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Abstract. Although software development is mostly a creative process, there are many scrutiny tasks. As in
other industries, there is a trend for automation of routine work. In many cases, machine learning and neural
networks have become a useful assistant in that matter. Programming is not an exception: GitHub has stated
that Copilot is already used to write up to 30% of code in the company. Copilot is based on Codex, a
Transformer model trained on code as a sequence. However, a sequence is not a perfect representation for
programming languages. In this work, we claim and demonstrate that by combining the advantages of
Transformers and graph representations of code, it is possible to achieve excellent results even with comparably
small models.
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Hayuonanvnuuii uccredosamensckuil ynusepcumem « Boicuwas wikona sxonomuxuy (HUY BIIID),
101000, Poccus, e. Mockea, yn. Msacnuykas, 0. 20

Aunoragusi. HecMOTpst Ha TO, YTO TPOrpaMMHPOBAHHE — 3TO TBOPYECKHI MPOILECC, NOCTATOYHO MHOTO
BPEMEHH YXOJHUT Ha pelleHHe PYTHHHBIX 3a1ad. Kak ¥ B JAPYrMX HHAYCTPHAX B cepe MHPOPMAIMOHHBIX
TEXHOJIOTHH CTPEMSATCS aBTOMATH3UPOBATH PYTHHHbIE 3a1auk. Bo MHOTHX CITydasX MPUMEHSIOTCS HeHPOHHBIE
cetu. [IporpamMmmupoBanue He siBisiercst HckmodeHreM: Github sasepstror, uto yixe okomo 30% kozxa HamucaHo
npu momoru Copilot. Dtor mHCTpyMEeHT ocHOBaH Ha Momenu Codex — TtpaHchopmepe, 0OyU4EeHHOM Ha
HCXOIHOM Koze mporpamm. OfHAKO MPEACTaBICHHE KOJA B BHIC IOCICAOBATENBHOCTH, KaK 3TO CACTAHO B
Copilot, e Tak s¢pdexruBHo. B maHHO paGoTe MbI TMOKa3alH, YTO HCIONB30BAHHE TPaHCHOPMEPOB U
rpadoBOro MpeJICTaBICHHs KOJIa IPUBOIKUT K OYEHb XOPOIINM PE3YIbTATAM JaXKe JUIS MATCHBKIX MOJIENE.

KuaroueBbie ci10Ba: HEHPOHHBIE CETH; TPaHCHOPMEPLL; Tpad)bl; aOCTPAKTHOE CHHTAKCHYECKOE JIEPEBO.

Jnsi umrupoBanms: ApytioHoB [.A., ApnommH C.M. GraphTyper: BrBox tumoB u3 rpadoBoii
penpe3eHTaIMU KO TIOCPEICTBOM HelpoHHbIX ceteid. Tpynsl UCIT PAH, Tom 36, Beim. 4, 2024 1., ctp. 69-80
(na anrmmiickoMm si3bike). DOI: 10.15514/ISPRAS-2024-36(4)-6.

Baarogaproctu. MccienoBanue BBINOJIHEHO C MCIOJIB30BAHUEM CYNEPKOMIBIOTEpHOTO Komiuiekca HUY
BIID.

1. Introduction

Application of Transformers yet again has managed to break the deadlock: this time in the task of
code generation [1-4]. Nevertheless, the versatile Transformer architecture has displayed good
results on several benchmarks, in the recent work [5] it was shown that increasing the size of the
model doesn’t result in a better performance. Moreover, it is evident that context matters a lot to
produce a working code. However, it is not practical to relentlessly increase the length of context
sequence in a Transformer. Therefore, a different approach is needed to boost the efficiency in
machine programming tasks [6].

First of all, an expressive code representation has to be selected. Several ways, including token-
based, structured and graph-based approaches, have been reviewed [7]. For instance, graph
representation using abstract syntax tree (AST), data- flow graph (DFG) and control-flow graph
(CFG) yield good results in such tasks as variable misuse detection and correction [8]. Such graph
representation can capture an extensive amount of information about the program’s code.
Secondly, a versatile model architecture that supports learning on graphs must be used. Multiple
models such as RNN [9], LSTM [10] and CNN [11] with flattened graphs have been used. However,
graph-aware model architecture is more suitable for the graph representation of code. For this reason,
Graph Neural Networks (GNN) are a more reasonable choice of architecture, namely message-
passing neural networks [8].

