Tpyowr UCIT PAH, mom 36, évin. 3, 2024 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3, 2024

DOI: 10.15514/ISPRAS-2024-36(3)-4 tocld

Support of Visual Basic .NET in SharpChecker
static analyzer

12v.S. Karcev, ORCID: 0000-0001-7482-0835 <karcev.vs@ispras.ru>
13 V.N. Ignatyev, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru>

Lnstitute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2Moscow Institute of Physics and Technology,

9, Institutsky lane, Dolgoprudny, 141701, Russia.

% Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. This paper presents the implementation of static analysis for Visual Basic .NET (VB.NET) within
the industrial tool SharpChecker. Leveraging the Roslyn compiler framework, VB.NET analysis was integrated
into SharpChecker, enabling static code analysis for VB.NET projects. The process involved building support
for VB.NET projects, creating a comprehensive test suite, implementing a source code indexer, and adapting
existing analyzers to support VB.NET syntax nodes and operations. Evaluation of translated tests and real-
world projects demonstrated production-acceptable analysis quality, paving the way for improved maintenance
of VB.NET projects. Additionally, the study highlighted SharpChecker’s capability for cross-language
analysis, showcasing its ability to handle mixed C# and VB.NET projects efficiently.

Keywords: static code analysis; vulnerabilities detection; VB.NET.

For citation: Karcev V.S, Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy
ISP RAN/Proc. ISP RAS, vol. 36, issue 3, 2024. pp. 49-62. DOI: 10.15514/ISPRAS-2024-36(3)-4.

49

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

NMoppepxka Visual Basic .NET B ctaTu4ecKkom aHanusaTtope
SharpChecker

12 B.C. Kapyes, ORCID: 0000-0001-7482-0835 <karcev.vs@ispras.ru=
13 B.H. Henamwes, ORCID: 0000-0003-3192-1390 <valery.ignatyev@ispras.ru>

Y Unemumym cucmemnozo npozpammuposanus PAH,
Poccus, 109004, e. Mockea, yn. A. Comicenuybina, 0. 25.
2 Mockosckuii @usuxo-Texnuyeckuii Uncmumym,
Poccus, 141701, Honeonpyonuiii, Uncmumymckuil nepeyiox, 0. 9
3 Mockoeckuii 2ocyoapcmeennviii ynusepcumem umeny M.B. Jlomonocoea,
Poccus, 119991 Mocksa, Jlenunckue 2opwt, 0. 1.

AuHoTanusi. B 37Ol crathe mMpeicTaBlicHa peanusaius cratmdeckoro anammsza mias Visual Basic .NET
(VB.NET) B npomsiuienaoM uuctpymente SharpChecker. Vcmons3yst ¢peiiMBopk koMmmsitopa Roslyn,
anam3 VB.NET 6bu1 nnterpuposan B SharpChecker, uTo mo3Bonuio BBIMONHATH CTATHYECKUI aHAM3 KOJa
s ipoektoB VB.NET. Iporiecc Bkirouan B cebs co3nanue moanaepxku it npoektoB VB.NET, co3nanue
BCEOOBEMITIONIET0 Habopa TECTOB, pealT3alii0 HHIEKCaTOpa UCXOIHOTO KOJIa U aJalTalfIo CYIIECTBYIOIINX
aHANM3aTOPOB LT MOIACPKKU y310B U omepanuii cuHTtakcuca VB.NET. OueHka mepeBeeHHBIX TECTOB U
pEaIbHBIX NPOEKTOB MPOAEMOHCTPHPOBANIA NMPUEMIIEMOE Ul NPOM3BOJCTBA KAaueCTBO aHaIW3a, MPOJIOKUB
MyTh AJSL YIy4dlIeHHOTo obciyxuBanus npoekroB VB.NET. Kpome Toro, mcciemoBaHue MOTYEPKHYIO
Bo3mokHocTH SharpChecker mis Kpocc-s3bIKOBOTO aHaANM3a, MPOJEMOHCTPHUPOBAB €r0 CIMOCOOHOCTH
3¢ pekTuBHO 00pabaThiBaTh cMerranHbie poekThl C# 1 VB.NET.

