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Abstract. This paper addresses the challenge of single-object tracking on resource-constrained devices, a
critical aspect for applications like autonomous drones and robotics. We propose an efficient real-time tracking
system that leverages the strengths of transformer-based neural networks in combination with correlation filters.
Our research makes several key contributions: first, we conduct a comprehensive analysis of existing object
tracking algorithms, identifying their advantages and limitations in resource-constrained environments. Second,
we develop a novel hybrid tracking system that seamlessly integrates both neural networks and traditional
correlation filters. This hybrid system is designed with a switching mechanism based on perceptual hashing,
which allows it to alternate between fast but less accurate correlation filters and slower but more accurate neural
network-based algorithms. To validate our approach, we implement and test the system on the Jetson Orin
platform, which is representative of edge computing devices commonly used in real-world applications. Our
experimental results demonstrate that the proposed system can achieve significant improvements in tracking
speed while maintaining high accuracy, thereby making it a viable solution for real-time object tracking on
devices with limited computational resources. This work paves the way for more advanced and efficient
tracking systems in environments where computational power and energy are at a premium.
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AHHOTanus. B maHHOH cratbe paccMaTpuBaeTcst MpobieMa OTCIECKHBAHUS OAWHOYHBIX OOBEKTOB Ha
YCTPOICTBaX € OrPaHHYCHHBIMH DPECypCaMH, YTO SBIACTCS KPUTHYECKH BAXKHBIM acIEKTOM JUI TaKHX
MIPWIIOXKEHHH, KaK aBTOHOMHBIE OECITMIIOTHHKN M poOOTOTeXHHKA. MBI npeuiaraeM 3G QeKTHBHYIO CHCTEMY
OTCJISKMBAHMS B pEabHOM BPEMEHH, KOTOpasi MCHONB3yeT CHIIBHBIE CTOPOHBI HEHPOHHBIX CeTel Ha OCHOBE
TpaHc(hOPMEPOB B COYETAHNM C KOPPEIIIMOHHBIMH (uiabTpamu. Hamre mccienoBaHne BHOCHT HECKOJIBKO
KJTIOYEBBIX BKJIQJOB: BO-TIEPBBIX, MBI IIPOBOJUM BCECTOPOHHHH aHAIM3 CYIIECTBYIOIIMX alTOPUTMOB
OTCJIC)KUBAHUS OOBEKTOB, BBISBIISAA NX HPEUMYILECTBA U IIPOOJIEMBI B YCIIOBHSAX OTPaHMYEHHBIX pecypcoB. Bo-
BTOPBIX, MBI pa3paboTaly HOBYIO THOPHAHYIO CHCTEMY OTCIICKHBAHHA, KOTOpas oOBeIUHSET B cede Kak
HEHPOHHBIE CETH, TaK M TPaJULUOHHBIC KOPPEIIUOHHbIC (QUIBTPHI. DTa THOPUIHAS CUCTEMa pa3padoTaHa C
MEXaHU3MOM IEPEKIFOYEHHUS, OCHOBAaHHBIM Ha MEPLENITHBHOM XCLIMPOBAHHUH, YTO MO3BOJISIET el YepesioBaTh
OBICTpBIC, HO MEHEee TOYHBIC KOPPEISIMMOHHBIE (WIBTPHI ¢ 0OoJiee MEIICHHBIMH, HO 0o0Jieeé TOYHBIMH
QITOPUTMaMH Ha OCHOBE HEHpPOHHBIX ceTei. [l mpoBepkM HaIIero MHOAXOJa MBI PEaln30BAIH U
[POTECTHPOBANK cucTeMy Ha tuiargopme Jetson Orin, Kotopas SBISETCS PENPE3CHTATUBHON s
OTPAaHWYEHHBIX B pECypcax BBIYHCIUTENBHBIX YCTPOKMCTB, OOBIYHO HCIOJB3YEeMbIX B HACTOSIINX
NIPWIOKEHHSIX. Pe3yibTaThl HAlIMX OSKCIIEPUMEHTOB IIOKA3BIBAIOT, YTO MPEUIOKEHHAs CHCTEMa MOXKET
3HAYUTENBHO MOBBICUTH CKOPOCTh OTCIIECKUBAHMUS, COXPAHSSA NPU STOM BBICOKYIO TOYHOCTbB, YTO JIEJAET e
KU3HECTIOCOOHBIM PEIICHHEM JUISi OTCIEKHBAHUS OOBEKTOB B PEAIbHOM BpPEMEHH Ha YCTPOMCTBaX ¢
OrpaHUYCHHBIMH BBIYUCIHTENBHBIMH pecypcaMu. OTa paboTa OTKpBIBaeT IyTh K CO3JaHUIO Ooiee
COBEPUICHHBIX M 3()(PEKTUBHBIX CHCTEM OTCIC)KMBAHHUS B YCIOBHSX, KOTAA BBIYMCIUTEIbHAS MOIIHOCTH U
9HEPIHsl HaXOJATCS Ha Tpe/ere.

