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Abstract. The Python Package Index (PyPl) serves as the primary repository for projects for the Python
programming language, and the package manager pip uses it by default. PyPl is a free and open-source
platform: anyone can register a user on PyPI and publish their project, as well as examine the source code if
necessary. The platform does not vet projects published by users, allowing for the possibility to report a
malicious project via e-mail. Nonetheless, every less than month analysts repeatedly discover new malicious
packages on PyPl. Organizations working in the field of open repository security vigilantly monitor emerging
projects. Unfortunately, this is not enough: some malicious projects are detected and removed only several
months after publication. This paper proposes an automatic feature selection algorithm based on bigrams and
code properties, and trains an ET classifier capable of reliably identifying certain types of malicious logic in
code. Malicious code repositories MalRegistry and DataDog were used as the training sample. After training,
the model was tested on the three latest releases of all existing projects on PyPl, and it succeeded in detecting
28 previously undiscovered malicious projects, the oldest of which had been around for almost one and a half
years. The approach used in this work also allows for real-time scanning of published projects, which can be
utilized for prompt detection of malicious activity. In this work, the additional focus lays on methos that do not
require an expert for feature selection and control, thereby reducing the burden on human resources.
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O6HapyxeHune BpefoOHOCHOW aKTUBHOCTU B NPOEKTaxX C OTKPbITbIM
MCXOAHbLIM KOAOM C MOMOLLbIO METOAOB MALUMHHOIO O0y4YeHus
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Aunnoraumsi. Python Package Index (PyPl) siBisercst OCHOBHBIM XpaHHJIHIIEM IPOEKTOB ISl SI3bIKa
nporpamMmupoBanus Python u ucrones3yercss MakeTHBIM MEHEIDKepoM Pip mo ymomdanuioo. PYPl sBisercs
OecrIaTHOM M CBOOOIHOM IIIaT(OPMOii ¢ OTKPBITEIM HCXOIHBIM KOJOM: Ka)XKIBIH MOXKET 3aperHCTPHPOBATH
none3oBatens B PYPl u ommyGnmkoBaTh CBOM MPOEKT, a TakXkKe B Cllydae HaJJOOHOCTH U3YYUTh UCXOIHBIH KOJI.
IInarpopma He NPOBEpSET NPOCKTHI, OIYOJMKOBAHHBIC IOJB30BATEIAMH, OCTABISAS BO3MOXKHOCTD
MOKAJIOBATHCS Ha BPEIOHOCHBII IPOEKT mocpeacTBoM e-mail. Ipu 9ToM He mpoiiaeT u MecsIia, Kak aHaTHTHKH
BHOBb M BHOBb OOHApYKHBalOT BpemoHOCHbIe makeTsl Ha PYPl. Opranusaumum, paboraroume B cdepe
obecrieyeHns1 0€30MaCHOCTH OTKPBITHIX PEMO3UTOPHS, TIATEIBHO CIIEAAT 32 MOABIAIOIMMUCS poekTamu. K
COXKAJICHHIO, 9TOTO HEIOCTaTOYHO. HEKOTOPHIE BPEZOHOCHBIE NPOEKTH OOHApY)KUBAIOT M YIALIOT JIHIIb
CIyCTSl HECKOJBKO MecslleB Nocie myOimkanuu. B pamkax maHHOH pabOTBI IPELIOKEH ajirOpuTM
aBTOMATHYECKOTO BHIOOpA IPH3HAKOB, OIMPAIOIIMICS Ha OWUrpaMMBl M CBOWCTBA Koma, M oOydyeH ET-
KJIacCH(HKATOP, MO3BOJIIIONIMN C BBICOKOH TOCTOBEPHOCTBIO ONPEACNSITH HEKOTOPHIC BHIBI BPEIOHOCHOW
JIOTHKH B KoJie. B kauecTBe 00y4aromieil BBIOOPKH ObLIH B3ThI PEIIO3UTOPHH BpeoHOCHOTO Koaa MalRegistry
n DataDog. Ilocme oOydeHus Mozenb Oblla HPOTECTHpPOBaHA HA TPEX MOCIEAHUX peln3ax BcexX
CYHIECTBYIOIIMX HAa JAHHBIM MOMEHT NpoekToB Ha PYPI, u eif ynamoce HaiiTh 28 paHee He OOHAPYKEHHBIX
BPEIOHOCHBIX ITPOEKTA, CTAPIINK U3 KOTOPBIX CYIIECTBOBAN MOYTH MonTOpa roja. [1oaxoa, NprMMEHEHHBIH B
paboTe, MO3BOJISAET TaKXKE CKAHHUPOBATH ITyOJIMKYEMBIE TPOCKTHI B PEKUME PEalbHOIO BPEMEHH, YTO MOXKET
OBITH WCHOJIB30BAHO JUIS OIIEPaTHBHOTO OOHApyXXEHWs BPEIOHOCHOH aKTHBHOCTH. B pamkax paboThl
JIOTIOJTHUTENIbHOE BHUMAaHUE AaKIEHTHPYEeTCs Ha MeToJax, KOTOphle He TpeOylT skcmepra ais oTOopa
MIPU3HAKOB ¥ KOHTPOJISI OTOOPAaHHBIX IIPH3HAKOB, YTO YMEHBIIAET HArpy3Ky Ha JIIOJeH.

