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Abstract. Voice cloning technology has made significant strides in recent years, with applications ranging from
personalized virtual assistants to sophisticated entertainment systems. This study compares nine voice cloning
models, focusing on both zero-shot and fine-tuned approaches. Zero-shot voice cloning models have gained
attention for their ability to generate high-quality synthetic voices without requiring extensive training data for
each new voice and for their capability to perform real-time inference online. In contrast, non-zero- shot models
typically require additional data but can offer improved fidelity in voice reproduction. The study comprises two
key experiments. The first experiment evaluates the performance of zero-shot voice cloning models, analyzing
their ability to reproduce target voices without prior exposure accurately. The second experiment involves fine-
tuning the models on target speakers to assess improvements in voice quality and adaptability. The models are
evaluated based on key metrics assessing voice quality, speaker identity preservation, and subjective and
objective performance measures. The findings indicate that while zero-shot models offer greater flexibility and
ease of deployment, fine-tuned models can deliver superior performance.
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AHHOTanus. TexHONOrHS KIOHUPOBAHUS T0JIOCA ClieIala 3HAYUTENbHBIC LIAaTH BIEpe] B OCIESIHIE TOMBI, C
IIPUMEHEHHEM OT NePCOHANTN3UPOBAHHBIX BUPTYIBHBIX ACCHCTEHTOB JIO CIOKHBIX PAa3BIEKATEIbHBIX CHCTEM.
B nanHOM HCCitefoBaHUM ITPOBOIUTCS CPABHEHHE AEBSATH MoJieIel KIIOHHPOBAHUS T0JI0Ca, COCPEIOTAINBAsICh
Ha IOJXOJaxX HYJICBOTO M TOHKOW HacTpoku. Mopenu KIOHMPOBAaHHS Tojloca C HYJIEBBIM OOydeHHEM
MIPUBIIEKAIOT BHUMAHHUE CBOCH CHOCOOHOCTBIO T'€HEpPHPOBATH BHICOKOKAYECTBEHHBIE CHHTETHUYECKHE rojoca
6e3 HeoOXOAMMOCTH B OOJBIIMX 00BEMax OOYYaromIMX MAHHBIX JUIL KaXXIOTO HOBOTO ToOJIOCA, a TakKxke
BO3MO)KHOCTBIO OCYLIECTBIIATH OHJIAHH BBIBOJBI B PEKHME PEAIbHOIO BPEMEHH. B oTiinume OT HUX, MOJENH,
HE OTHOCSIINECS K HYJIEBOMY 00y4YEHHI0, 0OBIYHO TPEOYIOT ZOMOIHHUTEIBHBIX JaHHBIX, HO MOTYT 00€CIICYNTh
YIY4ILIEHHYIO TOYHOCTh BOCIPOHM3BEICHHS rojioca. VcenenoBanue BKIIOYACT J1Ba KIIOUYEBBIX 3KCIICPHUMEHTA.
ITepBblil SKCIIEPUMEHT OLieHHBAeT 3()GEKTHBHOCTh MOJIENCH KIOHUPOBAHHS IoJoca C HyJIEBBIM 00y4CHHUEM,
aHAJIM3UPYS UX CIIOCOOHOCTh TOYHO BOCIPOM3BOAUTS LieJIEBbIE rosioca 6e3 IpeiBApUTEIbHOTO 03HAKOMIICHHUS.
Bropoii 3kcriepuMeHT BKIIIOUaeT TOHKYIO HACTPOWKY MoJielield Ha [eJIEBBIX CIIUKEPOB VIS OLIEHKH YITyqIIeHHH
B KauecTBe TIojoca M aJalTHBHOCTH. MOJENH OLIEHHMBAIOTCS HAa OCHOBE KIFOYEBBIX IIOKa3aTelieH,
OLICHMBAIOIINX KA4eCcTBO TIO0JIOCA, COXPAaHEHHE HACHTUYHOCTH CIHMKepa, a TaKkKe CYObEeKTHBHBIE U
O0OBEKTHBHBIC MOKA3aTENIM NMPOU3BOAUTEIBHOCTH. Pe3yIbTaThl MOKA3bIBAIOT, YTO, XOTS MOJEIH C HYJICBBIM
oOydyeHHeM Ipe/IaraloT OOJbIIYI0 T'MOKOCTh M HPOCTOTY HCIOJBb30BAHMUS, MOJIECIH C TOHKOI HAaCTPOHKOM
MOTYT 00ecTiednuTh 00Jiee BBICOKYIO IPONU3BOIUTEIBHOCTb.

