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Abstract. The study focuses on how modern GEC systems handle character-level errors. We discuss the ways
these errors effect the performance of models and test how models of different architectures handle them. We
conclude that specialized GEC systems do struggle against correcting non-existent words, and that a simple
spellchecker considerably improve overall performance of a model. To evaluate it, we assess the models over
several datasets. In addition to CoNLL-2014 validation dataset, we contribute a synthetic dataset with higher
density of character-level errors and conclude that, provided that models generally show very high scores,
validation datasets with higher density of tricky errors are a useful tool to compare models. Lastly, we notice
cases of incorrect treatment of non-existent words on experts' annotation and contribute a cleared version of
this dataset. In contrast to specialized GEC systems, LLaMA model used for GEC task handles character-level
errors well. We suggest that this better performance is explained by the fact that Alpaca is not extensively
trained on annotated texts with errors, but gets as input grammatically and orthographically correct texts.
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AHHoTaums. VccnenoBaHue COCpPENOTa4YMBACTCS Ha IpoOJEME TOro, KakK COBPEMEHHBIE CHCTEMbI
HCTIpaBIICHHUS TPaMMaTHYECKUX OMMOOK 00padaThIBalOT OIMOKK Ha ypoBHE ciioBa. Pabora oOcyxaaer, Kak
MOIO0HBIE OIIMOKH MOTYT B3aUMOJCHCTBOBaTh ¢ d(P(EKTHBHOCTHIO MOJICIH, U OLICHWBACT, KaK MOJCIH C
pa3HBIMH apXUTEKTYPaMHU CIIPABISIETCS C HUMH. JlenaeTcst BEIBOJ O TOM, YTO CIELMATHN3UPOBAHHbBIC CHCTEMbI
HCOPaBJICHUS TPaMMaTHYECKUX OIIMOOK CTaJKMBAIOTCS C MpobjaeMaMy NpPH  HMCHPABICHUM OIIMOOK,
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MPUBOAAIINX K CO3JAaHHIO HECYIIECTBYIOIIUX CIIOB, U 4TO MpenoOpaboTKa ¢ MOMOIIBIO MPOCTOH CHCTEMOi
00paboTKH MOJOOHBIX OLIMOOK 3HAYUTENBHO yiIydinaeT oouryio 3¢ GekTHBHOCTh MoJienu. [ OLEeHKH 3TOro
paboTa MOJeNH TeCcTHpyeTcsl Ul HECKOJIBKHX BaJMJAlMOHHBIX HaTaceTaX. BnoOaBok K BamuIanMOHHOMY
naracery copeBHoBaHus CONLL-2014 B paborte mpemraraercs CHHTETHYECKHH JaTaceT C ITOBBIIIEHHOH
IUTOTHOCTBIO OMMOOK Ha ypoBHE cioBa. Ha ocHoBaHMM cpaBHeHHS 3(QQEKTHBHOCTH MOJENM Ha IBYX
JaraceTax, paboTa JelaeT BBIBOA O TOM, YTO BaJHMIAIIMOHHBIC aTaceThl ¢ BBICOKOW IUIOTHOCTHIO ONIMOOK,
MIPECTABISIONINX TPOOIeMy ISl MOAENEH, — 3TO MONE3HbIH HHCTPYMEHT ISl CpaBHEHUsI Mojenei. Kpome
TOTO, paboTa yKa3bIBaeT Ha CIIydal HEKOPPEKTHONW aHHOTAIMU HECYIIECTBYIOIIUX CIIOB B Pa3METKE SKCIIEPTOB
U TIpeAjaraeT OYMINEHHYIO BEPCHIO jJaTaceTa. B oTiamdue OT cliennaau3upOBaHHBIX CHCTEM HCIPABICHHS
rpaMMaTH4YecKuX OmuOoK, Moxenb LLaMA, ucnonp3yemcs Ui 3aJaydl MCOpPABIEHHS TPaMMAaTHUYECKHX
OIIMOOK XOPOIIO CIPABISIETCS C OMIMOKaMH Ha YPOBHE cJI0Ba. MBI Ipe/IoyiaraeM TUIoTe3y, B COOTBETCTBUH
C KOTOpO#l ATOT pe3yibTaT OOBSICHSIETCS TeM (aKTOM, YTO 3Ta MOAENs He o0ydaeTcss Ha CHEenUaIbHOI
AQHHOTHPOBAHHOHN BBIOOpKE, coJepiKamiell OIIMOKW, a MOoNydaeT B KauyecTBE BXOAAa TI'PaMMATHYECKH U
opdorpadudecKi KOPPEKTHBIE TEKCTHL.

