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Abstract. The article addresses the issue of separating input information of artificial neural networks into
modules using orthogonal transformations. This separation enables modular organization of neural networks
with layer separation, facilitating the use of the proposed approach for distributed computing. Such an approach
is required for organizing the operation of neural networks in fog and edge computing environments, as well
as for high-performance computing across multiple low-performance computational nodes. The possibility of
cross-layer separation of artificial neural networks using orthogonal transformations is theoretically
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modular neural networks using various types of orthogonal transformations, including the Haar wavelet
transform, is conducted.
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AHHoTanusi. B cratee paccMaTpuBaeTCs BONPOC pasfeleHHs BXOAHOW HHGOPMAaLUM HCKYCCTBEHHBIX
HEHPOHHBIX ceTeil Ha MOAYIIH € IIOMOIIBIO0 OPTOTOHANBHBIX NMpeoOpa3oBanuii. biarogaps TakoMy pa3aeneHuro
CTAaHOBHTCSI BO3MOXKHBIM MOJYJIbHAs OpPraHU3alUsl HEHPOHHBIX CETEH C pa3/elIeHHEM CJIOEB, YTO, B CBOIO
ouepesb, I03BOJIACT UCIIONIB30BaTh IpeAIaraeMblil MOAXOA U OPraHU3alluK PACIPEAEICHHBIX BEIYUCICHUI.
Takoii moxxox TpeOyeTcs pU OpraHu3aIy paboTh HEHPOHHBIX ceTel B cpelie TYMaHHBIX U IepHpepHtHBIX
BBIUHCIICHUI, OpraHU3aluy BHICOKOIIPOU3BOIUTEIBHBIX BEIUUCICHUN Ha MHOXKECTBE BBIUMCIMTENIBHBIX Y3JI0B
HEBBICOKOM NPOW3BOAUTENBHOCTH. TeopeTHueckrn OOOCHOBaHAa BO3MOXHOCTh  IONEPEYHOCIOIHOTO
pa3eNeHus HCKYCCTBCHHBIX HEHPOHHBIX CETeH ¢ MOMOIIBIO OPTOrOHAIBHBIX NPE0OPa30BaHUH U IIPUBEICHBI
MIPUMEpBI MPAaKTUYECKOH pealn3aliy Takoro moaxoza. IIpoBeneHO cpaBHEHHE XapaKTEPHCTHK MOIYIBHBIX
HEWPOHHBIX CeTel C NPUMEHEHHWEM DPAa3IMYHBIX BUJIOB OPTOTOHATBHBIX HMPEoOpa3oBaHMii, B TOM UHCIE C
OMOLIBIO BelBIIeT-nipeoOpazoBanust Xaapa.

KiwueBble cjioBa: OpPTOTOHANBHBIC MPeOoOPa30BaHUSA; MOIYJbHBIC HCKYCCTBCHHBIC HEHPOHHBIC CETH;
ONTUMH3AIUS HCHPOHHBIX CETEil; BEHBICT-IpeoOpa3oBaHusl.
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1. Introduction

The practical need to represent functions of n variables as a superposition of functions from a smaller
number of variables arose due to the development of the theory and practice of neural networks. The
basis of Artificial Neural Networks (ANN) is the Kolmogorov-Arnold theorem [1, 2], which showed
the possibility of representing a continuous real function of n variables f(x;,x,,...,x,;) as a
superposition of functions of a smaller number of variables.

A.N. Gorban [3] concludes that while the Kolmogorov-Arnold theorem guarantees the exact
representation of functions of many variables in the class of continuous functions, the practical
computation of most functions is only approximate even when exact formulas are available. The
solution lies in approximating the function f(x,, x,, ..., x,,) on a compact set Q using a sequence of
polynomials (theorems of Weierstrass, Stone). Furthermore, functions can be approximated through
linear operations and superpositions of one-variable functions [3]. This approach gained popularity
after the works of McCulloch and Pitts [4], which predicted the emergence of ANN. The Hecht-
Nielsen theorem [5] was a significant advancement in ANN, demonstrating the possibility of
approximating a multi-variable function with a single hidden layer ANN in a non-constructive
manner. However, the single-layer perceptron based on the Hecht-Nielsen theorem demonstrated
low efficiency.

