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Abstract. The field of vision-based human event recognition in smart environments has emerged as a thriving
and successful discipline, with extensive efforts in research and development driving notable progress. This
progress has not only yielded valuable insights but also practical applications across various domains. Within
this context, human actions, activities, interactions, and behaviors are all considered as events of interest in
smart environments. However, when focusing on smart classrooms, a lack of unified consensus on the
definition of "human event" poses a significant challenge for educators, researchers, and developers. This lack
of agreement hinders their ability to precisely identify and classify specific situations that are relevant to the
educational context. To address this challenge, the aim of this paper is to conduct a systematic literature review
of significant events, with a particular emphasis on their applications in assistive technology. The review
encompasses a comprehensive analysis of 227 published documents spanning from 2012 to 2022. It delves into
key algorithms, methodologies, and applications of vision-based event recognition in smart environments. As
a primary outcome, the review identifies the most significant events, categorizing them according to single-
person behavior, multiple-person interactions, or object-person interactions, examining their practical
applications within the educational context. The paper concludes with a discussion on the relevance and
practicality of vision-based human event recognition in smart classrooms, especially in the post-COVID era.
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AnHoTtauusi. O6nacTh pacrno3HaBaHUs YEOBEUYCCKUX COOBITHII Ha OCHOBE BHJCHHS B HHTECIUICKTYaJIbHBIX
cpezax cTaia MpoIBETaroNlell M yCIeHON ANCIUIIIMHOM, a OOMMpHEIe YCWINS B 00JIACTH MCCIICIOBaHUN H
pa3paboTOK IPHUBENHN K 3aMETHOMY IIporpeccy. DTOT Mporpecc He TOJIBKO Aal EHHYI0 HH(POPMANHIo, HO TaKXKe
OTKPBUI BO3MOXHOCTh MPAaKTHYECKUX NMPUMCHCHHH B Pa3NH4YHBIX 00nacTsx. B 3TOM KOHTEKCTE ACHCTBUS
YeJIOBEKa, ACHCTBHUS, B3aMMOJCHCTBHSA M IOBEICHHE PAaCCMAaTPHBAIOTCA KaK COOBITHSA, NMPEICTABISIOLINE
UHTEpPEC B MHTEIUIEKTYAIbHBIX cpefax. OJMHAKO INpU COCPEAOTOYCHWM BHUMAaHWA Ha YMHBIX Kiaccax
OTCYTCTBHE OOIICTIPU3HAHHOTO ONPEIETICHUS «UeIOBEYECKOI0 COOBITHS» CO3/aeT CEPbE3HYI0 POOIeMy s
[IEJIaroroB, HMCCienoBaTeleii H pa3paboTYNKOB. DTO OTCYTCTBHE COTJIACHS HPEISTCTBYET UX CIIOCOOHOCTH
TOYHO ONPENEIITh U KJIacCH(HUIUPOBATh KOHKPETHBIE CUTYAIMH, HMEIOIIe OTHOLICHHE K 00pa30BaTeIbHOMY
KOHTEKCTYy. UTOOBI pemuTh 3Ty NMpobieMy, aBTOPHI ITOCTaBWIIM b IIPOBECTH CHCTEMaTHYeCKuil 0030p
JIUTEpPaTypbl O 3HAYUTENILHBIX COOBITHSIX, yIesas oco0oe BHUMAaHHE MX NPUMEHEHHIO B BCIIOMOTATEIbHBIX
TexHosorusax. OO030p BKIOWaeT B ceOs BCECTOPOHHWH aHanmn3 227 OIyOJMKOBaHHBIX JTOKYMEHTOB,
oxBarbiBaroux mepuoa ¢ 2012 mo 2022 roa. Ou yriryGuisieTcst B KIIIOYEBBIC AITOPHUTMBI, METOIOJIOTHH H
NPHUJIOKEHHUST Paclo3HaBaHUs COOBITMI Ha OCHOBE BHJICHMS B MHTCIUICKTYaJbHBIX cpelax. B kadecTse
OCHOBHOTO pe3yibTaTa 0030p ompeaensieT Hanbojee 3HaYMMbIe COOBITHS, KIACCH(PHUIUPYS UX B COOTBETCTBUU
C MOBEJICHUEM OJIHOTO YeIOBEKa, B3aUMOICHCTBUSIMH MEXy HECKOIBKUMH JIFOJJbMH HIIM B3aUMOICHCTBUSMU
MEXy OOBEKTOM ¥ YEJIOBEKOM, HM3ydas HMX IPaKTHUECKOe NPUMEHEHHEe B 00pa30BaTeIbHOM KOHTEKCTE.
JIoKyMeHT 3aBepmIaeTcsi OOCYXKICHHEM aKTyalbHOCTH M IPAKTHYHOCTH PAaCHO3HABAHMS YEJIOBEYECKHX
cOOBITHI Ha OCHOBE BHICHHS B YMHBIX KJlaccax, 0coOeHHO B 31oxy nocie COVID.

