
Труды ИСП РАН, том 35, вып. 3, 2023 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

205

DOI: 10.15514/ISPRAS-2023-35(3)-15

Debugger for Declarative DSL for
Telecommunication

1 T.M. Skazhenik, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru>
2 D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>

1 ITMO University,

Kronverksky Pr. 49, St. Petersburg, 197101, Russia
2 Saint-Petersburg StateUniversity ,

7-9 Universitetskaya Embankment, St Petersburg, 199034, Russia

Аннотация. Development of telecommunication product lines is still a very labor-intensive task, involving a

great amount of human resources and producing a large number of development artifacts — code, models, tests,

etc. Declarative domain-specific languages (DSLs) may reasonably simplify this process by increasing the level

of abstraction. We use the term “declarative” implying that such a DSL does not enable the development of a

closed software application, but rather supports creation, generation and maintenance of various kind of

software assets — product database, events and event handlers, target code data structures, etc. At the same

time, such a DSL may have some executable semantic, but it could be very specific and have many

environment-wise requirements. Thus, execution and debugging of such DSL specifications is a meaningful

task, which has no common solution due to the unique executable semantic. Consequently, it is not possible to

use debug facilities of known DSL environments, such as xtext, MPS, etc. for such a case. In the current paper,

we present a debugger for DevM — a declarative DSL intended for support device management in software

development in the context of a router product line by a large telecommunication company. We clarify

executable semantic for DevM, making it possible to execute DevM specifications in an isolated environment,

i.e. in simulation mode, without generation of target code. We use a graphic model-based notation to depict

every step of execution. Finally, we implement and integrate the debugger in the DevM IDE, using Debug

Adapter Protocol and language server architecture combined with the Eclipse xText/EMF tool chain.

Key words: product lines; telecommunication systems; DSLs; debugging; IDE.

For citation: Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy

ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 205-214. DOI: 10.15514/ISPRAS-2023-35(3)-15.

Отладчик декларативного DSL для разработки
телекоммуникационных систем

1 Т.М. Скаженик, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru>
2 Д.В. Кознов, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>

1 Национальный исследовательский университет ИТМО,

Россия, 197101, Санкт-Петербург, Кронверкский пр., д. 49, лит. А.
2 Санкт-Петербургский государственный университет,

Россия, 199034, Санкт-Петербург, Университетская наб., д. 7-9.

Аннотация. Телекоммуникационные системы являются одними из самых трудоёмких видов ПО,

вовлекая большое количество людей, денежных средств, а также времени. Декларативные предметно-

ориентированные языки (DSLs) могут существенно помочь в разработке таких систем, реализуя

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.

pp. 205-214.

206

подходящие абстракции. Мы используем термин «декларативные», подразумевая, что программы на

таком DSL предназначаются не для программирования исполняемой логики, а для описания данных

(базы данных сетевого устройства, структуры данных целевого кода и т.д.) и задания некоторого

модельного поведения устройств при возникновении определённых событий. Таким образом,

исполнение таких программ в целях отладки невозможно осуществить, сгенерировав и запустив

конечный код, т.е. не удаётся использовать средства типа xtext, MPS. Между тем отладка таких

спецификаций является востребованной задачей в виду объёмности спецификаций (десятки тысяч

строк кода), а также большого числа точечных изменений, вносимых при copy/paste, в ходе разработки

очередной телекоммуникационной системы, принадлежащей данному семейству продуктов.

В предлагаемой статье описывается отладчик для предметно-ориентированного декларативного языка

DevM. Этот язык предназначается для описания базы данных аппаратуры роутеров и свичей, задания

специфической информации, необходимой для инициализации драйверов устройств, и описания

высокоуровневого поведения системы при получении специфических событий из сети и от аппаратуры

самого устройства. Язык ориентирован на использование в контексте семейства

телекоммуникационных систем одной крупной телекоммуникационной компании. В рамках работы

над отладчиком была уточнена исполняемая семантика DevM для задания событийно-

ориентированного поведения системы, а также введена специальная модель (т.е. создана новая часть

языка DevM) для задания отладочной конфигурации отлаживаемой системы. Исполнение программы

на DevM выполняется без генерации целевого кода. Для наглядного отображения шага исполнения

программы использовалась графическая событийно-ориентированная нотация. Интеграция созданного

отладчика с DevM-фреймворком была выполнена с помощью Debug Adapter Protocol и языкового

сервера DevM (language server), разработанного с помощью стека технологий Eclipse xText/EMF.