Nonetheless, in this work we aim to make the most of both worlds: the advantages of Transformer
architecture and graph representation of code. For instance, we will use Transformer architecture
optimizations [12] and graph code representation created from AST and DFG. To make this possible,
we will use Pure Transformers [13] instead of models that have some architectural alterations to
support graph structure [14-16].
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2. Problem Statement

In this work, we test the ability of Pure Transformers to add types to Python source code based on
its graph structure. This task was selected as a starting point for future research due to its practical
relevance.

Firstly, dynamically typed languages, such as Python and JavaScript, have gained quite some
traction during the last years [17]. However, it doesn’t mean they’re easier [18—20] or less error-
prone than statically typed languages [21]. Moreover, lack of type hints in libraries might lead to
expensive errors in fields such as Data Science [22].

There are some tools outside the neural networks domain that perform static type checking and
inferencing type annotations [23,24]. Nonetheless, these utilities do not work without type hints in
the source code of the dependencies, which is pretty common. To alleviate this, there are proposals
about Domain-Specific Languages (DSL) for Data Science [22]. However, it wouldn’t work on
existing code base and massive adoption is not very likely.

On the other hand, absence of type hints is not a restriction for neural networks (see. Section 5.2).
In addition, they don’t only find erroneous types in existing codebase [25] but can also be used
during development to annotate code on the fly [26].

Most importantly, inferring types requires a model to learn a lot about the source code. Therefore,
developing a model with versatile architecture to infer types allows it to be later applied for other
tasks.

2.1 Metrics
To test the model, we use two metrics from the Typilus paper [25]:
e Exact Match: Predicted and ground truth types match exactly.

e Match up to Parametric Type: Exact match when ignoring all type parameters.
3. Previous Work

3.1 Graph Representation of Code

AST and DFG have already been used with Transformers in the code generation and summarization
tasks [27-29]. In addition, some joint graph structure representations that include different code
graphs have been developed, namely code property graph (CPG) [30], that incorporates AST, CFG
and PDG (program dependency graph). This graph representation has already been used for
vulnerability detection [30] and similarity detection [31].

3.2 Graph Transformers

Graph Transformers is a novel architecture that has been developing in the past few years. They
have been applied for several tasks, mostly in the field of molecule generation, node classification
and node feature regression [13-16]. Apart from models with alterations to Transformer base
architecture [15,16] researchers have recently developed simpler models [13] that are compatible
with many popular techniques developed for standard Transformers [12].

3.3 Type Inference with Neural Networks

The task of type inference has been also extensively covered in recent research. Many different
architectures have been used for this task: GNNs [25], RNNs [26,32] and Transformers [33,34]
among others. Moreover, graph representation of code has been used for the task of type inference
in dynamically typed programming languages such as Python [25] and Javascript [35].
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However, the power of Graph Transformers and Graph Representation of code hasn’t been
combined yet to solve the task of type inference in source code. This is the gap our model aims to
fill. The results of our model compared to previous work [25,26,32-34] are displayed in Table 1.

Table 1. Quantitative evaluation of models measuring their ability to predict ground truth type annotations.
EM — exact match, UTPT — Match up to parametric type.

Top-n Top-1 Top-3 Top-5
Metric EM UTPT EM UTPT EM UTPT

GraphTyper | 347 36.42 45.47 55.01 50.69 | 64.58

TypeBERT 454 48.1 514 53.5 54.1 56.5

TypeWriter 56.1 58.3 63.7 67.3 65.9 70.4

Typilus 66.1 74.2 71.6 79.8 2.7 80.9

TypedPy 75.8 80.6 78.1 83.8 78.7 84.7

TypeGen 792 | 873 | 856 91 87 91.7

4. Proposed Solution

4.1 Dataset

To train and test the model we gathered 600 Python repositories from GitHub containing type
annotations from Typilus [25]. We clone these repositories and use pytype [24] for static analysis,
augmenting the corpus with inferred type annotations. The top 175 most downloaded libraries are
added to the Python environment for type inference. Through deduplication, we remove over 133
thousand code duplicates to prevent bias.

The resulting dataset comprises 118,440 files with 5,997,459 symbols, of which 252,470 have non-
Any non-None type annotations. The annotations exhibit diversity with a heavy tailed distribution,
where the top 10 types cover half of the dataset, primarily including str, bool, and int. Only 158
types have over 100 annotations, while the majority of types are used fewer than 100 times each,
forming 32% of the dataset. This distribution underscores the importance of accurately predicting
annotations, especially for less common types. The long-tail of types consists of user-defined and
generic types with various type arguments.

The source files are processed to generate graphs that contain AST, DFG, as well as lexical and
syntactical information. An example of such a graph is shown on Fig. 1.

