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Abstract. The Requirements Engineering (ER) phase plays a critical role in software development, as any
shortcomings during this stage can lead to project failure. Analysts rely on Requirements Specification (RS) to
define a comprehensive list of quality requirements. The process of requirements classification, within RS,
involves assigning each requirement to its respective class, presenting analysts with the challenge of accurate
categorization. This research focuses on enhancing the classification of non-functional requirements (NFR)
using a Convolutional Neural Network (CNN). The study also emphasizes the significance of preprocessing
techniques, the implementation of sampling strategies, and the incorporation of pre-trained word embeddings
such as Fasttext, Glove, and Word2vec. Evaluation of the proposed approach is performed using metrics like
Recall, Precision, and F1, resulting in an average performance improvement of up to 30% compared to related
work. Additionally, the model is assessed concerning its utilization of pre-trained word embeddings through
ANOVA analysis, providing valuable insights into its effectiveness. This study aims to demonstrate the utility
of CNNs and pre-trained word embeddings in the classification of NFRs, offering valuable contributions to the
field of Requirements Engineering and enhancing the overall software development process.
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Annotanus. ®aza paspaboTtku Tpebosanuii (ER) urpaer pemaromyo poias B pa3paboTKe MPOrpaMMHOTO
obecreyeHus, MOCKOJIbKY JIF00bIe HEeJOCTATKH Ha 3TOM 3Tale MOT'YT PUBECTH K IIPOBAJLY POCKTA. AHAJIUTUKH
noyararotcsi Ha cnerudukanuro TpedoBanuii (RS) st onpenenenns NomHOro crucka TpeGoBaHUH K KauecTBY.
Iponecc kmaccndpukanum TpeOoBaHMH B paMkax RS BIOYaeT OTHeceHHE KaXKIOTO TPeOOBaHUS K
COOTBETCTBYIOIIEMY KJIacCy, YTO CTaBHUT IIepej aHAIUTUKAMH 3aJady TOYHOU Kiaccupukanuu. JaHHOe
HCCIIeJOBaHNE HAMTPABJICHO Ha YIIy4IlICHHE KaueCTBa Kiaccuukaiiu HeyHKIMOHaIbHBIX TpeGoBanuit (NFR)
Ha OCHOBe mHpHMeHeHusi cBeprouHoii Heiiponuoil cern (CNN). B uccienoBaHuy Takke MMOJUSPKUBACTCS
BOKHOCTh METOJOB IIPE/BAPUTENIBHON 00paOOTKH, pealH3allii CTpaTerdii BBIOOPKM W BKIIOYCHHS
npeBapUTeIbHO O0YyYEHHBIX BEKTOPHBIX MPEJCTAaBICHMI CIIOB, Takux Kak Fasttext, Glove u Word2vec.
OrieHKa MpeIaraeMoro 1mo/IX0/1a BBIMOIHSIETCS ¢ UCIOIb30BaHNEM TaKUX METPHK, kak Recall, Precision u F1,
YTO HPHUBOJIHT K CPETHEMY YIy4LICHHIO TPOU3BOIUTENHLHOCTH 10 30% 10 CpaBHEHUIO C IPYTUMH MOIXOJAMH.
Kpome Toro, Mozenb OleHHBAeTCS B OTHOILICHUH HCIIOIB30BAaHMS IPEIBAPUTEILHO O0YUSHHBIX BEKTOPHBIX
mpejicTaBieHud cioB ¢ momompio  aHamuza ANOVA, mpenmoctaBiss ICHHYIO HHPOpPMAIHIO O e¢
s¢dexTrBHOCTH. DTO HCCIEAOBaHNE HANPaBICHO Ha TO, YTOOBI MpoaeMoHcTpupoBaTh noje3HocTs CNN u
MIpeIBAPUTENHFHO O0YUYCHHBIX BEKTOPHBIX MpEACTaBIcHUH caoB B kinaccupukannu NFR, npeanaras neHHbIH
BKJIaJ B OOJACTH HWHXKEHEpHH TpeOOBaHMHA H ymy4mas oOmmMid mmporecc pa3pabOTKU IMPOrpaMMHOTO
obecnedyeHus.

KioueBsble ciioBa: rirybokoe oOyueHHe, He)yHKIHOHANBHBIE TPeOOBaHUS; CBEpPTOYHAs HEWPOHHAS CETh,
WHXeHepHs TpeOOoBaHU.

