results show some benefit. Evaluation on the real-world software does not 

demonstrate significant accuracy increase, as the described flaw of predicate refinement is not the only reason 

of false positive results. While the proposed approach can successfully prove some specific paths to be spurious, 

it is not enough to fully prove correctness of some programs. However, the approach has further potential for 

improvements. 
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Аннотация. Комбинация анализа с раздельным рассмотрением потоков (Thread-Modular analysis) и 

предикатной абстракции является эффективной техникой верификации реального программного 

обеспечения. Одним из недостатков этой техники является уточнение предикатной абстракции при 

анализе многопоточных программ. В классической процедуре уточнения абстракции рассматривается 

только путь в одном потоке, и окружение Thread-Modular анализа не уточняется. Например, при 

применении эффекта из второго потока к первому путь к эффекту во втором потоке не уточняется. 
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Целью нашей работы была разработка более точной процедуры уточнения абстракции, которая бы 

переиспользовала имеющуюся процедуру уточнения абстракции и позволяла бы уточнять и путь в 

анализируемом потоке, и путь в окружении. Основная идея заключается в построении совместной 

логической формулы для двух путей. Так как имена переменных разных потоков могут совпасть, 

необходимо корректно переименовать и приравнять некоторые переменные для того, чтобы формула 

правильно отражала связи между потоками. Это позволяет получить предикаты, необходимые для 

доказательства недостижимости пути. 

Предложенный подход был реализован на базе инструмента статической верификации CPAchecker. 

Подход был оценен на стандартном наборе задач SV-COMP и показал небольшое улучшение. Для 

больших программ улучшений в результатах не наблюдалась, так как описанный недостаток анализа не 

является единственной причиной ложноположительных результатов. Предложенный подход может 

успешно доказать недостижимость некоторых путей, то этого может быть недостаточно для 

доказательства корректности программы. Однако подход обладает дальнейшим потенциалом для 

совершенствования. 

Ключевые слова: статическая верификация; предикатная абстракция; анализ с раздельным 

рассмотрением потоков. 

Для цитирования: Руденчик В.П., Андрианов П.С. Уточнение предикатной абстракции при 

раздельном анализе потоков. Труды ИСП РАН, том 35, вып. 3, 2023 г., стр. 187–204 (на английском 

языке). DOI: 10.15514/ISPRAS–2023–35(3)–14. 

1. Introduction 

Program verification is a process of checking if a program satisfies certain requirements. In static 

verification a program or its model is analyzed without actually running the code. There are multiple 

tools for program verification that implement various techniques targeted at different types of tasks. 

One of them is a reachability problem – a task of determining if a given point in a program is 

reachable. For reachability problem verification process can be broken down into two separate parts: 

1) building a set of reached states; 2) checking if target state is in this set. While the second part is 

relatively simple, the first part is complex and resource-intensive. Various techniques and 

optimizations are developed to solve it. One of such approaches is abstraction. 

There are many different types of analyses, which implement different kinds of abstractions. Using 

several abstractions at once can make analysis more efficient, especially for complicated pieces of 

code. CPA (Configurable Program Analysis) [1-2] was introduced as an approach of unifying 

different techniques for software verification (including abstractions). It allows combining different 

kinds of abstractions in various ways, so they can be used simultaneously and construct a more 

accurate model of a program. 

In software verification approaches a model of a program is automatically extracted from the source 

code. It may not be accurate enough to prove certain properties of a program. Constructing more 

complex models is not always resource-efficient. This problem can be solved by using algorithms 

of iterative model refinement such as CEGAR [3], which refines abstractions using a 

counterexample. The algorithm iteratively refines the abstraction until it achieves a level of precision 

suitable for proving a specific property. Further, we will consider predicate abstraction [4], which 

assigns to each state a predicate that limits possible values of variables in the state. 

Multithreaded programs traditionally cause additional problems for software verification. Classic 

approaches, which consider different combinations of thread interleavings, quickly result in state 

space explosion. There are other approaches, for example, Thread-Modular approach [5]–[7], which 

considers each thread separately in combination with some environment. The environment is 

constructed automatically during the verification process, and may be unique for every process. 

Thread-Modular approach demonstrates good performance and precision for industrial software as 

a target code. However, as we use abstraction technique, we need to have a refinement procedure. 

This presents a challenge, as the threads may interact with each other, for example, they may operate 

with the same shared variables or use local variables with the same names. 
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The paper presents a way of refining predicate abstraction in Thread-Modular approach. In Thread-

Modular an error path is a path in a one thread, as threads are analyzed separately. However, it may 

contain effects from other threads, and there are paths to the effects in other threads. We introduce 

an efficient way to construct a joined boolean formula for two different thread paths. The idea is to 

rename local variables to avoid matching and add specific equalities of shared variables to represent 

dependencies of values of shared variables in different threads. Constructing a joined formula allows 

reusing a basic predicate refinement procedure to refine multiple paths all together. However, 

practical implementation poses some technical problems such as hanging caused by repeated 

analysis of the same path. 

