Tpyowr UCIT PAH, mom 35, éwin. 3, 2023 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023

DOI: 10.15514/ISPRAS-2023-35(3)-15 @C-EH

Debugger for Declarative DSL for
Telecommunication

1 T.M. Skazhenik, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru=>
2D.V. Koznov, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
LITMO University,

Kronverksky Pr. 49, St. Petersburg, 197101, Russia
2 Saint-Petersburg StateUniversity ,

7-9 Universitetskaya Embankment, St Petersburg, 199034, Russia

Awunoramusi. Development of telecommunication product lines is still a very labor-intensive task, involving a
great amount of human resources and producing a large number of development artifacts — code, models, tests,
etc. Declarative domain-specific languages (DSLs) may reasonably simplify this process by increasing the level
of abstraction. We use the term “declarative” implying that such a DSL does not enable the development of a
closed software application, but rather supports creation, generation and maintenance of various kind of
software assets — product database, events and event handlers, target code data structures, etc. At the same
time, such a DSL may have some executable semantic, but it could be very specific and have many
environment-wise requirements. Thus, execution and debugging of such DSL specifications is a meaningful
task, which has no common solution due to the unique executable semantic. Consequently, it is not possible to
use debug facilities of known DSL environments, such as xtext, MPS, etc. for such a case. In the current paper,
we present a debugger for DevM — a declarative DSL intended for support device management in software
development in the context of a router product line by a large telecommunication company. We clarify
executable semantic for DevM, making it possible to execute DevM specifications in an isolated environment,
i.e. in simulation mode, without generation of target code. We use a graphic model-based notation to depict
every step of execution. Finally, we implement and integrate the debugger in the DevM IDE, using Debug
Adapter Protocol and language server architecture combined with the Eclipse xText/EMF tool chain.

Key words: product lines; telecommunication systems; DSLs; debugging; IDE.

For citation: Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy
ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023. pp. 205-214. DOI: 10.15514/ISPRAS-2023-35(3)-15.

Otnapguuk geknapatuBHoro DSL ana pa3paboTku
TeNeKOMMYHUKALMOHHbIX CUCTEM

L T.M. Cxaxcenux, ORCID: 0009-0002-1959-2010 <taras.skazhenik@yandex.ru>
2 J1.B. Kosnos, ORCID: 0000-0003-2632-3193 <d.koznov@spbu.ru>
! Hayuonanonwiii uccredosamensckuii ynueepcumem UTMO,
Poccus, 197101, Cankm-Ilemepbype, Kponsepxckuii np., 0. 49, aum. A.
2 Canxm-Ilemepbypackuii 20cydapcmeeniviii yrusepcumen,
Poccus, 199034, Cankm-Ilemepoype, Ynueepcumemckas nab., o. 7-9.

AnHoTanus. TeleKOMMYHHKAIIMOHHBIE CHUCTEMBI SIBIIOTCS ONHHMH M3 caMbIX TpyaoéMkux suzioB 1O,
BOBJIEKas OOJIBIIIOE KOJMYECTBO JIFO/ICH, IEHEXKHBIX CPENICTB, a TaK)Ke BpeMeHH. JleKapaTHBHbIC PEIMETHO-
opueHTHpoBaHHBIE s3bIKH (DSLS) MOTyT CyIIeCTBEHHO NOMOYb B Pa3pabOTKE TaKUX CHUCTEM, PEaTU3ys

