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density of character-level errors and conclude that, provided that models generally show very high scores, 

validation datasets with higher density of tricky errors are a useful tool to compare models. Lastly, we notice 

cases of incorrect treatment of non-existent words on experts' annotation and contribute a cleared version of 

this dataset. In contrast to specialized GEC systems, LLaMA model used for GEC task handles character-level 
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Аннотация. Исследование сосредотачивается на проблеме того, как современные системы 

исправления грамматических ошибок обрабатывают ошибки на уровне слова. Работа обсуждает, как 

подобные ошибки могут взаимодействовать с эффективностью модели, и оценивает, как модели с 

разными архитектурами справляется с ними. Делается вывод о том, что специализированные системы 

исправления грамматических ошибок сталкиваются с проблемами при исправлении ошибок, 
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приводящих к созданию несуществующих слов, и что предобработка с помощью простой системой 

обработки подобных ошибок значительно улучшает общую эффективность модели. Для оценки этого 

работа модели тестируется для нескольких валидационных датасетах. Вдобавок к валидационному 

датасету соревнования CoNLL-2014 в работе предлагается синтетический датасет с повышенной 

плотностью ошибок на уровне слова. На основании сравнения эффективности модели на двух 

датасетах, работа делает вывод о том, что валидационные датасеты с высокой плотностью ошибок, 

представляющих проблему для моделей, — это полезный инструмент для сравнения моделей. Кроме 

того, работа указывает на случаи некорректной аннотации несуществующих слов в разметке экспертов 

и предлагает очищенную версию датасета. В отличие от специализированных систем исправления 

грамматических ошибок, модель LLaMA, используемся для задачи исправления грамматических 

ошибок хорошо справляется с ошибками на уровне слова. Мы предполагаем гипотезу, в соответствии 

с которой этот результат объясняется тем фактом, что эта модель не обучается на специальной 

аннотированной выборке, содержащей ошибки, а получает в качестве входа грамматически и 

орфографически корректные тексты. 

Ключевые слова: автоматическое исправление грамматических ошибок; валидация; спеллчек; 

предобработка; синтетические датасеты. 
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1. Introduction 

Tools for GEC (Grammatical error correction) tasks have greatly improved over recent decades. In 

terms of metrics, modern big language models outperform a human annotator in the GEC task [1]; 

overviews [2-4] present the performance growth at different stages. GEC models are however still 

noticed to fail in correcting several types of errors that would be easily and necessarily corrected by 

a human [1]. 

Despite the part “grammatical” in GEC, the task is usually understood wider than the mere correction 

of illicit grammar use. As the expected result is a text judged natural by a native speaker, spelling, 

punctuation, word choice, stylistic and other types of errors are treated, as well. 

One must note that the best-performing modern models for GEC show pure results with character-

level errors, and this problem had been preserved during the last decade [5-7]. If the errors ranked 

according to their difficulty, this type is considered one of the easiest to correct [8]. 

Consider a spelling error in Table 1, which the GECToR model [9] fails to correct (diagonosed 

instead of diagnosed). In contrast, several other errors are successfully handled, including article 

use, word form selection and phrasal verbs. Notice that the error in Table 1 is not challenging to 

detect because it results in a non-existent word, and the closest candidate in terms of Levenshtein 

distance is a required one. This type of errors is effectively handled with a number of tools 

performing with a quality acceptable for practical use for a very long time [10-11]. 

Table 1. Example of the failure and successes of a GEC model 

source When we are diagonosed out with certain genetic disease , are we suppose to 

disclose this result to our relatives ? 

corrected

= target 

When we are diagonosed with a certain genetic disease, are we supposed to 

disclose this result to our relatives ? 