KnroueBble cjl0Ba: KITOHHPOBaHHE TOJI0CA; KIOHUPOBAHKE C HyJIEBBIM 00y4eHHEM; TOHKasi HACTPOHKA; CHHTE3
peuu; agantanus roBopsLIero.

Jast uurupoBanusi: Oranecs O., Capresv 1., Manampksan A. CpaBHeHHE alrOpUTMOB KIIOHUPOBAHHUS Tojioca
B YCJIOBHSIX HYJIEBOTO U Majoro kosindectsa npumepos. Tpyast UCIT PAH, Tom 36, Bein. 4, 2024 1., ctp. 7-16
(na anrmmiickoM si3bike). DOI: 10.15514/ISPRAS-2024-36(4)-1.

Baaronapuoctu. PaGorta BemomHeHa mnpu moxnepkke Kommrera mo Hayke PecnmyOmukm ApmeHus
(uccnenoBarennckuii mpoekT Ne 23AA-1B006).

1. Introduction

Voice cloning technology has advanced rapidly, enabling the creation of synthetic voices that closely
mimic human speech. This technology has significant applications in personalized virtual assistants,
entertainment, and communication. The core challenge in voice cloning is to produce synthetic
voices that are indistinguishable from human voices while preserving the unique characteristics of
the target speaker.

Two primary methodologies have emerged in voice cloning: zero-shot cloning and fine-tuning.
Zero-shot models, such as XTTS 2 [1], StyleTTS [2], YourTTS [3], OpenVoice [4], VoiceCraft [5],
Vall-E-X [6], and Natural Speech 3 [7], can generate voices without extensive speaker-specific
training data, offering flexibility and scalability. However, maintaining voice quality and identity
without prior exposure to the target speaker remains challenging. Fine-tuning models, including
VITS [8] and RVC [9], improve voice fidelity by adapting pre-trained models with additional data
from the target speaker, although they require more data and computational resources.

This study focuses on models that excel in flexibility, scalability, and efficiency in zero-shot and
few-shot scenarios. Older models like WaveNet [10], Deep Voice [11], SV2TTS [12], TortoiseTTS
[13], Tacotron [14], and Glow-TTS [15] are excluded due to their high computational demands,
extensive data requirements, and complexity.
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This paper evaluates nine voice cloning models through two key experiments. The first experiment
tests the zero-shot capabilities of the models, assessing their performance in replicating voices
without prior exposure. The second experiment involves fine-tuning the models on target speakers
to evaluate enhancements in voice quality and adaptability. Evaluation metrics include speaker
embedding cosine similarity (SECS [16]) for identity preservation, Mel cepstral distortion (MCD*
[17]) for spectral similarity, FO mean absolute error (FO MAE [17]) for pitch accuracy, FO Pearson
correlation coefficient (FO-PCC [18]) for pitch contour correlation, and universal target mean
opinion score (UTMOS22 [1]) for subjective quality.

The paper is organized as follows: Section 2 provides a detailed description of each voice cloning
model. Section 3 outlines the experimental setup and presents the experiments and results. Only
original manuscripts that have not been previously published nor in other editions, neither in the
Internet, are accepted for publication in Proceedings of ISP RAS. The authors of the articles can be
ISP RAS staff or representatives of other organizations. Only manuscripts in Russian or English are
allowed to be published. As a rule, the volume of published articles should not be less than 8-9
pages, and shouldn’t exceed 20 pages.