A current limitation of the approach is complicated thread interleavings. For example, if the analyzed 

thread interleaves with the second one that is also affected by the third one, the proposed approach 

might not be effective. 

Experiments show that the approach allows refining more paths than the default predicate refinement 

procedure. It can successfully prove absence of errors for a certain number of tasks. However, the 

benefit is shown mostly on small artificial tests, as large real-world examples have a complicated 

thread interaction. Thus, even if the proposed predicate refinement procedure is able to remove some 

infeasible paths from abstractions, there are still other spurious paths due to other reasons, which do 

not allow to prove the correctness. 

The main contributions are: 

● an approach for environment refinement in predicate abstraction; 

● implementation of the approach on top of the CPAchecker framework1. The source code 

is already merged in the main branch. 

The rest of the paper is organized as follows. Section 2 gives a brief introduction to the theory. 

Section 3 contains a motivation example with a description of the problem. The proposed solution 

is presented in section 4. In section 5 some implementation features are described. Evaluation details 

are given in section 6, and section 7 contains brief information about related work. 

2. Preliminaries 

2.1 Software model checking 

We consider a multithreading program as target software. This is a program, which contains more 

than one execution thread. The threads can operate with local variables, which are available only to 

specific threads, and shared variables, which are available to all threads. We do not specify any 

interface, like, POSIX, ARINC, or other, as it is irrelevant to our analysis. 

Further, we consider software model checking approach for static verification. Such approaches 

allow the automatic extraction of a formal model from the source code and check it against 

predefined specifications or properties. 

One of such properties is reachability. If a specific error state is reachable, then the property is 

violated and the program is incorrect. Accordingly, if no error state is found, the program is 

considered to be correct. 

Another possible property is absence of data races [8]. Theoretically, it can be expressed via 

reachability [9], however in practice it is more efficient to consider it separately. Further, we will 

consider only reachability problem, as it is simpler. However, it is possible to apply the proposed 

refinement procedure for verification of other properties. Also, we do not consider any specifics of 

weak memory models [10]. 

                                                           
1
https://gitlab.com/p.andrianov/cpachecker/ 
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2.2 Abstractions 

As mentioned above, instead of analyzing a program itself we analyze a model of a program. 

Traditionally, a model of a program is a graph built upon Control Flow Automaton (CFA). The 

edges represent program operators from CFA and the states represent program memory, including 

location from CFA (pc) and assignment of values to all variables. The states are called concrete 

ones. 

Even for a one integer counter possible values are numerous. Real-world software contains 

thousands of variables, and using concrete states in analysis leads to combinatorial explosion of a 

state-space. One of the ideas to reduce the number of considered states is abstraction. Abstract states 

represent multiple concrete data states. There are many different kinds of possible abstractions. Our 

approach is based on predicate one, so, further we will consider it. In predicate abstraction [3] an 

abstract state contains predicates over program variables. For example, abstract state (x = 0) 

represents many concrete states, including (x → 0, y → 0), (x → 0, y → 1), (x → 0, y → 2), etc. It 

constrains x to have a value of zero, but does not specify values of other variables. The same way 

abstract state (x ≥ 0) ∧ (y ≤ 1) constraints variables x and y in the way defined by the predicates. 

An operator transfer allows to build a next abstract state for a parent state and program operation 

(control flow edge). In predicate abstraction the operator transfer is the strongest postcondition of 

the parent state and program operation. A set of states, which are reachable by a transfer from some 

initial state, is a reached set. Note, that the reached set is a set of abstract states, and potentially, 

some abstract states may represent those concrete states, which are impossible in a real execution of 

a program. This is, because an abstraction is an overapproximation of a program. This is necessary 

for the soundness of an analysis i.e. in order for the program to not be falsely considered correct. 

Reached set is usually represented by Abstract Reachability Graph (ARG). 

Abstraction is built with a certain precision: high precision means more precise abstraction. 

Precision is formally defined by an analysis. In predicate analysis a precision π is a set of predicates, 

which are used in constructing predicate abstract states. The lowest (the weakest) predicate precision 

is an empty set π = ∅. Predicate abstraction with the empty precision will contain only trivial 

predicate states ⊤, which corresponds to formula True. They represent any concrete state. 

And how can the precision be changed? For example, if the abstraction is not precise enough and 

contains spurious paths, there is a need to refine it. This question will be addressed in the following 

section. 

2.3 Refining predicate abstractions with CEGAR 

As we have already described, abstraction is an overapproximation of a program, so, it may omit 

some details. Because of such imprecision, a program can be falsely considered incorrect. Therefore, 

there should be a way to refine the abstraction. 

Counter-Example Guided Abstraction Refinement (CEGAR) [3] is an approach for increasing 

precision of an abstraction. It iteratively refines an abstraction using counterexamples. In case of 

reachability problem, counterexample is a path to an error state. Let us consider the way CEGAR 

refines the abstraction. 

