Tpyowr UCIT PAH, mom 36, evin. 2, 2024 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024

DOI: 10.15514/ISPRAS-2024-36(2)-5 @C-EH

On the Automated Unit Tests Generation for Java
Applications using Spring Framework

K.A. Shishin, <kirill.a.shishin@gmail.com>
I.V. Muravev, <muravjovilya@gmail.com>
E.K. Kulikov, ORCID: 0000-0002-8313-0227, <egor.k.kulikov@gmail.com>
St. Petersburg State University,
7/9, University Embankment, Saint Petersburg, 199034, Russia

Abstract. This paper considers the automated unit tests generation for programs written in Java using the Spring
framework. Although several test generation tools for “pure” Java applications have been developed in recent
decades, the features of this framework are mostly not taken into account. However, Spring is used to develop
many industrial Java applications. At the same time, the presence of Spring components in the application for
which the tests are generated imposes additional requirements not only on the code analysis approaches, but
also on the structure of the generated tests. The main source of the information about object types and their
properties is the Spring application context. The paper proposes an instrument for analyzing the application
context, that in some cases allows generating test scenarios corresponding to real program executions and
avoiding excessive mocking. The full initialization of the application context does not occur during this
analysis. It makes the test generation safe for user data. The proposed instrument for analyzing the Spring
context has been integrated into the UnitTestBot Java automatic test generation tool. We also provide examples
of tests generated for real open-source projects.

Keywords: Software testing; automated unit test generation; Spring; mocking; UnitTestBot Java.

For citation: Shishin K.A., Muravev 1.V., Kulikov E.K. On the automated unit tests generation for Java
applications using Spring. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72. DOI:
10.15514/ISPRAS-2024-36(2)-5.

59

mailto:kirill.a.shishin@gmail.com
mailto:kirill.a.shishin@gmail.com
mailto:kirill.a.shishin@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:egor.k.kulikov@gmail.com

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

O6 aBTOMaTU4YECKOM reHepaLuumn MoaynbHbIX TECTOB AnA Java-
NPUNOXEHUN, UCNONb3yLWKUX PperMMBOpPK Spring

KA. Hluwun, <kirill.a.shishin@gmail.com>
U.B. Mypaswés, <muravjovilya@gmail.com>
E.K. Kynuxos, ORCID: 0000-0002-8313-0227, <egor.k.kulikov@gmail.com>
Canxm-Ilemep6ypeckuii 20cy0apcmeeHHbLIL YHUgepcumen,
Poccus, 199034, 2. Canxm-Ilemepbype, Ynusepcumemckas nab., 0. 7/9.

AnHoTamus. [laHHas paboTa MOCBSIIEHAa aBTOMAaTHIECKOH reHepanuy MOIYJIFHBIX TECTOB JUIS IIPUIIOKEHHUH
Ha s13bIKe Java, HCIoNB3yIoMHX hpeiiMBopK SPring. XoTs B MOCIEAHNE AECATUICTHS OBLIO CO3MaHO HECKOIBKO
MHCTPYMEHTOB aBTOMAaTHYECKON TeHEPAIMU TECTOB IS «4UCTOi» Java, crennduyueckiue 0COOSHHOCTH 3TOT0
¢peiiMBOpKa, Kak MPaBHIO, HE NPUHUMATNCH BO BHMMaHHe. TeM He MeHee, SPring HCIOMB3yeTCs MpH
pa3pabOTKe MHOTHX IIPOMBILIICHHBIX IPUIOKEHUH Ha Java. Vicronb3oBaHue GppeiiMBOpKa B IIPUIIOKCHHUH, UL
KOTOPOr0 HEOOXOIMMO CIeHEepUpOBATbh TECThI, HAKJIA/IBIBACT JIOIOJHHUTEIbHbIE TPEOOBAHMSA HE TOJIBKO K
HCTIONB3YeMBIM METOJaM aHalu3a Koja, HO M K BHUIY IpEAiaraeMblX TECTOB. [JIaBHBIM HCTOYHHKOM
uH(POPMAIMH O THUIIAaX U CBOHCTBaX 0OBEKTOB B SPriNg-NpHII0KEHHH ABISIETCS €r0 KOHTEKCT. B nanHoit pabote
IIpe/UIaraeTcsi MEXaHW3M aHajli3a KOHTEKCTa HPHIOKEHHS, KOTOPBII B HEKOTOPBIX CIIydasX MO3BOJIIET
TeHepHPOBATh TECTOBHIE CLEHAPHUH, COOTBETCTBYIOIIHE DPEAIPHOMY HCIIOJHEHHUIO IPOrpaMMBbl, H30eras
U30BITOYHOTO MOKHMpPOBaHu. [Ipy 5TOM MoJIHAs MHULMAIN3ALHS KOHTEKCTa IIPHIIOKEHHUS B IIPOIecce aHAM3a
HE IIPOUCXOJIHT, YTO AENIACT TeHEePALMIO TECTOB 6e30MacHO! I TTOJb30BaTEIbCKUX JaHHBIX. IIpeoKeHHbIH
HHCTPYMEHT aHauM3a KOHTEKCTa SPring mpriioykeHws: ObUT MHTETPUPOBAH B MHCTPYMEHT aBTOMATHYECKOM
redepanuu tectoB UnitTestBot Java. B 3akiroueHne MPUBOISATCS TPUMEPHI TECTOB, CTEHEPUPOBAHHBIX IS
HEKOTOPBIX IIPOEKTOB C OTKPHITHIM UCXOIHBIM KOJIOM.