Ключевые слова: семейство программных продуктов; телекоммуникационная система; предметно-

ориентированный язык; отладка; среда разработки.

Для цитирования: Скаженик Т.М, Кознов Д.В. Отладчик для декларативного DSL для разработки

телекоммуникационных систем. Труды ИСП РАН, том 35, вып. 3, 2023 г., стр. 205–214 (на английском

языке). DOI: 10.15514/ISPRAS–2023–35(3)–15.

1. Introduction

Nowadays, it is typical for large companies to develop not a single software product but a number

of products with varying features and functionality, providing upgrades, etc. All of these products

and corresponding development infrastructure form a product line [1]. This approach expands the

market capacities of a company and provides reuse of various development assets, e.g. code, models,

requirements, tests, etc. Following the trend, a large telecommunication company is developing a

product line of network routers. The product line contains about fifty different products, hundreds

of unique boards, several hundred thousand C files, and more than ten million lines of source code.

One of the problems of a product line is the development of the Device Management layer. This

layer focuses on hardware drivers and network interfaces of the router being provided to network

management layer. The problem is in a large range of hardware, complicated hardware connections

(in particular, it is possible to insert various cards into the motherboard of the router) and various

configurations of one product depending on demands of customers. To meet these problems, a

special declarative DSL was developed [2]. This language provides the ability to specify hardware

structure of the product that is visible to software. Furthermore, it can also specify the behaviour of

a product in an event-based manner. It provides abstractions to define various product information,

supporting generation of product configuration, network data, events and event handlers, target code

data structure, etc. A special IDE that fully supports the proposed DSL was developed. Finally, a

debugger was needed to improve maintenance of DSL programs [3]. Leading DSL environments

such as Xtext [4], GEMOC Studio [5], and MPS [6] support a two-level debug model [7] that is not

suitable for declarative DSLs. Moreover, debug development facilities that are provided within these

environments are deeply integrated with them, and their transfer to other runtime platforms is highly

limited. Microsoft Visual Studio Code supports the Debug Adapter Protocol that provides a standard

for the debugger user interface rather than technologies for development. Thus, DSL debugging for

Скаженик Т.М, Кознов Д.В. Отладчик декларативного DSL для разработки телекоммуникационных систем. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 205-214.

207

declarative languages is a pressing problem. There is a number of research papers concerning DSL

debugging [3, 8], but they do not deal with event-based behaviour DSLs. Event-based debugging is

implemented in a series of model-based development toolsets such as YAKINDU [9], Rhapsody

[10], but these tools are oriented at the UML-based system structure (components, interfaces, ports,

channels, etc.). In the case of DevM DSL, we have both a specific system structure model. We may

conclude that existing research and development tools do not provide any significant basis for

developing a debugger for event-based declarative DSLs.

Thus, creating it is going to be research-intensive. The novel contributions of our paper are as

follows:

 Scenario-oriented debugging concept for DevM dsl

 Use cases of the debugger

 An extension of DevM for configuration and initialization of system developed for

debugging

 Graphical model-based notation for visualization of debug execution trace

 Implementation of the debugger with the support of Debug Adapter Protocol and

integration into the DevM framework.

This article is organized as follows. Section 2 provides some background of the research. Section 3

presents scenario-oriented debugging concept for DevM and use cases of the debugger. Section 4

describes extension of DevM for specifying debug configuration of the product. Section 5 introduces

graphical model-based notation for visualization of debug execution trace. Section 6 describes

debugger implementation issues. Section 7 contains an overview of related work, and finally, section

8 provides the conclusions of the paper.