First, an initial abstraction (a set of reached states) is built with a given precision. By default the 

initial precision is set to the lowest precision, i.e to the empty one, meaning the abstraction is built 

imprecisely. 

Then we should check if an error state is present in the abstraction. For the initial abstraction it means 

just syntactical reachability, as there are no valuable predicates. If the error state is unreachable, the 

program is correct and the analysis finishes. 

If the error state is present in the abstraction, it does not mean that it is reachable in the program 

since the abstraction can be imprecise. The counterexample (a path to this state) needs to be checked 
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for feasibility precisely. If the error path is feasible in a precise model, the program is incorrect and 

the analysis finishes. If the error path is infeasible in the precise model, abstraction needs to be 

recomputed with the new precision provided by CEGAR. That is a default CEGAR loop. There are 

two points of interest here: how the counterexample is checked for precise feasibility and how new 

precision is obtained. Further we will consider these issues in case of predicate abstractions. 

In predicate abstraction a path formula is calculated in order to check the counterexample for 

feasibility. Path formula is a conjunction of predicates that correspond to path operators. For 

instance, if a path contains three consecutive operators: an assignment operator a = 1, a conditional 

operator if (a ≥ 0) and another assignment operator b = 1, the corresponding path formula is a = 1 ∧ 

a ≥ 0 ∧ b = 1. There is no contradiction in the formula, so it is satisfiable. Formula a = 1 ∧ a < 0 ∧ 

b = 2 corresponds to operators a = 1, if (a < 0) and b = 2. This formula is unsatisfiable. 

Satisfiability of a path formula is equivalent to existence of such input data (initial values of 

variables) that the error state is reachable. The satisfiability of the formula is checked by a specific 

external tool – SAT solver. If the formula is satisfiable, then the error state is considered reachable 

and analysis ends. Feasibility of the path in the abstraction but not in the program means that the 

abstraction is not precise enough and needs to be refined. 

The way precision is extracted from a spurious counterexample depends on the abstraction. 

Moreover, there are different ways to refine predicate or any other abstraction. We are using Craig 

interpolation [11] to extract predicates from an unsatisfiable path formula. There is an interpolation 

theorem, which claims that for any logical formulas φ, ψ such that φ∧ψ ≡ ⊥ there exists logical 

formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ 

→ ρ and ψ ∧ ρ ≡ ⊥. 

In practice, we use interpolating solvers such as MathSAT [12], Z3 [13], or CVC5 [14], to calculate 

the interpolants. Being a conjunction of predicates, an unsatisfiable path formula can be split in two 

parts, usually in multiple ways, to satisfy the precondition of the theorem. Solver extracts multiple 

interpolants from a path formula, those interpolants are then added to precision. Note that 

interpolants are not the only way to extract new precision. 

It is important to mention one of the optimizations for efficient abstraction rebuild. It is called lazy 

abstraction [15]. The main idea is to rebuild not all abstraction after refinement, but to identify the 

changed parts and reconstruct only them. During the refinement procedure a refinement root is 

identified. This is the state, which is a common parent of all changed subtrees in the reached set. 

The subtree is removed after refinement, and the analysis continues from the refinement root. 

One more optimization, which also should be mentioned, is Adjustable Block Encoding (ABE) [16]. 

Its main idea is to avoid reconstructing predicate formulas in every state. Instead, formulas are 

constructed for every block that is composed of multiple states. Because of it, interpolants are usually 

not set for every abstract state. We do not need to describe this optimization in detail since it is 

irrelevant to our work. 

This concludes an overview of predicate abstraction refinement with CEGAR. So far, we have only 

considered a path in a single thread. It is not immediately obvious how this refinement procedure 

can be applied to an analysis of multithreaded programs where a path contains operators from 

different threads. In the following section we describe an approach to analysis of multithreaded 

programs that can be combined with CEGAR. 

2.4 Thread-Modular Analysis 

Thread-Modular analysis [5]–[7] is an approach for verification of multi-threaded programs. Unlike 

algorithms that rely on complete enumeration of possible thread interleavings, Thread-Modular 

analysis uses an abstraction of thread interactions. It analyzes each thread individually with 

consideration of an environment, which is a model (abstraction) of possible effects that threads can 
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have on each other [7]. The more accurate the environment is, the more precise analysis is going to 

be. And less accurate and more abstract models can be used for analyzing large programs for which 

brute-force approaches are not applicable. 

Interactions of threads can be formally described in terms of projections. A projection of an 

operation is an effect that the operation can have on other threads or an overapproximation of such 

effect. A projection can also contain a condition under which its effect can be applied. For instance, 

assigning a value to a local variable does not affect other threads, so a projection of this operation is 

empty. Now let us consider an assignment x = 0 to a global variable x. Its projection may contain 

the same assignment x = 0. Alternatively, a projection may be more abstract and contain assignment 

x = ∗, meaning “the thread can change a value of variable x to anything”. Therefore, environment 

can be defined as a set of projections of all operators in the program. 

