
Труды ИСП РАН, том 36, вып. 2, 2024 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024

59

DOI: 10.15514/ISPRAS-2024-36(2)-5

On the Automated Unit Tests Generation for Java
Applications using Spring Framework

K.A. Shishin, <kirill.a.shishin@gmail.com>

I.V. Muravev, <muravjovilya@gmail.com>

E.K. Kulikov, ORCID: 0000-0002-8313-0227, <egor.k.kulikov@gmail.com>

St. Petersburg State University,

7/9, University Embankment, Saint Petersburg, 199034, Russia

Abstract. This paper considers the automated unit tests generation for programs written in Java using the Spring

framework. Although several test generation tools for “pure” Java applications have been developed in recent

decades, the features of this framework are mostly not taken into account. However, Spring is used to develop

many industrial Java applications. At the same time, the presence of Spring components in the application for

which the tests are generated imposes additional requirements not only on the code analysis approaches, but

also on the structure of the generated tests. The main source of the information about object types and their

properties is the Spring application context. The paper proposes an instrument for analyzing the application

context, that in some cases allows generating test scenarios corresponding to real program executions and

avoiding excessive mocking. The full initialization of the application context does not occur during this

analysis. It makes the test generation safe for user data. The proposed instrument for analyzing the Spring

context has been integrated into the UnitTestBot Java automatic test generation tool. We also provide examples

of tests generated for real open-source projects.

Keywords: Software testing; automated unit test generation; Spring; mocking; UnitTestBot Java.

For citation: Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java

applications using Spring. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72. DOI:

10.15514/ISPRAS-2024-36(2)-5.

mailto:kirill.a.shishin@gmail.com
mailto:kirill.a.shishin@gmail.com
mailto:kirill.a.shishin@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:egor.k.kulikov@gmail.com

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

60

Об автоматической генерации модульных тестов для Java-
приложений, использующих фреймворк Spring

К.А. Шишин, <kirill.a.shishin@gmail.com>

И.В. Муравьёв, <muravjovilya@gmail.com>

Е.К. Куликов, ORCID: 0000-0002-8313-0227, <egor.k.kulikov@gmail.com>

Санкт-Петербургский государственный университет,

Россия, 199034, г. Санкт-Петербург, Университетская наб., д. 7/9.

Аннотация. Данная работа посвящена автоматической генерации модульных тестов для приложений

на языке Java, использующих фреймворк Spring. Хотя в последние десятилетия было создано несколько

инструментов автоматической генерации тестов для «чистой» Java, специфические особенности этого

фреймворка, как правило, не принимались во внимание. Тем не менее, Spring используется при

разработке многих промышленных приложений на Java. Использование фреймворка в приложении, для

которого необходимо сгенерировать тесты, накладывает дополнительные требования не только к

используемым методам анализа кода, но и к виду предлагаемых тестов. Главным источником

информации о типах и свойствах объектов в Spring-приложении является его контекст. В данной работе

предлагается механизм анализа контекста приложения, который в некоторых случаях позволяет

генерировать тестовые сценарии, соответствующие реальному исполнению программы, избегая

избыточного мокирования. При этом полная инициализация контекста приложения в процессе анализа

не происходит, что делает генерацию тестов безопасной для пользовательских данных. Предложенный

инструмент анализа контекста Spring приложения был интегрирован в инструмент автоматической

генерации тестов UnitTestBot Java. В заключение приводятся примеры тестов, сгенерированных для

некоторых проектов с открытым исходным кодом.

Ключевые слова: Тестирование программного обеспечения; автоматическая генерация модульных

тестов; фреймворк Spring; мокирование; UnitTestBot Java.

Для цитирования: Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации

модульных тестов для Java-приложений, использующих фреймворк Spring. Труды ИСП РАН, том 36,

вып. 2, 2024 г., стр. 59–72 (на английском языке). DOI: 10.15514/ISPRAS–2024–36(2)–5.