KiawueBble ci0Ba: pacro3HaBaHWE COOBITHII C JIFOABMH; YMHBIM KJIAcC; KOMIIBIOTEPHOE 3pEHHE;
HCKYCCTBEHHBII HHTEIUIEKT; 00pa30BaTeIbHbBIC TEXHOIOTHH.

Jas murupoBanmsi: Kopaosa-Tnakckaneteko M. JI., benurtec-I'eppepo D. Cucremaruueckuii 00630p
JIATEPaTyphl 10 BU3YaJbHOMY PACIIO3HABAHUIO COOBITHH C JIFOJBMH: BBIIBICHAE 3HAYMMBIX COOBITHH M HX
npumernenne. Tpyasr UCIT PAH, tom 36, Bem. 1, 2024 r., ctp. 175-198 (ma amrmumiickom s3eike). DOI:
10.15514/ISPRAS-2024-36(1)-11.

Hoanwrii Texer: M.JI. Kopnosa-Tnakckansreko, 3. berurec-I'eppepo. PacioznaBanue coObITHIA € TIOIMHA B
YMHBIX KJIaCCaX Ha OCHOBE MAIIMHHOIO 3PEHHs: CHCTEMaTHYecKuil 0030p suteparypbl. Programming and
Computer Software, 2023, 1. 49, Ne 8, crp. 625642 (wa auriwmiickom s3eike). DOl
10.1134/S0361768823080066.

1. Introduction

Human Event Recognition (HER) in Smart Classrooms (SC) involves using computer techniques to
identify some human actions, activities, interactions, and behaviors within educational spaces
equipped with data acquisition and processing infrastructure. Specifically, video data obtained from
cameras in smart classrooms is of particular interest for interpreting educational scenes. This
technology enables the detection, learning, recognition, and prediction of learners' and teachers'
actions, allowing the system to assess and assist them accordingly [1]. This topic has proven
beneficial for classroom management (e.g., automated attendance tracking), learning and teaching
support (e.g., detecting social interactions and collaborative learning), and enhancing students'
academic performance (e.g., identifying action patterns related to academic achievement) [2][4][5].
Previous reviews have addressed video-based HER (see Table 1). For instance, reference [9]
provides an overview of recent vision-based techniques for recognizing human behaviors and
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surveillance systems. In [10], deep learning methods with automatic feature extraction for vision-
based human event recognition are reviewed. The authors of [11] present a comprehensive review
of approaches to recognizing and representing human actions through visual data. Reference [12]
presents a state-of-the-art review on recognizing suspicious behaviors in surveillance videos,
including six different systems. Finally, reference [13] describes major video datasets for human
event recognition. It's worth noting that while these works are important as they share common
underlying techniques, none of them specifically focuses on SCs. In [243], a conceptual account of
SC evolution and its relationship with Al and emerging educational technologies is provided.

This paper aims to analyze the state of the art in vision-based recognition of human events in smart
classrooms, with a specific focus on identifying the most significant events. It seeks to provide
educators, researchers, and educational technology developers with a comprehensive overview of
the topic while also highlighting the lack of consensus on what events are considered the most
significant in this context. To achieve this, the paper presents a systematic literature review of
published works in the last 10 years. The review covers key concepts and methodologies, drawing
from the analysis of 227 documents, and identifies relevant events and their applications in
educational settings. By doing so, it aims to address research gaps and identify opportunities for
further exploration in this evolving field

The paper is organized as follows. Section 2 provides background information on HER and SCs.
Section 3 outlines the systematic review method. Section 4 presents the review's results, including
a list of relevant events with references and brief descriptions. Finally, Section 5 concludes the paper.