While analyzing each individual thread, Thread-Modular analysis builds projections of every 

operator of this thread. The projections are part of the environment for other threads. After the 

primary analysis of each thread, Thread-Modular analysis considers an effect of the environment. 

For that purpose it checks each projection from the environment and each state in other threads if 

they are compatible, i.e. if the projection can be applied to the state. In predicate abstraction two 

predicate abstract states are considered compatible if a conjunction of their predicates looks 

satisfactory. If a projection and a state are compatible, the effect of the projection is applied to the 

state which results in creation of a new state called applied state. Projections express an effect of 

other threads, and applied states contain the effect, which is applied to the particular state in the 

current thread. 

Applied states and the states that are reachable from them by operator transfer are added to the 

reached set. The state to which the projection was applied is considered to be a parent state of the 

applied state. Because of this, new paths are created that represent how threads interact with each 

other. Note that the applied state may be the same as the parent state, meaning the effect does not 

change anything. 

An illustration of the approach is given in Fig. 1. There is a part of ARG representing the first thread 

and a part of ARG representing the second thread. Assignment operator x = 0 that follows state B 

from the second thread can be projected. 

If the new projection is compatible with the state A from the first thread, it can be applied to the 

state A. The new applied state corresponds to application of the effect x = 0 to the first thread. The 

analysis continues in the first thread from the new applied state. 

As Thread-Modular approach considers threads separately, the error path is also a path in a separate 

thread. However, the path may contain different effects, representing the thread interaction. The next 

section shows the problem during refinement of paths in the Thread-Modular case. 

3. Motivating example 

Let us consider the program in the Fig. 2. It contains two threads thread1 and thread2, both can 

change values of global variables a and b. The first thread assigns the value of 1 to variables a and 

b with mutex protection. Then it releases the mutex and checks that the value of b has not changed. 
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Fig. 1. Thread-Modular approach 

 

Fig. 2. Example of a program 

The second thread checks if the value of a has changed and if it has not, then it changes the value of 

b to 2; all while the mutex is locked. The error label (assertion in line 8) is not reachable, because 
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change of the variable b is allowed only in case of a ≠ 1. However, analyzing the program with 

CPAchecker using Thread-Modular analysis with default predicate refinement returns a 

counterexample, meaning the error label is feasible. The reason this is happening is the inability to 

refine the predicate abstraction. 

First, the analysis constructs a path to the error state. The path is in the first thread, as the error state 

(assert in line 8) is in the first thread. Initially, the predicate precision in empty, the path corresponds 

to operators a = 1 in line 5, b = 1 in line 6, and assert in line 8 and does not contain any effects. 

The corresponding path formula: (a = 1) ∧ (b = 1) ∧ (b ≠ 1). It is unsatisfiable, because the value of 

b is not considered in the abstraction. So, the abstraction is successfully refined and the interpolant 

b = 1 is added to the predicate precision. 

In the next iteration of the analysis another path is constructed. The path is in the first thread and it 

contains an application of the effect b = 2 (line 14) from the second thread right before line 8. The 

path corresponds to succession of operators a = 1 (line 5), b = 1 (line 6), b = 2 (line 14, thread 2), 

and assert in line 8. Actually, this effect cannot be applied since the operation b = 2 can only be 

executed if a does not equal 1 (line 13) but the value of variable a before line 8 is equal to 1. 

The path is spurious, abstraction is not precise enough, because it does not contain any predicate 

over value of a. And the abstraction is supposed to be refined. But default refiner fails to prove that 

the effect cannot be applied. 

The counterexample is shown in Fig. 3 (highlighted in dark color). State A corresponds to the line 

8, before assertion check. State B corresponds to the line 14 with operation b = 2. So, the projection 

represents the effect from operation b = 2 for other threads. It is indeed feasible as a path in a single 

thread if the projection is applied. But the projection could not have been applied. Default predicate 

refiner refines only a path to the error state, and it does not check the projection, state from which it 

was projected (state B in Fig.3) or a path to that state. Predicate abstraction of the second thread is 

not refined, and it stays not precise enough to exclude the application of the projection. Because of 

that, spurious counterexample is not ruled out. 

If the predicate precision contained predicates a == 1 and a ≠ 1 then state A would contain predicate 

a == 1 and both state B and the projection would contain predicate a ≠ 1. That would make state A 

and the projection incompatible and the projection would have been applied. The question is, how 

to obtain such predicates. 

4. Proposed solution 

4.1 An approach overview 

Let us consider a path to an error state in an abstraction. This is a path in a single thread, and it 

contains an applied effect, meaning it is affected by another thread. Let the path in the single thread 

be reachable in the abstraction. If the effect cannot been applied, the path is technically unreachable. 