KuwoueBbie cioBa: TecTHpOBaHHE MPOrPAMMHOTO 00ECIICUCHHs; aBTOMATHYECKasi TeHEpalysi MOIYIIbHBIX
TecToB; (hpeitMBOpK Spring; mokuposaunue; UnitTestBot Java.

st mutupoBanus: Illnmma K.A., Mypaseés U.B., Kymukos E.K. O6 aBTomMarmyeckodl reHepanuu
MOJLIYJIBHBIX TECTOB VIS Java-MPHIIOKEHHH, HCMONB3yromuXx (ppeimBopk Spring. Tpyast ICIT PAH, tom 36,
Bl 2, 2024 1., ctp. 59-72 (na anrsmiickom s3bike). DOI: 10.15514/ISPRAS-2024-36(2)-5.

1. Introduction

Software testing is an important and essential part of any project. While manually written tests often
cover only a small percentage of program execution paths, their development usually requires
significant effort and time from developers and testers. That's why solutions for the automated test
generation have been actively developed over the last decades. They are intended to help their users
to significantly increase the test coverage of a program, reducing many times the efforts spent on
writing tests. There is a well-known experiment [1] on the Coreutils® project, showing how effective
and useful automated test generation can be. Although this project has been developed for many
years and tests have been written manually all the time, the test automation tool created by the
authors of the experiment managed to significantly increase code coverage with tests in just a few
hours and found some defects that had been unknown for more than 15 years. The relevance of
automated test generation is also confirmed by the annual competitions of test generation tools [2].
At these competitions, participating tools test real projects (e.g., Guava?, Seata®, Spoon?, etc.). As a
result, winners are identified in several categories, including the efficiency of code defect detection,
the percentage of program lines covered, and the human-readability of the generated tests.

! Coreutils project. Available: https://www.gnu.org/software/coreutils/

2 Guava: Google Core Libraries for Java. Available: https://github.com/google/guava
3 Seata: Simple Extensible Autonomous Transaction Architecture. Available:
https://github.com/apache/incubator-seata

4 Spoon. Available: https://github.com/INRIA/spoon

60

mailto:kirill.a.shishin@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:egor.k.kulikov@gmail.com

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

Among the automated test generators showing good results at competitions, we would like to
mention the open-source project UnitTestBot Java®, which is being developed at Huawei Russian
Research Institute. In 2022, the tool performed well in the competition [3], and in 2023, it was ranked
first in the human-readability of generated tests and second overall in all categories [4]. UnitTestBot
Java is a command-line tool and a plugin for IntelliJ IDEA, which aims to generate unit tests for
Java applications. The methodological basis of the project is two code analysis techniques: symbolic
execution and fuzzing.