KuroueBble ci10Ba: OTCIIC)KUBAHKUE OJJUHOYHOT'O 06’BGKTa; BBIYUCJIICHUA B p€aJIbHOM BPEMEHU, 3pCHUC APOHA;
BU3YAJIbHBIC TpaHCd)OpMepLI; KOPPpEJIALIMOHHBIC C])I/IJ'ILTpLI; HepHeHTHBHLIfI XCIII.

Jas uurupoBanusi: CapnapsH A., Caaksn B., MenkonsH B., Caprcsn C. ToyHBIH METOJ OTCIIEKUBaHUS
00BEKTOB B PEalbHOM BPEMEHHU ISl YCTPOMCTB ¢ orpaHndeHHbIMU pecypcamu. Tpynst MCIT PAH, Tom 36,
Boi. 3, 2024 r., ctp. 283-294 (ua anrnuiickom si3eike). DOI: 10.15514/ISPRAS-2024-36(3)—20.

Baaronapuoctu. PaGorta BemomHena mnpu momuepkke Komurera mo Hayke PecnyOmukm ApmeHus
(uccnenoBarensckue mpoektsl Ne 23AA-1B007 u 23AA-1B005).

1. Introduction

Single-object tracking is a critical task in computer vision, involving the continuous localization and
tracking of a single target in a video, given only a bounding box in the first frame. This task becomes
increasingly complex when computational resources are limited. This is often the case in real-world
applications that require tracking algorithms to run on resource-constrained platforms. Most of the
current tracking algorithms depend on pre-trained models with a large number of parameters. While
these algorithms may achieve high performance on benchmark datasets on GPU, they are either not
real-time or cannot operate effectively on resource-constrained boards.

The main goal of this research is to develop and implement an efficient real-time object tracking
system and to integrate it on resource-constrained platforms. To achieve this goal, it is proposed to
utilize the advantages of both types of algorithms: speed of correlation filters and accuracy of slow
neural networks. For this purpose, a hybrid method with a switch mechanism between the two
algorithms is proposed.
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2. Related Works

This paper focuses on two main classes of single-object tracking algorithms: correlation filters and
deep learning algorithms, particularly transformers. These approaches are chosen due to their proven
performance [1].

2.1 Correlation Filters

Correlation filters have been widely used in object tracking due to their efficiency. Bolme et al.
introduced the Minimum Output Sum of Squared Error (MOSSE) [2] filter, which achieved high
speeds but struggled with target appearance changes and background interference. Subsequent
advancements like Kernelized Correlation Filters (KCF) [3] by Henriques et al. improved accuracy
by using circulant matrices and kernel tricks. Danelljan et al. further enhanced tracking accuracy
with Discriminative Scale Space Tracking [4], addressing issues like occlusions and scale variations.
Danelljan et al. proposed the C-COT [5] algorithm, integrating convolutional features and
continuous convolution filters for improved tracking quality, although at the cost of speed. They
later introduced ECO (Efficient Convolution Operators) [6] to address these speed issues,
simplifying features and reducing template updates while maintaining high tracking quality. The
CSRT [7] algorithm by LuNezi¢ et al. introduced spatial and channel reliability maps, improving
robustness against occlusions and clutter.

2.2 Transformers

Based on the success of Transformers in NLP tasks, their idea has been used in other tasks as well.
In 2021, Dosovitskiy et al. published the first paper on visual transformers [8], paving the way for
their use in computer vision tasks. Visual transformers have emerged as a powerful tool in object
tracking. Wang et al. [9] applied transformers to tracking by designing CNN-Transformer hybrid
models, which significantly improved robustness and accuracy. Yan et al.'s STARK [10] tracker
utilized transformers for both spatial and temporal feature extraction, setting new benchmarks in
tracking performance. Recent innovations like HCAT [11] by Chen et al., MixFormer [12] and its
successor MixFormerV2 [13] by Cui et al. have optimized transformer architectures for tracking,
achieving state-of-the-art performance while addressing speed limitations.