1. Introduction

Software testing is an important and essential part of any project. While manually written tests often

cover only a small percentage of program execution paths, their development usually requires

significant effort and time from developers and testers. That's why solutions for the automated test

generation have been actively developed over the last decades. They are intended to help their users

to significantly increase the test coverage of a program, reducing many times the efforts spent on

writing tests. There is a well-known experiment [1] on the Coreutils1 project, showing how effective

and useful automated test generation can be. Although this project has been developed for many

years and tests have been written manually all the time, the test automation tool created by the

authors of the experiment managed to significantly increase code coverage with tests in just a few

hours and found some defects that had been unknown for more than 15 years. The relevance of

automated test generation is also confirmed by the annual competitions of test generation tools [2].

At these competitions, participating tools test real projects (e.g., Guava2, Seata3, Spoon4, etc.). As a

result, winners are identified in several categories, including the efficiency of code defect detection,

the percentage of program lines covered, and the human-readability of the generated tests.

1 Coreutils project. Available: https://www.gnu.org/software/coreutils/
2 Guava: Google Core Libraries for Java. Available: https://github.com/google/guava
3 Seata: Simple Extensible Autonomous Transaction Architecture. Available:

https://github.com/apache/incubator-seata
4 Spoon. Available: https://github.com/INRIA/spoon

mailto:kirill.a.shishin@gmail.com
mailto:muravjovilya@gmail.com
mailto:muravjovilya@gmail.com
mailto:egor.k.kulikov@gmail.com

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

61

Among the automated test generators showing good results at competitions, we would like to

mention the open-source project UnitTestBot Java5, which is being developed at Huawei Russian

Research Institute. In 2022, the tool performed well in the competition [3], and in 2023, it was ranked

first in the human-readability of generated tests and second overall in all categories [4]. UnitTestBot

Java is a command-line tool and a plugin for IntelliJ IDEA, which aims to generate unit tests for

Java applications. The methodological basis of the project is two code analysis techniques: symbolic

execution and fuzzing.

UnitTestBot Java is good at generating tests for code in “pure” Java, that is, without the use of

special frameworks. However, such frameworks are used quite often and impose additional

requirements on the analysis of user code and the format of generated tests. One of the most popular

frameworks today [5] is Spring6. It is used in the development of many Java projects. Therefore, it

is important for UnitTestBot Java to be capable of generating specialized tests for applications that

rely on this framework.

Spring is a diverse framework. However, one of its main features are Dependency Injection (DI) and

Inversion of Control (IoC). Spring has a DI/IoC container7 that stores managed objects — beans.

The configuration of this container can be defined in various ways: through annotations in user code,

special configuration classes, or XML files. In addition, the user can also choose a profile that

defines how the application will be configured. More than that, the framework offers a mechanism

for implementing the MVC pattern, distinguishing between services and controllers, each of which

requires a distinct testing approach as agreed by human testers. It is important that the generated

tests must be not only correct, but should also follow the commonly accepted guidelines for testing

Spring applications [6-8]. These and other features of the framework make automated testing of

Spring applications a very challenging task.

When creating unit tests, we usually test a component in isolation from the external environment

(other microservices, databases, authentication mechanisms). Therefore, many complicated features

of the Spring framework do not have a significant impact on the unit test generation mechanisms

and will be important only in the case of creating integration or end-to-end tests, meaning that “pure”

Java testing techniques can be used. However, when it comes to virtual calls, in a “pure” Java

program, there is no reliable way to determine which implementation should be called in tests. In

contrast, in a Spring application, there is a configuration that determines which concrete classes will

be used in place of abstract types at runtime. Using this type substitution information, it is possible

to generate tests that are better aligned with the actual behavior of the program and test those

scenarios that can occur during application use.

It is also important to note that since unit testing does not involve launching an application and

initializing its context, and usually means testing a component in isolation, it is expected that full

context initialization will not take place during the automated test generation, which includes

analysis of the user configuration. Otherwise, test generation may be dangerous for user data: for

example, during context initialization, environment variables may be unexpectedly set, some data

may be loaded from third-party services, etc. This creates additional challenges when solving the

task of test generation for applications written with Spring.

2. Spring-based test generation

Let's consider a minimalistic example in which the type information from the application

configuration allows generating tests better representing the real behavior of the program.