Jst uutupoBanmus: Maptunec-I'apcus C. D., ®epnannec-u-dOeprangec K. A., Pamoc-Ilepec 3. I'. I'my6okoe
oOydeHne npHu BBIPaOOTKe HeyHKIMOHAIBHBIX TPeOOBaHMIl: MOAXOX HAa OCHOBE CBEPTOYHBIX HEHPOHHBIX
cereit. Tpymst MCIT PAH, tom 36, Bem. 1, 2024 r., crp. 131-142 (ma anrmmiickom s3eike). DOI:
10.15514/ISPRAS-2024-36(1)-8.

Hoanblii Texker: Maptunec [apcus C. D., Depnanpec-u-®Oepuangec K. A., Pamoc Ilepec DO. T.
Krnaccudukarms HedyHKIIMOHATBHBIX TPEOOBaHUI HA OCHOBE CBEPTOYHBIX HEWPOHHBIX cerei. Programming
and Computer Software, 2023, 1. 49, No §, ctp. 705-711 (ma anrmiickoM s3pike). DOI:
10.1134/S0361768823080133.

1. Introduction

During the initial phases of the software development life cycle, regardless of the model that is
intended to be followed, the requirements phase is declared as a key piece to achieving a successful
development [1-3, 8, 31]. If the requirements are not discovered and defined correctly in this early
phase, failures arise during development, which promotes that the final delivery is that of incomplete
software, that is to say, that it does not do what it should do, adding to that the Established times are
not met and are extended, which will cause previously estimated costs to rise [2, 24].

For this reason, this phase is considered vital since the correct execution of the activities will prevent
failure of software development [2, 5, 27, 30]. To combat this problem, analysts have used
Requirements Engineering (RE) [4, 17, 23], which is characterized by producing a list of quality
requirements as a final result. When carrying out the classification of requirements, there are
difficulties of interpretation and identification [13, 18] (an inherent characteristic of natural language
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[9, 25, 28]) to determine to which class each of these belong, since there are functional (FR) and
non-functional (NFR) requirements, of which the latter contain subclasses. In addition to this
difficulty, the extensive list of requirements is also presented, which can number in the thousands,
so it would be a job that takes too much time and effort [12, 20, 26].

In this research machine learning techniques are used to apply them in the RE in the Requirements
Specification (RS) activity, specifically on the classification of requirements. Said activity consists
of identifying the class of requirement to which it belongs or simply differentiating between a
requirement and information [13-14]. In particular, it will focus on NFRs, since they are frequently
discriminated against because they are considered of little or no importance for software
development, as well as the lack of knowledge to identify them [6-7, 11, 16].

2. Background

2.1 Data set

The NFR quality attributes data set, also known as the PROMISE [29] corpus, is a compilation of
requirements specifications for 15 software projects developed by students at DePaul University as
a term project for a course in Requirements Engineering; The language of the content is in English.
The data set consists of 326 NFRs and 358 FR requirements. The NFR dataset lends itself, for
purposes of this research, to the multi-label classification of various types of NFR requirements.

2.2 Input format for classifier

A classifier expects the data to be in the form of a list of strings of requirements (referred to as
examples) in the form of a vector of one-hot words one-hot and an attached list of vectors
representing the associated requirement class.

2.3 Sampling Strategies

The objective of the sampling strategies is to avoid the imbalance in the distribution of the class that
the datasets constantly present, this imbalance causes the automatic learning algorithms to have low
performance in the minority class; since the cost of misclassifying it is usually much higher than the
cost of other misclassifications [10, 19, 32]. Therefore, when selecting the Promise data set, it was
observed that the distribution of the set is unbalanced, so it is appropriate to use this strategy.

2.4 Evaluation metrics for classifier performance

To evaluate the model, the same metrics used by [10, 15, 33] will be taken as a reference, since in
addition to establishing the improvement of the work done, they measure the performance of the
model with respect to the correct predictions it makes. They are briefly shown below:

e Accuracy. It is the total percentage of cases classified correctly.

e Recall. It is the number of data correctly identified as positive out of the total number of
true positives.

e Score F1. It can be interpreted as a weighted average of precision and recall, where an F1
score reaches its best value at 1 and its worst score at 0.

e Precision. Accuracy is the ratio of correct predictions to the total number of predicted
correct predictions.
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2.5 Related work

The aim of this section is to explore, identify and improve the CNN preprocessing and configuration
bases proposed by [10, 15, 33]. The key point for the classification of NFR is that its nature is
multiclass.