Although some researchers apply spellcheckers or character-based models as a part of preprocessing 

[12-13], [7], [14], it is still not a common practice for modern GEC. For example, the possibility of 

preprocessing of spelling is not discussed in the recent detailed overview of approaches to GEC [4]. 
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In this study we focus on how character-level, primarily spelling errors affect the output of best-

performing GEC models with different architecture. We test 3 SOTA GEC systems with different 

architecture: GECToR (large) [9], BART (large) [15], and T5 (base) [16]. We also add LLaMA 7B 

model [17-18] fine-tuned as Alpaca 7B [19]. Large language models like LLaMA or GPT [20] have 

been recently tested for multiple tasks, including GEC, though at the moment they exhibit lower 

performance than other models [21]1 show for English2. Of other modern SOTA GEC system we do 

not separately discuss the SynGEC [23], as the cited study shows that the innovations introduced by 

this complex model to regular transformer-based baseline / BART worsen the performance on 

spelling errors [23: 2525]. The evaluation of GEC-DI [24], which has been very recently released 

and suggested to us by one of anonymous reviewers, we leave to the further studies. 

Table 2 presents performance of the models, evaluated on the validation dataset for CoNLL-2014 

[25] with annotation by 10 experts [26]. F0.5 metric is used, which is argued to represent human 

judgments well [27-29]. 

Table 2. Performance of SOTA GEC systems and human experts 

model name  F0.5 

BART 78.04 

GECToR 76.82 

T5 74.38  

LLaMA 68.58 

human experts 72.58 

Three best-evaluated models: BART, GECToR and T5, show higher scores than human experts do 

with respect to each other. Yet, we are going to confirm that they perform imperfectly with character-

level errors. 

Elaborating on the nature of the spelling pitfall of big language models, we notice that both training 

and especially validation datasets for GEC tasks are noisy when dealing with character-level errors.  

We contribute a cleared version of CoNLL-2014 validation dataset [25] (its 10-annotators version 

[26]) and a synthetic dataset with a higher density of spelling errors (but also including all other 

types of errors), which can be used for testing the impact of this kind of errors. We further suggest 

that such datasets with high error density are a useful tool to test models that generally show very 

high performance over tricky types of errors. 

Based on both datasets we show that all the tested models designed specifically for GEC show higher 

performance with spelling errors corrected at the preprocessing stage. In contrast, results of LLaMA 

model, despite its purer performance in general, is almost not affected with the preprocessing. 

The rest of the paper is organized as follows: Section 2 describes the ways in which character-level 

errors interact with the performance of models. Section 3 discusses the representation and the source 

of this kind of errors in training and validation data. Section 4 presents three datasets we work with. 

Section 5 presents an experiment that evaluates the influence of preprocessing of spelling errors on 

the performance, based on these datasets. Sections 6 interprets the experiments and presents the 

discussion. Section 7 is the conclusion. 

                                                           
1We use a prompt different from the one suggested for GPT 3.5/4 in [21], as our prompt gives a higher score: F0.5=68.58 

compared to F0.5=64.34. The used prompt is: You will receive a text in English and you must check whether it contain any 
errors, according to English language rules. Return a corrected version of the text. Don't correct stylistic errors. Do not 
correct sentences that may be correct in some context. The final text should not contain errors. 
2Though s.f. [22] for Swedish, for which GPT 3 outperforms all other models. 
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2. Relationship between model performance and misspellings 

In this section we discuss how character-level error may affect the performance of a model based on 

the CoNLL-2014 validation dataset. 

We only restrict ourselves to the errors resulting in non-existent words. In most cases such errors 

result from misprints (wth instead of with, otherm instead of other), problems with spelling 

orthographically difficult words (hypertesion / hypertention instead of hypertension, percieved 

instead of perceived) and the influence of the native language of an author (e. g. insertion of o in 

consonants clusters by Singapore students: techonology, diagonosed). Rarer an error emerges as a 

result of a morphological process including creating a non-existent word form (plural medias instead 

of media) or derivation (disclosement instead of disclosure). Supposed misprints that lead to the use 

of an existing word which does not fit the context (brunch instead of bunch) are considered as word 

choice errors and therefore are not discussed. 