Assume the task is to generate tests for the getSpecies() method from the SpeciesService

class, for example:

5 UnitTestBot. Available: https://www.utbot.org
6 Spring framework. Available: https://spring.io
7 The IoC container. Available: https://docs.spring.io/spring-framework/reference/core/beans.html

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

62

@Service

public class SpeciesService {

 @Autowired

 @Setter

 private Animal animal;

 public String getSpecies() {

 return animal.getSpecies();

 }

}

where Animal is the interface having the following form:

public interface Animal {

 String getSpecies();

}

Suppose that we have two implementations of this interface in the project.

public class Cat implements Animal {

 public String getSpecies() {

 return "cat";

 }

}

public class Dog implements Animal {

 public String getSpecies() {

 return "dog";

 }

}

However, in the application configuration, only one of them — Cat — is used to create the Animal

bean.

public class AnimalConfiguration {

 @Bean

 public Animal animal() {

 return new Cat();

 }

}

Assume that we develop tests for this method manually. One possible approach is mocking the

virtual call of getSpecies() method.

public void testGetSpecies() {

 SpeciesService speciesService = new SpeciesService();

 Animal animalMock = mock(Animal.class);

 when(animalMock.getSpecies()).thenReturn("mouse");

 speciesService.setAnimal(animalMock);

 String actual = speciesService.getSpecies();

 assertEquals("mouse", actual);

}

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

63

Such a test is formally correct, but far from checking the actual behavior of the program and

therefore is hardly valuable in practice.

At the same time, when developing tests, we have an opportunity to investigate the application

configuration and to find out that only Cat implementation is used for a given interface and to write

a test that much more closely resembles the real behavior.

public void testGetSpecies() {

 SpeciesService speciesService = new SpeciesService();

 Cat animal = new Cat();

 speciesService.setAnimal(animal);

 String actual = speciesService.getSpecies();

 assertEquals("cat", actual);

}

Now, let's consider the scenario of automated test generation. If we do not extract type information

from the Spring application configuration indicating which of the Animal implementations is

preferred, we can either generate the already mentioned test with a mock or choose any of the

Animal interface implementations arbitrarily. In this way, another formally correct but valueless

test using the Dog implementation can be generated. However, if the application configuration is

analyzed and the test generation tool is provided with the information that only the Cat

implementation is used for the Animal interface, then the generated test will accurately represent

the actual behavior of the program.

Despite the fact that the type concretization described above cannot always be done (due to possible

ambiguity of the possible types choice) and it is not always necessary to do it, in some cases,

concretization allows for generating more expressive tests for Spring applications that verify real

execution scenarios. Therefore, the ability to generate tests with type concretization is a desirable

option for the test generator.

3. Overview

3.1 Existing tools

There are a number of tools that to some extent solve the problem of automated testing of programs

in Java. All of them use one or several basic code analysis techniques: symbolic execution, fuzzing

or machine learning [9]. The most famous open-source solutions are EvoSuite8, UnitTestBot Java9

and Randoop10. Among the commercial tools let us mention Parasoft Jtest11, Diffblue Cover12 and

Machinet13.

Among these tools, only a small subset can generate tests for Spring applications. For example,

Parasoft Jtest generates only test method templates. Of course, this reduces the total time required

to write tests, but the scope of the covered code depends on the user, who needs to substitute

arguments with values in the code of the generated test method templates.

8 What is EvoSuite? Available: https://github.com/EvoSuite/evosuite
9 UnitTestBot Java: Automated unit test generation and precise code analysis for Java. Available:

https://github.com/UnitTestBot/UTBotJava
10 Randoop: Automatic unit test generation for Java. Available: https://randoop.github.io/randoop
11 Parasoft Jtest for Java Unit Testing. Available: https://
www.parasoft.com/products/parasoft-jtest/java-unit-testing
12 What is Diffblue Cover? | Diffblue. Available: https://www.diffblue.com
13 Machinet: AI Assistant for Developers. Available: https://www.machinet.net

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

64

The code snippet below shows an example of a generated test template for a Spring application using

Parasoft Jtest. It is taken from the official Parasoft website14.

@Test

public void testGetPerson() throws Throwable {

 MockedStatic<ExternalPersonService> mocked =

 mockStatic(ExternalPersonService.class);

 mocks.add(mocked);

 Person getPersonResult = null; // UTA: default value

 mocked.when(

 () -> ExternalPersonService.getPerson(anyInt())

).thenReturn(getPersonResult);

 // Given

 PeopleController underTest = new PeopleController();

 // When

 int id = 1;

 Model model = mock(Model.class);

 ResponseEntity<Person> result =

 underTest.getPerson(id, model);

 // Then

 assertNotNull(result);

 assertNotNull(result.getBody());

}

Another example of a tool that can generate tests for Spring applications is Diffblue Cover. It is able

to generate tests that take into account the Spring application specifics.