2. Background

The software part of the router in the considered product line consists of two main components:

network management and device management. The latter encompasses hardware drivers and a

network agent that provides an intermediate level between the drivers and the network management

component. It implements a set of rules that determine the router’s reaction to various network

management events. The domain-specific language DevM is intended for describing the Device

Management subsystem. DevM consists of the following parts:

 Composition model aims at describing hardware part of the router that is visible for drivers

and network management. It consists of a set of boards and cards. The latter are a special

type of boards and can be inserted into boards’ or other cards’ special slots, extending the

functionality of the parent device. Actually, DevM specification of the product describes a

set of board and card types (moduleTypes). A real configuration of the product delivery

depends on customer requirements — that is, similar to the variability of hardware units in

a laptop, when the customer just specifies type of the storage, volume of RAM, etc. during

their purchase. Thus, facilities for creating target product configurations are outside of the

DevM due to including not only device management level information. Some features of

DevM for creation of debug configurations (debug model) will be described later.

 Inheritance Model addresses to specifying network management attributes of hardware

elements.

 Behaviour Model focuses on event-driven behaviour of the network agent.

Let us consider the behaviour model in more detail. Specification of the network agent behaviour

consists of a set of rules. Each rule includes the event that the network agent is subscribed to. The

event triggers the action sequence if the logical condition attached to the event is true. The following

kinds of actions are allowed: create an alarm event, log information, restart the network agent,

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.

pp. 205-214.

208

change attributes of the hardware elements of the router, as well as, possibly, other elements on the

network.

It should be noted, DevM was designed to describe router hardware structure and special data

structures including various configuration information. DevM does not actually let the user specify

software’s control flow, whereas DevM specification is not a closed executable specification

although it includes some behaviour facilities. Moreover, various parts of DevM specification

generate various assets, including data for the router database, C data structures and function

signatures, etc. But generated C code is not closed and ready to be executed. A significant part of

device management code is implemented manually.

Thus, it can be said the DevM is a declarative domain specific language. It should be stressed we do

not imply logical programming facilities, but take into account to the fact that system code generated

on DSL is not closed and consequently executed. A lot of other code is needed to execute it, and this

additional code is developed outside the suggested DSL.

Nevertheless, declarative DSL could contain some part, which have executable semantic and may

be launched in some simulation environment. This simulation (debugging is a special case of such

simulation) may have a sense for DSL users helping to clarify dark corners of the DSL specification

or finding errors.

The complete grammar of DevM is an Extended Backus-Naur Form (EBNF), which was created via

XText [4]. Based on this grammar, an IDE language server is generated. DevM language server is

integrated to Visual Studio Code, where an IDE interface is implemented. Visual Studio Code as a

target environment is an external requirement to DevM.

3. Debug Concept and Debbuger Use Cases

In our case, we need a way to execute an event-based specification for a single component — that

is, the device management agent. The behaviour of this agent is set using the behaviour model

defined for the product with DevM tools. The device management agent receives events from

outside — as in, from the network, as well as from the hardware of its router. In addition, the agent

can create events for itself and process them itself too.

Being dependent on the environment, the device management agent must correctly process events

received from it. It is this aspect that is interesting from the point of view of the debugger, since the

processing of one external event is a purely internal matter of the device management agent, and it

does not require any additional data from outside. Thus, emulation of receiving such an event could

be the start of a debug section run by the developer in order to test the agent’s handling of it. It is

important to understand that the agent can be in different states, in each of which it must correctly

process such an event. For example, it can receive a request from the network for reconfiguration

and router restart either in a normal, regular state, or in a state of reduced bandwidth. Accordingly,

two different rules are required to process the same event, and they correspond to different

specifications of the initial state of the agent and different debug sessions.

During the processing of a single external event, the device management agent can activate more

than one rule. This happens via the mechanism of the agent creating events for itself, searching for

a suitable rule and executing it. Accordingly, the debug session ends when all rules are executed,

and the device management agent message queue is empty.