2. Overview of Voice Cloning Models

In recent years, various voice cloning models have emerged, each offering unique approaches and
capabilities. This section provides an overview of the voice cloning models discussed in the
introduction, highlighting their key features and processes.

Variational Inference Text-to-Speech (VITS): The VITS model is designed to generate speech
directly from text. It incorporates a stochastic duration predictor to capture natural speech rhythms,
enabling the production of authentic and fluid voice waveforms. This end-to-end approach supports
high-quality voice cloning by accurately translating text into speech with precise timing and natural
intonation. However, VITS is not a zero-shot model and requires training on target voices
beforehand.

Retrieval-based Voice Conversion (RVC): The RVC model is a system for converting one
speaker's voice into another's. It leverages a retrieval-based approach to map and synthesize voice
characteristics from a database of target voices. This method enables high-quality voice
transformation by accurately capturing and replicating speaker-specific traits. Unlike zero-shot
models, RVC needs to be trained on a set of target voices to effectively perform voice conversion.
OpenVoice: OpenVoice uses simply a short audio clip from the reference speaker to generate speech
in multiple languages. It provides flexible control over voice styles and enables zero-shot cross-
lingual cloning, though it requires a TTS model trained for the target language.

StyleTTS 2: StyleTTS 2 generates high-quality, natural-sounding speech using style diffusion
techniques. It models voice styles as latent variables, enabling it to clone voices with no need for
specific reference recordings. By leveraging large pre-trained speech language models and
innovative training methods, StyleTTS 2 excels in producing expressive and accurate voice clones,
including effective zero-shot speaker adaptation.

VoiceCraft: VoiceCraft excels in speech editing and zero-shot text-to-speech generating. It uses a
Transformer decoder and an innovative token rearrangement method to generate high-quality,
natural-sounding speech by efficiently reconstructing and infilling speech tokens. It analyzes and
replicates the vocal characteristics of a target speaker, capturing emotional tone and subtle vocal
nuances to produce realistic and engaging speech.

YourTTS: YourTTS builds on the VITS model, excelling in zero-shot voice cloning and multi-
speaker text-to-speech with minimal data. It performs well across various languages and can adapt

1 https://pypi.org/project/pymcd/
2 https://github.com/sarulab-speech/UTMOSv2
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to new voices with less than one minute of audio. However, it may occasionally face issues with
speech duration and mispronunciations.

VALL-E-X: VALL-E X is a cross-lingual neural codec model that excels in zero-shot text-to-
speech and speech-to-speech translation. It generates high-quality speech in a target language from
a single utterance in a source language, preserving the speaker’s voice and emotion. The model
avoids the need for paired cross-lingual data and effectively addresses foreign accent issues, making
it suitable for diverse multilingual applications.

XTTS-2: XTTS 2 is a multilingual zero-shot text-to-speech (TTS) model trained in 16 languages.
Building on the Tortoise model, XTTS 2 enhances voice cloning, speed, and multilingual
capabilities. It achieves high-quality results in prosody and style mimicking, including whispering,
with minimal fine-tuning data. XTTS 2 is notably faster than previous models like VALL-E.
Natural Speech 3: NaturalSpeech 3 generates high-quality, natural-sounding speech by separating
and controlling speech attributes like content, prosody, and timbre. Its novel factorized diffusion
approach allows for detailed and accurate speech synthesis, achieving superior performance and
human-level quality on diverse datasets.

WaveNet: WaveNet generates raw audio waveforms using an autoregressive model, achieving high
naturalness. However, it requires substantial computational resources and has slow inference times.
Deep Voice: Deep Voice uses a modular pipeline to produce human-like speech but requires
extensive speaker-specific training data. Modern models overcome this limitation by utilizing less
data, enabling more flexible and scalable voice cloning.

SV2TTS: SV2TTS employs a three-stage pipeline for voice cloning but struggles with voice quality
and identity preservation without extensive fine-tuning.

Tortoise TTS: Tortoise TTS excels in expressive speech synthesis but demands significant
computational resources and data for adaptation. Its complexity and inefficiency make it impractical
for zero-shot applications requiring minimal data.