205



Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

MoAXoAsAINe a0CTpaKIMu. MBI UCIIONB3yeM TEPMUH «IEKIapaTHBHBIE», MOAPa3yMeBasi, YTO MPOrpaMMbl Ha
takoM DSL npennasHauaioTcss He [ MPOrPaMMHUPOBAHMS UCIIOJIHAEMON JIOTHKH, a JUIs ONUCAHUS JaHHBIX
(6a3pl maHHBIX CETEBOTO YCTPOMCTBA, CTPYKTYPHI AAaHHBIX IEIEBOTO KoJa M T.JA.) M 3aIaHHUs HEKOTOPOTO
MOZIENFHOTO TIOBEAEHHs] YCTPOHCTB NPH BO3HUKHOBEHHH ONPENCIEHHBIX COOBITHIL. Takum o0pazowm,
HCIIOJIHEHNE TAaKUX IPOrpaMM B [ENSIX OTIAAKH HEBO3MOXKHO OCYIIECTBHUTBH, CTCHEPHPOBAB M 3aIlyCTHUB
KOHEUHBIH KOJ, T.e. HE yHaércsi MCIoIb30BaTh cpenctBa tuma Xtext, MPS. Mexny Tem omiamka Takux
crnenuuKanui sBISETCA BOCTPeOOBAaHHOW 3amadeld B BUAY OOBEMHOCTU CHEHU(PUKALUA (TECATKH ThICAY
CTPOK KOJIa), a TaKKe GOJIBIIOro YHCiIa TOYSIHBIX H3MEHEHHMH, BHOCHMBIX IIpH COPY/paste, B xozxe pa3paboTKu
04EpEHON TENEKOMMYHUKAIIMOHHOM CUCTEMBI, TPUHAUIEKALLEH TaHHOMY CEMENCTBY POAYKTOB.

B npennaraemoit ctaThe ONUCHIBAETCS OTIAIUHUK IS IPEAMETHO-OPUEHTUPOBAHHOTO JIEKIAPATUBHOTO S3bIKA
DevM. DToT s3bIK IpeHa3HAYASTCs AT ONMCAHMs 0a3bl JTaHHBIX alliapaTyphl pOyTepoB U CBUYCH, 3a1aHUs
cnerupuueckoi MHGOPMAIMK, HEOOXOAMMOW Ui MHHUNMAIH3AIM{ ApaidBEepOB YCTPOMCTB, W OIMCAHUS
BBICOKOYPOBHEBOTO ITOBE/ICHNUSI CHCTEMBI IIPY OTyYEHHH CHEM()UIECKUX COOBITHI U3 CETH 1 OT alapaTypsl
caMoro  ycTpolcTBa.  SI3BIK  OpHEHTHpOBaH Ha  WCIOJNB30BaHME B  KOHTEKCTE  CeMelcTBa
TEIEKOMMYHHUKAIIMOHHBIX CHCTEM OJHOM KPYNHOW TEJIEKOMMYHHKAIIMOHHOW KOMIaHMH. B pamkax paGoThl
HaJ OTJaJuyhuKoM OblIa yTOYHEHa HCHoNHseMas ceMaHTHka DevM nana  3amaHus  coObITHitHO-
OpPHEHTUPOBAHHOTO MOBEJICHUS CHCTEMBI, a TakKe BBEIEHA CIElHaNbHas MOJENb (T.e. CO3/jaHa HOBasl 4acTb
si3pika DevM) s 3aaHus OTIIaovHON KOHQUTYypauu OTIaKUBaeMOW cuCTeMBI. VIcTioTHeHne mporpaMMbl
Ha DevM BrimosHsieTcst 6e3 reHepayy IeneBoro koxa. [y HariasgHoro oToOpakeHWs miara WCIOJIHEHHUS
IIPOrpaMMBI HCTIOJIB30BATIACh Ipaduueckasi COOBITHIHO-OPHEHTHPOBAHHAsl HOTaMsl. MIHTerpanus co3gaHHoro
omranurka ¢ DevM-¢peiiMBopkom Obuia BeimonHeHa ¢ momomipio Debug Adapter Protocol u si3sikoBoro
cepsepa DevM (language server), paspaGoTaHHOTO ¢ OMOIIBIO cTeka TexHosoruii Eclipse XText/EMF.

KiroueBble c10Ba: ceMeCTBO NMPOrpaMMHBIX NPOAYKTOB; TEJIEKOMMYHUKAIMOHHAS CUCTEMa; IPEAMETHO-
OPHEHTUPOBAHHBIH A3bIK; OTJIAJKA; CPe/ia Pa3padOTKH.

Jas nurupoBanus: Cxaxenuk T.M, Kosnos [I.B. Otnamuuk i nexmapatuBaoro DSL ms paspabotku
TeNeKOMMYHHUKaHOHHBIX cucteM. Tpyast ICIT PAH, tom 35, Beim. 3, 2023 1., crp. 205-214 (Ha aHrIHiickoM
sizsike). DOI: 10.15514/ISPRAS—-2023-35(3)-15.