One would naturally expect a refiner to detect the unreachability of the path and construct a more 

precise environment in which the effect would not be applied. However, the default refiner lacks the 

capability to do so as it only refines the path in a single thread and does not refine the environment. 

It is unable to prove that the effect cannot be applied. Therefore, the analysis considers the path 

feasible and the error label can be falsely recognized as reachable. 

The problem arises, as the default refinement procedure considers only thread abstraction and misses 

the environment. So, we need an efficient way to refine two parts of the abstraction (thread and 

environment) together. And it means that the counterexample now consists of two parts: a path in 

thread (main path) and a path in an environment. If the two paths are spurious, we need to obtain 

interpolants that can potentially prove the incompatibility of these paths, and add them to precision. 

The next step is to determine an imprecise part of the abstraction and rebuild it with new precision. 
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Fig. 3. Counterexample 

One of the options to refine two paths is to develop a new refiner specifically for this task. However, 

this approach would lead to a considerable amount of code duplication, since only the refinement 

target is changed, not the refinement technique itself. Instead, we choose to extend an existing 

approach, and refine two paths altogether by reusing an existing refiner. While reusing a large piece 

of code is generally practical and efficient, it requires addressing certain issues to ensure successful 

code reuse. Since the input of a default refiner is a single path, the two paths need to be joined into 

one to be refined by it. Moreover, names of local variables may overlap, and global variables may 

appear in both paths, so they need to be carefully renamed in order to avoid false dependencies. 

Although the interpolation procedure stays the same, we still need some post-processing of obtained 

interpolants. Now we present the approach in more detail. 

Consider an instance of a projection depicted in Fig. 3, where the projection originates from state B 

and is applied to state A. We consider two paths: the first is a path to state A and the second is the 

path to state B. The paths are reconstructed using ARG relations. A path formula, which is a 

conjunction of predicates that correspond to program operators, is constructed for each path, as it is 
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performed in default predicate analysis. In order to check simultaneous feasibility of these two paths, 

we check satisfiability of a conjunction of these two path formulas. Since the resulting formula is 

still a conjunction of predicates, it can be processed like a regular path formula of a single path. And 

then we request SAT solver about its satisfiability. However, the process is not as straightforward 

due to complications in joining the formulas. 

4.2 Joining formulas 

The path to the error state in Fig. 3 contains multiple assignments to the same variable. For instance, 

b = 0 and b = 1 are successive assignments to variable b. If the path formula contained the 

unsatisfiable conjunction of the corresponding predicates b = 0 ∧ b = 1, it would be unsatisfiable 

regardless what other predicates it contains. Thus, path formulas are built with SSA indexation [17], 

which assigns an index to each variable that increments with each assignment. Variables with 

different indices are considered different. And since each variable is only assigned a value once, 

there are no collisions in path formula caused by multiple assignments. 

SSA indexation can cause problems when joining formulas. Each thread (path) has its own SSA 

indexation. That means that a global variable can have multiple overlapping sets of indices, one for 

each thread. In a joined formula two instances of the same global variable from different threads but 

with equal indices will be considered as the same variable. This can cause unexpected dependencies. 

This problem can be solved by renaming variables in one of the threads. 

For instance, we rename global variable b in the second (environment) formula to env_b. Adding a 

special symbol, which is not permitted in a variable name in real code, to the variable ensures that 

the newly renamed variable does not coincide with any other variable. 

However, renaming loses relation between two threads, and we need to artificially restore it. Values 

of global variables at the point of projection application in both threads must be equal. In the opposite 

case, for example, if a global variable b in one thread is equal to 1 and in the second thread the same 

variable b is equal to 2, it means that the two states are incompatible. In order for a path formula to 

reflect that, we need to add variable equalities. Each global variable with the latest index in one 

thread is considered equal to this global variable with the latest index in the other thread. The 

equalities are then added to the joined path formula as new predicates in a conjunction. That ensures 

that the formula reflects relation between threads. 

Another problem occurs if formulas contain local variables. There can be two local variables in 

different threads with identical names. When joined into one path formula they can potentially be 

treated as one global variable, which can affect satisfiability of the formula. To avoid that, all local 

variables of one of the two threads should be renamed. For instance, similarly to global variables, 

we rename local variable i in the second (environment) formula to env_i. However, we do not add 

any variable equalities for the local variables. 

The resulting formula accurately represents two paths and a relation between them. If the formula is 

satisfiable then the two paths are considered feasible simultaneously and the error state is reachable. 

If this formula is unsatisfiable then the two paths are not feasible simultaneously and abstraction 

needs to be refined. The default Craig interpolation can be used to get interpolants. Usually, a path 

formula can be split into parts φ and ψ such that φ ∧ ψ ≡ ⊥ in multiple ways. Interpolation is then 

performed for each partition to obtain more potentially useful predicates. The joined path formula is 

no exception. It is a conjunction of predicates and interpolants are extracted from it just like from 

any other path formula. 