KiioueBble cJ0Ba: aBTOMAaTHYECKOE HCIPABICHHE TIPaMMATHYECKUX OIIMOOK; BaluJauys; CIEILTYCK;
npenobpaboTka; CHHTETUUECKHE AaTaceThl.

Jnsa mutupoBanus: Crapuenko B.M., Crapuenko A.M. [IpobGiema Bamumamuyd COBPEMEHHBIX CHCTEM
HCIIPABIICHUS IPAMMATHYECKUX OMIMOOK: ciry4dail ommbok Ha ypoBHe cumBooB. Tpyast ICII PAH, 2023, Tom
35 Bpim. 5, ¢. 215-228 (Ha aHTIIMHCKOM si3bike). DOI: 10.15514/ISPRAS-2023-35(5)-14.

BaaromapnocTn. ccnenoBanue ocymiecTBiIeHO B pamkax [IporpamMMsl yHAaMEHTaNBHBIX HCCIEAOBAaHHUN
HUY BIID B 2023 romy. Mer 6maromapusl A. C. BripenkoBoit 1 O. H. Jlsmesckod 3a moapoOHbIe
KoMMeHTapuu K pabote, O. H. BuHorpamoBoii 3a momoins B HCCIIIOBaHUAX. Bce BO3MOXHBIC OIIUOKH,
KOTOpBIE MOTJIN OCTaThCsI B HACTOsIIEH paboTe, HCKIIOYUTEIBHO Ha HAIleH COBECTH.

1. Introduction

Tools for GEC (Grammatical error correction) tasks have greatly improved over recent decades. In
terms of metrics, modern big language models outperform a human annotator in the GEC task [1];
overviews [2-4] present the performance growth at different stages. GEC models are however still
noticed to fail in correcting several types of errors that would be easily and necessarily corrected by
a human [1].

Despite the part “grammatical” in GEC, the task is usually understood wider than the mere correction
of illicit grammar use. As the expected result is a text judged natural by a native speaker, spelling,
punctuation, word choice, stylistic and other types of errors are treated, as well.

One must note that the best-performing modern models for GEC show pure results with character-
level errors, and this problem had been preserved during the last decade [5-7]. If the errors ranked
according to their difficulty, this type is considered one of the easiest to correct [8].

Consider a spelling error in Table 1, which the GECToR model [9] fails to correct (diagonosed
instead of diagnosed). In contrast, several other errors are successfully handled, including article
use, word form selection and phrasal verbs. Notice that the error in Table 1 is not challenging to
detect because it results in a non-existent word, and the closest candidate in terms of Levenshtein
distance is a required one. This type of errors is effectively handled with a number of tools
performing with a quality acceptable for practical use for a very long time [10-11].

Table 1. Example of the failure and successes of a GEC model

source When we are diagonosed out with certain genetic disease , are we suppose to
disclose this result to our relatives ?

corrected | When we are diagonosed with a certain genetic disease, are we supposed to
=target | disclose this result to our relatives ?

Although some researchers apply spellcheckers or character-based models as a part of preprocessing
[12-13], [7], [14], it is still not a common practice for modern GEC. For example, the possibility of
preprocessing of spelling is not discussed in the recent detailed overview of approaches to GEC [4].
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In this study we focus on how character-level, primarily spelling errors affect the output of best-
performing GEC models with different architecture. We test 3 SOTA GEC systems with different
architecture: GECToR (large) [9], BART (large) [15], and T5 (base) [16]. We also add LLaMA 7B
model [17-18] fine-tuned as Alpaca 7B [19]. Large language models like LLaMA or GPT [20] have
been recently tested for multiple tasks, including GEC, though at the moment they exhibit lower
performance than other models [21]* show for English?. Of other modern SOTA GEC system we do
not separately discuss the SynGEC [23], as the cited study shows that the innovations introduced by
this complex model to regular transformer-based baseline / BART worsen the performance on
spelling errors [23: 2525]. The evaluation of GEC-DI [24], which has been very recently released
and suggested to us by one of anonymous reviewers, we leave to the further studies.