Let us explain why the device management agent generates events for itself. It is due to the fact that

the behaviour model is composite: different rules are created at different levels of the product’s

decomposition, for example, at the level of chips included in the board, or at the level of ports.

Specifying chips and ports, it is important to determine how the processing of various events

addressed to them takes place. At the same time, the exact origin of these events is not considered –

be it the network or the top level of the device management agent. These rules can also be created

by different developers responsible for managing different hardware units of the router. Moreover,

Скаженик Т.М, Кознов Д.В. Отладчик декларативного DSL для разработки телекоммуникационных систем. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 205-214.

209

the same rule can participate in various scenarios, and in this case, rules are used for behaviour

decomposition and reuse.

Note also that the behaviour model may differ for different configurations of the product, since they

may include different types of equipment.

We have identified the following DevM debug use cases:

 Exploring the product configurations for a specific customer without a target platform, i.e.

on a DevM developer workstation.

 Considering a subset of product configurations during DevM development to detect

possible bugs. It is important to find bugs exactly on the development level they are made

on. If these bugs are detected on the following development levels, the cost of bug detection

will increase.

 Analyzing a specific product configuration in the situation when some bug occurs. It could

be possible that the reason for the bug is contained in the DevM specification. If it is not

so, the next development level should be explored.

4. Debug Model

In order to run a debugger on a behaviour model of the product, it is required that the user precisely

defines the debug scenario: product configuration, current state, and debug event. This is done with

the DevM language, which has been suitably extended for this purpose.

In order to define the hardware product configuration used in this debug scenario, the appropriate

moduleTypes defined in the main DevM product specification are instantiated and the relationships

between these instances are specified. The latter means that cards are inserted into appropriate slots

of boards and possibly other cards. By this means, a tree of real devices of the product is built. All

necessary attributes of each device from this tree are then set – DevM has also been extended for

this purpose.

State of product configuration refers to setting values attributes, specifying the required current state

of the product configuration.

A debug event specifies the start event that triggers the debug scenario.

Below is a simplified example of a debug scenario for the case of “restarting” the router when the

voltage in the system drops” (see Listing 1). This scenario is described in the special

debug_scenario1 package, which imports the core package of this product, containing the definitions

of the main moduleTypes of the product.

The composition section describes the product configuration, which consists of the main_board1

and card1 inserted into the main_board1 in a slot called card_slot1. Note that the voltage sensor is

installed on the card, as follows from the type description of this card in the main DevM specification

of the product. Further, it is indicated that there is one external 100 Gbit port port1, into which the

split4_25 optical converter is inserted, splitting this port into four 25 Gbit ports.

Further, in the attributes section, the state of the specified product configuration is set: main_board1,

card1, sensorT have the “ready for operation” status, and card_slot1 is connected to power; sensorT

also has a valid value of 12; the first of the 25 gigabit ports is activated (i.e. through it, the router

communicates with the network).

Finally, in the event section, the event that triggers this debug scenario is set: the voltage measured

by sensorT becomes invalid (of value 9, but interval allowed is from 12 to 15). The behaviour model

has a rule which is activated when the voltage is below 12, see Fig. 1. It is triggered by the changing

sensor’s attribute from 12 to 9. In the context of this rule an alarm “Low voltage” is exposed and

another event is created. The last is done by changing the attribute

card1.port1.port25GE.IS_AVAILABLE from 1 to 0, meaning the active port is disabled. The second

rule create alarm “Port is down”.

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.

pp. 205-214.

210

Listing 1. Debug scenario.

Fig. 1. An example of graphical model-based notation for visualization of debug execution trace

Скаженик Т.М, Кознов Д.В. Отладчик декларативного DSL для разработки телекоммуникационных систем. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 205-214.