2.3 Hybrid algorithms

Some studies have tried to address the trade-off between speed and accuracy of tracking algorithms
by combining heavily accurate and fast but not accurate trackers. Such hybrid algorithms are often
used on embedded devices because of their high speed and quality.

In the paper [14] by H. Mao et al., the algorithm switches to an accurate and slow tracker (Siamese
network) every 4 frames and uses a lightweight neural network the rest of the time. In this case,
switching between neural networks is very frequent, which also affects the speed, but the quality of
the underlying lightweight algorithm is very slow to reduce the switching frequency. Besides that,
the speed of this lightweight algorithm that uses PatchNet architecture for template matching is much
lower than correlation filters that use hand-crafted features.

In the paper [15] Ji Q. et al. also considered a hybrid algorithm for use on resource-constrained
platforms. They also, like us, use the correlation filter (KCF) as a fast algorithm and improve its
quality with an object detection algorithm, SSD [16]. They use perceptual hashing to detect failures
in KCF tracking, and then perform (re)detection of the object using SSD. Besides that, the SSD
works each N frame anyway. Thus, this paper describes a tracking-by-detection algorithm, that is,
it tracks the object using KCF throughout the video, adjusting the bounding box using the detection
algorithm when needed. Working aboard a drone involves a lot of situations in which the KCF will
fail, thus detection and double triggering of the KCF will be very frequent, which may affect the
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speed. The speed of the proposed tracker reached 36FPS on ZCU104 and the quality improved
significantly with respect to simple KCF.

3. Proposed Method

In this research paper, we propose a novel hybrid tracking method with a switch mechanism between
fast and accurate algorithms to achieve a trade-off between speed and quality of tracking. The
proposed algorithm combines visual transformer and correlation filters as the best quality and fastest
types of trackers respectively.

3.1 Perceptual Hashing

When to switch from a fast algorithm to an accurate one is determined using perceptual hashing
[17]. This method creates a compact, unique fingerprint for each image, capturing essential visual
features. The perceptual hashing algorithm converts an image to grayscale, resizes it to a fixed size
(e.g., 8x8 or 16x16), and calculates the average pixel intensity. Pixels are labeled 1 or 0 based on
whether they are brighter or darker than the average value, forming the hash code. This technique is
particularly useful for applications such as content-based retrieval, copyright protection, and digital
forensics. Perceptual hashing contains information about the content of the image, so the slightest
change in the content will change the hash code.

3.2 Tracking Method

Perceptual hashing allows us to efficiently compare the contents of an image, which we use to
determine when a fast-tracking system ‘starts to lose” an object. We will refer to the rectangle around
the tracked object in a frame as the bounding box, and the image inside this rectangle as the region
of interest (ROI). We extract ROIs from every two consecutive frames and compare their hash codes
obtained by perceptual hashing. We use Hamming distance, which counts the number of differing
bit positions of the hash codes as follows:

H(a,b) =¥, 1(a;#b), @)

Where a, b are two hash codes of the same size n, 1(ai # bi) is the indicator function, equal to 1 if
ai # b, and 0 otherwise. Only two small frame regions are compared per iteration, so there is no
significant load on the speed of the tracker.

First, we run the correlation filter as the main tracker. We assume that this tracker ‘starts to lose’ an
object when H(a,b) exceeds a given threshold. Once this happens, our system switches the
Correlation Filter to a more accurate Transformer by passing it to the bounding box of the previous
frame. The transformer takes one tracking step on the current frame, thereby correcting its bounding
box. In the next frame, the Correlation Filter is reinitialized and the system again decides which
tracker to continue tracking depending on the number H (a,b) .

Note that before deciding which tracker to use to make a tracking step, we do not yet have a bounding
box for the current frame. Regions of interest are extracted by overlaying the same bounding box
(of the previous frame) on the previous and current frames. A large value of 4 (a,b) means that the
object has significantly changed its position between neighboring frames. The correlation filter is
unable to track such a change, which is why we switch to the more powerful Transformer at such
moments.