KnroueBbie c1oBa: craTHieckuii aHaIM3 Koza, oOHapyxeHune ysa3sumocteit; VB.NET.

Jnsi mmrupoBanusi: Kapue B.C., Urnatee B.H. Ilommepxka Visual Basic .NET B crarumdeckom
ananmmzarope SharpChecker. Tpyast UCIT PAH, Tom 36, Beim. 3, 2024 1., cTp. 4962 (Ha aHITTHIICKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2024-36(3)-4.

1. Introduction

Visual Basic .NET (hereinafter referred to as VB.NET) is an interpreted, object-oriented language
with static typing, developed by Microsoft Corporation. VB.NET was inspired by Visual Basic 6.0.
It provides human-friendly syntax like its predecessor. However, it differs significantly from its
predecessor. Microsoft explains that it can help people who don't know programming to understand
and discuss tasks with others. The most noticeable difference from its predecessor is true object
orientation. Also, there are much more differences between these languages, so VB.NET is more
similar to other .NET languages like C#.

This enables the implementation of static analysis for VB.NET in existing solutions — in
SharpChecker [1]. SharpChecker is an industrial static analyzer for C#. It uses Roslyn [2] to compile
code, build an abstract syntax tree, make symbols table, etc. Roslyn supports C# and VB.NET. So,
implementing of VB.NET static analysis in SharpChecker must be simpler than developing a new
analyzer. Also, there are cross-language projects written in C# and VB.NET (for example, Roslyn
itself).

The work of SharpChecker can be divided into several stages. First of all, SharpChecker, using the
Roslyn [2] infrastructure, intercepts the compilation and assembles the solution. Next, the analysis
phase starts, consisting mainly of analysis of the abstract syntax tree and symbolic execution. Next,
scalable interprocedural analysis is performed, sensitive to control flow [3]. Symbolic execution in
SharpChecker allows for false positives and missed errors. Its goal is to find the maximum number
of errors in the minimum time for a given percentage of true positives. At this stage, the control flow
graph, possible values of variables, and feasibility of conditions are analyzed. Using symbolic
execution, you can find errors related to, for example, unreachable code or the use of a disposed
resource. After this, the labeled data is analyzed, with the help of which it is possible to detect

50

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

vulnerabilities related, for example, to data security. In addition, SharpChecker searches and stores
all references to symbols, such as types, variables, methods, etc. This allows for source code
navigation in the user interface.

1.1 Relevance

VB.NET is the tenth most popular language according to TIOBE [4] ranking. It is used in many
companies to maintain old projects. Mostly, such projects don’t have a detailed documentation and
may contain many hidden errors.

So, static analysis can help to fix and maintain legacy VB.NET projects. It can also ease the
transition from Visual Basic 6.0 to VB.NET by finding and reporting code problems to
programmers.

1.2 Motivational example

VB.NET may contain many types of errors. Here is DEREF_AFTER_NULL error found in Roslyn
compiler.

1 Dim initializerOpt = node.InitializerOpt

2 If initializerOpt Is Nothing OrElse ... Then
3 If node.Bounds.Length = 1 Then

4 Dim lastIndex = node.Bounds (0)

5 If ... Then

6

7 ReportDiagnostic (diag, initializerOpt.Syntax, ...)
8 _hasErrors = True

9 End If
10 End If
11 End If

Listing 1. Declaration of IgnoreAccessibility property

In this example, first of all, the value of the initializerOpt variable is compared with
Nothing inline 2. If this condition is met (that is, if the value of the initializerOpt variable
iS Nothing), a function ReportDiagnostic can be called. In parameters of this function
variable initializerOpt is dereferenced. Thus, under certain conditions, Nothing
dereferencing is possible in this case.

2. Related works

VB.NET is not supported by the majority of industrial static analyzers [5]. For example — Klocwork
[6] and Coverity [7] have no VB.NET support, although these analyzers support C#.

Despite this, VB.NET is supported in some static analyzers such as ReSharper [8-9], SonarQube CE
[10-11] and Kiuwan [12].