e In [33] does not use the Promise dataset, and performs binary classification. In their
research, they do not show which configuration was used, and they do not mention any type
of validation used, in addition, the authors mention that because the data set they used
contains little information, the requirements classification obtained an accuracy of 73.

e [15], perform multiclass classification, if you have the Promise data set, but use all 12
classes, that is, both Functional and Non-functional Requirements. He used the embedded
fastText model. He got 80 %, using cross- validation with parameters of k = 10 and applying
the optimizer AdamOptimizer.

e [10], performs multiclass classification, also occupies Promise and implements
experimentation on NFR, especially on 9 classes, since the other two that belong to this
type of requirements have few examples, which that prevents the use of sampling strategies;
therefore, at least two examples are required to carry it out. It does not refer to what type
of strategy obtained the results it presents, so for the purposes of this paper both random
oversampling (ROS) and random undersampling (RUS) were tested, however, in this
section only the optimal result, which was ROS, is presented, to see the results of the
experimentation with RUS see the section in the index. He used the embedded fastText and
Word2Vec models. The accuracy result was 80.4% with the Word2Vec vectorization
method, this was the highest compared to the pre-trained Fasttext matrix and a random
weights matrix.

3. Experimentation and results

The experimentation seeks to determine the influence of the text preprocessing, the vectorization of
the data, the ROS sampling strategy, the implementation of the pre-trained embedded matrices of
Word2Vec, fastText, and Glove in the embedded layer of the CNN, and the hyper parameterization
of its subsequent layers. The key point for the classification of NFR is that its nature is multiclass,
so it was determined, based on previous experiments, to build models combining the improvements
made in each previous experiment and, if possible, adapt them to this model. rating with CNN to try
to increase rating metrics. So, the points to consider are the following:

e Preprocessing. Whether or not to include pre-cleaning of the Promise dataset, as well as
applying lemmatization to words. It is also tested with 3 types of vectorizers: TF-IDF,
Tokenizer, and CountVectorizer.

e Hyperparameterization in the data partition. Implementation of the sampling strategy
ROS proposal.

e CNN architecture. Starting with the base architecture including or not the weights of the
pre-trained matrices.

3.1 Results and comparison

The results shown below are presented gradually; that is, it indicates the way in which by adding the
proposed techniques to a base CNN architecture, the classification performance improves.

Now we show the concentration of results obtained from experimentation with a progressive
integration of proposals to improve the classification of NFR using NFR. First, in Table 1, where an
average of Recall of 0.11, Precision of 0.01 and F1 of 0.02 was achieved for the vectorizer test. TF-
IDF; On the other hand, with the Tokenizer vectorizer, an average of 0.44 was obtained for Recall,
0.46 for Precision and 0.44 for the metric F1. On the other hand, with the CountVectorizer
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vectorizer, it can be seen that the training of the network with that tool gained a Recall with 0.59,
Precision with 0.53, and F1 with 0.54. The second part of the experimentation is integrating the
previous cleaning and lemmatization, in addition to making the hyper parameterization in the data
partition; therefore, the averages resulting from this stage are those shown in Table 2. An increase
in accuracy is observed, however, when directing attention to the average of the metrics, it is
examined that when applying these proposals, a notable improvement is found for the case of the
vectorizer CountVectorizer, where emphRecall has a 0.70, Precision with a 0.69 and F1 with a 0.67.
Therefore, the classifier has shown a particular behavior on CountVectorizer, both in this test and in
the previous one. Finally, one more proposal is added, which is to train the model with the weights
of the pre- trained matrix Word2vec, since it was a common denominator among the proposals of
[10, 15, 33]. The averages obtained can be seen in Table 3, Recall with 0.72, Precision with 0.74,
and F1 with 0.72; Therefore, an increase in the averages could be observed using said weight matrix.
Therefore, when observing the effect of each of these proposals implemented on the classifier, it
was possible to determine that for the following experiments, it is convenient to use CountVectorizer
since with the 2 vectorizers it can be seen that they do not promote an improvement with respect to
the processing of the data. In addition to continuing to use the proposals based on what has been
observed in the experiments already carried out.