Table 1. List of similar reviews in the literature

2004 | [53]
2005 | [54]
2008 | [55]
2009 | [7]

2010 | [56]
2011 | [58]

2012 | [59], [60], [61]

2013 | [62], [63], [64]

2014 | [57], [65], [66]

2015 | [67], [68], [69]

2016 | [70], [71]

2017 | [72], [73], [74], [75]

2018 | [12], [11]

2019 | [10], [77], [78], [79], [801, [81], [82], [83], [84], [85]
2020 | [9]

2. Background

This section is organized as follows. First, the discussion focuses on HER and SCs. Next, Computer
Vision methods for object extraction are presented. Finally, event understanding from video scenes
is examined.

2.1 SC and HER in the Context of Educational Technology

The origins of Smart Classroom (SC) and Human Event Recognition (HER) can be traced back to
the late 20th century when computers and the Internet were introduced in educational settings in the
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1980s. The 1990s saw the emergence of Computer Supported Collaborative Learning (CSCL),
which linked education and computational technology in collaborative settings. The early 2000s
witnessed the growth of e-learning, online education, and the Internet of Things (l1oT), leading to
the establishment of educational spaces with high technological content. Concurrently,
advancements in Machine Learning (ML) and Artificial Intelligence (Al) enabled robust and precise
object detection and classification based on data, making it applicable in complex situations.

Since 2010, the widespread use of smartphones, mobile devices, and cloud computing has facilitated
data collection, storage, processing, and sharing, giving rise to the concept of Smart Environments
(SE). The COVID-19 pandemic in 2020 further emphasized the need for technologically assisted
educational services in modern society. However, the complexity of the current educational setting
remains a significant challenge for HER in SCs [6].

According to the taxonomy in [244], there are four types of SCs: Basic, Interactive, Collaborative,
and Immersive. The majority of the reviewed research presented in this article corresponds to Basic
SCs, equipped with multimedia equipment and a computer connected to the Internet. In this context,
Computer Vision proves advantageous in easily obtaining SC data compared to the use of biometric,
ambient, or wearable sensors. Moreover, much of the reviewed research focuses on the
psychological, social, or behavioral dimensions of educational experiences. Current trends aim to
combine multimodal data acquisition in 10T with data fusion in Al to cater to face-to-face, online,
or hybrid educational modalities [85]. References from [231] to [242] review hybrid and sensor-
based approaches to HER.

2.2 Computer Vision methods for object extraction

In video data analysis, the first step involves detecting features known as objects, which can be
things, people, or combinations of both (see fig. 1). Object Detection (OD), Object Classification
(OC), and Object Tracking (OT) are the common processes for extracting features or objects.

| Task | Miethod | Algorithms |
Optical flow
Background sustraction
Object
detection Frame difference
Gaussian Misture Model
Shape- based
Feature )| Object P
extraction clasification Feature-based
Motion-based
Object < Tracking matching method
tracking State space models

Fig. 1. Schematic representation of methods and algorithms for feature extraction
with information from [246], created by the authors
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The techniques for feature extraction include Optical Flow, Background Subtraction, Frame
Difference, and Gaussian Mixture Model. Optical flow is described in [14], background subtraction
in [15], and frame difference in [16]. Gaussian Mixture Model is used to estimate probability
distributions, such as Gaussian distribution [17] or a mixture of Gaussian distribution [18], with fast
estimation algorithms shown in [19] or [20]. For a more detailed discussion, refer to [246], upon
which this section is primarily based.

OC (Object Classification) is the next step, involving shape-based, motion-based, and feature-based
methods. Shape-based OC uses geometric properties like height/width ratio, perimeter, and area
[21], useful for human figure classification [13, 22-23]. Motion-based classification relies on
distinguishing objects based on their motion characteristics, recognizing human movements like
walking or running [24-25]. Feature-based classification uses specific frame elements, such as skin
color [26], which can also be combined with other descriptors [27].

The final stage is OT (Object Tracking), which creates a track of each object by capturing their
locations over time [28]. Tracking Matching Methods find correspondence between object
detections in different frames [29-30]. Another category, State Space Models, estimates object state
(position, velocity, etc.) using a motion model corrected by incomplete measurements [32], with
complete measurements obtained through OD algorithms [32].

2.3 Event understanding from video

Event understanding in video scenes involves interpreting elements based on known context (see
fig. 2). It can be data-driven, using supervised and unsupervised machine learning methods like
decision trees, KNN, SVMs, HMMs, and Bayesian networks [41]. Unsupervised learning constructs
recognition models from unlabeled data using density estimation or clustering methods [35],
including graphical models and eigen-decomposition [33-34].