2.1 ReSharper

Many static analyzers, such as ReSharper, are designed primarily for quickly analyzing code to assist
the developer immediately while writing code. This leads to a significant reduction in the accuracy
of such tools, which allows them to find only the simplest special cases. So, ReSharper does not take
into account many factors that require resource-intensive analysis in advance. For this reason, such
tools are also unable to detect errors that can only be found with complex analysis such as symbolic
execution or analysis of tainted data.

51

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

2.2 SonarQube CE

SonarQube CE is used to detect errors, vulnerabilities, and code smells based on rules. However,
most rules for VB.NET are designed to detect code smells. Most of the rules in the bugs and
vulnerabilities categories are aimed at finding simple cases, such as finding recursive inheritances.
However, there are also more complex rules — e. g. no lock release on one or more of the execution
paths [13].

2.3 Kiuwan

This product focuses primarily on code security issues such as buffer overflows, command
injections, cross-site scripting, and SQL injections. At the same time, these types of vulnerabilities
are only a small part of the problems detected by the SharpChecker tool.

There are few analyzers that support the VB.NET language, and the existing ones often implement
only a small part of the required functionality. Therefore, the implementation of the VB.NET
analysis within the SharpChecker tool is important.

3. Problem statement

VB.NET is based on the same intermediate language CIL [14] as C# and is compiled by the same
compiler — Roslyn. So, this makes it possible to reuse existing SharpChecker infrastructure for
VB.NET program analysis. So, the main goal of this work is to implement VB.NET static analysis
within the industrial tool SharpChecker.

Implementation of new .NET language in SharpChecker can be divided into several tasks:

o Create representative test-set to understand problems and incompatibilities;
o Implement source code navigation to analyze warnings in real projects;
e Add new VB.NET specific processing in analyzers:
= abstract syntax tree analyzers;
= symbolic execution analyzers;
= taint analyzers.
In general, Roslyn has separate modules for building an abstract syntax tree for each .NET language.

But it also has modules for code analysis unification. For example, Roslyn has 10perations that can
unify the analysis of identical features for all supported languages.

4. The Approach

4.1 Test Base

To speed up the development, a decision was made to start with creating a complete testbase with
maximum possible coverage. SharpChecker has many separate analyzers for different error types.
Also, it has several analyzers to collect information about the code.

It is necessary to measure the accuracy of the analysis results. This leads to the necessity of a large
test base. Moreover, tests can help to debug incorrect behavior. In order to cover all analyzers and
error types to check analyzers' behavior in precise, it was decided to create an automatic test
translator from C# to VB.NET.

Test in SharpChecker is a syntactically correct compiled program, which may contain intentional
errors. Also, in the source code of the test, there is a marking of errors made in the form of comments
with information about the error. During the test execution, this source code is passed into the
SharpChecker, after which its results are compared with the markup in the test. The test is considered
passed if the SharpChecker detects all errors made, doesn't detect non-existent errors, and doesn't
terminate abnormally.

52

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

At first, the translator traverses the SharpChecker's sources to find and parse all files with tests. It
creates an abstract syntax tree of every file using Roslyn and finds all calls of verification methods.
Such methods contain the source code of the test as an argument, passed as a multiline string. All
these strings are converted to VB.NET by a separate translator's subsystem. After translating the
initial test is replaced with the result of translation in the initial syntax tree. When all tests are
translated, the whole syntax tree is exported into a new file.

4.1.1 Symbols renaming

The main problem with test translation from C# to VB.NET at all is case-insensitivity in VB.NET.
However, case-insensitivity is observed only within a single compilation unit. Accessing some
symbols from another project it is necessary to use the same case as this symbol was originally
defined. This problem led to the necessity of symbol renaming. All symbols that have differences
only in case must be stored and enumerated. After that, all symbols defined in the scope of the
compilation unit must be renamed according to enumeration. Other symbols, e. g. those that are
taken from external libraries, are not renamed.