Noticeably, in most cases relevant errors of the considered dataset are not ordinary misprints. More 

than in half cases, misspelling result from inability of a speaker to deal with phonology—

orthography incongruity or forming a wrong morphological pattern, rather than from their 

inaccuracy. While some of these misspellings still do not fall under the narrow definition of 

grammatical errors (that is, related to ungrammaticality), they can definitely be viewed as a part of 

the language system (undertrained mental phonological—orthographic interface) and not an 

accidental typesetting problem. 

Proceeding to the interaction of the character-level errors and model performance, trivially, a model 

may fail to correct a spelling error (Table 3, BART [15]) and leave a incorrectly spelled word as it 

is. 

Table 3. Example of a simple spelling error 

source & corrected However , it is a good practice not to intesively use social media all 

the time . 

In some cases, the model tries to deal with a misspelling, but fails to fix it correctly. In the example 

in Table 4 by BART [15], instead of inserting the missing letter r into the word concurrently, the 

model replaces the whole word, which leads to a semantic distortion of the source sentence. 

Preprocessing of the text with a spellchecker prevents the model from this alteration. 

Table 4. Example of a spelling error leading to semantic distortion 

source … he or she concurently has a knowledge about others . 

corrected … he or she definitely has knowledge about others . 

spellcheck + corrected … he or she concurrently has knowledge about others . 

Lastly, a misspelling may affect processing of other types of errors, either close or long-distance. In 

the example in Table 5 by GECToR [9], in addition to the leaving the misspelling in the word 

dilenma, the output of the model contains collocation feel into, which is syntactically related to the 

word dilemma and infelicitous in the context. Furthermore, the model does not handle the word 

reflects, which is semantically incorrect and stands further away from the misspelling in the 

sentence. If the misspelling is corrected prior to model application, both reflect and feel into are 

handled better, although the latter case is still an imperfect correction. 

Table 5. Example of spelling error interacting with other error types 

source During that period , if one of the family member reflects genetic 

disorder symptoms , he will fell in an ethical dilenma for sure . 

corrected During that period , if one of the family members reflects genetic 

disorder symptoms , he will feel into an ethical dilenma for sure . 

spellcheck + corrected During that period , if one of the family members has genetic 

disorder symptoms , he will feel in an ethical dilemma for sure . 
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Summing up, the output of the discussed GEC model is influenced by spelling errors at different 

levels, starting from the mere inability to handle spelling and up to preventing correction of other 

errors at the scale of the whole sentence. Similar distortions can be noticed for other considered 

models, as well. 

In the next section we suggest an explanation for this notorious inability to correct character-level 

errors, which at least partially lies in the annotation for training and validation datasets. 

3. Noise in training and validation data 

3.1 Validation data 

CoNLL-2014 dataset contains 137 character-level errors that produce non-existent words. Despite 

elaborate and thorough annotation of different types of errors in other domains, the coverage of 

character-level errors producing non-existent words in the annotation is not high. Of all them, 94 

were missed by at least one annotator, 266 cases of unspotted misspellings were found in total. It 

means that more than a half of character-level errors cannot be accounted properly during the 

evaluation process. 

Table 6. Number of uncorrected non-existent words grouped by number of annotators 

annotators 1 2 3 4 5 6 7 8 9 total 

errors 32 23 10 9 8 5 5 1 1 94 

The detailed statistics on how many errors were missed by the annotators is presented in Table 6. 

One can notice that some errors are remarkably stealthy, unnoticed by most of annotators. The 

highest scores are: 9 annotators, newpaper — newspaper; 8 annotators techonology — technology; 

7 annotators subconsiously — subconsciously, covenient — convenient, againt — against, simliar 

— similar, acccount — account. 

The high quantity of non-annotated errors poses a problem for validation. This problem is especially 

significant due to the validation procedure, used in the setup with multiple annotations [26]. 