UnitTestBot Java is good at generating tests for code in “pure” Java, that is, without the use of
special frameworks. However, such frameworks are used quite often and impose additional
requirements on the analysis of user code and the format of generated tests. One of the most popular
frameworks today [5] is Spring®. It is used in the development of many Java projects. Therefore, it
is important for UnitTestBot Java to be capable of generating specialized tests for applications that
rely on this framework.

Spring is a diverse framework. However, one of its main features are Dependency Injection (DI) and
Inversion of Control (10C). Spring has a DI/IoC container” that stores managed objects — beans.
The configuration of this container can be defined in various ways: through annotations in user code,
special configuration classes, or XML files. In addition, the user can also choose a profile that
defines how the application will be configured. More than that, the framework offers a mechanism
for implementing the MV C pattern, distinguishing between services and controllers, each of which
requires a distinct testing approach as agreed by human testers. It is important that the generated
tests must be not only correct, but should also follow the commonly accepted guidelines for testing
Spring applications [6-8]. These and other features of the framework make automated testing of
Spring applications a very challenging task.

When creating unit tests, we usually test a component in isolation from the external environment
(other microservices, databases, authentication mechanisms). Therefore, many complicated features
of the Spring framework do not have a significant impact on the unit test generation mechanisms
and will be important only in the case of creating integration or end-to-end tests, meaning that “pure”
Java testing techniques can be used. However, when it comes to virtual calls, in a “pure” Java
program, there is no reliable way to determine which implementation should be called in tests. In
contrast, in a Spring application, there is a configuration that determines which concrete classes will
be used in place of abstract types at runtime. Using this type substitution information, it is possible
to generate tests that are better aligned with the actual behavior of the program and test those
scenarios that can occur during application use.

It is also important to note that since unit testing does not involve launching an application and
initializing its context, and usually means testing a component in isolation, it is expected that full
context initialization will not take place during the automated test generation, which includes
analysis of the user configuration. Otherwise, test generation may be dangerous for user data: for
example, during context initialization, environment variables may be unexpectedly set, some data
may be loaded from third-party services, etc. This creates additional challenges when solving the
task of test generation for applications written with Spring.

2. Spring-based test generation

Let's consider a minimalistic example in which the type information from the application
configuration allows generating tests better representing the real behavior of the program.

Assume the task is to generate tests for the get Species () method fromthe SpeciesService
class, for example:

5 UnitTestBot. Available: https://www.utbot.org
6 Spring framework. Available: https:/spring.io
" The loC container. Available: https:/docs.spring.io/spring-framework/reference/core/beans.html
61

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

public class SpeciesService {

private Animal animal;

public String getSpecies () {
return animal.getSpecies();

}

where Animal is the interface having the following form:

public interface Animal
String getSpecies();
}

Suppose that we have two implementations of this interface in the project.

public class Cat implements Animal ({
public String getSpecies () {
return "cat";

public class Dog implements Animal {
public String getSpecies () {
return "dog";

}

However, in the application configuration, only one of them — Cat — is used to create the Animal
bean.

public class AnimalConfiguration {

public Animal animal () {
return new Cat () ;
}

Assume that we develop tests for this method manually. One possible approach is mocking the
virtual call of getSpecies () method.

public void testGetSpecies () {

SpeciesService speciesService = new SpeciesService();

Animal animalMock = mock (Animal.class);
when (animalMock.getSpecies ()) .thenReturn ("mouse") ;

speciesService.setAnimal (animalMock) ;

String actual = speciesService.getSpecies();
assertEquals ("mouse", actual);

62

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

Such a test is formally correct, but far from checking the actual behavior of the program and
therefore is hardly valuable in practice.