Table 2 presents performance of the models, evaluated on the validation dataset for CoNLL-2014
[25] with annotation by 10 experts [26]. FO.5 metric is used, which is argued to represent human
judgments well [27-29].

Table 2. Performance of SOTA GEC systems and human experts

model name Fos
BART 78.04
GECToR 76.82
T5 74.38
LLaMA 68.58
human experts 72.58

Three best-evaluated models: BART, GECToR and T5, show higher scores than human experts do
with respect to each other. Yet, we are going to confirm that they perform imperfectly with character-
level errors.

Elaborating on the nature of the spelling pitfall of big language models, we notice that both training
and especially validation datasets for GEC tasks are noisy when dealing with character-level errors.
We contribute a cleared version of CoNLL-2014 validation dataset [25] (its 10-annotators version
[26]) and a synthetic dataset with a higher density of spelling errors (but also including all other
types of errors), which can be used for testing the impact of this kind of errors. We further suggest
that such datasets with high error density are a useful tool to test models that generally show very
high performance over tricky types of errors.

Based on both datasets we show that all the tested models designed specifically for GEC show higher
performance with spelling errors corrected at the preprocessing stage. In contrast, results of LLaMA
model, despite its purer performance in general, is almost not affected with the preprocessing.

The rest of the paper is organized as follows: Section 2 describes the ways in which character-level
errors interact with the performance of models. Section 3 discusses the representation and the source
of this kind of errors in training and validation data. Section 4 presents three datasets we work with.
Section 5 presents an experiment that evaluates the influence of preprocessing of spelling errors on
the performance, based on these datasets. Sections 6 interprets the experiments and presents the
discussion. Section 7 is the conclusion.

IWe use a prompt different from the one suggested for GPT 3.5/4 in [21], as our prompt gives a higher score: Fys=68.58
compared to Fos=64.34. The used prompt is: You will receive a text in English and you must check whether it contain any
errors, according to English language rules. Return a corrected version of the text. Don't correct stylistic errors. Do not
correct sentences that may be correct in some context. The final text should not contain errors.

Though s.f. [22] for Swedish, for which GPT 3 outperforms all other models.
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2. Relationship between model performance and misspellings

In this section we discuss how character-level error may affect the performance of a model based on
the CoNLL-2014 validation dataset.

We only restrict ourselves to the errors resulting in non-existent words. In most cases such errors
result from misprints (wth instead of with, otherm instead of other), problems with spelling
orthographically difficult words (hypertesion / hypertention instead of hypertension, percieved
instead of perceived) and the influence of the native language of an author (e. g. insertion of o in
consonants clusters by Singapore students: techonology, diagonosed). Rarer an error emerges as a
result of a morphological process including creating a non-existent word form (plural medias instead
of media) or derivation (disclosement instead of disclosure). Supposed misprints that lead to the use
of an existing word which does not fit the context (brunch instead of bunch) are considered as word
choice errors and therefore are not discussed.

Noticeably, in most cases relevant errors of the considered dataset are not ordinary misprints. More
than in half cases, misspelling result from inability of a speaker to deal with phonology—
orthography incongruity or forming a wrong morphological pattern, rather than from their
inaccuracy. While some of these misspellings still do not fall under the narrow definition of
grammatical errors (that is, related to ungrammaticality), they can definitely be viewed as a part of
the language system (undertrained mental phonological—orthographic interface) and not an
accidental typesetting problem.

Proceeding to the interaction of the character-level errors and model performance, trivially, a model
may fail to correct a spelling error (Table 3, BART [15]) and leave a incorrectly spelled word as it
is.

Table 3. Example of a simple spelling error

source & corrected | However , it is a good practice not to intesively use social media all
the time .

In some cases, the model tries to deal with a misspelling, but fails to fix it correctly. In the example
in Table 4 by BART [15], instead of inserting the missing letter r into the word concurrently, the
model replaces the whole word, which leads to a semantic distortion of the source sentence.
Preprocessing of the text with a spellchecker prevents the model from this alteration.

Table 4. Example of a spelling error leading to semantic distortion

source ... he or she concurently has a knowledge about others .
corrected ... he or she definitely has knowledge about others .
spellcheck + corrected | ... he or she concurrently has knowledge about others .