Tacotron: Tacotron generates speech from text with high naturalness but relies on the Griffin-Lim
[19] algorithm, which can introduce artifacts. It requires substantial training data, limiting its
effectiveness in zero-shot learning scenarios that require rapid adaptation.

Glow-TTS: Glow-TTS offers efficient parallel synthesis but lacks built-in support for speaker
adaptation, necessitating additional modifications and data. Its focus on general TTS tasks rather
than speaker-specific scenarios reduces its suitability for robust zero-shot application.

Table 1 provides an overview of the voice cloning models discussed, highlighting their zero-shot
capabilities and the number of parameters.

3. Experimental setup and results

The experiments aim to evaluate the performance of nine voice cloning models — XTTS 2,
StyleTTS 2, YourTTS, VITS, OpenVoice, RVC, VoiceCraft, Vall-E-X, and Natural Speech 3 —
using both zero-shot and fine-tuning approaches. The goal is to assess each model's ability to
reproduce target voices with high quality and fidelity.

3.1 Experimental Setup

The experiments utilize the VCTK corpus [20], which includes speech data from 109 English
speakers with various accents. The experiment is structured as follows:

e Zero-Shot Experiment: We select 30 speakers from the VCTK dataset, using 5 audio
samples per speaker, each ranging in duration from 7 to 10 seconds. Models requiring text
input are evaluated with additional sentences from the remaining speakers of the same
dataset, consisting of 6-15 words on average. Audio-to-audio models are tested using audio
samples instead sentences from the same speakers’ set, containing audios in the range of 5—
10 seconds.
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Fine-Tuning Experiment: Each model is fine-tuned on the same 30 speakers using 10
minutes of audio per speaker (excluding test samples). The fine-tuning process involves
training for 100 epochs on a single NVIDIA RTX 3060 12GB GPU. After fine-tuning, the
models are tested on the same data from the zero-shot experiment.

Table 1. Comparison of Voice Cloning Models with Zero-Shot Capability and Parameters.

Fine- Text Ref _F;:;:n;e-; Audio I;::T
Model Zero-shot tune Params + Audio . Orig+
abilit Ref +Audio Audio Ref Speaker
¥ Ref ID
XTTS 2 v v 518M v
StyleTTS 2 v v 218M v
YourTTS v v 94M v
VITS X v 39M v
OpenVoice v X 32M v
RVC X v 27M v
VoiceCraft v v 830M v
Vall-E-X v v 300M v
Natural
Speech 3 v X 18 v

3.2 Evaluation Metrics
Models are evaluated using:

Speaker Embedding Cosine Similarity (SECS): Measures the retention of the speaker's
identity. Values close to 1 are better, as they indicate a greater similarity of the speaker's
identity.

Mel Cepstral Distortion (MCD): Assesses spectral similarity between synthesized and
reference voices. Lower values are better, suggesting a closer match to the reference voice
and thus better spectral quality.

FO Mean Absolute Error (FO MAE): Measures the accuracy of pitch reproduction. Lower
values are better, as they indicate a more accurate pitch reproduction.

FO Pearson Correlation Coefficient (FO-PCC): Assesses correlation between generated
and reference pitch. Higher values are better, with a value of 1 indicating a perfect
correlation, demonstrating that the model effectively captures and replicates the pitch
dynamics of the original voice.

Universal Target Mean Opinion Score (UTMOS2): Evaluates subjective voice quality.
11
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Values closer to 4 are better, indicating good voice quality and naturalness.

3.3 Results
In this section, we present the results of our two experiments:

e Zero-Shot Voice Cloning: Table 2 shows the performance of 7 out of 9 models capable of
zero-shot voice cloning.

e Fine-Tuning: Table 3 details the results for 7 out of 9 models fine-tuned with 10 minutes
of audio per speaker, comparing their performance to the zero-shot results (OpenVoice and
Natural Speech 3 do not have available implementations for fine-tuning).