In order to account for multiple annotations by multiple experts, the output of the model is evaluated 

over all annotations and the highest F0.5-score is assigned to the model. 

This approach is suggested to capture the cases in which annotators correct an error in different yet 

equally grammatical ways. Otherwise, the availability of paraphrases with similar meanings could 

not be properly accounted for. 

However, in case of inaccuracy in the annotation, all other equal, it is the erroneous target sentence 

that receives the highest score for the model that does not make a correction. Thus, presence of both 

correct and incorrect options among annotations yields to indistinguishability of correctly and 

incorrectly working models. 

To avert this problem, we contribute a new version of the dataset, in which all listed cases of missed 

character-level errors are manually added to the annotation3. 

Notice that such corrections may not be considered as interfering with a personal choice of a rarer 

yet well-formed construction by the expert. All the corrected words are not found in any dictionary 

of Standard English (and are not among commonly used spellings that are not yet represented in 

dictionaries) and therefore must be viewed as overlooked unintentionally. The exact inserted 

annotations, including the error type, are based on the most frequent option among annotators who 

corrected a particular error. 

                                                           
3Additionally, rare occasions of misspellings in the corrections suggested by annotators were fixed. 
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3.2 Training data 

Having found from the validation dataset that experts often disregard spelling errors, one could 

suppose that training datasets must show even more noise of this type. Training datasets are much 

larger and are often annotated much less thoroughly (for example, one of frequently used training 

datasets cLang-8 [30-31] was annotated by language learners). 

In contrast, training datasets appear to be much clearer with respect to character-level errors. 

To estimate it, we check the training part of the FCE dataset [32], which contains about 18k 

sentences from texts by ESL learners, annotated by a single expert. For a random subset of the 

dataset, we automatically located all words that are marked as non-dictionary ones and then 

manually annotated about whether they contain an error. 

Table 7 compares the number of uncorrected character level errors in training and validation datasets 

and the density of sentences with character-level errors (both corrected and uncorrected). 

Table 7. Number of uncorrected character-level errors and the overall density of character-level errors in 

training and validation datasets 

 uncorrected errors, % of all 

character-level errors 

% of sentences with character-

level errors of all sentences 

FCE, training 3% 13.5% 

CoNLL-20144, 

validation 

19% per annotator 

69% for 10 annotators 

8.6% 

Table 7 shows that in the validation dataset, character-level errors are not included in the annotation 

much more often than in the training dataset. Consequently, even if this kind of errors is corrected 

well by the model, it will be difficult to evaluate when compared with models that demonstrate lower 

performances. This difficulty is enlarged with a low density of character-level errors in the dataset 

(only 8.6% of sentences in the dataset have them). 

On the other hand, some proportions of uncorrected character-level errors are included in the training 

dataset and thus may impact performance of the model. 

3.3 The source of noise and a way to prevent it 

Spelling errors are in most cases easy to correct. If there are no errors of other types or poor word 

choice in a fragment, annotators perfectly agree on how misspellings must be corrected. The main 

problem is to notice them. 

It is known that a person does not read familiar words letter by letter, but processes words or at least 

parts of words as a whole [33], [34]. For this reason, slight distortions of visual appearance of words 

are not necessarily perceived while regular reading. In contrast, grammatical errors which lead to 

infelicity at the sentence-level are expected to be conceived during regular reading easier. 

Therefore, correcting spelling errors practically requires from an expert to process the text twice, 

performing both natural reading and the other task, which due to its untypicality takes more effort. 

It is natural that without constant conscious effort even an utmost high-skilled reader is going to 

miss some of character-level errors. Provided that an expert is also expected to annotate other types 

of errors, the doing so is inevitable. 

As for the testing datasets, one can notice that because of their big sizes and costly annotation 

process, they are usually partially automatically annotated, which naturally includes spellcheck. As 

a result, the percentage of non-annotated character-level errors in the training dataset is lower.  