At the same time, when developing tests, we have an opportunity to investigate the application
configuration and to find out that only Cat implementation is used for a given interface and to write
a test that much more closely resembles the real behavior.

public void testGetSpecies () {
SpeciesService speciesService = new SpeciesService();

Cat animal = new Cat();
speciesService.setAnimal (animal) ;

String actual = speciesService.getSpecies();
assertEquals ("cat", actual);

}

Now, let's consider the scenario of automated test generation. If we do not extract type information
from the Spring application configuration indicating which of the Animal implementations is
preferred, we can either generate the already mentioned test with a mock or choose any of the
Animal interface implementations arbitrarily. In this way, another formally correct but valueless
test using the Dog implementation can be generated. However, if the application configuration is
analyzed and the test generation tool is provided with the information that only the cat
implementation is used for the Animal interface, then the generated test will accurately represent
the actual behavior of the program.

Despite the fact that the type concretization described above cannot always be done (due to possible
ambiguity of the possible types choice) and it is not always necessary to do it, in some cases,
concretization allows for generating more expressive tests for Spring applications that verify real
execution scenarios. Therefore, the ability to generate tests with type concretization is a desirable
option for the test generator.

3. Overview

3.1 Existing tools

There are a number of tools that to some extent solve the problem of automated testing of programs
in Java. All of them use one or several basic code analysis techniques: symbolic execution, fuzzing
or machine learning [9]. The most famous open-source solutions are EvoSuite®, UnitTestBot Java®
and Randoop'®. Among the commercial tools let us mention Parasoft Jtest'!, Diffblue Cover'? and
Machinet®3.

Among these tools, only a small subset can generate tests for Spring applications. For example,
Parasoft Jtest generates only test method templates. Of course, this reduces the total time required
to write tests, but the scope of the covered code depends on the user, who needs to substitute
arguments with values in the code of the generated test method templates.

8 What is EvoSuite? Available: https:/github.com/EvoSuite/evosuite
% UnitTestBot Java: Automated unit test generation and precise code analysis for Java. Available:
https://github.com/UnitTestBot/UTBotJava
10 Randoop: Automatic unit test generation for Java. Available: https://randoop.github.io/randoop
1 parasoft Jtest for Java Unit Testing. Available: https://
www.parasoft.com/products/parasoft-jtest/java-unit-testing
2 What is Diffblue Cover? | Diffblue. Available: https://www.diffblue.com
13 Machinet: Al Assistant for Developers. Available: https://www.machinet.net
63

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

The code snippet below shows an example of a generated test template for a Spring application using
Parasoft Jtest. It is taken from the official Parasoft website!“.

public void testGetPerson () throws Throwable {
MockedStatic<ExternalPersonService> mocked =
mockStatic (ExternalPersonService.class);

mocks.add (mocked) ;

Person getPersonResult = null; // UTA: default value
mocked.when (

() —-> ExternalPersonService.getPerson (anyInt())
) .thenReturn (getPersonResult) ;

// Given
PeopleController underTest = new PeopleController();

// When

int 1id = 1;

Model model = mock (Model.class);

ResponseEntity<Person> result =
underTest.getPerson (id, model);

// Then

assertNotNull (result) ;

assertNotNull (result.getBody());
}

Another example of a tool that can generate tests for Spring applications is Diffblue Cover. It is able
to generate tests that take into account the Spring application specifics.

Below is an example of the test generated for a Spring application using Diffblue Cover.

(classes = {SpeciesService.class})
(SpringExtension.class)
class SpeciesServiceUnitTests {

private Animal animal;

private SpeciesService speciesService;

void testGetSpecies () {
when (animal.getSpecies()) .thenReturn("");
assertEquals ("", speciesService.getSpecies());

verify(animal, atLeast(l)) .getSpecies();

14 Accelerate Unit Testing of Spring Applications With Parasoft Jtest \& Unit Test Assistant. Available:
https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:\%20Accelerate\%20Unit\%20Testing\%200f\%20S
pring\%20Applications\%20with\%20Parasoft\%20Jtest\%20and\%20Unit\%20Test\%20Assistant. pdf

64

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

However, such tests do not follow the test writing guidelines for Spring applications mentioned in
the introduction (for example, it is rather unconventional to use a class under test for context
configuration) and the tool does not offer a mechanism to deal with excessive mocking.

Thus, none of the test automation tools we are aware of offer mechanisms for generating tests based
on the application configuration.