Let’s take a closer look at predicates that are obtained during the interpolation. Let’s consider a 

projection proj that was applied after state A and that was projected from the state B. Let µ1 and µ2 

be path formulas for the paths to A and B respectively. If µ1 ∧ µ2 ≡ ⊥ (meaning proj could not have 

been applied) then Craig interpolation theorem can be applied for such unsatisfiable conjunction. 

Therefore, there exists a predicate ρ1 such that every non-logical symbol in ρ1 occurs both in µ1 and 
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µ2, µ1 ⇒ ρ1 and µ2 ∧ ρ1 ≡ ⊥. Since µ2 ∧ ρ1 is an unsatisfiable conjunction, there exists predicate ρ2 

such that every non-logical symbol in ρ2 occurs both in µ2 and ρ1, µ2 ⇒ ρ2 and ρ1 ∧ ρ2 ≡ ⊥. 

Predicates ρ1 and ρ2 are then added to precision. A part of the abstraction is reconstructed with the 

updated precision (see lazy abstraction). In the default refinement procedure the rebuilt part of 

abstraction does not include states in the environment, but in order to eliminate the infeasible paths 

a part of the environment also has to be reconstructed. Predicate ρ1 is an implication of path formula 

µ1 which resembles a path to state A. Since predicate state is built as the strongest postcondition of 

the path, predicate state of state A will contain predicate ρ1 in the rebuilt ARG. Likewise, predicate 

state of state B will contain predicate ρ2. Since ρ1 ∧ ρ2 ≡ ⊥, states A and B are now considered 

incompatible, and the projection cannot be applied. That proves infeasibility of the counterexample. 

Finally, let’s see how the counterexample in Fig. 3 is refined. The first path is the path to state A 

and its path formula is a1 = 0 ∧ b1 = 0 ∧ a2 = 1 ∧ b2 = 1. Note, the subscript here is an SSA index. 

The second path is the path to state B and its path formula is a1 = 0 ∧ b1 = 0 ∧ a1 ≠ 1. By renaming 

variables in the second formula we obtain env_a1 = 0 ∧ env_b1 = 0 ∧ env_a1 ≠1. After that we join 

the two formulas and add variable equalities: a2 = env_a1 ∧ b2 = env_b1. The resulting formula is 

a1 = 0 ∧ b1 = 0 ∧ a2 = 1 ∧ b2 = 1 ∧ 

∧ env_a1 = 0 ∧ env_b1 = 0 ∧ env_a1 ≠ 1∧ 

∧a2 = env_a1 ∧ b2 = env_b1 

Precise extracted interpolants depend on the solver and block encoding (see ABE). In theory, we 

can obtain interpolants a2 = 1 and env_a2 ≠ 1. The variables in the interpolants are then reverted to 

their original names, in our case by removing the prefix. Resulting predicates a = 1 and a ≠ 1 are 

added to precision. In the rebuilt abstraction predicate state of state A would contain predicate a = 1 

and predicate state of state B would contain predicate a ≠ 1. Since a = 1 ∧ a ≠ 1 ≡ ⊥, states A and B 

are now incompatible, meaning the projection cannot be applied. That proves infeasibility of the 

counterexample. 

4.3 Limitations of the approach 

In theory new interpolants must exclude a spurious error path from the abstraction. Actually, an error 

path may be found again due to different reasons: optimizations, errors, unsupported cases, and so 

on. To avoid infinite loops of CEGAR loop, there is a technique for detection of repeated 

counterexamples. The default predicate refinement procedure compares error paths from last two 

CEGAR iterations and if they are equal stops the analysis. However, there are some difficulties in 

thread-modular case. 

First, paths with effects can be falsely deemed equal. The default technique for detection of repeated 

counterexamples considers paths equal if their edges are identical, i.e. if paths correspond to the 

same sequence of executed operators. This approach does not take into account paths to effects if 

there are effects applied. For instance, two similar paths, each with different effects applied to the 

same state, are considered equal. The issue leads to false errors. In our approach this issue is more 

crucial since the environment can be refined and a new path can differ from the previous one solely 

based on paths in the environment. 

Secondly, reusing the refiner multiple times in a single CEGAR iteration can lead to losing 

information about repeated paths, potentially resulting in looping. The default refiner procedure is 

run multiple times for one counterexample with applied effects. Both the path to the error state itself 

and the pairs of main paths and paths in the environment are refined, all within the same iteration. 

That interferes with error path detection. Default refiner only caches one path from the previous 



Rudenchik V.P., Andrianov P.S. Predicate Abstraction Refinement in Thread-Modular Analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 35, 

issue 3, 2023. pp. 187-204. 

198 

refinement, and deletes it after comparing it with a next path. So, if a repeated counterexample 

contains an effect, the refinement procedure will be executed at least twice for it. The 

counterexample will be cached during the first execution but will be overwritten in the second one. 

As a result, the repetition of such a counterexample will go undetected, causing looping. 