For example, let's rename such symbols in code on listing 2.

using System;

w N =

public namespace TEST ({
public class Test {

4 public int console = 0;
5 public void test () {
6 Console.WriteLine ($"console = {console}l");
7 }
8 }
9 '}

Listing 2. Example of code with case-sensitive symbols

In this example, names TEST, Test, and test are indistinguishable, as Console and console
too. The symbols will be renamed as follows: TEST1, Test2, test3, Consolel, and
console2. However, since the symbol Console was declared in an external library, renaming it
could lead to compilation errors and, as a result, it won't be translated. After renaming example will
look like on listing 3.

using System;

2 public namespace TEST1 {

3 public class Test2 {

4 public int console2 = 0O;

5 public void test3() {

6 Console.WriteLine ($"console = {console2}");
7 }

8 }

9 }

Listing 3. Example with renamed symbols

4.1.2 Test translating

In order to translate source code from C# to VB.NET translator builds an abstract syntax tree of the
source. After that, it generates a new abstract syntax tree with corresponding VB.NET syntax nodes

53

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

for every C# syntax node. Some expressions must be completely replaced with others. For example,
in VB.NET variables of reference type must be compared with Nothing only with Is or IsNot
operators instead of == and !=. Additionally, comparing char with int requires explicit
conversion to the same type.

Translation result for example above is shown on listing 4.

1 Namespace TESTI1
Public Class Test2
Public console?2 As Integer = 0
Public Sub test3()
Console.WriteLine ($"console = {console2}")
End Sub
End Class
End Namespace

~N o O b Ww N

oo

Listing 4. Translated example

4.1.3 Translation results

SharpChecker contains 2680 tests, written in C#. 1928 of them were successfully translated to
VB.NET. All tests that could not be translated contain features not supported in VB.NET, making
conversion impossible. For example, VB.NET doesn't have dynami c type.

Automatic test translation enables the development of a representative test base for VB.NET from
scratch. This test base is almost equivalent to the one for C#, which has been developing for over 5
years. It contains tests for each of the FIXME types of error, supported by SharpChecker.

4.2 Implementing source code navigation

It is necessary to implement navigation for VB.NET. A source code indexer is used to collect code
data. It is a component that collects information about symbols. It is used to support navigation
(quick jumps to declarations, definitions and usages of symbols such as variables, functions, or
classes) through the source code in a GUI. The necessity of indexer is significant because it helps to
analyze warnings in huge projects and make decisions about analysis quality. So, to implement an
indexer for VB.NET it is necessary to find all definitions, declarations, and usages of every single
symbol of source code.

It is impossible to use the existing indexer for C# because of differences in syntax between C# and
VB.NET. For instance, VB.NET has integrated XML syntax, allowing for the inclusion of variables
within XML elements.

As part of the implementation of VB.NET support, a syntax indexer was implemented. The
implementation is basically similar to the implementation for C#, however, some syntax patterns
specific to VB.NET were taken into account (such as the usage of variables within the XML syntax).
As a result, the syntax indexer successfully parses projects and enables code navigation in the GUI.

4.3 Major incompatibility reasons

Most part of the inaccuracies in SharpChecker are related to the fact that VB.NET and C# have
different types of syntax nodes in an abstract syntax tree. As a result, analyzers directly reliant on
the analysis of abstract syntax trees may produce incorrect results. Usage of syntax nodes in any
context in SharpChecker may lead to incorrect results in VB.NET analysis.

There are also several analyzers that provide their results to other analyzers. Usage of an abstract
syntax tree in such analyzers can lead to completely incorrect results.

54

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

4.4 Abstract syntax tree analyzers

Abstract syntax tree analyzers (hereinafter AST analyzers), as the name suggests, provide analysis
based only on an abstract syntax tree (or other variants of source code representation, e.g., operations
tree or symbol table). The main features of these analyzers include high analysis speed, low resource
consumption, and independence from other SharpChecker components. It leads to the need to adapt
each single AST analyzer separately to let it analyze VB.NET code.

As it was mentioned above Roslyn has some unification mechanisms as 10perations and Symbols
are. Some analyzers that work only with such abstractions can perform VB.NET analysis as they
are. But other AST analyzers must be rewritten to support C# and VB.NET syntax nodes both or to
work with IOpeations and Symbols only. There are 61 AST analyzers in SharpChecker and most of
them working with C# syntax nodes, but some of them are already working with 10perations and
Symbols only. For example, the UselessCall analyzer is already using IOperations to perform
analysis. Also, there are some analyzers that don't need syntax or operation tree at all e.g.,
DuplicateEnumMember analyzer, that performs analysis only with symbol table.