211

5. Visualization of debug results

Let us now consider the graphical model-based notation for visualization of the debug execution

trace. As mentioned above, such a trace visualizes the step-by-step execution of the rules involved

in the debug scenario. Fig. 1 shows an example of such a diagram. It starts with a Start symbol

(double circle filled in blue inside).

It is followed by the first event that triggered this scenario. Note that events in the DevM behaviour

model are changes of the attributes of the device database on the router. The corresponding router

devices are subscribed to changes of certain attributes; therefore, these devices have rules that start

with this event. Device management agent combines all of these rules to whole behaviour model as

described above. There can be multiple rules for handling the same event, but then they must differ

in conditions that immediately follow the event. An event is denoted by a blue diamond.

Further, the brown rectangle denotes an alarm, the lilac one — logging, and the green oval indicates

network device attribute changes. These changes, in turn, can cause further events to be fired for

which a suitable rule is found. After the execution of the last rule, the end symbol of the debug

scenario is drawn — a circle with crossed lines. At the top of each graphical symbol, except for the

start and end, the step number is indicated. The user executes the debug scenario step by step, and

as a result of each step, the corresponding graphic element is drawn in the diagram.

6. Debugger Implementation

The debugger implementation scheme is shown in Fig. 2. The debugger is divided into two parts:

the Debugger Back End, which performs debugging and is integrated into the DevM language

server, and the Debugger Front End, which implements the user interface and is integrated into the

Visual Studio Code DevM plugin. These parts interact via the standard Debug Adapter Protocol,

which passes debug commands from user to debug back end and debug information (attribute values.

etc.) from back end to user the user to view.

The main difficulty was the implementation of the Debugger Backend. It consists of the following

components: ConfigProcessor, DebugController, DebugSession, Variables Control System.

The ConfigProcessor component processes DevM specification of the debug scenario DevM

specification or the whole product, transforming them into a convenient representation: namely, the

device tree of a given product configuration based on hardware connections. This abstraction

provides a structure that uniquely defines the “parent-child” relationship, which is important for

searching in the behaviour model.

The DebugController component connects the Debugger Frontend and Debugger Backend,

providing an API to initialize the debug session. When a request is received to start a debug scenario,

the DebugController processes the incoming debug configuration using the ConfigProcessor, and

creates an instance of the DebugSession based on the received data. Next, the controller redirects

the request received from the front end to the DebugSession, and upon completion of the action

sends the result back to the Debugger Frontend side.

The DebugSession component is the main debug engine. It implements various debugging steps,

and also provides control over the storage and updating of data that is relevant for each step. Unlike

general-purpose languages, where the program, as a rule, is executed on some hardware device,

DebugSession simulates the entire execution process. Thus, it is easy to support the rollback of steps,

which is a difficult task in the general case.

The Variables Control System component is a collection of classes responsible for storing,

processing and transforming debugging information. The tasks of this component are the following:

ensuring correct persistent storage of values and attributes of the router; splitting data into stack

frames corresponding to the debug state at a certain step; serialization of objects into a representation

that specifies the nodes of the debug graph. Thus, the component acts as a universal delegate for

working with data stored during debugging.

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.

pp. 205-214.

212

7. Related work

The need for debugger development tools for DSLs is recognized by the community. Due to this,

XText [4], GEMOC Studio [5], and MPS [6] as well as other DSL environments support meta-debug

facilities. However, these facilities are oriented at executable DSLs, which have strict executable

semantics and can be generated into Java and other industrial programming languages. Very often

in this case, a two-level debug model is used [7]. It means that real debug is performed for generated

DSL code, and special tools just raise debug information to the DSL level and accept the

corresponding user commands from there. This approach is not suitable for our case of various

program assets being generated according to the DSL specification, as they do not form a closed

executable application.

Fig. 2. Debugger implementation schema

There are studies on creating meta debug facilities for more complex cases by declaratively

specifying executable semantics of the DSLs [3, 8]. However, these studies are at their pilot stages

and cannot be employed in the industry. In addition, using this approach, it is difficult to express

event-oriented executable semantics, which is important for our case.