We analyze the results for male (M) and female (F) voices separately, as presented in the tables. In
the zero-shot experiments, the SECS scores indicate that most models effectively preserve speaker
identity, with scores ranging from 0.75 to 0.78 for male voices and 0.72 to 0.8 for female voices.
Natural Speech 3 and XTTS 2 perform particularly well in this regard. However, spectral fidelity,
as measured by MCD (Mel Cepstral Distortion), shows significant disparities. Natural Speech 3
achieves the lowest MCD (9.7 dB for males), indicating better spectral accuracy, while VoiceCraft
exhibits much higher distortion, with MCD values reaching 24 dB for males and 23.7 dB for females.
Female voices generally suffer from higher MCD values across all models, indicating greater
spectral distortion and less natural-sounding results compared to male voices. Pitch accuracy,
reflected by FO, varies widely among the models. VoiceCraft shows the highest pitch at 196.4 Hz
for males, indicating a significant difference of pitch, while Natural Speech 3 the lowest pitch at
55.9 Hz. For female voices, FO values also vary, with XTTS 2 producing the highest pitch at 113.8
Hz and Natural Speech 3 the lowest at 72.5 Hz. The FO-PCC (FO0 Pearson Correlation Coefficient)
scores, which measure pitch contour accuracy, are moderate across the board, with values around
0.3 to 0.4 for both genders. It suggests that while some pitch dynamics are captured, the models
struggle with accurate pitch reproduction. UTMOS2 scores reflect these trends, with Natural Speech
3, StyleTTS 2, and OpenVoice achieving the highest perceived quality for male voices (up to 3.6),
while female voices generally score lower, reaching the highest result of 3.6 for StyleTTS 2.
In the fine-tuning experiments, SECS scores remain high, showing continued voice resemblance.
XTTS 2 and YourTTS maintain good scores, but there is no significant improvement over the zero-
shot scenario. Fine-tuning does lead to notable improvements in MCD for some models, especially
XTTS 2, which reduces MCD from 16.6 dB to 9.1 dB for males, indicating better spectral fidelity.
However, not all models benefit equally; VoiceCraft’s MCD remains high, particularly for females,
and Vall-E-X experiences a drastic increase in MCD for females, rising from 12.8 dB to 43.9 dB,
indicating worsened spectral accuracy. Pitch accuracy shows mixed results post fine-tuning. XTTS
2 improves pitch consistency, reducing FO from 134.2 Hz to 87.7 Hz for males, aligning better with
typical pitch ranges. However, Vall-E-X exhibits worsened FO accuracy, particularly for females.
FO-PCC values remain stable, indicating little improvement in pitch contour accuracy, and UTMOS2
scores show minor gains, with XTTS 2 and YourTTS performing slightly better.
When comparing models across both experiments, XTTS 2 shows significant improvements in
spectral fidelity, with MCD reducing by 7.5 dB (from 16.6 dB to 9.1 dB for males), and in pitch
accuracy, with FO improving by 46.5 Hz (from 134.2 Hz to 87.7 Hz for males). YourTTS exhibits
moderate gains, reducing MCD by 6.9 dB (from 17.3 dB to 10.4 dB for males) and showing slight
improvements in UTMOS?2 scores, increasing by 0.1 points for males (from 2.98 to 3.08). After fine-
tuning UTMOS?2 decreased to 3.43 for males (down from 3.56) and 3.22 for females (down from
3.58) for StyleTTS 2. VoiceCraft performs worse post fine-tuning, with MCD reducing by 7.7 dB
for males (from 24 dB to 16.3 dB) but no significant improvements in FO accuracy, which changes
by only 0.3 Hz for males (from 196.4 Hz to 196.1 Hz). UTMOS2 scores for VVoiceCraft increase by
0.15 points for males (from 2.81 to 2.96), but there is still room for improvement. Vall- E-X
experiences a drastic worsening in spectral fidelity for female voices, with MCD increasing by 31.1
dB (from 12.8 dB to 43.9 dB), and FO accuracy declining by 25.8 Hz (from 85.3 Hz to 59.5 Hz).
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Table 2. Results of voice cloning for zero-shot models.