To prepare AST analyzer to work with VB.NET it is necessary to follow these steps:

o replace all syntax nodes that have operation analogs with operations (sometimes it
requires rewriting analysis logic for such nodes);

e add VB.NET syntax nodes processing as it is implemented for C#;

o find all hard coded names or constructions, that are incompatible with VB.NET (for
example VB.NET has keyword Nothing instead of null in C#);

o check if the analyzer started working correctly with VB.NET.

Since AST analyzers are independent of other analyzers and their modification follows the same
scheme, at the moment only a part of them was modified to check their functionality with VB.NET.
These analyzers are:

e EmptyInterface—added processing of VB.NET syntax nodes along with C# nodes;
e FloatingPointEquality — rewritten with 1Operations;
e ReallntegerComparison — rewritten with 10perations;

e ShadowedName — syntax nodes analysis was replaced with analysis of 10perations
and Symbols.

Testing of the listed analyzers after modification showed that they began to work correctly with the
code on VB.NET.

4.5 Symbolic execution analyzers

The symbolic execution stage performs scalable interprocedural path-sensitive analysis [3]. At this
stage, false positives and missed errors are tolerated. The main goal of this type of analysis is to
search for the maximum number of errors in a minimum time with a fixed ratio of true and false
positives. At this stage, the control flow graph constructed in the syntax tree analysis phase is
analyzed, the variables are parameterized and the transition conditions for the control flow graph are
preliminarily calculated. Using this method, complex errors associated with scenarios such as
unreachable code [15] or the use of a disposed resource [16] can be identified.

Symbolic execution analyzers are more complex than AST ones. Also, such analyzers mostly have
a complex dependency graph.

The dependency graph of the UnreachableCode analyzer is depicted in figure 1 as an example. It
can be seen that the results of this analyzer are highly dependent on the correct operation of many
other analyzers.

55

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

-
ExecutedInThread Analyzer H Us.ingThreadsCallGraphAnalyzer}
UnreachableCode J

ValueldAnalysis CGLoopPreAnalysis
IsTestMethodAnalyzer
-

Y
A

‘;I CallGraphAnalysis
h 4

T IsTestMethodCallGraphAnalyzer J
IsCalledFromStaticConstructorCallGraphAnalyzer

Y

FieldUsageAnalyzer }(—)‘ FieldUsageAnalyzerPoslProcess]

Fig. 1. UnreachableCode dependencies

Some symbolic analyzers collect some information and provide it to others. These analyzers make
up the symbolic engine. The most important part of preparing symbolic analyzers to work with
VB.NET code is to adapt the engine.

4.5.1 Symbolic engine

Symbolic engine collects a lot of useful information for further analysis. It analyzes paths, contexts,
variable values, conditions, and much more. In order to make symbolic analyzers work correctly
with VB.NET it is important to prepare the whole engine because one minor inaccuracy in the engine
may lead to the absolutely incorrect results in all symbolic analyzers.

In general, the symbolic engine has the same issue with the analysis of syntax nodes. But basically,
this analysis cannot be replaced by the analysis of 10perations or Symbols, so it is necessary to
duplicate the processing for VB.NET syntax nodes. Also, some minor differences were found:

e symbols that represent properties in C# has property UnderlyingSymbol that
contains information about backing field, when such symbols from VB.NET code contain
backing field directly as field of initial symbol and have no UnderlyingSymbol;

e method symbols in VB.NET have no property to indicate that method is partial and it has
no implementation — it is necessary to use indirect signs;

e Nothing in VB.NET has no constant value unlike null in C#.

4.5.2 Symbolic analyzers

After the implementation of all the improvements in the symbolic engine, the symbolic analyzers
should generally work correctly. However, some analyzers use syntax nodes as well as a symbolic
engine. For example, UnreachableCode or NullDereference analyzers use syntax nodes to clarify
warning message or add tags. Also, sometimes syntax nodes can be used to detect some corner cases
or to find additional information.