Event-oriented debugging is implemented in a series of model-based development toolsets for real-

time systems such as YAKINDU [9] and Rhapsody [10]. Such toolsets support UML statecharts and

provide facilities for debug statecharts inside of the modeling environment. But, first, these solutions

are deeply integrated into the toolsets and cannot be reused. Second, they are oriented at the UML-

based system structure (components, interfaces, ports, channels, etc.). In practice, they provide

execution and debug for a set of communicated components including statecharts. This execution

model is redundant for our case, since we are executing a fragment of one component. In addition,

we have a significantly different structure model.

Thus, we can conclude that creation of debuggers for declarative industrial DSLs is an open task

that does not have a ready-made solution. Separate tools can be used for solving it, for example, the

Debug Adapter Protocol and templates for creating the debugger front end. But the majority of work

is in specifying the executable semantics for that part of the DSL that makes sense to debug, as well

as support the corresponding executable environment in the DSL IDE.

8. Conclusions

In this paper, we have proposed a debugger for the DevM declarative language, which is intended

for the development of device management components of a router product line of a large

telecommunication company. As a continuation of this work, we plan to focus on increasing the

number of actions used in the rules, as well as adding support for new features of the behaviour

model that will be introduced in the future.

Скаженик Т.М, Кознов Д.В. Отладчик декларативного DSL для разработки телекоммуникационных систем. Труды ИСП РАН, 2023,

том 35, вып. 3, с. 205-214.

213

References

[1]. P. Clements, L. M. Northrop, Software product lines – practices and patterns, SEI series in software

engineering, Addison-Wesley, 2002.

[2]. E. Semenov, S. Kai, C. Gen, D. V. Luciv, D. V. Koznov, Visual Language for Device Management in

Telecommunication Product Line. MEDI Workshops 2021, pp. 204–216.

[3]. R. T. Lindeman, L. C. L. Kats, E. Visser, Declaratively defining domain-specific language debuggers, in:

E. Denney, U. P. Schultz (Eds.), Generative Programming And Component Engineering, Proceedings of

the 10th International Conference on Generative Programming and Component Engineering, GPCE 2011,

Portland, Oregon, USA, October 22-24, 2011, ACM, 2011, pp. 127–136.

[4]. Eclipse Project, XText, 2022. URL: https://www.eclipse.org/Xtext/.

[5]. GEMOC, 2022. URL: https://gemoc.org.

[6]. MPS: Meta Programming System, 2022. URL: https://www.jetbrains.com/mps/.

[7]. M. Kartashov, Two-level debugging, System Programming 1 (2005), pp. 348–365(In Russian).

[8]. A. Chis, M. Denker, T. Gîrba, O. Nierstrasz, Practical domain-specific debuggers using the moldable

debugger framework, Comput. Lang. Syst. Struct. 44 (2015), pp. 89–113.

[9]. Itemis AG, YAKINDU, 2022. URL: https://github.com/Yakindu.

[10]. IBM, Rhapsody, 2022. URL: https://www.ibm.com/docs/en/rhapsod, (accessed: 01.05.2023).

Информация об авторах / Information about authors

Тарас Михайлович СКАЖЕНИК – студент второго курса магистратуры университета ИТМО.

Сфера научных интересов: программная инженерия, телекоммуникационные системы,

отладка, машинное обучение.

Taras Mikhailovich SKAZHENIK – second-year master-student of ITMO University. Research

interests: software engineering, telecommunication systems, debugging, machine learning.

Дмитрий Владимирович КОЗНОВ, доктор технических наук, профессор кафедры системного

программирования СПбГУ. Сфера научных интересов: программная инженерия, модельно-

ориентированная разработка программного обеспечения, программные данные, машинное

обучение.

Dmitry Vladimirovich KOZNOV, Doctor of Technical Sciences, Professor of the Software

Engineering Chair, St. Petersburg State University. Research interests: software engineering, model-

driven software development, program data, machine learning.

https://gemoc.org/

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.

pp. 205-214.

214