Caching all paths, which is an existing option, will not resolve the issue either. The same effect can 

be applied to the same state in different iterations. That means that the same joined path may be 

refined multiple times. However, that does not indicate repetition of counterexample and should not 

stop the analysis. 

So far we have only considered a case where an error path contains only one applied projection that 

originates from a single state from the other thread. But in reality there might be several projections 

applied. If multiple projections are applied to the main path, meaning there are several effects applied 

to the first thread, we may iteratively check all of them one by one. If a main path and any path to 

one of these effects are not feasible together, the path is considered spurious and abstraction needs 

to be refined. 

One more problem occurs when a projection is projected from multiple effects. Such projection can 

be created by the optimization which merges projections from different states into a single one. In 

that case all pairs of a path to each of these states and a path to the applied state are refined. In theory, 

the path should be considered spurious if at least one of the pairs of paths is infeasible 

simultaneously. But in reality, that projection merging optimization is not consistent with this theory. 

Because of this, we consider a projection application spurious if each path to each effect it was 

projected from is spurious. 

Another problem occurs when projections are applied to the different threads. For example, one 

projection is applied to the first path, and a path to that projection in the second thread contains an 

effect from the third thread. The part of the environment that is important for the path to the 

projection will not be refined. The natural idea is to include recursion in the refinement process, but 

it is not yet clear if it would work somewhat effectively or work at all, considering other already 

existing limitations. The problem occurs when effects are applied not successively, multiple times 

and etc. Currently, this is a limitation of our approach. 

5. Implementation features 

The proposed approach was implemented on top of the CPAchecker framework as a separate 

predicate refiner. Its input is an error path in a main thread. First, the default refinement procedure 

is applied. If the path is spurious, the abstraction is refined with default predicate abstraction 

refinement procedure. It means that the contradiction is found in the path in one thread without any 

thread interaction. If the main path is feasible, it is analyzed with the proposed approach. For that 

purpose, we find all applied states in the path. An applied state is applied from a projection that can 

be projected from multiple states in another thread. For each such state the refiner checks feasibility 

of two paths: a path to the state in another thread and the main path. 

It is important to note that the implemented approach differs from the presented theory. 

Theoretically, the first set of predicates should be obtained by interpolating a combination of two 

path formulas. That part is fully implemented in the actual code. However, the second set of 

predicates, in theory, should be obtained from interpolating a combination of path formula and the 

first set of predicates. Implementing this within the framework of the given task would be 

problematic. Given our decision to reuse an existing refiner which only input is a path, not a set of 

predicates; it would be quite a challenge to acquire these exact predicates. Nonetheless, the 

implemented method still has potential to prove infeasibility of a path. 

One of the implementation features is refining two different combinations of paths. A main path and 

a path to an effect are concatenated in both possible ways and both combinations are refined. Solver 

extracts different predicates from these two constructed paths and both of these sets of predicates 

are necessary to prove spuriousness of the counterexample. Additionally, if two combinations of 
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paths are refined, the already existing code provides correct refinement root (a root of the subtree in 

the ARG that is rebuilt with new precision). 

As it has been established, repeated counterexample detection is a problem. The same error path can 

be rediscovered again and again, which leads to hanging. To solve it, we integrated detection of 

repeated counterexample into our refiner. It checks if the last two paths in main thread are equal and 

caches the main path to the error state until next iteration. That effectively prevents looping. 

The previously mentioned issue of paths being falsely regarded as equal also requires a suitable 

solution. In default repeated counterexample detection paths are considered equal if the (ordered) 

sets of executed operators are equal. Comparing paths by states is problematic since it would require 

caching a considerable part of ARG. We implemented an enhanced method of comparing paths by 

edges. Apart from edges in main paths it also compares edges in all paths to applied effects. It allows 

differentiating between paths with effects more effectively, but does not completely eliminate the 

possibility of false repeated counterexample detection. 

6. Evaluation 

The proposed approach was evaluated on standard benchmark set SV-COMP
2
. The benchmark set 

contains 161 tasks from directories: 

● pthread/; 

● pthread-C-DAC/; 

● pthread-divine/; 

● pthread-ext/; 

● pthread-memsafety/; 

● pthread-atomic/; 

● pthread-complex/; 

● pthread-driver-races/; 

● pthread-lit/; 

● pthread-nondet/. 

The tasks are mostly artificially created tests with about 1 KLoc and 2-3 worker threads. They may 

contain a specific synchronization, like atomics, Dekker algorithms and others. We evaluated the 

new approach against two existing ones. 

 

● Default. The default predicate refiner, which refines only one error path without 

considering other threads. 

● Simple. The simplified version of refinement that checks feasibility of every path 

(including paths to effects) separately. Thus, it is more precise than Default, as it is 

possible to exclude paths to infeasible effects. 

● Effect. The proposed approach for simultaneous refinement of two paths. 