1. Introduction

Nowadays, it is typical for large companies to develop not a single software product but a number
of products with varying features and functionality, providing upgrades, etc. All of these products
and corresponding development infrastructure form a product line [1]. This approach expands the
market capacities of a company and provides reuse of various development assets, e.g. code, models,
requirements, tests, etc. Following the trend, a large telecommunication company is developing a
product line of network routers. The product line contains about fifty different products, hundreds
of unique boards, several hundred thousand C files, and more than ten million lines of source code.
One of the problems of a product line is the development of the Device Management layer. This
layer focuses on hardware drivers and network interfaces of the router being provided to network
management layer. The problem is in a large range of hardware, complicated hardware connections
(in particular, it is possible to insert various cards into the motherboard of the router) and various
configurations of one product depending on demands of customers. To meet these problems, a
special declarative DSL was developed [2]. This language provides the ability to specify hardware
structure of the product that is visible to software. Furthermore, it can also specify the behaviour of
a product in an event-based manner. It provides abstractions to define various product information,
supporting generation of product configuration, network data, events and event handlers, target code
data structure, etc. A special IDE that fully supports the proposed DSL was developed. Finally, a
debugger was needed to improve maintenance of DSL programs [3]. Leading DSL environments
such as Xtext [4], GEMOC Studio [5], and MPS [6] support a two-level debug model [7] that is not
suitable for declarative DSLs. Moreover, debug development facilities that are provided within these
environments are deeply integrated with them, and their transfer to other runtime platforms is highly
limited. Microsoft Visual Studio Code supports the Debug Adapter Protocol that provides a standard
for the debugger user interface rather than technologies for development. Thus, DSL debugging for

206



Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

declarative languages is a pressing problem. There is a number of research papers concerning DSL
debugging [3, 8], but they do not deal with event-based behaviour DSLs. Event-based debugging is
implemented in a series of model-based development toolsets such as YAKINDU [9], Rhapsody
[10], but these tools are oriented at the UML-based system structure (components, interfaces, ports,
channels, etc.). In the case of DevM DSL, we have both a specific system structure model. We may
conclude that existing research and development tools do not provide any significant basis for
developing a debugger for event-based declarative DSLs.

Thus, creating it is going to be research-intensive. The novel contributions of our paper are as
follows:

e Scenario-oriented debugging concept for DevM dsl
e Use cases of the debugger

e An extension of DevM for configuration and initialization of system developed for
debugging

o Graphical model-based notation for visualization of debug execution trace

o Implementation of the debugger with the support of Debug Adapter Protocol and
integration into the DevM framework.

This article is organized as follows. Section 2 provides some background of the research. Section 3
presents scenario-oriented debugging concept for DevM and use cases of the debugger. Section 4
describes extension of DevM for specifying debug configuration of the product. Section 5 introduces
graphical model-based notation for visualization of debug execution trace. Section 6 describes
debugger implementation issues. Section 7 contains an overview of related work, and finally, section
8 provides the conclusions of the paper.

2. Background

The software part of the router in the considered product line consists of two main components:
network management and device management. The latter encompasses hardware drivers and a
network agent that provides an intermediate level between the drivers and the network management
component. It implements a set of rules that determine the router’s reaction to various network
management events. The domain-specific language DevM is intended for describing the Device
Management subsystem. DevM consists of the following parts:

e Composition model aims at describing hardware part of the router that is visible for drivers
and network management. It consists of a set of boards and cards. The latter are a special
type of boards and can be inserted into boards’ or other cards’ special slots, extending the
functionality of the parent device. Actually, DevM specification of the product describes a
set of board and card types (moduleTypes). A real configuration of the product delivery
depends on customer requirements — that is, similar to the variability of hardware units in
a laptop, when the customer just specifies type of the storage, volume of RAM, etc. during
their purchase. Thus, facilities for creating target product configurations are outside of the
DevM due to including not only device management level information. Some features of
DevM for creation of debug configurations (debug model) will be described later.

e Inheritance Model addresses to specifying network management attributes of hardware
elements.

e Behaviour Model focuses on event-driven behaviour of the network agent.