3.2 UnitTestBot Java

UnitTestBot Java is a part of the UnitTestBot tool lineup for automated unit test generation. The tool
uses two mechanisms to generate test scenarios: a symbolic engine and a fuzzer.

The symbolic engine is one of the implementations of the symbolic execution paradigm [10]. It
performs an analysis of the possible execution paths of a program by mapping a set of path
constraints to each branch of execution. These constraints are expressed in terms of the logic of
predicates, and then using the SMT solver Z3% their satisfiability is determined. Obtaining the
possible paths of program execution, as well as their prioritization, comes from the control flow
graph that is constructed from the byte code of the program. The byte code is preliminarily
transformed into Jimple representation using the Soot'. With this transformation, the byte code
takes a simpler representation having fewer instructions.

The fuzzer used in UnitTestBot Java applies the greybox fuzzing technique, which involves
generating random input values for a concrete execution of the methods under test. After each
concrete execution, the fuzzer obtains feedback about the change in execution path. Based on this
feedback, it mutates the input values for the next iteration of its work.

More detailed information about the implementation of the symbolic engine and fuzzer in
UnitTestBot Java can be found on the official website of the project or in the documentation in the
repository on GitHub?’.

Both of these code analysis techniques are usually combined for maximum efficiency. In
UnitTestBot Java, by default, 95% of the time allocated for test generation is given to the symbolic
engine, and the fuzzer is used as an additional auxiliary tool.

4. Implementation

This section provides a Spring configuration analyzer implementation and describes a modernization
of the UnitTestBot Java symbolic engine, which allows types to be concretized during test
generation based on the information obtained from the configuration analyzer.

4.1 Spring configuration analyzer

The engine obtains Spring-specific information for type concretization from the user application
configuration analyzer. This information is collected using Spring's own instruments during the
initialization of the application context.
Spring context initialization consists of several steps:
1. Collecting bean definitions. During this phase application configurations are parsed and
analyzed. As a result, in particular, bean definitions are created. They include information
about the class of the bean, its properties and its relationships with other beans.

2. Configuration of the bean definitions (BeanFactoryPostProcessor'®). Once the information
about beans has been collected, Spring can modify these definitions before they are used to

15 73. Available: https://github.com/Z3Prover/z3
16 Soot. Available: https://github.com/soot-oss/soot
17 UnitTestBot Java documentation. Available: https://github.com/UnitTestBot/UTBotJava/tree/main/docs
18 BeanFactoryPostProcessor. Available: https://docs.spring.io/spring-framework/docs/current/javadoc-
api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html
65

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

create the beans themselves. Configuring bean definitions involves setting dependencies,
specifying scope, configuring lifecycle and other parameters specific to the bean.

3. Creating the beans and configuring them. This stage involves creating and further
configuring the bean instances based on their definitions. Class instances are created and
initialization methods are called.

While the steps of collecting and configuring bean definitions are safe for the user application, the
step of creating the beans may cause changes to user data. For this reason, we decided to embed
ourselves in the Spring context initialization process and implement our own
BeanFactoryPostProcessor. It collects all necessary and available to the analyzer information about
beans at the stage of setting up the bean definitions, destroys bean definitions, and then stops any
further application initialization. Thus, the creation of the beans is prevented. The general pipeline
of type information collecting during Spring application context initialization is shown in the Fig.
1.

To analyze beans from a user application with our post processor, we start a “hybrid” Spring
application whose classpath combines the classpaths of both the original user application and our
Spring analyzer module. It is important to note that the Spring analyzer module has minimal
dependencies, which helps avoid dependency conflicts with the user application. In particular,
Spring analyzer does not depend on a specific version of Spring and utilizes reflection to handle any
popular Spring version bundled with the user application. When starting such a “hybrid” Spring
application, we first determine whether Spring Boot is used and, based on that, choose an appropriate
application starter class. Furthermore, we dynamically patch annotations to make the started
application use the desired Spring configuration (Java- or XML- based) and profiles.

In this way, we get an algorithm for configuring our own Spring application, shown in the Fig. 2,
while the entire process of collecting Spring-specific information for type concretization by the
configuration analyzer is represented with the chain of actions shown in the Fig. 3.