Below is an example of the test generated for a Spring application using Diffblue Cover.

@ContextConfiguration(classes = {SpeciesService.class})

@ExtendWith(SpringExtension.class)

class SpeciesServiceUnitTests {

 @MockBean

 private Animal animal;

 @Autowired

 private SpeciesService speciesService;

 @Test

 void testGetSpecies() {

 when(animal.getSpecies()).thenReturn("");

 assertEquals("", speciesService.getSpecies());

 verify(animal, atLeast(1)).getSpecies();

 }

}

14 Accelerate Unit Testing of Spring Applications With Parasoft Jtest \& Unit Test Assistant. Available:

https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:\%20Accelerate\%20Unit\%20Testing\%20of\%20S

pring\%20Applications\%20with\%20Parasoft\%20Jtest\%20and\%20Unit\%20Test\%20Assistant.pdf

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

65

However, such tests do not follow the test writing guidelines for Spring applications mentioned in

the introduction (for example, it is rather unconventional to use a class under test for context

configuration) and the tool does not offer a mechanism to deal with excessive mocking.

Thus, none of the test automation tools we are aware of offer mechanisms for generating tests based

on the application configuration.

3.2 UnitTestBot Java

UnitTestBot Java is a part of the UnitTestBot tool lineup for automated unit test generation. The tool

uses two mechanisms to generate test scenarios: a symbolic engine and a fuzzer.

The symbolic engine is one of the implementations of the symbolic execution paradigm [10]. It

performs an analysis of the possible execution paths of a program by mapping a set of path

constraints to each branch of execution. These constraints are expressed in terms of the logic of

predicates, and then using the SMT solver Z315 their satisfiability is determined. Obtaining the

possible paths of program execution, as well as their prioritization, comes from the control flow

graph that is constructed from the byte code of the program. The byte code is preliminarily

transformed into Jimple representation using the Soot16. With this transformation, the byte code

takes a simpler representation having fewer instructions.

The fuzzer used in UnitTestBot Java applies the greybox fuzzing technique, which involves

generating random input values for a concrete execution of the methods under test. After each

concrete execution, the fuzzer obtains feedback about the change in execution path. Based on this

feedback, it mutates the input values for the next iteration of its work.

More detailed information about the implementation of the symbolic engine and fuzzer in

UnitTestBot Java can be found on the official website of the project or in the documentation in the

repository on GitHub17.

Both of these code analysis techniques are usually combined for maximum efficiency. In

UnitTestBot Java, by default, 95% of the time allocated for test generation is given to the symbolic

engine, and the fuzzer is used as an additional auxiliary tool.

4. Implementation

This section provides a Spring configuration analyzer implementation and describes a modernization

of the UnitTestBot Java symbolic engine, which allows types to be concretized during test

generation based on the information obtained from the configuration analyzer.

4.1 Spring configuration analyzer

The engine obtains Spring-specific information for type concretization from the user application

configuration analyzer. This information is collected using Spring's own instruments during the

initialization of the application context.

Spring context initialization consists of several steps:

1. Collecting bean definitions. During this phase application configurations are parsed and

analyzed. As a result, in particular, bean definitions are created. They include information

about the class of the bean, its properties and its relationships with other beans.

2. Configuration of the bean definitions (BeanFactoryPostProcessor18). Once the information

about beans has been collected, Spring can modify these definitions before they are used to

15 Z3. Available: https://github.com/Z3Prover/z3
16 Soot. Available: https://github.com/soot-oss/soot
17 UnitTestBot Java documentation. Available: https://github.com/UnitTestBot/UTBotJava/tree/main/docs
18 BeanFactoryPostProcessor. Available: https://docs.spring.io/spring-framework/docs/current/javadoc-

api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

66

create the beans themselves. Configuring bean definitions involves setting dependencies,

specifying scope, configuring lifecycle and other parameters specific to the bean.