Let us consider the behaviour model in more detail. Specification of the network agent behaviour
consists of a set of rules. Each rule includes the event that the network agent is subscribed to. The
event triggers the action sequence if the logical condition attached to the event is true. The following
kinds of actions are allowed: create an alarm event, log information, restart the network agent,

207



Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

change attributes of the hardware elements of the router, as well as, possibly, other elements on the
network.

It should be noted, DevM was designed to describe router hardware structure and special data
structures including various configuration information. DevM does not actually let the user specify
software’s control flow, whereas DevM specification is not a closed executable specification
although it includes some behaviour facilities. Moreover, various parts of DevM specification
generate various assets, including data for the router database, C data structures and function
signatures, etc. But generated C code is not closed and ready to be executed. A significant part of
device management code is implemented manually.

Thus, it can be said the DevM is a declarative domain specific language. It should be stressed we do
not imply logical programming facilities, but take into account to the fact that system code generated
on DSL is not closed and consequently executed. A lot of other code is needed to execute it, and this
additional code is developed outside the suggested DSL.

Nevertheless, declarative DSL could contain some part, which have executable semantic and may
be launched in some simulation environment. This simulation (debugging is a special case of such
simulation) may have a sense for DSL users helping to clarify dark corners of the DSL specification
or finding errors.

The complete grammar of DevM is an Extended Backus-Naur Form (EBNF), which was created via
XText [4]. Based on this grammar, an IDE language server is generated. DevM language server is
integrated to Visual Studio Code, where an IDE interface is implemented. Visual Studio Code as a
target environment is an external requirement to DevM.

3. Debug Concept and Debbuger Use Cases

In our case, we need a way to execute an event-based specification for a single component — that
is, the device management agent. The behaviour of this agent is set using the behaviour model
defined for the product with DevM tools. The device management agent receives events from
outside — as in, from the network, as well as from the hardware of its router. In addition, the agent
can create events for itself and process them itself too.

Being dependent on the environment, the device management agent must correctly process events
received from it. It is this aspect that is interesting from the point of view of the debugger, since the
processing of one external event is a purely internal matter of the device management agent, and it
does not require any additional data from outside. Thus, emulation of receiving such an event could
be the start of a debug section run by the developer in order to test the agent’s handling of it. It is
important to understand that the agent can be in different states, in each of which it must correctly
process such an event. For example, it can receive a request from the network for reconfiguration
and router restart either in a normal, regular state, or in a state of reduced bandwidth. Accordingly,
two different rules are required to process the same event, and they correspond to different
specifications of the initial state of the agent and different debug sessions.

During the processing of a single external event, the device management agent can activate more
than one rule. This happens via the mechanism of the agent creating events for itself, searching for
a suitable rule and executing it. Accordingly, the debug session ends when all rules are executed,
and the device management agent message queue is empty.

Let us explain why the device management agent generates events for itself. It is due to the fact that
the behaviour model is composite: different rules are created at different levels of the product’s
decomposition, for example, at the level of chips included in the board, or at the level of ports.
Specifying chips and ports, it is important to determine how the processing of various events
addressed to them takes place. At the same time, the exact origin of these events is not considered —
be it the network or the top level of the device management agent. These rules can also be created
by different developers responsible for managing different hardware units of the router. Moreover,

208



Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

the same rule can participate in various scenarios, and in this case, rules are used for behaviour
decomposition and reuse.

Note also that the behaviour model may differ for different configurations of the product, since they
may include different types of equipment.

We have identified the following DevM debug use cases:

o Exploring the product configurations for a specific customer without a target platform, i.e.
on a DevM developer workstation.

e Considering a subset of product configurations during DevM development to detect
possible bugs. It is important to find bugs exactly on the development level they are made
on. If these bugs are detected on the following development levels, the cost of bug detection
will increase.

e Analyzing a specific product configuration in the situation when some bug occurs. It could
be possible that the reason for the bug is contained in the DevM specification. If it is not
so, the next development level should be explored.