T'he beginning of context Collecting Configuring bean definitions .
A g -) o ; Creating beans
initialization bean definitions (BeanFactoryPostProcessor)
Vi
X >
\
N
A .
~
Stopping further

The analyzer extracts initialization of the context
bean definitions

Fig. 1. The initialization stages of the Spring context

4.2 Modernization of symbolic engine

The core idea of the symbolic engine modernization is to change the mechanism used for selecting
symbolic object types. Whereas the symbolic engine previously selected an arbitrary type,
determined by the SMT solver as satisfying the symbolic path constraints, it now tries to consider
only those types that are used in the application configuration chosen for test generation.

Let’s discuss the example of test generation for the getSpecies() method from the SpeciesService
class, presented in Section 2. In the past, when generating tests, the Dog implementation of the
Animal interface could be chosen because it satisfied the symbolic path constraints. However, tests
using the Dog class were not particularly useful because they did not test the actual behavior of the
program. In contrast, now, the Cat class is deterministically chosen as it is specified in the
application configuration.

66

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

[Pure Spring] [Spring Boot]

Choosing a
class for a Pure

Choosing a
class for a

Spring
application

Spring Boot
application

ML config] [Java config
Patching the XML
configuration in Loading the configuration
@ImportResource of the class

imaginary configuration class

l

Patching the config and profile
in the annotation of the class
designed to create a Spring
application

Fig. 2. The activity diagram of creating a Spring application on the UnitTestBot Java side

Running the Creating a Spring Starting the
analyzer on the application on the initialization of
extended UnitTestBot Java the application
classpath side context

Extracting Stopping further
bean initialization of the
definitions application context

Fig. 3. The Spring-analyzer's work scheme

67

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

4.3 Integration of symbolic engine and configuration analyzer

The Spring configuration analyzer is launched in a separate process from the symbolic engine.
Firstly, this allows running the configuration analyzer on the extended classpath without any
difficulties. After that, it prevents a possible crash of the entire test generation in case of an error
during the analysis of custom configurations. For example, running a Java Spring application based
on a custom one on the UnitTestBot side may cause the JVM crash if the custom application is poorly
designed.

The symbolic engine and user configuration analyzer processes, like all other processes in
UnitTestBot Java, communicate using the RD*® framework.

5. Results

As aresult of this research, we managed to propose an approach to the analysis of Spring application
configurations, which sometimes allows generating tests that correspond better to the actual
behavior of the program. The developed configuration analyzer was integrated into the well-known
tool of automated test generation UnitTestBot Java.

In particular, the modernized tool is able to generate a test that checks the actual execution of the
getSpecies () method from the SpeciesService class of the running example given in
Section 2. To go further, we also provide tests generated with the modernized tool on real open-
source projects Java Blog Aggregator: Boot?® and Mall?.

5.1 Java Blog Aggregator: Boot

We paid attention to the Java Blog Aggregator: Boot project because it is mentioned, for example,
in the article [11] as one of the recommended projects to study for beginners in the Spring
framework.

Considerthe Al1CategoriesService class that has the autowired CategoryService field.

public class AllCategoriesService {

private CategoryService categoryService;

public Integer[] getAllCategoryIds () {
List<Category> categories = categoryService.findAll ();

Integer[] result = new Integer|[categories.size()];

for (int 1 = 0

result[i]

i < categories.size(); 1i++) {
categories.get (i) .getId();

o~

return result;

19 RD: Reactive Distributed communication framework for .NET, Kotlin and C++ (experimental). Inspired by
JetBrains Rider IDE. Available: https://github.com/JetBrains/rd

20 Java Blog Aggregator: Boot. Available: https://github.com/jirkapinkas/java-blog-aggregator-boot

21 Mall. Available: https://github.com/macrozheng/mall

68

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

The signature of the CategoryService class has the form:

public class CategoryService

The CategoryService class has the annotation @Service, which means that this class is used
to define a bean.