4.6 Taint analyzers

Taint analysis is based on propagating tainted data. It helps to find security issues in source code. In
SharpChecker taint analysis depends on the CallGraphAnalysis analyzer, which is used by the
symbolic engine, so it has been already fixed in the previous stage. It leads to the necessity of adding

56

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

VB.NET support in CallGraphAnalysis only. It has already been done on the stage of the symbolic
engine.
So, taint analysis showed good analysis quality without any additional modifications.

5. Evaluation

The quality of the analysis was measured on translated tests and real projects. After implementing
the analysis of the VB.NET syntax node and IOperations in most of the symbolic engine analyzers,
SharpChecker began detecting errors in the VB.NET source code.

5.1 Tests results

It could be assumed that generated tests cover the most error types. Analyzers working on the AST
level were not fully rewritten, so let's consider other analyzers.

Table 1. Tests evaluation

Symbolic Execution Taint Dataflow
Pass 1177 77 39
Fail 179 13 11
Pass rate 86.8% 85.5% 78.0%

Table 1 shows the results of running tests automatically generated for VB.NET. The table shows the
number of passed and failed tests for each of the analyzed types of analyzers. The table also shows
the percentage of tests passed for each type of analysis. Among the failed tests, both missed errors
and false positives were found.

Based on these results, it can be concluded that as a result of the changes, SharpChecker received
VB.NET support, but some corner cases were left uncovered.

5.2 Real projects warnings

As a result of testing on real projects, it turned out that SharpChecker is able to detect errors on real
projects after adding support for VB.NET. Several examples of found errors are given below.

5.2.1 USELESS_CALL

Warning on listings 5, 6 was found in Roslyn in file TupleMethodSymbol . vb in line 131.

The USELESS_CALL warning was found in the code shown in the listing. Indeed, the function
MergeInfo called in line 3 has no side effects, and its return value is not assigned anywhere.

5.2.2 DEREF_AFTER_NULL
Warning on listing 7 was found in Roslyn in the file Binder Lookup.vb in line 1909.

In VB.NET there are differences between the operators And and AndAlso. The regular And
operator evaluates both sides of an expression, even if the final value can be calculated from only
the first operand. In this example, the developer assumed that if the container variable is equal
to Nothing (which is checked by the first operand), then the second operand will not be calculated
and dereferencing will not occur. However, due to the specifics of the language, in this case, both
operands will always be evaluated, which leads to the possibility of a Nothing dereferencing error.

5.2.3 HANDLE_LEAK
Warning on listing 8 was found in Roslyn in the file Program. vb in line 75.

57

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

Friend Overrides Function Info () As Info

Dim useSiteDiagnostic As Info = MyBase.Info ()

1
2
3 MyBase.MergeInfo (useSiteDiagnostic,
4 Me. underlyingMethod.GetUseSiteErrorInfo())
5 Return useSiteDiagnostic

6

End Function
Listing 5. USELESS_CALL warning

Function MergeInfo (
first As Info, second As Info) As Info
If first Is Nothing Then
Return second
End If
If second Is Nothing OrElse
second.Code <> HighestPriorityError Then
Return first
End If
10 Return second
11 End Function

~ o O bk w N

O

Listing 6. Definition of MergeInfo

[

If container IsNot Nothing And
container.SpecialType = SpecialType.System Void Then
Return

End If

N

w

Listing 7. DEREF_AFTER_NULL warning

Function GetChecksum(filePath As String) As String
Dim fileBytes = File.ReadAllBytes (filePath)
Dim func = SHA256.Create()
Dim hashBytes = func.ComputeHash (fileBytes)
Dim data = BitConverter.ToString(hashBytes)
Return data.Replace("-", "")

End Function

N o O W N

Listing 8. HANDLE_LEAK warning

As can be seen, the resource func created in line 3 is not disposed until the end of the function,
after which it goes out of scope. So, this is indeed a mistake.

However, it is possible to observe a fairly large number of false positive warnings at the symbolic
level analyzers. Such warnings will be eliminated in the future by debugging and finding incorrect
processing of the source code on VB.NET.