In addition to extracting graphs from source code AST, we split them by setting a maximum node
and edges number in one graph. For this, we prune the graphs around nodes that have annotations
that are later used as targets during training and testing. Finally, we split the data into train-
validation-test sets with proportions of 70-10-20, respectively.

4.2 Model Architecture

We base our model architecture on TokenGT [13]. The main advantage of this model is that standard
Transformer architecture is not altered to support graph data. It allows us to use some advantages
developed specifically for Transformers. For instance, Performer [12] is used to speed up training
by using linear time as space complexity.

The main idea of the authors is that combining appropriate token-wise embeddings and self-attention
over the node and edge tokens is expressive enough to accurately encode graph structure to make
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graph and node-wise predictions. The embeddings in the model are composed of orthonormal node
identifiers, namely Laplacian eigenvectors obtained from eigendecomposition of graph Laplacian
matrix. In addition, type identifiers are used to encode types of tokens (nodes or edges).

In our model, we use node and edge types extracted from code as token features. Node ground truth
annotations are added to the features and randomly masked during training. The overall architecture
of the model is displayed at Fig. 2.

Predicting type annotations in graph domain is a node classification task. However, since we are
using a Pure Transformer with graphs represented as a sequence of tokens, the task can be reduced
to token classification. In the Natural Language Processing (NLP) domain, this is a ubiquitous task,
also known as Named Entity Recognition (NER).

> NEXT_TOKEN ——> OCCURRENCE_OF
----- » CHILD — > NEXT_LEXICAL_USE
——» SUBTOKEN_OF

— =» ASSIGNED_FROM
== NEXT_MAY_USE

Fig. 1. Sample graph for foo=get foo(i, i+1) showing different node and edge types implemented by
Allamanis et al. [25].
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Fig. 2. GraphTyper Architecture. The source code is first transformed into AST graph, then type annotations
are randomly masked. The graph is enriched by token type identifiers (node or edge) and orthonormal node
identifiers obtained from eigendecomposition of Laplacian matrix. The resulting graph is fed through a
Transformer Encoder to obtain type annotations for masked nodes.

Encoder-only architecture has been widely used for the NER task, namely BERT is one of the most
popular models [36,37]. We adapt similar architecture by randomly masking type annotations. We
then apply an MLP layer to the output of TokenGT [13] to get logits of type annotations.

Masked model architecture is very versatile, and the pre- trained model can be later easily fine-tuned
for other tasks, similar to the approaches from the NLP-domain [36]. For example, error [38] and
vulnerability [39] data can be added to the code graph to detect and fix them [40-44].

5. Experiment and Ablation Results

To select the final model architecture, we test different models. For our experiments and ablation
analysis, we train and test the models using one sample repository. We also limit the number of types
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in the vocabulary to one hundred to speed up training and use less resources. To test the models, we
calculate Top-n predictions similar to the previous work [26]. Table 2 depicts the results of the
experiments and ablation. The model was trained on 1 NVIDIA Tesla V100 32 GB NVLink [45] for
10 epochs with the batch size of 32 graphs.

Table 2. Experiment results of top-n predictions for different model variants.

EM — exact match, UTPT — Match up to parametric type.

Top-n Top-1 Top-3 Top-5
Metric EM UTPT EM UTPT EM UTPT
Plane Transformer 10.15 19.46 15.06 29.40 16.81 37.91
+ Node & Type ldentifiers 30.88 | 36,55 | 40.33 | 50.37 | 4282 56.01
+ Type Annotations 33.36 | 4228 | 4171 52.90 43.62 57.00
+ Decoder (Autoencoder) 15.90 16.65 28.26 32.81 4417 56.33
or Longer Context 38.49 39.80 53.14 57.41 58.80 67.38
or More Parameters 29.39 31.82 44.85 49.72 49.74 56.14

5.1 Validating the necessity of node and type identifiers that encode graph
structure

First of all, we remove the node and type identifiers introduced by Kim et. al [13]. Our ablation
analysis demonstrates that indeed, the graph structure embeddings play a key role in model quality.
By removing them from the model, we are left with a simple Transformer that makes predictions
only based on AST nodes and edges types without any information about graph structure. Such a
model outputs the worst results among all the experiments.

5.2 Using the model without node type annotations

In addition, we try to remove the type annotations from the model completely. This alteration turns
our training into a masked NER task. Surprisingly, our model performs well in such conditions. This
means that the selected graph representation of code contains a lot of necessary information to infer

types.