KiioueBble ciioBa: pypi; oOHapyXeHHE BPEJOHOCHOTO IIPOIPaMMHOrO obecrmedeHus; 0e30macHOCTb
OTKPBITOTO IIPOrPAMMHOT0 00ECIICUEHHsI; OTKPHITOE IIPOrPaMMHOE 0OECIICYCHHUE.

s nutupoBanusi: Pakosckuii C. A. OOHapyXeHHE BPEJOHOCHOH aKTHBHOCTH B MPOEKTAaX C OTKPHITHIM
HCXOTHBIM KOJIOM C TIOMOIIBI0 MeTOA0B MamuHHOTO 00yuerus. Tpyast UCII PAH, Tom 36, Beim. 3, 2024 r.,
ctp. 161-166 (ua anrnuiickom si3eike). DOI: 10.15514/ISPRAS-2024-36(3)-11.

BaaromapHocTu. ABTOp BhIpaXKaeT OjaromapHocth Positive Technologies, poccuiickoii KOMMaHHU TIO
pa3paboTKe MPOIYKTOB B 007acTH HWH(GOPMAIMOHHOH OE30IMacHOCTH, 3a IOOMIPEHHE JAeSTENIbHOCTH,
HAMpPaBJICHHOW Ha MOJICPKKY OTKPBITOTO MIPOTPAMMHOTO 00CCIICUEHHS.

1. Introduction

In the modern world of programming, the Python Package Index (PyPI) holds a pivotal place as the
primary repository for projects using the Python programming language. Due to its accessibility and
ease of use, PyPI has become an integral part of the Python ecosystem, providing developers with a
powerful tool for distributing and managing packages. To illustrate its popularity, it's worth noting
that projects installed using the "pip install" command are downloaded by default from PyPI.
However, PyPIl faces a serious problem: the regular appearance of malicious packages in the
repository [1-3]. The situation is so bad that hardly a month goes by without news of a new malicious
campaign on PyPlI.

But even if this situation is reported, it can create a false impression that everything is under control:
the emergence of such news means not only the presence of a problem but also the fact that it is
being monitored and addressed. In reality, things are not so rosy: some malicious packages may
remain undetected for several months, or, in the worst case, several years. For instance, in February
2023, an article was published in which analysts found over 200 malicious packages dating from
2018 to 2023, meaning some of the packages were created 5 years ago [4].
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In the academic sphere, the topic of detecting malicious packages is considered thoroughly
researched. Numerous approaches have been proposed, which can be divided into:

e rule-based detection [5, 6, 7];
e supervised learning [8, 9, 10, 11, 12, 13];
e unsupervised learning [14, 15, 16].

Interestingly, the authors address the academic problem, some with experience in machine learning,
but none of them have practical experience in analyzing malicious software in general. However,
some articles show good results: [5] in 2020 found 278 new malicious npm projects, [11] in 2022
found 95 new malicious npm packages, [14] in 2021 found 63 malicious PyPI packages, [15] in
2023 found 306 new malicious PyPI packages.

The author of this article, being a malware analyst, became interested in whether the previous work
done by researchers and organizations is sufficient to consider PyPIl adequately protected. Special
emphasis was placed on the possibility of creating a self-sufficient model that does not require expert
involvement. Rule-based solutions [5, 6, 7] and those based on preliminary expert feature assessment
[10, 11, 13, 14, 15] require an expert, which is their weak point.

2. Feature Selection and Model Choice

Public repositories of malicious projects MalRegistry [5] and DataDog [6] were used as the sources
of malicious packages. Since the datasets overlap, additional work was done to eliminate duplicates
to prevent the model from overfitting on very similar projects.

For the initial search for obfuscated packages, the following indicators were considered:
¢ the most popular 2-grams of malicious packages.
e mean, std, max of lines of code;
e mean, std, max of line lengths of code;
e mean, std, max of entropy from code blocks of 512 bytes;
e top-10 byte frequencies.

The use of 2-grams is justified by the fact that they best describe the calls to system functions, which
usually consist of two words, such as os+system, subprocess+call, base64+b64decode. From the
dataset of malicious projects, approximately 420,000 2-grams are extracted.