As a result of test generation wusing the modernized UnitTestBot Java for the
getAllCategoryIds () method fromthe Al1CategoriesService class, we get a test:

public void testGetAllCategorylIds() throws Exception {
AllCategoriesService allCategoriesService
= new AllCategoriesService();

CategoryService categoryService = new CategoryService();

CategoryRepository categoryRepositoryMock
= mock (CategoryRepository.class);

when (categoryRepositoryMock.findAll ())
.thenReturn (new ArrayList<>());

setField(categoryService,
"cz.jiripinkas.jba.service.CategoryService",
"categoryRepository",
categoryRepositoryMock) ;

setField(allCategoriesService,
"cz.jiripinkas.jba.service.AllCategoriesService",
"categoryService",
categoryService) ;

Integer[] actual = allCategoriesService.getAllCategoryIds();
assertEquals (0, actual.length);

assertEquals (new Integer[0], actual);

}

Instead of mocking the CategoryService class, its concrete implementation is used in this test.
It makes the test more expressive. In particular, we can observe that the CategoryService
interacts with the database. Also, the user can adjust the behavior of the mock related to database
access if necessary.

5.2 Mall

We also generated tests for the Mall project, which is very popular, having over one hundred
thousand forks and stars on GitHub. Let's discuss the test for the delAdmin () method in the
UmsAdminCacheServiceImpl class, that the modernized UnitTestBot Java has generated
based on Spring application configuration analysis.

69

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

public class UmsAdminCacheServiceImpl
implements UmsAdminCacheService {

private UmsAdminService adminService;

private RedisService redisService;

public void delAdmin (Long adminId) {
UmsAdmin admin = adminService.getItem(adminId);

if (admin != null) {
String key = REDIS DATABASE + ":" + REDIS KEY ADMIN
+ ":" + admin.getUsername () ;

redisService.del (key) ;

}

This class has two autowired fields: UmsAdminService and RedisService, which have
corresponding beans in the application configuration.

The test generated for the de1Admin () method of the UmsAdminCacheServiceImpl class
is as follows:

public void testDelAdmin () throws Exception
{
UmsAdminCacheServiceImpl umsAdminCacheServiceImpl
= new UmsAdminCacheServiceImpl () ;

UmsAdminServiceImpl adminService = new UmsAdminServiceImpl () ;

UmsAdminMapper adminMapperMock = mock (UmsAdminMapper.class);
when (adminMapperMock.selectByPrimaryKey (any()))
.thenReturn(null);

setField (adminService,
"com.macro.mall.service.impl.UmsAdminServiceImpl",
"adminMapper",
adminMapperMock) ;

setField (umsAdminCacheServiceImpl,
"com.macro.mall.service.impl.UmsAdminCacheServiceImpl",
"adminService",

adminService) ;

umsAdminCacheServiceImpl.delAdmin (null) ;

70

MInmma K.A., Mypassé 1.B., Kynuko E.K. O6 aBToMaTHuecKo# reHepai MOAYIbHBIX TECTOB s Java-TipHIOKEHHIA, HCTIONb3YIOMINX
(peitmBopk Spring. Tpyow UCII PAH, 2024, Tom 36 Bbim. 2, c. 59-72.

In this test, instead of mocking the abstract type UmsAdminService, its concrete implementation
UmsAdminServiceImpl is substituted according to the application configuration. Initialization
of the second autowired field did not occur because it is not required in the tested program execution
path. Although there are no assertions in this test because the method has void return type, it is still
valuable. Since the tested method takes a nullable value as an argument, a scenario in which
adminId is null is possible and is a kind of edge case that often causes
NullPointerException. The generated test ensures that no such exception actually occurs in
the method under test. When writing tests manually, similar scenarios are often not taken into
account.

6. Future work

Unit tests are often used to verify the logic of Spring application components, so high-quality
automatic generation of such tests is important. However, some bugs can only be detected by
integration and end-to-end tests that interact with real data storage and other microservices, as well
as take into account the diverse features of the Spring framework (e.g., authorization and
authentication). For this reason, developing an integration test generation tool is a prominent
direction for future work. Such a tool will likely also need to initialize a modified Spring application,
meaning that the “hybrid” Spring application starter developed in this work may find additional uses.

References

[1]. Cristian C., Daniel D., Dawson E. KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation (OSDI’08) USA: USENIX Association, 2008, pp. 209-224.