4. Debug Model

In order to run a debugger on a behaviour model of the product, it is required that the user precisely
defines the debug scenario: product configuration, current state, and debug event. This is done with
the DevM language, which has been suitably extended for this purpose.

In order to define the hardware product configuration used in this debug scenario, the appropriate
moduleTypes defined in the main DevM product specification are instantiated and the relationships
between these instances are specified. The latter means that cards are inserted into appropriate slots
of boards and possibly other cards. By this means, a tree of real devices of the product is built. All
necessary attributes of each device from this tree are then set — DevM has also been extended for
this purpose.

State of product configuration refers to setting values attributes, specifying the required current state
of the product configuration.

A debug event specifies the start event that triggers the debug scenario.

Below is a simplified example of a debug scenario for the case of “restarting” the router when the
voltage in the system drops” (see Listing 1). This scenario is described in the special
debug_scenariol package, which imports the core package of this product, containing the definitions
of the main moduleTypes of the product.

The composition section describes the product configuration, which consists of the main_boardl
and cardl inserted into the main_boardl in a slot called card_slotl. Note that the voltage sensor is
installed on the card, as follows from the type description of this card in the main DevM specification
of the product. Further, it is indicated that there is one external 100 Gbit port portl, into which the
split4_25 optical converter is inserted, splitting this port into four 25 Ghit ports.

Further, in the attributes section, the state of the specified product configuration is set: main_board1,
cardl, sensorT have the “ready for operation” status, and card_slotl is connected to power; sensorT
also has a valid value of 12; the first of the 25 gigabit ports is activated (i.e. through it, the router
communicates with the network).

Finally, in the event section, the event that triggers this debug scenario is set: the voltage measured
by sensorT becomes invalid (of value 9, but interval allowed is from 12 to 15). The behaviour model
has a rule which is activated when the voltage is below 12, see Fig. 1. It is triggered by the changing
sensor’s attribute from 12 to 9. In the context of this rule an alarm “Low voltage” is exposed and
another event is created. The last is done by changing the attribute
cardl.portl.port25GE.IS_AVAILABLE from 1 to 0, meaning the active port is disabled. The second
rule create alarm “Port is down”.

209



Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

package degug_scenariol {
import core;

composition |
BoardHardType main_boardl;
CardHardType cardl:
main_boardl.card_slotl =- cardl;
cardl .portl = split4_25;
J
attributes |
main_boardl {
IS_AVAILABLE = 1;
}
cardl {
IS_AVAILABLE = 1;
}
main_boardl.card_slotl {
POWER_STATUS = 1;
}
cardl .sensorT |
IS_AVAILABLE = 1;
VLT _CURR_VALUE = 12;
}
}

override attributes {
cardl.portl.port25GE {
IS_AVAILABLE = 1;
}
}

event |
modify cardl.sensorT

VLT _CURR_VALUE = 9;

Listing 1. Debug scenario.

ii,

[#1]
#2) | 3]

card1.sensorT : = N LOG
VLT CURR VALUE ALY ' alarm low voltage
B ge on sensorT
Y
#) [#5] [#4]
cardl.port1.port25GE CHANGE:
ALARM (e IS AVAILABLE==0 ~ < card1.port1.port25GE
Port is down IS_AVAILABLE=0

Fig. 1. An example of graphical model-based notation for visualization of debug execution trace

210



Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

5. Visualization of debug results

Let us now consider the graphical model-based notation for visualization of the debug execution
trace. As mentioned above, such a trace visualizes the step-by-step execution of the rules involved
in the debug scenario. Fig. 1 shows an example of such a diagram. It starts with a Start symbol
(double circle filled in blue inside).

It is followed by the first event that triggered this scenario. Note that events in the DevM behaviour
model are changes of the attributes of the device database on the router. The corresponding router
devices are subscribed to changes of certain attributes; therefore, these devices have rules that start
with this event. Device management agent combines all of these rules to whole behaviour model as
described above. There can be multiple rules for handling the same event, but then they must differ
in conditions that immediately follow the event. An event is denoted by a blue diamond.