Algorithm 1 shows the pseudocode of one step of the proposed hybrid tracking method. Threshold
is a hyperparameter, which is tuned during the experiments.
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Algorithm 1. One step by hybrid tracking method

Input: current frame, previous frame, initialized Transformer and Correlation Filter, previous
bounding box, threshold

Output: current bounding box

if previous tracking step was done by Transformer:
reinitialize Correlation Filter with previous bounding box
extract ROIs from current and previous frames using previous bounding box
compute hash codes for the extracted ROIs
calculate differing bits between the two hash codes
if differing bits > threshold:
get current bounding box by Transformer
else:
get current bounding box by Correlation Filter

previous bounding box « current bounding box

NI REWNHE

[EY
e

4. Experiments and Results

4.1 Experimental setup

The first part of the experiments is the selection of basic algorithms: one correlation filter and one
transformer. The comparative analysis was performed on a personal computer with an 11th
generation Intel® Core™ j7-11700 @ 2.50GH x86-64 CPU and an NVIDIA RTX 3060 GPU.
Correlation filters were run on the CPU and transformers on the GPU. The following environment
was installed on the PC to run the algorithms: Ubuntu 20.04, Python 3.8.10, gcc 9.4.0, Cmake 3.16.3,
CUDA 12.2, TensorRT 8.6.0, Onnx 1.16.0, OpenCV 4.9.0.

The second part is experimenting with our hybrid method based on the two selected algorithms.
These were performed both on a PC and on a resource-constrained device that can be used on board
a UAV: Jetson Orin. The following environment was installed on Jetson Orin: Ubuntu 22.04, Python
3.10.12, gcc 11.4.0, Cmake 3.22.1, CUDA 12.2, TensorRT 8.6.2, Onnx 1.16.0, OpenCV 4.5.4.

4.2 Datasets

We have used the UAV123 [18] and VisDrone-SOT [19] datasets for algorithms testing. These
datasets were chosen because they contain videos with relatively quick changes in perspective and
lighting and sudden object movements. The videos are like this because they are taken from a UAV.
Finding a balance between speed and quality of trackers is a critical task precisely in the context of
the UAV onboard algorithms.

UAV123 dataset consists of 123 videos with a resolution of 1280x720, totaling over 110,000 frames.
103 videos were captured with a DJI drone from 5-25 meters at 30-96 fps, 12 videos were from a
small low-cost drone without stabilization, and 8 were generated in Unreal Engine (around 30 fps).
Each frame's annotation is [X, y, w, h], where (x, y) is the top-left coordinate of the bounding box, w
and h are its width and height. During full occlusion, NaN is recorded for each position (x, y, w, h).
The VisDrone-SOT dataset includes 167 videos. These videos have different resolutions, totaling
over 188,000 frames, and are divided into train (86 videos), validation (11 videos), and test sets (60
videos). For our comparison, we have used all videos. The annotation for each frame is [x, y, w, h],
but unlike UAV123, occlusions are recorded with the inferred bounding box instead of NaN.

4.3 Metrics

Metrics from the last VOTS-2023 challenge [20], namely, Accuracy (A), Robustness (R), Not-
Reported Error (NRE), Drift-Rate Error (DRE), and Absence-Detection Quality (ADQ) were
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selected to evaluate the tracking quality. All of them are based on 5 main tracking scenarios, which
are described in Fig. 1.
Accuracy (A) is defined as the ratio of correctly detected objects to all situations where the tracker
detects something. In eq. (2), it is represented as:
N,
A — scl

Nscq + Nsco + Ngea ' (2)
where N, is the number of correct detections, N, is the number of drifted situations, and N, is
the number of false detections.
Hereinafter, a correct detection is defined as one in which the Intersection of Union (loU) is greater

than the threshold that we set ourselves. loU is calculated as the ratio of the overlap area of the
ground-truth box and tracker’s bounding box to their union area.

Scenario 1. Success Scenario 2. Fail Scenario 3. Fail Scenario 4. Fail Scenario 5. Success

loU > threshold oU < threshold

Fig. 1. Possible scenarios during single object tracking. The red rectangle is the ground-truth box of the
object, green is the bounding box of the tracker. 1 and 5 scenarios are successful, but 2-4 are not.

Robustness (R) is the ratio of correctly detected objects to all situations where an object is present.
Ineq. (3), itis

R=_— Nsaa (3)

Ngc1 + Nscz + Nscs '
where N5 is the number of missed detections.