The tool was run with the thread modular approach over predicate analysis. The following options 

were used: 

● precise encoding of environment actions; 

● SMTInterpol is used for SAT check and interpolation; 

● support for the same threads in tests. 
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The experiments were performed on a machine with Intel® Core™ i5-8250U CPU @ 1.60GHz × 8 

and 8 GB of RAM, using 4 CPU cores; with Ubuntu 22.04.2 LTS. Timeout was set to 5 minutes. 

The results are presented in Table 1. 

Table 1. Evaluation on SV-COMP benchmarks 

Approach Default Simple Effect 

Correct results: 50 38 44 

 Correct true 20 20 22 

 Correct false 30 18 22 

Incorrect results 71 51 52 

 Incorrect true 0 0 0 

 Incorrect false 71 51 52 

Unknowns 40 72 65 

 Timeouts 12 6 12 

 Repeated Counterexample error 0 41 40 

 Other Unknowns 28 25 13 

CPUtime, s 6040 3969 6780 

The proposed approach was able to prove correctness of two tests, which both thread-modular 

analysis and the simplified version of presented approach falsely considered incorrect. The 

simplified version didn’t show any improved results. 

The most frequently encountered error (both for Effect and Simple) was the repeated 

counterexample error, which indicates that the analyses recognized a counterexample as spurious 

but failed to refine the abstraction, leading to the counterexample being rediscovered. One possible 

explanation for this is that the obtained interpolants were insufficient to eliminate the path. Some 

errors were falsely reported due to the imperfect nature of repeated counterexample detection. At 

least three tests falsely reported a repeated counterexample error. The decreased amount of correct 

(and incorrect) false results is also caused by the repeated counterexample error. 

As expected, the proposed approach is more time-consuming. Most of the extra time is spent on 

refining joined paths. The simplified version (Simple) averaged in less time than the default 

approach only because it reported repeated counterexample error almost immediately on several 

time-consuming tests. 

The proposed approach was able to prove correctness of a motivation example (program in Fig. 2). 

We also evaluated the approach on a benchmark set of more complicated tasks, based on Linux 

device drivers. Each task contains about 10 KLoc and about 5 threads. There are 7 such tasks. The 

proposed approach did not show any improvement, it mostly reported repeated counterexample 

error. 

The reason for that is complicated thread interleavings. The proposed approach can refine specific 

paths, but eventually a path will be constructed that it cannot refine. A common example of such 

path is one where effects are applied to the different threads: one effect is applied from the second 

thread to the first thread and a path to that effect contains another effect application. However, in 

smaller tests, the predicates obtained during the first few iterations are typically enough to prevent 

such path from being constructed in the first place. 

The evaluation results show benefit on a small subset of the benchmarks. The proposed approach 

did not show any improvement on complicated tests, since it is not targeted to analyze intricate 
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thread interleavings. While it can successfully prove infeasibility of counterexamples, this is often, 

but not always, not enough to prove correctness of a program. It works in a reasonable time and has 

potential for future improvement, as the issue with repeated counterexamples is mostly technical. 

7. Related work 

There are different approaches to the analysis of multi-threaded programs. They have different 

features and performance. 

Precise approaches, based on bounded model checking techniques, investigate different techniques 

to reduce state space. The examples of the optimizations are partial-order reduction [18], context 

bounding [19-20], etc. They consider thread interleavings, and they do not have such problems with 

environment refinement. We do not dive deep into BMC approaches, and concentrate on thread-

modular ones. 

Thread-modular approach was first suggested by [21] and a predicate abstraction was composed 

with a thread-modular approach in [22]. There was only one thread in several copies, so, the 

environment of the thread is formed by itself. 

An extension of the thread-modular approach, which also uses an abstraction, is firstly presented in 

[23] and then implemented in TAR [5]. One of the main difference is underapproximation of the 

environment. So, the approach does not need environment refinement. 

A similar approach was also implemented in Threader tool [24]. Threader uses over-approximation 

for an environment, based on Horn clauses. 

A thread modular approach to formal verification was presented in [25]. The idea is to provide 

invariants for every process, which together imply the formal requirement. 

8. Conclusion 

The paper presents an approach for predicate refinement in case of Thread-Modular analysis. The 

basic idea is to join thread-parted formulas into a single one, and check its satisfiability to determine 

whether two paths are feasible simultaneously. 

Refinement of two paths in combination provides higher precision for the analysis. Because of this, 

specific spurious paths can be eliminated and a program can be proven to be correct. The evaluation 

results show benefit on medium-sized programs. Large programs contain intricate thread 

interleavings and the proposed approach is not enough to prove their correctness. 

While the results show potential of the approach, there is room for future improvement. Some ideas 

for future work include recursive application of the approach to paths in the environment and 

improving the detection of repeated counterexamples. 

Overall, the approach presented in this paper can be used in analyzing small and medium-sized 

multithreaded programs. It can successfully prove the correctness of programs that it is targeted at. 

Its efficiency can be increased by resolving technical problems that arise in its implementation. 
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