————n

R —— [emm e mmssas . ————————————— ———— q
|
I
|
I

Task | Extraction method Algorithms

1
I
1
I

e m——————— I e )

Generatives |

Data-driven

Discriminatives |

Understanding

| Mining-driven |

Knowledge-|

. Logic-driven |
driven

Ontology-driven |

Fig. 2. Schematic representation of methods and algorithms for event understanding
with information from [245], created by the authors

Data-driven algorithms in event understanding (fig. 3) can be classified into generative and
discriminative methods [35]. Generative methods like Bayes classifiers, Hidden Markov Processes,
and Bayesian Networks provide a complete description but require large data volumes for learning
parameters. On the other hand, discriminative methods like Deep Learning Neural Networks, SVM,
and Nearest Neighbor have lower computational costs but do not fully explain human events. Hybrid
methods that combine both approaches have also been proposed [36].
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Knowledge-driven understanding in event recognition utilizes formal knowledge [245]. Logical
formalisms like Plans Recognition Theory [37-38], and Event Theory [39] are used for HER.
Knowledge-driven methods (fig. 4) can be categorized into mining-driven, logic-driven, and
ontology-driven approaches [40]. Mining-driven methods learn from pre-defined data to classify
behaviors, while logic-driven methods use semantic representations and reasoning mechanisms.
Ontology-driven methods, gaining interest in behavior recognition, offer an explicit representation
of behavior definitions for broader applicability.

| Method | | Algorithms |

Hidden Markov Process (HMP) |

Generatives

Bayesian Networks |

Data-
driven

Artificial Neural Networks (ANN) |

Support Vector Machine (SVM) |

Dicriminatives

Nearest Neighbor Search (NNS) |

ZANGIAN

Some Variants of HMP |

Fig. 3. Schematic representation of algorithms for data driven methods in HER, created by the authors

_____________________

Temporal Logic

CoBrA
SOCAM
CONON |

Ontology-driven

i Method | [ Algorithms |

Bayesian Networks |
Mining-driven
Neural Metworks |
Plan Recognition i
Knowledge- — Situation Theory |
) Logic-driven — ,

driven Description Logic |

AN AN/

Fig. 4. Schematic representation of algorithms for knowledge-driven methods in HER, created by the authors

Ontologies offer advantages like independence from specific algorithms, promoting portability,
interoperability, and reuse of technologies and systems. They have been used to model social
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interaction in various domains, such as nursing homes, meeting videos, and bank monitoring.
Researchers have created a video event ontology for surveillance, leading to its use in scenarios like
bank and car park monitoring. While ontologies provide common terms for event definitions, scene
interpretation may involve individually preferred algorithms, like rule-based systems and finite-state
machines, which may share limitations with logical-based methods.

3. Method of the systematic review

The SLR method used in this study is based on the approach proposed in [52], which involves several
stages depicted in Fig. 5.

1. Formulation of the problem, selecting the research questions.

2. Elaboration of a review protocol.

3. Search the literature.

4, Screen for inclusion

5. Assessment of quality.

6. Extraction of data.

7. Analysis of data.

8. Report of findings.

Fig. 5. Schematic representation of the methodology followed on the review, created by the authors

The research process in this study involved several stages:

1. Establishment of Research Questions:
1.1. RQL. What research has been conducted on acknowledging events from single-
person or non-interacting behavior?
1.2. RQ2. What research has been conducted on the recognition of events involving
multiple-person interactions?
1.3. RQ3. What research has been conducted on the recognition of events involving
people-object interactions?
2. Definition of the Study Plan:
The plan included determining information sources, inclusion criteria, search strategies,
quality assessment criteria, screening procedures, and strategies for data extraction,
synthesis, and reporting. The selected digital libraries were ACM, IEEE, Elsevier, and
Springer, as they are prominent in the computing field and accessible to the authors.
Inclusion criteria covered publications from the last ten years, containing the specified
keywords in the title, abstract, or complete document, while reviews or surveys were
excluded. The search string used was:

("event" OR "behavior" OR "action" OR "activity" OR "interaction™) AND
("recognition" OR "detection" OR "tracking") AND
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("smart classroom™ OR "classroom™) AND ("video™" OR "vision™).

Searching for Relevant Papers:

The search string was adapted for each source, and relevant papers were sought in the
selected digital libraries.

Screening and Selection of Papers:

A two-step process was applied, involving the review of titles and abstracts for inclusion
and a full-text review of selected papers.