5.3 Increasing the number of parameters

As we can see, increasing the number of parameters also increases the predictive power of the model.
However, increasing the parameters indefinitely is not very practical and requires a lot of
computational resources [6]. Moreover, keeping the low number of parameters allows us to use
longer context length (more node and edges in graph) during inference with same resource
capabilities. Therefore, we don’t change the parameter number of the final model, so it remains
compact.

5.4 Testing different context length

As for the context length, i.e., maximum number of nodes in graph (512 vs. 1024), our findings are
aligned with the conclusions from previous work [6]: longer context increases the performance of
the model. However, the AST representation of source code is very bloated and even having a lot of
nodes in the graph might not capture enough useful information to make quality predictions. In
addition, increasing the context length drastically slows down the training process. Thus, in future
research, we will be working on finding a better and more compact graph representation of code.
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5.5 Testing different Transformer architectures

Recently, Masked Graph Autoencoders have been applied for the tasks of link prediction and node
classification [46], as well as feature reconstruction [47,48]. To validate the robustness of the
Encoder-only Model, we also implement a Masked Autoencoder Model. For this, we adapt the
approach of Hou et. al [48] for our model. We introduce a learnable mask token and a decoder based
on the encoder layers. We reconstruct the type annotations by re-masking the target nodes before
feeding them into the decoder. However, we do not observe as good results as with a simple Encoder-
only model.

6. Known Limitations

6.1 Size of Type Vocabulary

Since we define our task as node (token) classification, we feed our transformer output into a
classifier linear head. Therefore, our type vocabulary is limited. Because of the computational
resources’ constraints, we limit it to one thousand types.

This issue is addressable by formulating the task as Deep Similarity Learning Problem [49,50]. In
this way, the model will output vector representations of types that can be grouped into cluster of
similar types. After that, an algorithm such as KNN [51] is used to transform vector representation
into a probability of each type [25,26]. Illustration for such an approach is depicted on Fig. 3. The
approach follows the methodology described in Typilus paper [25].

RP, Triplet Loss Partially

Annotated Code

Type Predictions

Code with Type \GraphTyper
Annotations

_i_ »| k-Nearest Type W
Neighbours Checker

Training ype Space Inference

Fig. 3. Solution to the problem using Deep Similarity Learning [25].

6.2 Absence of Natural Language information

In our work, we use only categorical features of nodes and edges of code graph, e.g., AST node
types and Python type annotations. Therefore, it would be challenging to apply it directly for tasks
such as code generation, because the representation doesn’t encode any information about variable
names.

There are several approaches that would help address this issue. Firstly, it is possible to use the
model output as graph encoding that would be later fed into another model along with tokenized
code [52]. This approach could also address the issue from the previous section, since types would
be treated as a set of text tokens [34]. Secondly, it is possible to use neural networks to infer
variables’ names from the context they are used in [53].

7. Future Work

In this work, we explored the application of Graph Transformers for type inference. The versatile
architecture of the proposed solution lets us explore other tasks.
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7.1 Universal code graph representation

If a universal version of graph code representation is used, similar to CPG [30], we can train the
model for multiple programming languages [29]. However, because of the differences of type
systems, separate models would be trained for each programming language for better results.

7.2 Detecting duplicates

Itis crucial to address the issue of duplicates in source code to train neural networks for code. Several
architectures have already been used for such task: Transformers [54], GNNs [55] and RNNs [56].
We believe that the graph representation obtained with our model can be successfully used for code
clone detection.

7.3 Code and docstring generation

Firstly, we can train the model using a technique similar to generative pretrained models [57,58] or
masked language models [52] to generate code. Secondly, our model can be used to generate code
summarization or docstring generation [59,60]. This could only be possible if we adapt some of the
approach discussed in the previous section.

7.4 Vulnerability and error detection

Another useful task is to detect errors and generate fixes [61,62]. This is possible by simply adding
features that contain error indication or types. Similar approach can be used to scan for
vulnerabilities [40,41,44]. Fixing bugs and vulnerabilities, however, would imply that the graph
structure could change. Therefore, solving this task would require the model to be modified for graph
generation [63].

7.5 Refactoring

Finally, we can extend our model with information about changes to analyze them and propose
refactoring possibilities [64]. This goal could be achieved by using the model from the previous
section.

8. Conclusion

As for the conclusion, we were able to create a universal model based on TokenGT [13] and code
represented as graphs. One of the most important advantages of this model is that it uses the code
graph directly. Secondly, the model can be modified to fit other tasks, such as code generation and
summarization, docstring generation, refactoring and many more. The code graph can also be
extended by different features and node types, since the representation does not differ depending on
graph structure. The source code is available at this https URL [65].
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