Lastly, a misspelling may affect processing of other types of errors, either close or long-distance. In
the example in Table 5 by GECToR [9], in addition to the leaving the misspelling in the word
dilenma, the output of the model contains collocation feel into, which is syntactically related to the
word dilemma and infelicitous in the context. Furthermore, the model does not handle the word
reflects, which is semantically incorrect and stands further away from the misspelling in the
sentence. If the misspelling is corrected prior to model application, both reflect and feel into are
handled better, although the latter case is still an imperfect correction.

Table 5. Example of spelling error interacting with other error types

source During that period , if one of the family member reflects genetic
disorder symptoms , he will fell in an ethical dilenma for sure .
corrected During that period , if one of the family members reflects genetic

disorder symptoms , he will feel into an ethical dilenma for sure .

spellcheck + corrected | During that period , if one of the family members has genetic
disorder symptoms , he will feel in an ethical dilemma for sure .
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Summing up, the output of the discussed GEC model is influenced by spelling errors at different
levels, starting from the mere inability to handle spelling and up to preventing correction of other
errors at the scale of the whole sentence. Similar distortions can be noticed for other considered
models, as well.

In the next section we suggest an explanation for this notorious inability to correct character-level
errors, which at least partially lies in the annotation for training and validation datasets.

3. Noise in training and validation data

3.1 Validation data

CoNLL-2014 dataset contains 137 character-level errors that produce non-existent words. Despite
elaborate and thorough annotation of different types of errors in other domains, the coverage of
character-level errors producing non-existent words in the annotation is not high. Of all them, 94
were missed by at least one annotator, 266 cases of unspotted misspellings were found in total. It
means that more than a half of character-level errors cannot be accounted properly during the
evaluation process.

Table 6. Number of uncorrected non-existent words grouped by number of annotators

annotators 1 2 3 4 5 6 7 8 9 total
errors 32 23 10 9 8 5 5 1 1 94

The detailed statistics on how many errors were missed by the annotators is presented in Table 6.
One can notice that some errors are remarkably stealthy, unnoticed by most of annotators. The
highest scores are: 9 annotators, newpaper — newspaper; 8 annotators techonology — technology;
7 annotators subconsiously — subconsciously, covenient — convenient, againt — against, simliar
— similar, acccount — account.

The high quantity of non-annotated errors poses a problem for validation. This problem is especially
significant due to the validation procedure, used in the setup with multiple annotations [26].

In order to account for multiple annotations by multiple experts, the output of the model is evaluated
over all annotations and the highest Fos-score is assigned to the model.

This approach is suggested to capture the cases in which annotators correct an error in different yet
equally grammatical ways. Otherwise, the availability of paraphrases with similar meanings could
not be properly accounted for.

However, in case of inaccuracy in the annotation, all other equal, it is the erroneous target sentence
that receives the highest score for the model that does not make a correction. Thus, presence of both
correct and incorrect options among annotations yields to indistinguishability of correctly and
incorrectly working models.

To avert this problem, we contribute a new version of the dataset, in which all listed cases of missed
character-level errors are manually added to the annotation®.

Notice that such corrections may not be considered as interfering with a personal choice of a rarer
yet well-formed construction by the expert. All the corrected words are not found in any dictionary
of Standard English (and are not among commonly used spellings that are not yet represented in
dictionaries) and therefore must be viewed as overlooked unintentionally. The exact inserted
annotations, including the error type, are based on the most frequent option among annotators who
corrected a particular error.

3Additiona||y, rare occasions of misspellings in the corrections suggested by annotators were fixed.
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3.2 Training data

Having found from the validation dataset that experts often disregard spelling errors, one could
suppose that training datasets must show even more noise of this type. Training datasets are much
larger and are often annotated much less thoroughly (for example, one of frequently used training
datasets cLang-8 [30-31] was annotated by language learners).

In contrast, training datasets appear to be much clearer with respect to character-level errors.

To estimate it, we check the training part of the FCE dataset [32], which contains about 18k
sentences from texts by ESL learners, annotated by a single expert. For a random subset of the
dataset, we automatically located all words that are marked as non-dictionary ones and then
manually annotated about whether they contain an error.

Table 7 compares the number of uncorrected character level errors in training and validation datasets
and the density of sentences with character-level errors (both corrected and uncorrected).