3. Creating the beans and configuring them. This stage involves creating and further

configuring the bean instances based on their definitions. Class instances are created and

initialization methods are called.

While the steps of collecting and configuring bean definitions are safe for the user application, the

step of creating the beans may cause changes to user data. For this reason, we decided to embed

ourselves in the Spring context initialization process and implement our own

BeanFactoryPostProcessor. It collects all necessary and available to the analyzer information about

beans at the stage of setting up the bean definitions, destroys bean definitions, and then stops any

further application initialization. Thus, the creation of the beans is prevented. The general pipeline

of type information collecting during Spring application context initialization is shown in the Fig.

1.

To analyze beans from a user application with our post processor, we start a “hybrid” Spring

application whose classpath combines the classpaths of both the original user application and our

Spring analyzer module. It is important to note that the Spring analyzer module has minimal

dependencies, which helps avoid dependency conflicts with the user application. In particular,

Spring analyzer does not depend on a specific version of Spring and utilizes reflection to handle any

popular Spring version bundled with the user application. When starting such a “hybrid” Spring

application, we first determine whether Spring Boot is used and, based on that, choose an appropriate

application starter class. Furthermore, we dynamically patch annotations to make the started

application use the desired Spring configuration (Java- or XML- based) and profiles.

In this way, we get an algorithm for configuring our own Spring application, shown in the Fig. 2,

while the entire process of collecting Spring-specific information for type concretization by the

configuration analyzer is represented with the chain of actions shown in the Fig. 3.

Fig. 1. The initialization stages of the Spring context

4.2 Modernization of symbolic engine

The core idea of the symbolic engine modernization is to change the mechanism used for selecting

symbolic object types. Whereas the symbolic engine previously selected an arbitrary type,

determined by the SMT solver as satisfying the symbolic path constraints, it now tries to consider

only those types that are used in the application configuration chosen for test generation.

Let’s discuss the example of test generation for the getSpecies() method from the SpeciesService

class, presented in Section 2. In the past, when generating tests, the Dog implementation of the

Animal interface could be chosen because it satisfied the symbolic path constraints. However, tests

using the Dog class were not particularly useful because they did not test the actual behavior of the

program. In contrast, now, the Cat class is deterministically chosen as it is specified in the

application configuration.

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

67

Fig. 2. The activity diagram of creating a Spring application on the UnitTestBot Java side

Fig. 3. The Spring-analyzer's work scheme

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

68

4.3 Integration of symbolic engine and configuration analyzer

The Spring configuration analyzer is launched in a separate process from the symbolic engine.

Firstly, this allows running the configuration analyzer on the extended classpath without any

difficulties. After that, it prevents a possible crash of the entire test generation in case of an error

during the analysis of custom configurations. For example, running a Java Spring application based

on a custom one on the UnitTestBot side may cause the JVM crash if the custom application is poorly

designed.

The symbolic engine and user configuration analyzer processes, like all other processes in

UnitTestBot Java, communicate using the RD19 framework.

5. Results

As a result of this research, we managed to propose an approach to the analysis of Spring application

configurations, which sometimes allows generating tests that correspond better to the actual

behavior of the program. The developed configuration analyzer was integrated into the well-known

tool of automated test generation UnitTestBot Java.

In particular, the modernized tool is able to generate a test that checks the actual execution of the

getSpecies() method from the SpeciesService class of the running example given in

Section 2. To go further, we also provide tests generated with the modernized tool on real open-

source projects Java Blog Aggregator: Boot20 and Mall21.

5.1 Java Blog Aggregator: Boot

We paid attention to the Java Blog Aggregator: Boot project because it is mentioned, for example,

in the article [11] as one of the recommended projects to study for beginners in the Spring

framework.

Consider the AllCategoriesService class that has the autowired CategoryService field.

@Service

public class AllCategoriesService {

 @Autowired

 private CategoryService categoryService;

 public Integer[] getAllCategoryIds() {

 List<Category> categories = categoryService.findAll();

 Integer[] result = new Integer[categories.size()];

 for (int i = 0; i < categories.size(); i++) {

 result[i] = categories.get(i).getId();

 }

 return result;

 }

}

19 RD: Reactive Distributed communication framework for .NET, Kotlin and C++ (experimental). Inspired by

JetBrains Rider IDE. Available: https://github.com/JetBrains/rd
20 Java Blog Aggregator: Boot. Available: https://github.com/jirkapinkas/java-blog-aggregator-boot
21 Mall. Available: https://github.com/macrozheng/mall

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

69

The signature of the CategoryService class has the form:

@Service

public class CategoryService

The CategoryService class has the annotation @Service, which means that this class is used

to define a bean.