Quality Assessment:

While quality assessment is important for reviews aiming for generalization, it was not
used as a criterion to exclude papers in this study, which sought to discover studies at
different quality levels for a more comprehensive overview.

Data Extraction:

Relevant data for answering the research questions was extracted from the selected
papers.

. Analysis

The gathered data was thoroughly analyzed to draw meaningful conclusions.

Reporting:

The collected data was analyzed, and the resulting findings were comprehensively
reported in this paper.

4. Results of the review

4.1 Quantitative results
This section presents the results of the SLR conducted in this research, as shown in Fig. 6.

182

ACM IEEE SCIENCE DIRECT SPRINGER
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RECOVERED RECORDS
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FILTERS
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Fig. 6. Schematic representation of the process of selection of documents, created by the authors
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Out of 1,117 documents initially selected, 227 papers met the inclusion-exclusion criteria after
thorough reviews of titles, abstracts, and content (fig. 7). The list of papers remained unchanged
throughout stages 5 and 6.

The papers were grouped by publication year and database. Over the years, the number of papers
increased, showing growing interest in the field. Among the 227 documents (fig. 8), IEEE had the
most papers (131, 57.7%), followed by Elsevier (35, 15.4%), SPRINGER (33, 14.6%), and ACM
(28, 12.3%).

Qualitative analysis results presented by research question.

Documents by year

30 »7 -

25 25 94

23

21

18 47
15 15

2012 2013 2074 2015 2076 2017 2018 2019 2020 2021 2022

Fig. 7. A total of 227 articles with the search of the keywords, created by the authors

Search of Documents
(Original and filtered)
1117
500 488 oy
400
347
300
200
131 132 150
100 28 35 33
SCIENCE
ACM IEEE DIRECT SPRINGER

Fig. 8. Total of reviewed articles, by source, created by the authors
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4.2 RQ1: Single person or non-interaction events

4.2.1 Event 1. Students being distracted from learning

In the context of educational settings, detecting events related to single person or non-interaction
scenarios, such as students being distracted from learning, has been explored using various methods.
Gesture analysis has been utilized to identify boredom and lack of attention in students [92].
Additionally, facial expressions have been studied as indicators of students' feelings, and methods
like image recognition and facial muscle tension measurement have been employed to capture facial
expressions [93-94, 96].

Eye-gaze and face-gaze analysis have also proven to be important indicators of cognitive
engagement among students [97-98]. Researchers have recorded and analyzed human gaze behavior
in different scenarios, including conversational gaze and tutoring interactions [98-99, 101-103].
Pose estimation methods have been applied to detect self-absorbed or sleeping students [106-108].
These methods often involve probabilistic and compositional graphical models, but they may
encounter challenges in handling errors arising from small body parts in still images [107]. Video
pose estimation methods, which incorporate motion information, have been used as well [109].
However, they may have limitations in handling action datasets with larger human motion and
appearance variations due to viewpoint changes.

4.2.2 Event 2. Detection of behavior related to developmental disorders

Developmental disorders such as autism and attention disorders, like ADHD, can be detected in the
classroom using various computer-based methods.

For autism detection, eye-tracking from computer searching tasks has been employed as an easier,
cheaper, and less-obtrusive alternative to fMRI data recording [110-113].

Regarding ADHD diagnosis, facial expression analysis has been a focus of some research works
[114-117]. For instance, [114] proposed a methodology using RGBD sensors for diagnostic
predictions of ADHD and ASD. Depth capturing cameras, like Microsoft Kinect, have been used to
monitor the movement of children in a classroom setting [115]. These cameras allow tracking and
analysis of head motion and velocity profiles to measure hyperactivity. Additionally, computerized
continuous performance tests are conducted to measure inattention and impulsivity. The test results
are then compared to norm data, generating reports for assessment by clinicians.

Overall, these computer-based approaches offer promising avenues for early detection and
intervention for developmental disorders in educational environments.

4.2.3 Event 3. Hand-raising gesture detection

Hand-raising is a behavior studied in gaming, Human-Computer Interaction, and classroom settings
[119-121]. Detecting hand-raising in a real classroom can be challenging, but vision-based models
using video cameras [122-123] and Kinect [124-126] have been developed to address this. Hand
gesture recognition involves tracking, representation, and conversion into meaningful commands
for human-computer interaction. Techniques include contact-based and vision-based devices [127-
129]. Hand gesture recognition relies on detection, tracking, and recognition using visual features
like skin color, shape, and motion [131-132]. Model-based methods use tracking to enhance
robustness [133-135].