Table 7. Number of uncorrected character-level errors and the overall density of character-level errors in
training and validation datasets

uncorrected errors, % of all % of sentences with character-
character-level errors level errors of all sentences
FCE, training 3% 13.5%
CoNLL-20144, 19% per annotator 8.6%
validation 69% for 10 annotators

Table 7 shows that in the validation dataset, character-level errors are not included in the annotation
much more often than in the training dataset. Consequently, even if this kind of errors is corrected
well by the model, it will be difficult to evaluate when compared with models that demonstrate lower
performances. This difficulty is enlarged with a low density of character-level errors in the dataset
(only 8.6% of sentences in the dataset have them).

On the other hand, some proportions of uncorrected character-level errors are included in the training
dataset and thus may impact performance of the model.

3.3 The source of noise and a way to prevent it

Spelling errors are in most cases easy to correct. If there are no errors of other types or poor word
choice in a fragment, annotators perfectly agree on how misspellings must be corrected. The main
problem is to notice them.

It is known that a person does not read familiar words letter by letter, but processes words or at least
parts of words as a whole [33], [34]. For this reason, slight distortions of visual appearance of words
are not necessarily perceived while regular reading. In contrast, grammatical errors which lead to
infelicity at the sentence-level are expected to be conceived during regular reading easier.
Therefore, correcting spelling errors practically requires from an expert to process the text twice,
performing both natural reading and the other task, which due to its untypicality takes more effort.
It is natural that without constant conscious effort even an utmost high-skilled reader is going to
miss some of character-level errors. Provided that an expert is also expected to annotate other types
of errors, the doing so is inevitable.

As for the testing datasets, one can notice that because of their big sizes and costly annotation
process, they are usually partially automatically annotated, which naturally includes spellcheck. As
a result, the percentage of non-annotated character-level errors in the training dataset is lower.

“Based on the dataset with 10 annotators, missed errors per one annotator are calculated as total number of errors divided by
number of annotators: 266/10=26.6. The value of 69% for 10 annotators is calculated for errors that were missed by at least
one annotator.
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The problem with the higher can be fixed by adding a simple spellchecker that locates non-existent
words in am annotator's interface. It must not be a more complicated tool, as it may interfere with
the way an expert corrects errors.

4. Datasets

4.1 Introduction of three datasets

Further on, we will focus on the problem of character-level errors in validation data. We elaborate
on the problem of partially correct annotation of the validation dataset. Then we proceed to the
problem of low density of a particular type of errors in a dataset, which does not allow to test a
model over this type of errors properly.

As discussed in Section 3.1, we build on the validation dataset for the CONLL-2014 [25] and use its
version that was independently annotated by 10 experts [26]. Henceforth, we call it Original dataset.
By correcting inaccuracies in annotation, discussed in Section 2, we create Corrected dataset®.
Lastly, we generate Synthetic dataset® with a higher density of spelling errors in order to highlight
the trends that emerge from comparing Corrected and Original datasets.

4.1 Generation of Synthetic dataset

We build on the CoNLL-2014 validation dataset, rather than create a new one with only synthetically
induced errors, to capture the interaction of character- and word-level errors, described in Section 2.
We preserve all non-character-level errors, in order to capture their interaction with the character-
level ones.

We rely on the algorithm for generating datasets suggested in [35], that is, probabilistically introduce
spelling errors in the source sentences at a rate of 1-3 per sentence, randomly selecting deletion,
insertion, replacement, or transposition of adjacent characters for each introduced error.

The new density of character-level errors is much higher than the one in Original dataset. Yet it is
not unrealistically high and does not make texts impossible to understand.

Corrections to all errors induced into the dataset were added to each annotation.

5. Performance of the models on character-level errors with different
validation datasets

5.1 Experiment 1: Original and Corrected datasets

Table 8. Performance of four models on the original and corrected validation datasets, with and without
preprocessing

Model original dataset corrected dataset
BART 78.04 78.47 78.07 78.57
GECToR 76.82 77.03 76.84 77.13
T5 74.38 74.68 74.44 74.81
LLaMA 68.58 68.58 68.77 68.78

Sdrive.google.com/drive/folders/169Xvvgn4eBIhSIzYjPESYsTLI3JwjlB2
édrive.google.com/drive/folders/LiruoHhAyTrvMalniAUz016G6HIhF57dP
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5.1.1 Setup

Noise in training and validation data affects performance and evaluation of a model.