As a result of test generation using the modernized UnitTestBot Java for the

getAllCategoryIds() method from the AllCategoriesService class, we get a test:

@Test

public void testGetAllCategoryIds() throws Exception {

 AllCategoriesService allCategoriesService

 = new AllCategoriesService();

 CategoryService categoryService = new CategoryService();

 CategoryRepository categoryRepositoryMock

 = mock(CategoryRepository.class);

 when(categoryRepositoryMock.findAll())

 .thenReturn(new ArrayList<>());

 setField(categoryService,

 "cz.jiripinkas.jba.service.CategoryService",

 "categoryRepository",

 categoryRepositoryMock);

 setField(allCategoriesService,

 "cz.jiripinkas.jba.service.AllCategoriesService",

 "categoryService",

 categoryService);

 Integer[] actual = allCategoriesService.getAllCategoryIds();

 assertEquals(0, actual.length);

 assertEquals(new Integer[0], actual);

}

Instead of mocking the CategoryService class, its concrete implementation is used in this test.

It makes the test more expressive. In particular, we can observe that the CategoryService

interacts with the database. Also, the user can adjust the behavior of the mock related to database

access if necessary.

5.2 Mall

We also generated tests for the Mall project, which is very popular, having over one hundred

thousand forks and stars on GitHub. Let's discuss the test for the delAdmin() method in the

UmsAdminCacheServiceImpl class, that the modernized UnitTestBot Java has generated

based on Spring application configuration analysis.

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

70

@Service

public class UmsAdminCacheServiceImpl

 implements UmsAdminCacheService {

 @Autowired

 private UmsAdminService adminService;

 @Autowired

 private RedisService redisService;

 ...

 @Override

 public void delAdmin(Long adminId) {

 UmsAdmin admin = adminService.getItem(adminId);

 if (admin != null) {

 String key = REDIS_DATABASE + ":" + REDIS_KEY_ADMIN

 + ":" + admin.getUsername();

 redisService.del(key);

 }

 }

 ...

}

This class has two autowired fields: UmsAdminService and RedisService, which have

corresponding beans in the application configuration.

The test generated for the delAdmin() method of the UmsAdminCacheServiceImpl class

is as follows:

@Test

public void testDelAdmin() throws Exception

{

 UmsAdminCacheServiceImpl umsAdminCacheServiceImpl

 = new UmsAdminCacheServiceImpl();

 UmsAdminServiceImpl adminService = new UmsAdminServiceImpl();

 UmsAdminMapper adminMapperMock = mock(UmsAdminMapper.class);

 when (adminMapperMock.selectByPrimaryKey(any()))

 .thenReturn(null);

 setField(adminService,

 "com.macro.mall.service.impl.UmsAdminServiceImpl",

 "adminMapper",

 adminMapperMock);

 setField(umsAdminCacheServiceImpl,

 "com.macro.mall.service.impl.UmsAdminCacheServiceImpl",

 "adminService",

 adminService);

 umsAdminCacheServiceImpl.delAdmin(null);

}

Шишин К.А., Муравьёв И.В., Куликов Е.К. Об автоматической генерации модульных тестов для Java-приложений, использующих

фреймворк Spring. Труды ИСП РАН, 2024, том 36 вып. 2, с. 59-72.

71

In this test, instead of mocking the abstract type UmsAdminService, its concrete implementation

UmsAdminServiceImpl is substituted according to the application configuration. Initialization

of the second autowired field did not occur because it is not required in the tested program execution

path. Although there are no assertions in this test because the method has void return type, it is still

valuable. Since the tested method takes a nullable value as an argument, a scenario in which

adminId is null is possible and is a kind of edge case that often causes

NullPointerException. The generated test ensures that no such exception actually occurs in

the method under test. When writing tests manually, similar scenarios are often not taken into

account.