Model secs(ld) McD(E2) Fo(td) Fo-pcc(id) | uTmos2(Ld)

XTTS 2 M:0.78 M: 16.6 db M: 134.2 Hz M: 04 M: 3.07
F:0.77 F:21db F:113.8 Hz F: 04 F:2.76

StvleTTS 2 M: 0.75 M: 10.7 db M: 91.4 Hz M:0.34 M: 3.56
¥ F:0.75 F:12.9db F:92.2 Hz F:0.3 F:3.58

YourTTs M:0.77 M:17.3db M: 126.6 Hz M: 04 M: 2.98
F:0.76 F:17.8 db F:97.6 Hz F: 04 F:2.56

OpenVoice M: 0.75 M:19.1db M:111.2 Hz M:04 M: 3.51
P F:0.72 F:15.4 db F: 110.3 Hz F: 0.3 F:3.23

VoiceCraft M: 0.77 M: 24 db M: 196.4 Hz M: 0.3 M: 2.81
F:0.75 F:23.7 db F:99.4 Hz F: 04 F: 2.6

Vall-E-X M: 0.75 M: 16.2 db M: 84.8 Hz M: 0.3 M: 3.06
F:0.76 F:12.8db F: 85.3 Hz F: 0.3 F:2.89

Natural M: 0.78 M:9.7 db M: 55.9 Hz M:0.3 M: 3.58
Speech 3 F:0.8 F:9.4db F: 72.5Hz F:0.3 F:3.41

Table 3. Results of voice cloning for fine-tuned models.
Model secs(d) McD(Ed) Fo(Ld) Fo-pcc(id) | utmos2(Ed)

XTTS 2 M: 0.77 M:9.1db M: 87.7 Hz M: 0.3 M: 3.31
F:0.76 F:12.2db F:92.6 Hz F: 0.4 F:2.87

M: 0.67 M: 15.4 db M: 34.1 M: 0.4 M: 3.43

StyleTTs 2 F:0.7 F:11.8db F:79.3 F:0.4 F:3.22
YourTTS M: 0.77 M: 10.4 db M: 88.1 Hz M: 0.3 M: 3.08
F:0.74 F:14.1db F:95.4 Hz F:0.5 F:2.88

VITS M: 0.53 M: 25.8 db M: 1119 Hz M: 04 M: 3.02
F:0.58 F:21.8db F: 154.8 Hz F: 04 F:3.27

VoiceCraft M: 0.76 M: 16.3 db M: 76.8 Hz M: 0.3 M: 2.96
F:0.73 F:13.5db F:101.4 Hz F:0.4 F:2.7

Vall-EX M: 0.67 M:33.2db M: 26.8 Hz M: 0.3 M: 2.26
F: 0.75 F:43.9db F: 60 Hz F:0.3 F: 2.65

RVC M: 0.72 M:9.9db M: 58.9 Hz M: 0.3 M: 2.87
F:0.71 F:10.7 db F:114.2 Hz F:0.3 F:2.68
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4. Conclusion

This study presents a comparison of nine voice cloning algorithms across zero-shot and fine-tuning
scenarios. Zero-shot models demonstrate flexibility and satisfactory performance without the need
for extensive data, making them highly suitable for rapid deployment. However, these models face
challenges in maintaining spectral accuracy, as evidenced by elevated MCD values, particularly for
female voices.

Fine-tuning introduces significant improvements in spectral fidelity and pitch accuracy for some
models, notably XTTS 2 and YourTTS. XTTS 2 shows a reduction in MCD and an improvement in
FO for males, while YourTTS reduces MCD and slightly improves UTMOS2 scores. However, the
impact of fine-tuning is mixed for other models. For instance, StyleTTS 2 experiences a mixed effect
on perceived quality with a UTMOS2 increase for males but a slight decrease for females.
Meanwhile, VoiceCraft and Vall-E-X exhibit worsened spectral fidelity and pitch accuracy post
fine-tuning, especially for female voices.

Overall, fine-tuning successfully enhances certain aspects of voice cloning for specific models and
presents opportunities for further refinement to extend these improvements to other models as well.
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