Robustness together with Drift-Rate Error (DRE) and Not-Reported Error (NRE) give a total of one.
DRE measures false (drifted when loU < threshold) detections when an object is present, while NRE
measures missed detections when an object is present. They are given by:

N
DRE —_—ez 4)
Nsc1 + Nsc2 + Nsc3

N
NRE —e3 (5)
Nsc1 + Nsc2 + Nsc3

Absence-Detection Quality (ADQ) measures how well the tracker detects the absence of an object.
It is defined as:

ADQ = —=s= (6)

Nsca + Ngcs '
where N5 is the number of correct absence detections.
For the above metrics, the loU-threshold was set at 0.5 in all of our experiments. We also calculate

the Area Under the Curve (AUC) for both Accuracy (AUC-A) and Robustness (AUC-R), which
indicates the tracker’s quality across different loU-thresholds (ranging from 0 to 1 in steps of 0.01).

The last but not least metric is frames per second (FPS), which indicates the speed of the tracker.
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4.4 Selection of Basic Algorithms

In this study, we conducted a two-stage comparison of algorithms to identify the most effective
options. Initially, we evaluated various correlation filter-based methods to determine the optimal
approach among them. Subsequently, we assessed transformer-based methods, comparing their
performance against each other. The analysis in this section was conducted on a personal computer.
The correlation filters MOSSE, KCF, CSRT, DSST, and ECO were selected for comparative
analysis. The standard trackers MOSSE, KCF, and CSRT were taken from OpenCV. KCF was also
implemented from scratch based on source paper and repository, as were DSST and ECO. The
implementation of all correlation filters was written in C++ and built using Cmake.

The comparison of the correlation filters is shown in Table 1. ADQ metric is not considered on the
VisDrone-SOT dataset due to the specificity of its annotation (see B). As you can see the two
trackers with the highest FPS have very low-quality scores. The best option in terms of speed and
quality (highest accuracy) is KCF implemented by us, so we will choose it for further experiments.
The official HCAT implementation [21], the MixFormerV2 implementation with TensorRT and
CUDA support [22], and the ViT Tracker implementation from the OpenCV _zoo repository [23]
were considered to select the transformer-based algorithm. NRE and ADQ metrics are not
considered because of the specificity of transformers that localize the box for an object in each
frame, even if the object does not exist there. The comparison of transformers is shown in Table 2.
Based on analyzing the quality and speed of the algorithms on datasets, we chose the state-of-the-
art algorithm MixFormerV2 for our further experiments.

Table 1. Comparison of correlation filters on UAV123 and VisDrone-SOT datasets (PC).

UAV123 VisDrone-SOT

A R |AUC-A] AUC- |ADQ| NRE | DRE A R |AUC-AJAUC-R| NRE | DRE

@ | o) | @ |RrReo) [ | o) [ | 5 [ [0 | e | @ || eo]| S

MOSSE (OpenCV) | 20 |10.8| 185 | 11.2 |19.2]65.1 | 24.1| 14750 29.8 | 23.2| 275 | 21.9 |46.1|30.7 | 9601

KCF (OpenCV) |45.8|15.8| 40.9 | 14.9 |249]71.2| 13 | 1696 | 60.9 [25.9| 52.3 | 22.7 |56.7 |17.4| 916

CSRT (OpenCV) | 47 |41.8| 42.6 | 37.6 | 9.9 | 134 |449] 174 |61.5]60.2] 51.2 | 50.3 4 1358 92

KCF 54.1|42.4| 438 | 343 [12.3]26.4 |31.2| 478 |60.2 |57.5| 485 | 46.2 | 7.8 |34.7| 450
DSST 4571 30 | 38.9 | 25.2 |19.2]|47.5]|225| 406 |54.1|46.3| 43 366 [22.3]31.4)] 270
ECO 433|434 354 | 354 | 3 6 |50.6]| 151 |57.9|57.8| 465 | 46.4 | 0.5 [41.7| 128

Table 2. Comparison of transformer-based trackers on UAV123 and VisDrone-SOT datasets (PC).