Table 1. Base model results

i Average
Test Vectorizer Recall | Precision F1
1 TF-IDF 0.11 0.01 0.02
2 Tokenizer 0.44 0.46 0.44
3 CountVectorizer | 0.59 0.53 0.54
Table 2. Base model results with integration of two proposals
., . Average
Test Vectorizer Recall | Precision F1
1 TE-IDF 0.11 0.02 0.04
2 Tokenizer 0.41 0.45 0.39
3 CountVectorizer 0.70 0.69 0.67
Table 3. Base model results with integration of three proposals
i Average
Test Vectorizer Recall | Precision F1
1 TF-IDF 0.11 0.02 0.04
2 Tokenizer 0.42 0.41 0.40
3 CountVectorizer | 0.72 0.74 0.72

CNN with the implementation of pre-trained matrices and ROS sampling strategy: For this
experiment, a Dropout layer was added, after the embedded layer, as well as another set of a
convolution followed by a MaxPooling layer.

Table 4 shows the results of the metrics obtained by implementing each of the different pre-trained
embedded matrices. The text preprocessing, the ROS sampling strategy, and the new architecture
were used for this training that was carried out with 100 epochs. However, the data vectorization
was the important factor in improving the results. For this, the CountVectorizer library was used,
which in addition to obtaining properties such as eliminating stopwords, calculating the frequency
of words among others, also has the ngram range argument. This argument determines the lower
and upper bound of the range of n values for different words, called n-grams [21-22]. Hence, this
argument was essential and was considered to obtain a vectorization of words that helps to make
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sense of each of the requirements according to their context. The ngram range that allowed the
results shown in Table 4 to be obtained was (1, 4) for fastText and Word2Vec and (1, 2) for Glove.
It is important to highlight that tests were carried out without ngram range and with ranges of (1,1),
(1,2), (1,3), and (1,4), for each experimentation with the embedded matrices selected. Therefore, 5
tests were carried out for each script.

Making the comparison in Table 5, it can be seen how the base proposal with 100 epochs reflected
a notable increase with respect to the optimal results obtained by [10] with 140 epochs. To determine
if there really is an improvement with respect to the initial configurations, it has been proposed to
carry out a statistical analysis in the following section.

Table 4. CNN results with 100 epochs for NFR classification using 3 types of embedded arrays

Embedded Average
matrix Recall Precision F1
Word2vec 0.88 0.90 0.88
FastText 0.83 0.85 0.83
Glove 0.82 0.79 0.79

3.2 Evaluation of the proposals implemented to the CNN model with cross-
validation k-fold by analysis of variance

To evaluate the model implemented for the CNN with the different 3 pre-trained matrices used, the
analysis of variance (ANOVA) was performed. Taking the averages of F1 resulting from cross-
validation training k-fold with k=10, since said metric represents the average between Recall and
Precision. The goodness of F1 is useful when there is an unequal distribution in the classes, this
being the case of the data set being used, for this reason, it was decided to perform ANOVA on that
metric.

Table 5. Results of the metrics obtained from the optimal preprocessing and architecture of [10] vs. results of
the preprocessing and base architecture proposed in this paper

(a) Results obtained by [10] for 140 epochs

Embedded Average
matrix Recall Precision F1
Random 0.66 0.66 0.66
Word2vec 0.75 0.79 0.77
FastText 0.73 0.76 0.76
(b) Results obtained in this paper for 100 epochs as initial run for base architecture
Embedded Average
matrix Recall Precision F1
Glove 0.82 0.79 0.79
Word2vec 0.88 0.90 0.88
FastText 0.83 0.85 0.83

To begin the ANOVA calculation, the average F1 metric results of each display obtained from cross-
validated training for Word2vec, Glove, and FastText were collected. An analysis of the distribution
of said data was carried out, where it can be seen with the naked eye in Fig. 1a that for the model
with Glove atypical values are reflected, for example, containing an average of 0.02 (see Fig. 1a)
for fold number 6 and 10, on the other hand, Word2vec presents outliers to the average, in contrast
to FastText which contains no outliers.

Now, as already mentioned, the purpose of this proposal was to evaluate the difference between each
model and the proposals implemented with respect to the metric F1. The overall mean of the metric
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F1, as shown in Fig. 2a, was 0.81 for 30 samples (N) and its confidence interval (Cl, for its acronym
in English) at 95% was (0.72,0.89). The specific means for the groups by model with N=10 were
the following (see Fig. 2b): FastText with a mean of 0.88 and a CI at 95% of (0.86,0.88), for Glove’s
case obtained an average of 0.67 with a 95% CI of (0.45,0.90), on the other hand, Word2vec returned
an average of 0.87 and a 95% CI of (0.86,0.88).