During one of the cleaning stages, projects that were complete duplicates were identified. However,
most malicious projects are part of a campaign, differing only in project name, version, IP address,
or domain. It was decided to consider projects differing by no more than three 2-grams from each
other as duplicates. Ultimately, out of 1819 projects from MalRegistry and 1005 projects from
DataDog, 385 remained.

Among the 420,000 2-grams, those that appeared in at least 2% of the dataset were selected.
Additionally, 2-grams were extracted from the top 2000 PyPI projects by download (assuming these
packages are unequivocally clean), and from the final list of 2-grams, those found in at least one of
five malicious projects were removed. The final 241 2-grams were taken as indicators of malicious
behavior. Indeed, some of them describe malicious patterns.

This approach to selecting 2-grams allows for feature evaluation without the need for an expert.
Cleaning the dataset of malicious packages that are similar in functionality helps avoid dataset bias
towards popular mass campaigns.

Ultimately, each project is represented as a vector combining 241 boolean constants (presence or
absence of a 2-gram in the project) and 19 numbers representing various code distributions.

Table 1 demonstrates the result of training various models on this dataset. The model used is the
Extra Trees Classifier. This classifier creates a multitude of decision trees with bootstrapping
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(selecting subsets of features for each of the individual models), with the features for each tree
chosen randomly. In our case, this likely allows for the creation of "strong" trees within the forest,
as only a few of the automatically selected 2-grams reflect maliciousness.

Table 1. Evaluation of different models using selected features

Model Accuracy AUC Recall Prec. F1 Kappa MCC

Extra Trees Classifier 0.9852  0.9978 0.9825 0.9941 0.9883 0.9683 0.9685
Light Gradient Boosting Machine 0.9818  0.9973 0.9838 0.9876 0.9856 0.9608 0.9609
Random Forest Classifier 0.9802  0.9969 0.9833 0.9855 0.9844 0.9573 0.9574
Extreme Gradient Boosting 0.9789  0.9961 0.9813 0.9854 0.9833 0.9545 0.9546
Gradient Boosting Classifier 0.9744  0.9949 0.9833 0.9766 0.9799 0.9446 0.9449
Ada Boost Classifier 0.9720  0.9937 0.9800 0.9762 0.9780 0.9396 0.9400
Decision Tree Classifier 0.9660  0.9634 0.9729 0.9735 0.9731 0.9266 0.9269
Linear Discriminant Analysis 0.9638  0.9893 0.9584 0.9842 0.9710 0.9230 0.9237
K Neighbors Classifier 0.9213  0.9604 0.9350 0.9407 0.9378 0.8309 0.8312
Logistic Regression 0.9092  0.9597 0.9217 0.9346 0.9279 0.8053 0.8061
Quadratic Discriminant Analysis 0.6432  0.5151 0.9942 0.6408 0.7793 0.0377 0.1085
Dummy Classifier 0.6337  0.5000 1.0000 0.6337 0.7758 0.0000 0.0000
Naive Bayes 0.5439  0.9447 0.2807 0.9986 0.4372 0.2221 0.3524

3. Malicious Projects Detection

The last three versions of all existing projects were taken as the evaluation target. Since SHAP
analysis can be applied to the Extra Trees Classifier, we can determine the model's confidence in a
particular decision. Verdicts with a confidence level above 0.6 were considered reliable.

The training and deployment of models were conducted on an Intel® Core™ i7-13700K at 5.00GHz,
with 128GB RAM. However, it is important to note that the training and deployment process, even
with the dataset loaded into memory, does not consume more than 4GB of RAM, and evaluating a
new project takes no more than a second. From this, we can conclude that much less powerful
hardware would also be sufficient for solving this task. Training all 16 models using a 10-fold
approach took no more than 4 minutes.

A total of 385 packages were found. Upon further analysis, some packages were identified as
projects with poor development practices (these include projects that are wrappers for executable
exe files, launched in the same way as the payload of malicious projects), while others were benign
but obfuscated. Among these packages, 28 are definitely malicious. Some are stealers, while others
are downloader trojans. Some of the detected projects are shown in Figures 1, 2, 3.

4. Conclusion

The model has proven its effectiveness by identifying 28 previously undetected packages from 2022
to 2023, even though other studies have been conducted during this period. However, the author of
the article sees room for improvement: using AST to obtain call chains and classifying constants as
a method of enrichment (e.g. classifying IP addresses, URLS, and system paths). An analysis of the
project's metadata (authorship, number of project releases, etc.) could also be beneficial.
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It would also be worthwhile to deploy the model for real-time scanning of new projects and

automatically reporting malicious projects with a high level of confidence to PyPl administrators.
This is the primary wish in terms of protecting PyP1 from malicious software.
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