                                                           
4Based on the dataset with 10 annotators, missed errors per one annotator are calculated as total number of errors divided by 

number of annotators: 266/10=26.6. The value of 69% for 10 annotators is calculated for errors that were missed by at least 
one annotator. 
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The problem with the higher can be fixed by adding a simple spellchecker that locates non-existent 

words in am annotator's interface. It must not be a more complicated tool, as it may interfere with 

the way an expert corrects errors. 

4. Datasets  

4.1 Introduction of three datasets 

Further on, we will focus on the problem of character-level errors in validation data. We elaborate 

on the problem of partially correct annotation of the validation dataset. Then we proceed to the 

problem of low density of a particular type of errors in a dataset, which does not allow to test a 

model over this type of errors properly. 

As discussed in Section 3.1, we build on the validation dataset for the CoNLL-2014 [25] and use its 

version that was independently annotated by 10 experts [26]. Henceforth, we call it Original dataset. 

By correcting inaccuracies in annotation, discussed in Section 2, we create Corrected dataset5. 

Lastly, we generate Synthetic dataset6 with a higher density of spelling errors in order to highlight 

the trends that emerge from comparing Corrected and Original datasets. 

4.1 Generation of Synthetic dataset 

We build on the CoNLL-2014 validation dataset, rather than create a new one with only synthetically 

induced errors, to capture the interaction of character- and word-level errors, described in Section 2. 

We preserve all non-character-level errors, in order to capture their interaction with the character-

level ones. 

We rely on the algorithm for generating datasets suggested in [35], that is, probabilistically introduce 

spelling errors in the source sentences at a rate of 1–3 per sentence, randomly selecting deletion, 

insertion, replacement, or transposition of adjacent characters for each introduced error. 

The new density of character-level errors is much higher than the one in Original dataset. Yet it is 

not unrealistically high and does not make texts impossible to understand. 

Corrections to all errors induced into the dataset were added to each annotation. 

5. Performance of the models on character-level errors with different 
validation datasets  

5.1 Experiment 1: Original and Corrected datasets 

Table 8. Performance of four models on the original and corrected validation datasets, with and without 

preprocessing 

Model 

name 

original dataset corrected dataset 

only model, F0.5 
spellchecker + 

model, F0.5 
only model, F0.5 

spellchecker + 

model, F0.5 

BART 78.04 78.47 78.07 78.57 

GECToR 76.82 77.03 76.84 77.13 

T5 74.38 74.68 74.44 74.81 

LLaMA 68.58 68.58 68.77 68.78 

                                                           
5drive.google.com/drive/folders/169Xvvgn4eBIhSIzYjPE8YsTL93JwjlB2 
6drive.google.com/drive/folders/1lruoHhAyTrvMaJniAUz0I6G6H9hF57dP 
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5.1.1 Setup 

Noise in training and validation data affects performance and evaluation of a model. 

Noise in the training data is expected to worsen its overall result. In order to evaluate how good a 

model performs at the task of correcting character-level errors, we compare its metrics on validation 

to the metrics of the model after preprocessing of the source with a simple spellchecker (its 

architecture is described in more detail in Section 5.1.2). 

Noise in the validation data may not allow us to evaluate the performance of a model properly. This 

problem is aggravated by the way in which multiple unequal annotations are accounted for (see 

Section 3.1). This approach neatly captures the possibility of variation between different 

grammatical options of error correction. However, if the annotation includes an erroneous option, it 

is not necessarily outweighed by corrections of other annotators. That is, if at least one of the 

annotators missed an error, everything else equal, it may be this annotation which will be accounted 

for during validation. 

To evaluate the impact of the noise in the validation dataset, we compare performance of models on 

Original and Corrected datasets. For each model, we separately evaluate the performance of a model 

on its own and the performance of the system of both a spellchecker as a preprocessing tool and the 

model. 

Before proceeding to the scores of the models, we describe how the spellchecker system is 

organized. 