Noise in the training data is expected to worsen its overall result. In order to evaluate how good a
model performs at the task of correcting character-level errors, we compare its metrics on validation
to the metrics of the model after preprocessing of the source with a simple spellchecker (its
architecture is described in more detail in Section 5.1.2).

Noise in the validation data may not allow us to evaluate the performance of a model properly. This
problem is aggravated by the way in which multiple unequal annotations are accounted for (see
Section 3.1). This approach neatly captures the possibility of variation between different
grammatical options of error correction. However, if the annotation includes an erroneous option, it
is not necessarily outweighed by corrections of other annotators. That is, if at least one of the
annotators missed an error, everything else equal, it may be this annotation which will be accounted
for during validation.

To evaluate the impact of the noise in the validation dataset, we compare performance of models on
Original and Corrected datasets. For each model, we separately evaluate the performance of a model
on its own and the performance of the system of both a spellchecker as a preprocessing tool and the
model.

Before proceeding to the scores of the models, we describe how the spellchecker system is
organized.

5.1.2 Spellchecker

A spellchecker used for preprocessing should eliminate non-existent words and not affect the rest of
the text. Non-existent words are a type of errors which is handled well by different spelling
correction systems [36]. On the other hand, big GEC models under consideration handle non-
character-level errors, including word choice and discourse incongruence, well. For this reason,
spelling errors that lead to creation of an existent word (bunch — brunch) are not corrected and are
left to GEC models. We also do not correct spelling issues related to British / American orthography
differences like the contract of -ise and -ize derivational suffixes (organised vs. organized).

In the outlined setup, the most reasonable is a dictionary-based approach, which is not expected to
creatively alter the source text.

To enlarge the dictionary, we use multiple available spellcheckers, showing high quality on the task
of correcting non-existent words: hunspell’, autocorrect® and spellchecker®.

5.1.3 Evaluation

Table 8 presents how models perform on the original and corrected validation datasets with and
without preprocessing by the spellchecker.

The difference in the evaluation results is not large, which may be expected. 94 changes in 116 of
1342 sentences have been made, so the changes on the third—forth significant digit is reasonable.
Despite modest differences of scores, some feasible trends can be noticed.

Firstly, the performance on the original and the corrected datasets either differs just slightly or is
higher for the latter (up to 4F;5=0.19). Models, for which evaluation grew, are better at correcting
spelling errors (see the next section form more detailed discussion) than whose performance didn't
change significantly. Provided all that, one can conclude that in the new version of the dataset models
are being punished less for correcting non-existent words and exhibit higher scores.

"Availabe at: https://pypi.org/project/hunspell/.
8Availabe at: https://github.com/filyp/autocorrect/.
9Availabe at: https://pypi.org/project/pyspelichecker/.
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Noticeably, in combination with spellchecking, Corrected dataset produces consistently higher
scores than Original dataset does. This result confirms that the corrected dataset is more sensitive to
the character-level errors correction and awards better models that show higher quality with this type
of errors.

Secondly, all models except for LLaMA perform better when preprocessed with a spellchecker. The
growth of the score is low (0.21-0.5), but consistent and goes along with the hypothesis that these
models do not perform well for character-level errors.

This means that applying a simple spellchecker to SOTA GEC models results in higher scores and
this improves their overall performance.

Ultimately, we test our models against a synthetic dataset that has a higher density of character-level
errors to provide a more robust confirmation of our hypothesis.

5.2 Experiment 2: Synthetic dataset
We present the performance of models with and without spellchecker preprocessing in Table 9.
Table 9. Performance of models with and without preprocessing, dataset with the high density of spelling errors

model only model, Fos spellchecker + model, Fos
BART 76.79 83.6
GECToR 75.34 82.3
T5 76.89 81.77
LLaMA 82.25 82.68

For Synthetic dataset, scores with and without spellchecker-assisted preprocessing are significantly
higher than for Original or Corrected dataset. It is expected, provided that the former contains by far
more character-level errors than the latter two.

Evaluation reveals that four models handle character-level errors to a different degree. BART and
GECTOR, though best performing on the Original and Corrected dataset, lowered their results on
the Synthetic dataset. In contrast, adding multiple character-level errors increased the scores in T5
and LLaMA, meaning that the models are better at correcting these types of errors.