Boxplot gr{:uﬁed by model

| | ——
— a
8] —
0.6 1
0.4 1
02 4
0.0 4 i d .
fasttext glove W2v
model

(a) Boxplot of the averages of the F1 metrics belonging to the models trained with the 3 embedded matrices

Kl | k2 | K3 | k4 | k5 | k6 | kK7 | KB | kKD | K10
Wivec 088 | 088 | 087 | 088 | 088 | 085 | 087 | 088 | 087 | 0.84
Glove 080 | 088 | 085 | 081 | 086 | 002 | 085 | 083 | 084 | 0.02
FastText || 0.90 | 0.8% | 08 | 085 | 087 | 086 | 085 | 0.88 | 088 | 090

(b) Table of averages of the F1 metric for models trained with pre-trained matrices

Fig. 1: Table of averages of the F1 metric for the trained models and distribution diagram of said data

Variable

N

Average

sD

SE

95% Conf

Interval

F1

30 0.81

0.21

0.04

0.72

0.89

(a) Summary table for total samples against F1 metric averages

Variable Average SD SE 95% Conf Interval
V1 057 0.05 0.01 054 0.60
V2 0.70 0.04 0.01 0.67 072
Vi 0.88 0.02 0.01 0.86 0.89

(b) Table of F1 averages of individual models
Fig. 2: Tables of general and particular averages of the models analyzed with respect to F1

The standard significance value of = 0.05 was taken as a reference, however, when calculating
ANOVA for the samples presented, it can be seen in Table 6 that there is a statistically significant
difference between the models presented because it was obtained a p=1.148591e-16. Therefore, with
the observed data, there is sufficient evidence to assume a significant difference between the models
exposed in this evaluation. It is worth mentioning that the assumptions of the test were verified using
the Kruskall-Wallis non-parametric test. In addition, the honestly significant difference test of Tukey
(Tukey’s HSD) was performed, which is used to test the differences between the means of the sample
in terms of significance, testing the differences by peers.
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Table 6: ANOVA result for the models with respect to F1

degrees average
of (oum of F P
freedom o1 Squares sguares
Models 2.0 0.48 0.24 191.17 1.14e-16
Residual 270 0.03 0.001

4. Conclusions and future work

NLP, a subset of Al, has been great allies in solving text classification problems. However, the
solution to these problems is generally reserved for large-scale problems with large volumes of data
samples, so working with databases with few examples suggests low results with respect to
classification performance. This problem has been present when trying to optimize the classification
of software requirements since during the analysis of these they are embodied in a document that is
frequently represented by sentences with little text or information. Furthermore, requirements data
sets only contain hundreds to thousands of documents, which is orders of magnitude less in volume
than is typically considered necessary for deep learning. In addition, taking into account that there
are different classes of requirements, especially the NFRs that are obtained from the Promise data
set, which makes the classification task difficult to obtain desired results. That is why in this work,
an investigation was carried out to determine which were the best strategies used in the state of the
art that led to obtaining acceptable results in each of the investigations, in order to unify them and
observe if said strategies together reflected a performance efficiency for the classification of NFRs
using convolutional neural networks. In principle, it was possible to observe, for experimentation,
how to vectorize the data set with the embedding of words, apply methods of Random over sampling
strategies, hyper parameterize the configuration when performing the data partition, an increase in
the average of the metrics was reflected Recall, Precision and F1 against the state of the art, since
unlike [10] up to 30% was obtained in the average increase of the mentioned metrics. This is the
first guideline to apply them to CNN. When implementing these proposals to the CNN architecture,
as well as performing its hyper parameterization, it was decided to test with an embedded layer with
or without weights, thus showing the importance of using pre-trained matrices that allow
improvement in terms of the classification of text. To determine if there really was an improvement
in the classifier, the ANOVA analysis was performed, which revealed a p-value of 0.05, therefore,
according to the standard significance of, if there is a significant improvement between the models
presented. Hence, it can be said that the application of the proposals for the classification of NFR
with CNN resulted in the improvement of the performance of the classifier with respect to the state
of the art.

The future work that is planned to be carried out in the first instance is to search for data sets with
more examples to observe the performance behavior of the classifier, as well as to experiment with
recurrent neural networks such as LSTM. Also, due to the challenge represented by carrying out the
training with k-folds and the CNN base architecture on hardware in which the memory did not
support the execution, it is planned to look for an institution that can provide some resources for
research on this topic.
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