5.1.2 Spellchecker 

A spellchecker used for preprocessing should eliminate non-existent words and not affect the rest of 

the text. Non-existent words are a type of errors which is handled well by different spelling 

correction systems [36]. On the other hand, big GEC models under consideration handle non-

character-level errors, including word choice and discourse incongruence, well. For this reason, 

spelling errors that lead to creation of an existent word (bunch — brunch) are not corrected and are 

left to GEC models. We also do not correct spelling issues related to British / American orthography 

differences like the contract of -ise and -ize derivational suffixes (organised vs. organized). 

In the outlined setup, the most reasonable is a dictionary-based approach, which is not expected to 

creatively alter the source text. 

To enlarge the dictionary, we use multiple available spellcheckers, showing high quality on the task 

of correcting non-existent words: hunspell7, autocorrect8 and spellchecker9. 

5.1.3 Evaluation 

Table 8 presents how models perform on the original and corrected validation datasets with and 

without preprocessing by the spellchecker. 

The difference in the evaluation results is not large, which may be expected. 94 changes in 116 of 

1342 sentences have been made, so the changes on the third–forth significant digit is reasonable. 

Despite modest differences of scores, some feasible trends can be noticed. 

Firstly, the performance on the original and the corrected datasets either differs just slightly or is 

higher for the latter (up to ΔF0.5=0.19). Models, for which evaluation grew, are better at correcting 

spelling errors (see the next section form more detailed discussion) than whose performance didn't 

change significantly. Provided all that, one can conclude that in the new version of the dataset models 

are being punished less for correcting non-existent words and exhibit higher scores. 

                                                           
7Availabe at: https://pypi.org/project/hunspell/. 

8Availabe at: https://github.com/filyp/autocorrect/. 

9Availabe at: https://pypi.org/project/pyspellchecker/. 
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Noticeably, in combination with spellchecking, Corrected dataset produces consistently higher 

scores than Original dataset does. This result confirms that the corrected dataset is more sensitive to 

the character-level errors correction and awards better models that show higher quality with this type 

of errors. 

Secondly, all models except for LLaMA perform better when preprocessed with a spellchecker. The 

growth of the score is low (0.21–0.5), but consistent and goes along with the hypothesis that these 

models do not perform well for character-level errors. 

This means that applying a simple spellchecker to SOTA GEC models results in higher scores and 

this improves their overall performance. 

Ultimately, we test our models against a synthetic dataset that has a higher density of character-level 

errors to provide a more robust confirmation of our hypothesis. 

5.2 Experiment 2: Synthetic dataset  

We present the performance of models with and without spellchecker preprocessing in Table 9. 

Table 9. Performance of models with and without preprocessing, dataset with the high density of spelling errors 

model only model, F0.5 spellchecker + model, F0.5 

BART 76.79 83.6 

GECToR 75.34 82.3 

T5 76.89 81.77 

LLaMA 82.25 82.68 

For Synthetic dataset, scores with and without spellchecker-assisted preprocessing are significantly 

higher than for Original or Corrected dataset. It is expected, provided that the former contains by far 

more character-level errors than the latter two. 

Evaluation reveals that four models handle character-level errors to a different degree. BART and 

GECToR, though best performing on the Original and Corrected dataset, lowered their results on 

the Synthetic dataset. In contrast, adding multiple character-level errors increased the scores in T5 

and LLaMA, meaning that the models are better at correcting these types of errors. 

Three models: BART, GECToR and T5 show a considerable growth in metrics in combination with 

spellchecking. It strikingly differentiates them from LLaMA, which is less affected by the 

spellcheck. While on the original dataset, LLaMA model performs worst, the dataset with the high 

density of character level errors promotes it on top. The score of the model with and without a 

spellchecker are almost equal, meaning that LLaMA perfectly handles character-level errors induced 

into the dataset. 