UAV123 VisDrone-SOT

A R |AUC-A|AUC-R| DRE A R |AUC-A| AUC-R| DRE

@] @ | oo | oo [T o] o | e | o |

ViT Tracker (OpenCV) | 64.6 | 65.1 | 52 525 | 349 | 181 | 65.7 | 65.8 | 50.4 50.4 342 | 172

HCAT 75.4176.2| 60.8 61.6 | 238 |140| 748 | 748 | 58.6 58.6 252 | 133
MixFormerV2 (TRT) | 79.5|80.6 | 64 65 194 | 2701716 | 71.6 | 56.5 56.6 28.3 | 262

4.5 Switching threshold

The tunable parameter of our hybrid method is the threshold, which the frequency of switching from
KCF to MixFormerV2-S depends on. The window size for perceptual hashing is 8x8, hence the
maximum possible number of bits in which a difference is possible is 64. We analyzed the
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dependence of accuracy, FPS and percentage of MixFormerV2 responses on the threshold on the
random 30 videos from both datasets (15 of each). These plots are shown in Fig. 2. The percentage
of MixFormerV2 responses is shown by an additional axis within the plot.

Accuracy vs. Threshold FPS vs. Threshold

e ceuracy 500

1 2 Y W % 9 o 10 20 = «©
nnnnnnnn Threshold

Fig. 2. Dependence of accuracy (left) and FPS (right) on threshold. The additional axis in the middle
indicates the corresponding percentage of MixFormerV2 triggering.

As can be seen in Fig. 2, tracking accuracy drops even below KCF for threshold values greater than
11. This may be because, at high thresholds, switching occurs in situations where the object has
already been lost, and MixFormerV2 tracks the wrong object, thereby passing a deliberately
erroneous bounding box to KCF. Therefore, although the speed (FPS) increases as the threshold
increases, values greater than 11 do not make sense to consider on these datasets. We chose
thresholds 5 and 10 as reference points for full experiments on both datasets. MixFormerV2 and
KCF (which correspond to thresholds -1 and 64, respectively) were also used for comparison.

4.6 Experiments

4.6.1 On a personal computer with GPU

Table 3 shows the comparison for all metrics except NRE and ADQ on both datasets in their entirety.
The first column shows the average number of MixFormerV2 responses per algorithm.

At threshold equals 5, the number of MixFormerV2 responses on UAV123 is 68%, while on
VisDrone-SOT it is 55%. The difference is explained by the video quality: the VisDrone-SOT’s
average resolution is much higher. Compared to MixFormerV2, accuracy drops by 1% and 2%,
while FPS increases by 26% and 36% (respectively for UAV123 and VisDrone-SOT).

At threshold equals 10, the number of MixFormerV2 responses on UAV123 is 51%, while on
VisDrone-SOT it is 30%. Compared to MixFormerV2, accuracy drops by 8% and 11%, while FPS
increases by 36% and 59% (respectively for UAV123 and VisDrone-SOT). In terms of accuracy on
the VisDrone-SOT dataset, this algorithm equaled KCF (60.2% for both), although the FPS is
slightly lower. However, on UAV123 it still showed much better results than KCF (71% vs. 54.1%).
MixFormerV2 performs worse on higher-resolution videos with small targets on them when in
contrast KCF performs better. This is why the quality difference between KCF and MixFormerV2
on the VisDrone-SOT dataset is not that big. However, the results with threshold 5 are still quite
good.

Table 3. Comparison of Hybrid tracking method with different thresholds T=5 and T=10 with MixFormerV2
and KCF on UAV123 and VisDrone-SOT datasets (PC).

UAV123 VisDrone-SOT
%of| A [ R JAUC-AJAUC-R| DRE rps | % of A R |AUC-AJAUC-R| DRE EPS
MF | (%) [ (%) | (%) | (%) | (%) MF | (%) | (%) | (%) | (%) | (%)
KCF 0 |54.1]|42.4| 438 | 343 |31.2|478| 0 |60.2| 57.5 | 485 | 46.2 | 34.7 | 450
MixFormerV2 (TRT)| 100 [79.5(80.6( 64 65 |19.4 (270] 100 |71.6( 71.6 | 56.5 | 56.6 | 28.3 | 262
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KCF-MF (T=5) 68 |78.2(79.3| 62.6 | 63.4 [20.7]342| 55 (69.2] 69.2 | 54.6 | 54.7 | 30.7 | 357
KCF-MF (T=10) 51 | 71 | 72 56 57 28 [366| 30 [60.2| 60.2 | 48 48.1 | 39.8 | 417

4.6.2 On Jetson Orin

Similar experiments were conducted on a resource-constrained device, namely the Jetson Orin. In
addition, we made a comparison with another transformer-based algorithm HCAT. Table 4 shows
the comparison of selected algorithms on UAV123 and the VisDrone-SOT dataset on Jetson Orin.