Thus, as a result of the changes, SharpChecker received support for the VB.NET analysis. As a result
of the analysis of the Roslyn project, warnings were found in the VB.NET source code. Some of the
found warnings turned out to be true positives.

58

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

5.3 Real projects quality

To determine the quality of the analysis on real projects, Roslyn was analyzed. 50 warnings were
marked for each considered analyzer. The results are shown in table 2.
Table 2. Real projects evaluation

. Warning’s count TP rate
Warning type
VB.NET C# VB.NET C#
UNUSED_VALUE 325 694 90.0% 99.6%
DEREF_AFTER_NULL 57 54 38.6% 48.4%
UNREACHABLE_CODE 331 428 37.0% 58.3%

The table lists the number of warnings found and the percentage of the ratio of the number of true
positives to the total number of marked ones for each of the considered analyzers. The marking of
warnings was done manually.

The results show that the analyzers detect warnings in VB.NET source code with an accuracy
comparable to that for C#. In some cases, the accuracy is lower (for example, in
DEREF_AFTER_NULL and UNREACHABLE_CODE), it is explained by minor differences in the
structure of languages and their representation in Roslyn.

5.4 Cross-language analysis

While testing VB.NET support on real projects, it was revealed that SharpChecker is able to analyze
cross-language projects. As it turned out from test runs of Roslyn, SharpChecker can analyze cross-
language projects without quality losses in the appropriate time. Both errors in VB.NET and errors
in C# were simultaneously detected. In addition, it is worth noting that discovered errors were
simultaneously associated with code in both languages. Thus, the trace of such errors was found
both in the C# code and in the VB.NET code.

Before support for VB.NET analysis, analysis lasted 30 minutes and after implementing it time has
increased to 44 minutes. It can be explained by the increased number of sources to analyze. Roslyn
contains 2.25 million lines of C# code and 1.52 million of VB.NET code. So, increasing analysis
execution time correlates with increasing code size. It is also worth noting that the results of the
analysis of the source code in C# have not changed.

5.5 Comparison with SonarQube
To compare the quality of the analysis, the Roslyn project was analyzed using the SonarQube CE
tool. 76 errors and more than 4 thousand code smells were found. Detected errors include the
following types of errors:

e incorrect getter name;

o identical right and left sides of a logical expression;

o implicit casting to an integer type in a bitwise shift;

o identical blocks in a branching;

e identical conditions in a branching.

These errors are quite simple and can be detected without the use of in-depth analysis. At the same
time, more complex errors, such as memory leaks and unreachable code, were not detected by the
SonarQube CE tool.

59

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

6. Conclusion

SharpChecker is ready to analyze VB.NET source code without major changes. There are many
minor changes to be done in SharpChecker for complete support of VB.NET, but now it works with
acceptable quality. However, it is necessary to overcome a number of problems in the detectors that
arise due to differences in languages and differences in the implementation of methods and
abstractions for their analysis in Roslyn. This requires detailed debugging of failed tests and the
addition of edge case processing in all analyzers included in SharpChecker.

References

[1].
2.
[3].

[41.
[5].

[6].

[71.
[8].

[9].
[10].

[11].
[12].
[13].
[14].

[15].

[16].

V. Koshelev, V. Ignatiev, A. Borzilov, and A. Belevantsev. SharpChecker: static analysis tool for C#
programs. Programming and Computer Software, 43(4):268-276, 2017.

dotnet/roslyn: The Roslyn .NET compiler provides C# and Visual Basic languages with rich code analysis
APIs.https://github.com/dotnet/roslyn. [Online, accessed 23.10.2021].

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi. A survey of symbolic execution
technigues. ACM Comput. Surv.,, 51(3), 2018. DOI: 10.1145/3182657. URL:
https://doi.org/10.1145/3182657.

TIOBE Index for ranking the popularity of Programming languages. https://www.tiobe.com/tiobe-index,
2022.