Further, the brown rectangle denotes an alarm, the lilac one — logging, and the green oval indicates
network device attribute changes. These changes, in turn, can cause further events to be fired for
which a suitable rule is found. After the execution of the last rule, the end symbol of the debug
scenario is drawn — a circle with crossed lines. At the top of each graphical symbol, except for the
start and end, the step number is indicated. The user executes the debug scenario step by step, and
as a result of each step, the corresponding graphic element is drawn in the diagram.

6. Debugger Implementation

The debugger implementation scheme is shown in Fig. 2. The debugger is divided into two parts:
the Debugger Back End, which performs debugging and is integrated into the DevM language
server, and the Debugger Front End, which implements the user interface and is integrated into the
Visual Studio Code DevM plugin. These parts interact via the standard Debug Adapter Protocol,
which passes debug commands from user to debug back end and debug information (attribute values.
etc.) from back end to user the user to view.

The main difficulty was the implementation of the Debugger Backend. It consists of the following
components: ConfigProcessor, DebugController, DebugSession, Variables Control System.

The ConfigProcessor component processes DevM specification of the debug scenario DevM
specification or the whole product, transforming them into a convenient representation: namely, the
device tree of a given product configuration based on hardware connections. This abstraction
provides a structure that uniquely defines the “parent-child” relationship, which is important for
searching in the behaviour model.

The DebugController component connects the Debugger Frontend and Debugger Backend,
providing an API to initialize the debug session. When a request is received to start a debug scenario,
the DebugController processes the incoming debug configuration using the ConfigProcessor, and
creates an instance of the DebugSession based on the received data. Next, the controller redirects
the request received from the front end to the DebugSession, and upon completion of the action
sends the result back to the Debugger Frontend side.

The DebugSession component is the main debug engine. It implements various debugging steps,
and also provides control over the storage and updating of data that is relevant for each step. Unlike
general-purpose languages, where the program, as a rule, is executed on some hardware device,
DebugSession simulates the entire execution process. Thus, it is easy to support the rollback of steps,
which is a difficult task in the general case.

The Variables Control System component is a collection of classes responsible for storing,
processing and transforming debugging information. The tasks of this component are the following:
ensuring correct persistent storage of values and attributes of the router; splitting data into stack
frames corresponding to the debug state at a certain step; serialization of objects into a representation
that specifies the nodes of the debug graph. Thus, the component acts as a universal delegate for
working with data stored during debugging.

211



Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

7. Related work

The need for debugger development tools for DSLs is recognized by the community. Due to this,
XText [4], GEMOC Studio [5], and MPS [6] as well as other DSL environments support meta-debug
facilities. However, these facilities are oriented at executable DSLs, which have strict executable
semantics and can be generated into Java and other industrial programming languages. Very often
in this case, a two-level debug model is used [7]. It means that real debug is performed for generated
DSL code, and special tools just raise debug information to the DSL level and accept the
corresponding user commands from there. This approach is not suitable for our case of various
program assets being generated according to the DSL specification, as they do not form a closed
executable application.

DDD VS Code plugin

Debugger Front End

Debug Adapter Protocol
""" DDD Language Server
Debugger Back End

use

DebugController ————— ConfigProcessor

T
l control

include

o
(Variables Control |
DebugSession ———»{ "' st )

Fig. 2. Debugger implementation schema

There are studies on creating meta debug facilities for more complex cases by declaratively
specifying executable semantics of the DSLs [3, 8]. However, these studies are at their pilot stages
and cannot be employed in the industry. In addition, using this approach, it is difficult to express
event-oriented executable semantics, which is important for our case.

Event-oriented debugging is implemented in a series of model-based development toolsets for real-
time systems such as YAKINDU [9] and Rhapsody [10]. Such toolsets support UML statecharts and
provide facilities for debug statecharts inside of the modeling environment. But, first, these solutions
are deeply integrated into the toolsets and cannot be reused. Second, they are oriented at the UML-
based system structure (components, interfaces, ports, channels, etc.). In practice, they provide
execution and debug for a set of communicated components including statecharts. This execution
model is redundant for our case, since we are executing a fragment of one component. In addition,
we have a significantly different structure model.