6. Future work

Unit tests are often used to verify the logic of Spring application components, so high-quality

automatic generation of such tests is important. However, some bugs can only be detected by

integration and end-to-end tests that interact with real data storage and other microservices, as well

as take into account the diverse features of the Spring framework (e.g., authorization and

authentication). For this reason, developing an integration test generation tool is a prominent

direction for future work. Such a tool will likely also need to initialize a modified Spring application,

meaning that the “hybrid” Spring application starter developed in this work may find additional uses.

References

[1]. Cristian C., Daniel D., Dawson E. KLEE: Unassisted and Automatic Generation of High-Coverage Tests

for Complex Systems Programs. Proceedings of the 8th USENIX Conference on Operating Systems

Design and Implementation (OSDI’08) USA: USENIX Association, 2008, pp. 209-224.

[2]. Workshop on Search-Based and Fuzz Testing, Available at: https://sbft24.github.io, accessed 24.06.2024.

[3]. Ivanov D. et al. UTBot Java at the SBST2022 Tool Competition. 2022 IEEE/ACM 15th International

Workshop on Search-Based Software Testing (SBFT), 2022, pp. 39-40. DOI: 10.1145/3526072.3527529.

[4]. Ivanov D., Menshutin A., Pelevin M. et al. UTBot at the SBFT 2023 Java Tool Competition. 2023

IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT), 2023, pp. 68-69. DOI:

10.1109/SBFT59156.2023.00019.

[5]. Java Programming – The State of Developer Ecosystem in 2022 Infographic, JetBrains: Developer Tools

for Professionals and Teams, Available at: https://www.jetbrains.com/lp/devecosystem-2022/, accessed

24.06.2024.

[6]. Fadatare R. Spring Boot Unit Testing Service Layer using JUnit and Mockito, Available at:

https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html, accessed 24.06.2024.

[7]. Overview: Spring Framework, Available at: https://docs.spring.io/spring-

framework/reference/testing/spring-mvc-test-framework/server.html, accessed 24.06.2024.

[8]. Chathuranga S. Unit and Integration Testing in Spring Boot Micro Service, Available at:

https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-

901fc53b0dff, accessed 24.06.2024.

[9]. Kim M., Xin Q., Sinha S., Orso A. Automated test generation for REST APIs: no time to rest yet.

Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA 2022), Association for Computing Machinery, New York, USA, 2022, pp. 289-301. DOI:

10.1145/3533767.3534401.

[10]. Baldoni R., Coppa E., Cono D’elia D., Demetrescu C., Finocchi, I. A Survey of Symbolic Execution

Techniques. ACM Comput. Surv. 51, 3, Article 50, 2019. 39 p. DOI: 10.1145/3182657.

[11]. Fadatare R. 10+ Free Open Source Projects Using Spring Boot, Available at:

https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html, accessed

24.06.2024.

https://sbft24.github.io/
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html

Shishin K.A., Muravev I.V., Kulikov E.K. On the automated unit tests generation for Java applications using Spring framework. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 2, 2024. pp. 59-72.

72

Информация об авторах / Information about authors

Кирилл Александрович ШИШИН – студент кафедры системного программирования СПбГУ.

Сфера научных интересов: задачи статического анализа кода, автоматическая генерация

тестов.

Kirill Alexandrovich SHISHIN – student of the software engineering department of SPbU. Research

interests: static code analysis tools, automated tests generation.

Илья Владимирович МУРАВЬЁВ – инженер-исследователь кафедры системного

программирования СПбГУ. Сфера научных интересов: задачи статического анализа кода,

автоматическая генерация тестов, контекстно-свободная достижимость.

Ilia Vladimirovich MURAVEV – researcher of the software engineering department of SPbU.

Research interests: static code analysis tools, automated tests generation, context-free grammars.

Егор Константинович КУЛИКОВ – кандидат физико-математических наук, доцент кафедры

системного программирования СПбГУ. Сфера научных интересов: задачи статического

анализа кода, автоматическая генерация тестов; методы локальной аппроксимации и их

распараллеливание.

Egor Konstantinovich KULIKOV – Cand. Sci. (Phys.-Math.), associate professor of the software

engineering department of SPbU. Research interests: static code analysis tools, automated tests

generation; local approximation methods and their parallelization.