Three models: BART, GECToR and T5 show a considerable growth in metrics in combination with
spellchecking. It strikingly differentiates them from LLaMA, which is less affected by the
spellcheck. While on the original dataset, LLaMA model performs worst, the dataset with the high
density of character level errors promotes it on top. The score of the model with and without a
spellchecker are almost equal, meaning that LLaMA perfectly handles character-level errors induced
into the dataset.

Yet the spellcheck preprocessing allows the BART model to regain its first place. Therefore, for
Synthetic dataset, SOTA GEC model combined with a simple spellchecker shows the best
performance, while all three specialized GEC models without spelling check perform quite poorly.

6. Discussion

The experiment performed in the previous section confirms the hypotheses made in Section 5.1.
Three big models, trained specifically for the GEC task: BART, GECToR and T5 perform worse
than a simple spellchecker, when dealing with non-existent words. The experiment also allows to
differentiate between these three models: T5 performs on this task better than two other models.
Quite the opposite, LLaMA perfectly deals with character-level errors.
This result contradicts the idea that big word or sentence-level models perform bad with character-
level errors, suggested in different studies [5-7].
What distinguishes LLaMA from all other models, making it good in correcting one (or, possibly,
some) types of errors, but leaving it with a generally worse score?
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One possible explanation is exposure or lack of exposure of a model to special training GEC datasets.
Specialized GEC models are trained on grammatically and orthographically incorrect input, partially
inaccurately annotated. Errors in annotation may lead to incorrect patterns being learned by a model.
In contrast, LLaMA is (mostly) trained on grammatically correct texts produced by native speakers
and is not generally expected to produce ungrammatical text if not asked otherwise (and does not do
so in our data).

Therefore, LLaMA usually does not preserve or produce wrongly spelled or ungrammatical output.
What it is often punished for by the metrics is being over-creative, producing sentences that are too
different from the initial ones. If a dataset is annotated by an expert who aims to keep the initial
sentence as close to the original as possible, provided its grammaticality, a creative correction is
going to receive a lower score. On the other hand, in the task of returning of not just a grammatically
correct, but also natively sounding English sentence (for JFLEG dataset [37]), large language models
like LLaMA or GPT models may perform better than specialized models [21]. On the other hand, a
creative correction produced by such model may become semantically unequal to the source, making
this correction erroneous.

Further tuning of the large language models is therefore not aimed at correcting grammatical or
orthographic errors in the input, but rather restraining it from changing the source too much.

7. Conclusions

Our study evaluated the performance of modern SOTA GEC systems on character-level errors. We
described how this type of errors interferes with the performance of GEC systems and confirmed
that they still struggle through handling character-level errors, like they deed over recent decade [5-
7]. In contrast to the cited studies, we however notice that not all large language models perform
badly with character-level errors: LLaMA, though being worse in the GEC task in general, performs
on this particular error type better. We relate this difference to the exposure to annotated
ungrammatical texts, which contain noise in training data.

An immediate practical output of the study is the suggestion of performing spellcheck preprocessing
as a common practice with GEC models. Some studies do so for English [12-13], [7], [14] and it is
a regular practice for Chinese because of the peculiar traits of its graphical system [38-39]. Still,
handling character-level errors is not discussed in many recent studies.

In a longer-term perspective, this suggestion cannot be considered most suitable: one could desire
for a big language model to correct all kinds of errors, rather than just a spellcheck including system.
Suggested steps to achieve this result are to clean training (at least from character-level errors) and
validation datasets for specialized models.

The last important result is that the sensitivity of a particular validation dataset may not be sensitive
enough to evaluate performance of a model for a particular type of errors. Study [1] lists several
types of errors that modern models are unable to handle adequately, including the correction of
unnatural phrases, correction of patterns requiring information about sentence structure, and
correction of errors that involve inter-sentence relationships. In such cases, to capture the difference
in model performance, validation datasets with a higher error density can be done.

In this study, we start with character-level errors, for which a high-density dataset is relatively easy
to synthesize and show that it allows to highlight differences in performance of models. This dataset
can be used in further studies to report on the results for specifically character-level errors, though
without missing the information about their interaction with other types of errors. To obtain such an
opportunity for other kinds of errors, more work on collecting natural examples with them or more
elaborate synthesizing is to be done.
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