Table 4. Comparison of Hybrid tracking method with different thresholds T=5 and T=10 with MixFormerV2,
KCF and HCAT on UAV123 and VisDrone-SOT datasets (on Jetson Orin).

UAV123 VisDrone-SOT
%of [ A R |AUC-A[AUC-R|DRE EPS %of | A R |AUC-AJAUC-R|DRE FPS
MF [ (%) | (%) | (%) | (%) | (%) MF | (%) [ (%) | (%) | (%) | (%)
KCF 0 |53.7]|418| 438 | 341 |58.1|174| O |60.2]|575| 48.4 | 46.2 |425] 153

MixFormerV2 (TRT)| 100 [79.7 [ 80.7 | 64.1 65 |19.3| 34 | 100 |68.7|69.6 [ 54.8 | 555 |30.4| 31

KCF-MF (T=5) 733 | 764|772 613 62 |22.8]| 54 | 62.2 |166.4]|66.3 | 52.3 | 52.4 |33.7| 68
KCF-MF (T=10) 48 169.5]69.3 55 55 |30.6| 82 |30.43|59.9|589 | 48.1 | 47.4 |41.1|113
HCAT - |75.2|76.1| 60.7 | 61,4 |239| 33 0 |746| 746 583 | 584 |254| 33

As we can see, on the UAV123 dataset, our hybrid algorithm with threshold 5 gives a 59% speedup,
while accuracy and robustness drop by only 3% compared to MixFormerV2. If we compare with
HCAT, the accuracy and robustness of our algorithm is 1% higher each while the FPS is 64% higher.
The accuracy and robustness of the algorithm with threshold 10 drop by 10% and 11% compared to
MixFormerV2, but the speed increases by 141 %. Relative to HCAT, accuracy is 6 % worse,
robustness is 7 % worse, but speed is 148 % higher.

Analyses of the VisDrone-SOT dataset showed different results. Possible reasons for this were
explained above. At the same time, the HCAT quality did not change due to the high resolution of
the video. As we can see, MixFormerV2 is 6% worse in accuracy, 5% worse in robustness, and 6%
worse in FPS than HCAT. However, if we compare our hybrid algorithms with MixFormerV2, we
again see that with accuracy and robustness dropping by only 2% and 3%, FPS rises by 119% (for
the algorithm with threshold 5).

In Fig. 3 are plots of ROC curves showing the change of tracking accuracy and robustness depending
on the loU threshold. We can conclude that the quality of our algorithm with threshold 5 is better
than HCAT (on UAV123) and only slightly inferior to MixFormerV2 (on both). With this quality,
the 54FPS (UAV123) / 68FPS (VisDrone-SOT) rate on Jetson Orin looks attractive (compared to
the 31-34FPS of MixFormerV2 and HCAT).

The proposed hybrid method allows us to adjust the desired ratio of quality and speed of tracking
by setting the threshold hyperparameter. The algorithm itself decides at what moments to switch,
and the frequency of switching depends on the video quality and the presence of abrupt scene
changes. By increasing the threshold, we decrease the number of switches and thus increase the
speed of tracking. At the same time, as can be seen from the experiments, as the threshold increases,
the accuracy drops much slower than the FPS increases.

5. Conclusion

In this paper, we proposed a hybrid object tracking method that combines correlation filter-based
algorithms with transformers and determines the moment to switch between them using perceptual
hashing. This technique achieves the necessary balance between speed and tracking accuracy. The
proposed algorithm can play a crucial role in running on resource-constrained computers that are
used on board UAVs or other robots. Experiments have shown that the proposed algorithm can
indeed significantly improve the tracking speed relative to current state-of-the-art models without
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significant loss of quality. On the UAV123 dataset, our hybrid algorithm showed a 59% speedup
with only a 3% decrease in accuracy and robustness compared to MixFormerV2 (on Jetson Orin).
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Fig. 3. ROC-curves for accuracy and robustness on UAV123 (top) and VisDrone-SOT (bottom) datasets (on
Jetson Orin)
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