[2]. Workshop on Search-Based and Fuzz Testing, Available at: https://sbft24.github.io, accessed 24.06.2024.

[3]. Ivanov D. et al. UTBot Java at the SBST2022 Tool Competition. 2022 IEEE/ACM 15th International
Workshop on Search-Based Software Testing (SBFT), 2022, pp. 39-40. DOI: 10.1145/3526072.3527529.

[4]. Ivanov D., Menshutin A., Pelevin M. et al. UTBot at the SBFT 2023 Java Tool Competition. 2023
IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT), 2023, pp. 68-69. DOI:
10.1109/SBFT59156.2023.00019.

[5]. Java Programming — The State of Developer Ecosystem in 2022 Infographic, JetBrains: Developer Tools
for Professionals and Teams, Available at: https://www.jetbrains.com/Ip/devecosystem-2022/, accessed
24.06.2024.

[6]. Fadatare R. Spring Boot Unit Testing Service Layer using JUnit and Mockito, Available at:
https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html, accessed 24.06.2024.

[7]. Overview: Spring Framework, Available at: https://docs.spring.io/spring-
framework/reference/testing/spring-mvc-test-framework/server.html, accessed 24.06.2024.

[8]. Chathuranga S. Unit and Integration Testing in Spring Boot Micro Service, Available at:
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-
901fc53b0dff, accessed 24.06.2024.

[9]. Kim M., Xin Q., Sinha S., Orso A. Automated test generation for REST APIs: no time to rest yet.
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2022), Association for Computing Machinery, New York, USA, 2022, pp. 289-301. DOI:
10.1145/3533767.3534401.

[10]. Baldoni R., Coppa E., Cono D’elia D., Demetrescu C., Finocchi, I. A Survey of Symbolic Execution
Techniques. ACM Comput. Surv. 51, 3, Article 50, 2019. 39 p. DOI: 10.1145/3182657.

[11]. Fadatare R. 10+ Free Open Source Projects Using Spring Boot, Available at:
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html, accessed
24.06.2024.

71

https://sbft24.github.io/
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html

Shishin K.A., Muravev L.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP
RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

Ungopmauust 06 aemopax / Information about authors

Kupunn Anexcanaposuy HINUIIIMH — crynenT kadenpsl cucteMHoro nporpammuposanust CII6IY.
Ccdepa HayuyHBIX MHTEPECOB: 3aJa4d CTaTUYECKOI'O aHaNIM3a KOJa, aBTOMaTHUyYecKas I'eHepalus
TECTOB.

Kirill Alexandrovich SHISHIN — student of the software engineering department of SPbU. Research
interests: static code analysis tools, automated tests generation.

Unes Bnagumuposuds MVYPABBEB — umkenep-uccienopatens Kadeapbl CHCTEMHOTO
nporpammupoBanus CII6IY. Cdepa HaydHBIX WHTEPECOB: 3a/laud CTATHYECKOTO aHAIHM3a KOJa,
aBTOMAaTHUYECKasi TeHEPALUsl TECTOB, KOHTEKCTHO-CBOOOJHAS IOCTHKIMOCTD.

Ilia Vladimirovich MURAVEV - researcher of the software engineering department of SPbU.
Research interests: static code analysis tools, automated tests generation, context-free grammars.

Erop Koncrantunosmy KYJIMKOB — xannuaat ¢pu3nko-MaTeMaTHIeCKAX HAYK, JOLUEHT Kadeaphl
cucremHoro nporpammupoBanuss CII6I'Y. Cdepa HaydHBIX HHTEPECOB: 33/1aud CTATHYECKOTO
aHalu3a KOJa, aBTOMAaTHYEeCKas I'eHEepalusl TeCTOB; METOMAbI JOKAIBHOW alMpOKCUMALUU U UX
pacrapaluieuBaHue.

Egor Konstantinovich KULIKOV — Cand. Sci. (Phys.-Math.), associate professor of the software
engineering department of SPbU. Research interests: static code analysis tools, automated tests
generation; local approximation methods and their parallelization.

72