Wikipedia contributors. List of tools for static code analysis — Wikipedia, the free encyclopedia, 2024.
URL:
https://en.wikipedia.org/w/index.php?title=List_of_tools_for_static_code_analysis&oldid=1218561224.
[Online; accessed 15-April-2024].

W. Wei, M. Yunxiu, H. Lilong, and B. He. From source code analysis to static software testing. In 2014
IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), pages
1280-1283. IEEE, 2014.

A. Almossawi, K. Lim, and T. Sinha. Analysis tool evaluation: coverity prevent. Pittsburgh, PA: Carnegie
Mellon University:7-11, 2006.

E. Firouzi and A. Sami. Visual studio automated refactoring tool should improve development time, but
resharper led to more solution-build failures. In 2019 IEEE Workshop on Mining and Analyzing
Interaction Histories (MAINT), pages 2-6. IEEE, 2019.

Resharper features. https://www.jetbrains.com/ru-ru/resharper/features/, 2022.

V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi. Are sonarqube rules inducing bugs? In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pages 501
511. IEEE, 2020.

G. A. Campbell and P. P. Papapetrou. SonarQube in action. Manning Publications Co., 2013.

Common vulnerabilities. https://www.kiuwan.com/common-vulnerabilities/, 2024.

Vb.net static code analysis. https://rules.sonarsource.com/vbnet/, 2024.

Wikipedia contributors. Common intermediate language — Wikipedia, the free encyclopedia, 2024. URL:
https://en.wikipedia.org/w/index.php?title=Common_Intermediate_Language&oldid=1218588686.
[Online; accessed 16-April-2024].

V. N. Ignatiev, V. K. Koshelev, A. I. Borzilov, A. A. Belevantsev, N. V. Shimchik, and M. V. Belyaev.
Detector of unreachable code in C# programs of the static analysis tool “SharpChecker”, 2017.

U. V. Tyazhkorob, V. N. Ignatiev, and A. A. Belevantsev. Finding uses of a disposed resource in source
code in C# using static analysis methods. Proceedings of the Institute of System Programming RAS,
34(6):41-50, 2022.

UHgpopmayusi 06 asmopax / Information about authors

Bamgum Cepreesnu KAPLEB — cryment wmaructparypsl Pu3Tex-mkosnsl PaguoTeXHUKH U
Kommerotepubix Texuomormit MO®PTH, corpymauk WCII PAH. Hayusrele wuHTEpecs:
KOMIIMJISITOPHBIE TEXHOJOTMHM, CTaTUYECKUM aHaJIW3 IPOrpaMM, CTATUYECKOE CHUMBOJIBHOE
BBITTOJTHEHHE, TIOMCK 1e()EKTOB B UCXOTHOM KOJIE.

60

Kapues B.C., Urnatses B.H. ITognepxxka Visual Basic .NET B cratinueckom ananusatope SharpChecker. Tpyowst ICIT PAH, 2024, Tom 36
BoII. 3, . 49-62.

Vadim Sergeevitch KARCEYV is a master student at the Department of Radio Engineering and
Computer Technologies of MIPT, an employee of the ISP RAS. Research interests: compiler
technologies, static program analysis, static symbolic execution, defect search in source.

Banepuit Huxonaesuu WMIHATBEB - kanmunmar ¢(u3uko-MareMaTHYECKUX HAyK, CTapIIUid
HayuHblii coTpyaauk VICIT PAH, moreHT kadenpbl CHCTEMHOTO MpOrpaMMUPOBaHus (HaKyJIbTeTa
BMK MI'Y. HayuHble HHTEpPECHl BKJIFOUAIOT METOMBI MOUCKA OMMOOK B McxoaHoM kone I1O Ha
OCHOBE CTaTHYECKOI'0 aHaIu3a.

Valery Nikolayevich IGNATYEV - Cand. Sci (Phys.-Math.), senior researcher at Ivannikov
Institute for System Programming RAS and associate professor at system programming division of
CMC faculty of Lomonosov Moscow State University. He is interested in techniques of errors and
vulnerabilities detection in program source code using static analysis.

61

Karcev V.S., Ignatyev V.N. Support of Visual Basic .NET in SharpChecker static analyzer. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 3,
2024. pp. 49-62.

62