Thus, we can conclude that creation of debuggers for declarative industrial DSLs is an open task
that does not have a ready-made solution. Separate tools can be used for solving it, for example, the
Debug Adapter Protocol and templates for creating the debugger front end. But the majority of work
is in specifying the executable semantics for that part of the DSL that makes sense to debug, as well
as support the corresponding executable environment in the DSL IDE.

8. Conclusions

In this paper, we have proposed a debugger for the DevM declarative language, which is intended
for the development of device management components of a router product line of a large
telecommunication company. As a continuation of this work, we plan to focus on increasing the
number of actions used in the rules, as well as adding support for new features of the behaviour
model that will be introduced in the future.

212



Cxaxenuk T.M, Kosnos /I.B. Otnagunk aexnaparusaoro DSL mnst pa3paOoTku TeeKOMMYHHKAIHOHHBIX cucteM. Tpyost MCIT PAH, 2023,
Ttom 35, BeITL. 3, . 205-214.

References

[1]. P. Clements, L. M. Northrop, Software product lines — practices and patterns, SEI series in software
engineering, Addison-Wesley, 2002.

[2]. E. Semenov, S. Kai, C. Gen, D. V. Luciv, D. V. Koznov, Visual Language for Device Management in
Telecommunication Product Line. MEDI Workshops 2021, pp. 204-216.

[3]. R. T. Lindeman, L. C. L. Kats, E. Visser, Declaratively defining domain-specific language debuggers, in:
E. Denney, U. P. Schultz (Eds.), Generative Programming And Component Engineering, Proceedings of
the 10th International Conference on Generative Programming and Component Engineering, GPCE 2011,
Portland, Oregon, USA, October 22-24, 2011, ACM, 2011, pp. 127-136.

[4]. Eclipse Project, XText, 2022. URL: https://www.eclipse.org/Xtext/.

[5]. GEMOC, 2022. URL: https://gemoc.org.

[6]. MPS: Meta Programming System, 2022. URL.: https://www.jetbrains.com/mps/.

[7]. M. Kartashov, Two-level debugging, System Programming 1 (2005), pp. 348-365(In Russian).

[8]. A. Chis, M. Denker, T. Girba, O. Nierstrasz, Practical domain-specific debuggers using the moldable
debugger framework, Comput. Lang. Syst. Struct. 44 (2015), pp. 89-113.

[9]. Itemis AG, YAKINDU, 2022. URL.: https://github.com/Yakindu.

[10]. IBM, Rhapsody, 2022. URL.: https://www.ibm.com/docs/en/rhapsod, (accessed: 01.05.2023).

Ungpopmayusi 06 aemopax / Information about authors

Tapac Muxaiinosny CKAXKEHUK — ctyneHT BTroporo Kypca Mmaructparypsl yausepcurera M”TMO.
Cdepa HayyHBIX WHTEPECOB. MPOTpPaMMHAs HHKEHEPHs, TEeIEeKOMMYHHKAI[HOHHBIE CHCTEMBI,
OTIaKa, MAIMHHOE 00y4EHHE.

Taras Mikhailovich SKAZHENIK — second-year master-student of ITMO University. Research
interests: software engineering, telecommunication systems, debugging, machine learning.

Jmurpuit Baguvuposua KO3HOB, nokTop TexHHUECKHX HAaYK, Ipodeccop Kadeapsl CHCTEMHOTO
nporpammupoBanust CIIOI'Y. Cdepa HaydHBIX HHTEPECOB: IPOrpaMMHasi HHKEHEPHS, MOJICIIbHO-
OpPHEHTHPOBaHHAas pa3paboTKa MPOrpaMMHOr0 OOecIeUeH s, MPOrpaMMHbIE JaHHbIC, MAIIUHHOE
oby4eHue.

Dmitry Vladimirovich KOZNOV, Doctor of Technical Sciences, Professor of the Software
Engineering Chair, St. Petersburg State University. Research interests: software engineering, model-
driven software development, program data, machine learning.

213


https://gemoc.org/

Skazhenik T.M., Koznov D.V. Debugger for Declarative DSL for Telecommunication. Trudy ISP RAN/Proc. ISP RAS, vol. 35, issue 3, 2023.
pp. 205-214.

214