Vision-based hand gesture recognition includes static and dynamic gestures, using classifiers like
Hidden Markov Models [137-139]. Learning algorithms vary based on gesture representation,
including supervised, unsupervised, and reinforcement learning [122, 140]. For example, static hand
gestures are recognized using the Fourier descriptor of a segmentation image [142].
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4.3 RQ2. Multiple-person interactions

4.3.1 Event 1. Speaking and talking

Detecting human speaking is important for Human-Computer Interaction and fatigue detection
[143]. Lip movement is used to detect speaking, and video-based approaches have been proposed
[145]. Methods like lip motion analysis [146-148], Viola-Jones with skin color pixel detection [149],
skin-color segmentation with edge projection [150], and fuzzy c-means clustering [151] have been
used for lip detection and speech recognition. Feature extraction methods like Log-polar Signature
[153] and Haar-like wavelets [154] have been proposed for lip tracking and speech recognition
[157].

4.3.2 Event 2. Social interactions

Video-based studies of human sociality focus on workplace settings and classrooms, observing
action and sense-making practices in social interactions [158-160]. Social abilities have been linked
to academic success, and Proxemics Theory is used to detect human relationships, including non-
verbal relations in classrooms [163-165]. Immediacy, which enhances physical and psychological
closeness between individuals [168-170], can impact effective communication in educational
settings. Teachers' variable physical proximities with students foster effective communication in
classrooms [172-173]. Interaction, where learners share perspectives and collaborate, is another
important aspect of non-verbal behaviors [174-175]. Learner-centered approaches and collaborative
learning are emphasized in education [176], and providing pre-service teachers with video scenes
where students interact with each other can support their understanding of these approaches [178].
However, empirical research is needed to validate assumptions regarding video-based cases and
student-student interactions in educational settings [177, 180].

4.4 RQ3. People-objects interaction

4.4.1 Unique event. Student engagement detected by interaction with objects

Various works have classified engagement in different ways [181], including student involvement
in terms of effort, persistence, and concentration [179], emotional engagement related to feelings of
interest or attitude, and cognitive engagement focusing on cognitive effort and strategies [182].
Agentic engagement emphasizes proactive actions taken by students during learning tasks, involving
interaction with surroundings or learning objects.

To assess the level of engagement, traditional methods and measures have been introduced [183],
such as using student responses as indicators in intelligent tutoring systems [184-185]. Facial
movements and features extracted from them have been used [186-187], along with automated
measures like response time to problems and quizzes [188-189]. Physiological and neurological
measures like electroencephalogram, heart rate, and skin response have also been employed [190-
193]. Some studies utilize facial features and SVM classifiers to analyze affective states of students
while solving problems [194-195], while others focus on facial expressions and body movements to
detect various affective states of engagement [196].

Engagement detection and localization can be performed using face and facial landmark positions
in video frames [197], extracting features from small segments of video, and employing regression
models or LSTM-based networks for engagement prediction [196]. Open-source utility software
like OpenFace has been used to automatically track changes in body posture and facial movements
to infer engagement levels through eye gaze and head movement features [198-201].

Several works have classified engagement in different ways [181]. For example, [179] explains
student’s involvement in terms of effort, persistence and concentration. Emotional Engagement is
related to feelings of interest or attitude towards a particular theme. Cognitive Engagement focuses
on allocation of effort, a strategy used, in terms of cognitive effort, for the accomplishment of the
185
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task. Other models have introduced another dimension known as Agentic Engagement and
emphasize on proactive actions taken by the student for learning a particular task [182]. These tasks
sometimes involve interaction of students with surroundings elements or learning objects.

5. Conclusion

The reviewed works show that there are relatively few studies dedicated to Smart Classroom (SC)
event recognition [202-203]. While other smart environments like smart homes or smart offices have
more extensive research, SC lacks conventions defining relevant events or behaviors [204]. In SC,
event recognition is often a step within an application system, where it serves as input for decision-
making processes aimed at assisting users [163].

Overall, video-based Human Event Recognition (HER) in SC has shown positive results, but some
projects' costs may hinder widespread implementation [163]. Comparatively, other educational
developments like E-learning, M-learning, and MOOCs have gained more traction, especially during
the COVID-19 pandemic, but they may lack the non-verbal communication found in traditional
classrooms [165]. HER has been suggested as a potential solution to address this limitation [6].
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