Yet the spellcheck preprocessing allows the BART model to regain its first place. Therefore, for 

Synthetic dataset, SOTA GEC model combined with a simple spellchecker shows the best 

performance, while all three specialized GEC models without spelling check perform quite poorly.    

6. Discussion  

The experiment performed in the previous section confirms the hypotheses made in Section 5.1. 

Three big models, trained specifically for the GEC task: BART, GECToR and T5 perform worse 

than a simple spellchecker, when dealing with non-existent words. The experiment also allows to 

differentiate between these three models: T5 performs on this task better than two other models. 

Quite the opposite, LLaMA perfectly deals with character-level errors. 

This result contradicts the idea that big word or sentence-level models perform bad with character-

level errors, suggested in different studies [5-7]. 

What distinguishes LLaMA from all other models, making it good in correcting one (or, possibly, 

some) types of errors, but leaving it with a generally worse score? 
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One possible explanation is exposure or lack of exposure of a model to special training GEC datasets. 

Specialized GEC models are trained on grammatically and orthographically incorrect input, partially 

inaccurately annotated. Errors in annotation may lead to incorrect patterns being learned by a model. 

In contrast, LLaMA is (mostly) trained on grammatically correct texts produced by native speakers 

and is not generally expected to produce ungrammatical text if not asked otherwise (and does not do 

so in our data). 

Therefore, LLaMA usually does not preserve or produce wrongly spelled or ungrammatical output. 

What it is often punished for by the metrics is being over-creative, producing sentences that are too 

different from the initial ones. If a dataset is annotated by an expert who aims to keep the initial 

sentence as close to the original as possible, provided its grammaticality, a creative correction is 

going to receive a lower score. On the other hand, in the task of returning of not just a grammatically 

correct, but also natively sounding English sentence (for JFLEG dataset [37]), large language models 

like LLaMA or GPT models may perform better than specialized models [21]. On the other hand, a 

creative correction produced by such model may become semantically unequal to the source, making 

this correction erroneous. 

Further tuning of the large language models is therefore not aimed at correcting grammatical or 

orthographic errors in the input, but rather restraining it from changing the source too much. 

7. Conclusions  

Our study evaluated the performance of modern SOTA GEC systems on character-level errors. We 

described how this type of errors interferes with the performance of GEC systems and confirmed 

that they still struggle through handling character-level errors, like they deed over recent decade [5-

7]. In contrast to the cited studies, we however notice that not all large language models perform 

badly with character-level errors: LLaMA, though being worse in the GEC task in general, performs 

on this particular error type better. We relate this difference to the exposure to annotated 

ungrammatical texts, which contain noise in training data. 

An immediate practical output of the study is the suggestion of performing spellcheck preprocessing 

as a common practice with GEC models. Some studies do so for English [12-13], [7], [14] and it is 

a regular practice for Chinese because of the peculiar traits of its graphical system [38-39]. Still, 

handling character-level errors is not discussed in many recent studies. 

In a longer-term perspective, this suggestion cannot be considered most suitable: one could desire 

for a big language model to correct all kinds of errors, rather than just a spellcheck including system. 

Suggested steps to achieve this result are to clean training (at least from character-level errors) and 

validation datasets for specialized models. 

The last important result is that the sensitivity of a particular validation dataset may not be sensitive 

enough to evaluate performance of a model for a particular type of errors. Study [1] lists several 

types of errors that modern models are unable to handle adequately, including the correction of 

unnatural phrases, correction of patterns requiring information about sentence structure, and 

correction of errors that involve inter-sentence relationships. In such cases, to capture the difference 

in model performance, validation datasets with a higher error density can be done. 

In this study, we start with character-level errors, for which a high-density dataset is relatively easy 

to synthesize and show that it allows to highlight differences in performance of models. This dataset 

can be used in further studies to report on the results for specifically character-level errors, though 

without missing the information about their interaction with other types of errors. To obtain such an 

opportunity for other kinds of errors, more work on collecting natural examples with them or more 

elaborate synthesizing is to be done.  
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