The emergence of multilayer ANNs and the development of methods for their training have made it
possible to solve problems of classification, extrapolation, feature extraction, etc. under conditions
of high uncertainty, i.e. to obtain satisfactory results with a sufficiently small training sample size.
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Due to the very rapid growth of the amount of data generated and the need to process it, ANNs also
increase in size and require significant expenditure of computational resources. Natural Language
Processing (NLP) is of great interest and also requires very large ANNSs. For example, the popular
GPT-3 ANN created in 2020 uses 175 billion parameters. It is clear that such ANNSs require very
high computational costs to run, which can only be achieved in cloud data centres.

Simultaneously, there is an increasing demand for data processing in close proximity to the
equipment being used. This demand has led to the rise of edge computing and fog computing [6],
which are becoming more popular due to their enhanced information security and the limited
communication channels used for cloud computing. However, the computational nodes of fog
computing typically lack the necessary power to run ANNs. Therefore, ANNs must be optimized by
reducing the network size while only slightly degrading performance. Furthermore, modular
artificial neural networks (ANNSs) have been developed on multiple computational nodes [7, 8],
creating distributed computing structures. However, the proposed ideas for modular ANNs are based
on the assumption that network layer separation is impossible [9], and therefore rely on sequential
separation into modules, one layer at a time. However, this approach does not address the main issue
of resource estimation, as the number and performance of available fog computing nodes are
typically unknown beforehand. The same problem arises when utilising a swarm of unmanned aerial
vehicles (UAV). A single vehicle, equipped with a low-power computational node, cannot perform
ANN operations. By leveraging the computing capabilities of a UAV swarm, it becomes feasible to
operate ANNs of significant size. In this case, it is crucial to optimize the amount of information
transferred between computational nodes. When separating the ANN layer by layer, the amount of
information is significant due to the large number of parameters in each layer.

Ahmed and Rao [10] present their approach to building image recognition systems with optimal
architecture. They suggest using orthogonal transformations to optimize image recognition
algorithms, which reduces the number of significant features and the size of the classifier, a forward
propagation ANN. The authors propose a concept of optimization and partitioning into ANN
modules based on this approach.

2. Utilizing Orthogonal Transformations for Optimization of Neural Networks
and Modularization

Dimensionality reduction is a transformation of data from a high-dimensional dataset to a lower-
dimensional vector by eliminating uninformative features while preserving the structure and
information contained within them to the maximum extent possible [12]. This transformation
typically involves two steps: feature generation and selection [13]. In the first step, features that
most comprehensively describe the research object are identified, while selection involves
identifying features with the best classification properties for the given task. Commonly used
methods for dimensionality reduction include Principal Component Analysis (PCA) [14], Factor
Analysis (FA) [15], Linear Discriminant Analysis (LDA) [15], Singular Value Decomposition
(SVD) [16], Kernel PCA [17], Independent Component Analysis (ISA) [18], Matrix Factorization
[19], among others. However, they all have a significant drawback: dimensionality reduction
requires preprocessing of information, which can sometimes demand considerable time and
computational resources.

N. Ahmed and K. R. Rao [10] proposed optimizing the structure of the input signal through
orthogonal transformations, rather than the ANN architecture. This approach is of interest because
it allows for the realization of ANNs based on existing principles, approaches, and libraries. By
reducing the amount of the input signal, it is possible to decrease the size of the ANN. If the input
signal is divided into modules, processing can be carried out by several ANN modules. The
orthogonal transformations discussed in the works of N. Ahmed and K. R. Rao can be considered
as the first step, i.e., feature generation.
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The method of orthogonal transformations is a well-known technique associated with the concept
of orthogonal functions. A set of functions of a real variable, denoted by {d;(t)} = {d;,d,, ..., d,,},
is considered orthogonal on the segment [0; T if the following condition is satisfied:

T
_(k,ecni = j,
f d;(d;(B)dt = {0, ecIn i # j. @
0
where k is the autocorrelation coefficient of the function d; (t).
If x(t) is a function of a real variable on the interval [0; T], it can be represented as a series
x(0) = ) apdy(0). @

n=1
In (2), a, represents the expansion coefficients, which can be determined by

p— 1 T
a, = Efx(t)dn(t)dt.
0

From the definition of a closed (complete) orthogonal set, it can be inferred that a function x(t) can
be represented as a finite set of expansion coefficients {a,, a,, ..., a,} by decomposing it into
orthogonal functions. Even if the set of orthogonal functions is not closed, a finite set of coefficients
can still be used. In this case, the representation of the function x(t) is not exact, but rather an
interpolation based on a certain criterion. The most common criterion used is the least squares

principle, which is defined by the functional.
2

o = j(x(t) — Zl: andn(t)> . 3)

n=0

Once the value of the small &, has been determined, the number of members of the series can be
calculated so that the condition @ < ¢ is satisfied.

The Fourier transform is a well-known orthogonal transformation that is widely used in the theory
of information processing and transmission. It allows for the transition from the time representation
of a signal to the frequency representation and vice versa. In this context, we will consider the
application of an orthogonal transformation based on the Fourier transform [10, 11]. In some cases,
functions such as Lagger, Lejandre, Hermite, Walsh, Chebyshev, Adamar, etc. may be more
appropriate than trigonometric functions as a kernel. As the input and output signals are represented
discretely, it is possible to use variants of the discrete Fourier transform, including the Discrete
Cosine Transform (DCT) [10]. The DCT is commonly used in the JPEG format for lossy image
compression and operates exclusively with real numbers. The DCT employs a set of basis vectors
in the form of [10], which is explored on the interval [0, r]:

1 2 2m+ Dkn
ﬁ’\/;COST . (4)

Here, k represents the harmonic (coefficient) number, and m = 0,1,2, ...,n — 1, representing the
size of the initial data array. Equation (4) represents a class of discrete Chebyshev polynomials [10].
The DCT has a notable property where the basis vectors approximate the eigenvectors of the Toeplitz
matrices, allowing for effective compression of the original signal using DCT. Therefore, applying
an orthogonal transform of the form (1) generates a set of coefficients. In the case of the Fourier
transform and its variant DCT, these coefficients represent the amplitudes of frequency harmonics.
In this case, the signal can be completely restored or restored with a certain level of accuracy by
summing the harmonic components (inverse Fourier transform), depending on the number of
components summed.
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For the second step (feature selection), N. Ahmed and K. R. Rao [10] utilized the root-mean-square
deviation (RMSD) of coefficients in their studies. The higher the RMSD of a coefficient, the more
pronounced its classification capability. However, this measure is inconvenient as it requires
additional processing, similar to other dimensionality reduction methods. While the issue of
orthogonal transformation in the first layer of neural networks was addressed [23], a fundamentally
different approach is needed for real-time feature selection.

When transitioning to the investigation of a function presented in both time and frequency domains,
it is necessary to delineate the distinction in its reconstruction in each case. The representation of a
continuous function by discrete samples in time is defined by the Whittaker-Kotelnikov-Shannon
theorem [20], which states that the sampling rate should exceed the maximum frequency of the
signal by a factor of two or more. Each sample characterizes the instantaneous value of the function
at time t;. The expansion coefficient a; represents the projection of the function onto the i-th
orthogonal function of the chosen basis over the interval [0, T]. Moreover, a higher value of a;
indicates a closer affinity of the investigated function to the i-th component. We shall employ the
concept of approximation accuracy for closed systems of orthogonal functions [21]. Based on the

Lyapunov-Steklov (Parseval) equality:
T oo

B = fxz(t)dt = z az,

0 n=0

Then the relative integral accuracy of the approximation can be estimated as

=Z¥L=0a%:a_g+a_%+“'+ﬁ. (5)
B B B B
In (5), each term characterizes the contribution of each projection to the formation of the original
function. Based on this, one can speak about the accuracy of approximating a function obtained from
a limited number of components (coefficients).
Thus, an approximate function (y < 1) can be used for training ANNSs, consequently reducing the
size of the ANN. From the course of mathematical analysis, there is a known relationship between
the smoothness of a function and the rate of decrease of Fourier coefficients: if a function on an
interval has piecewise continuous derivatives of the first and higher orders, then it converges to the
original function absolutely and uniformly [22]. Hence, it follows that the partial sums of the
coefficients decrease as the component harmonic numbers increase. Therefore, dividing the
spectrum can be divided into two parts, based on equal number of frequencies, then we obtain the
following values of integral approximation accuracy for each half of the spectrum:

Zk/z a2

= n

n=""— (6)
k 2
n=K/,+1 n

Y2 = —Bz . 7

Since the spectral density in (7) will be smaller than in (6), the accuracy of approximation by the
neural network trained on the first part of the spectrum will be higher than that of the second. This
will be demonstrated experimentally in Section 3. Depending on the problem being solved, the
number of parts into which the spectrum of the input function is divided may vary. Additionally, the
parts of the spectrum do not necessarily have to be identical. If there are several computational nodes
of higher power, a larger portion of the spectrum can be allocated to them using a larger size ANN.
By using wavelet transforms instead of Fourier-like transforms, we can combine the operations of
feature generation and selection and obtain a gain in the number of relevant features without
additional research [24]. In general, wavelets are a system of functions of the following form:

Pap(x) = V2% (2% — b). (8)
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If V, is the space spanned by the system of functions (8), then the following inclusions hold [25]:
Vo € V; -~ € V,. Thus, we obtain a sequence of nested subspaces V; c L2(R), each equipped with
an orthonormal basis {(pi,b (x)}. This sequence of subspaces can be used to approximate a function
f(x) from L2(R) by its projection operator

P BR) = Vo Pe(F) = ) (F1Pa) 9 ().
bezZ

The projections P; become increasingly accurate approximations of f(x) as i increases. Returning
to neural networks, the following analogy can be drawn. A set of input vectors {f; (x]-)} inthe L2(R)
space can be projected onto a set of subspaces V, c V; c --- € V, such that each projection P; is an
approximation of the input data. By training a neural network on the projections P,, we obtain the
coarsest approximation of the expected outcome. However, due to decimation, this will be the most
"compact" approximation, requiring minimal computational resources for operation.
The widely known Haar wavelet [10, 25, 26] allows for partitioning the L?(R) space into two
subspaces, V,, and V;. By using V,, as the base subspace, a modular architecture of neural networks
can be constructed, enabling the use of a basic module for low-power devices [24]. Essentially, the
Haar wavelet performs a partitioning of the coefficient space into two equal parts [25], as previously
proposed. This allows for solving the problem as described above, where the basic module facilitates
the application of neural networks on low-computational-power devices with minimal loss of
accuracy and without additional training. In practical applications of the proposed theoretical
principles, it is important to consider that such transformation can be repeated for each half of the
coefficients. In this case, the entire space can be partitioned into 4 parts and a 4-module structure
can be formed, and so forth.
Wavelet transformation divides the coefficient space into several equal parts. However, if there exist
nodes with high computational capabilities in a distributed neural network, multiple modules can be
assigned to such a node. Consequently, the computational load can be distributed more evenly.
The following conclusion can be drawn from this: orthogonal transformations allow you to divide
the input signal space into segments (modules). At the same time, due to (1) modules can be
processed independently of each other on different nodes of a distributed computing system.
Combining the information processed on different nodes can be realised due to the possibility of
inverse orthogonal transformation. However, due to the nonlinearity of ANN, the application of the
inverse transformation core is usually impossible and requires training of the layer that combines
the results of the ANN modules. In this case, the training of the unifying layer is possible together
with the training of the modules.
Therefore, the implementation of distributed (modular) ANN requires a number of computational
nodes that corresponds to the number of modules to be organised, as well as two additional nodes:
one to perform orthogonal transformation and another to combine the results of the modules. This
organization optimizes the amount of information transmitted through communication channels. The
amount of information transmitted from the orthogonal transformation module to the ANN modules
is not greater than the amount of the input signal. Additionally, the amount of information
transmitted from the modules to the unifying layer is [ times greater than the amount of output data
of ANN, where [ is the number of modules in the ANN. All other information is transmitted within
the layers of the modules and does not require communication channels.

3. Practical Demonstration of Optimization Potential for ANNs and Cross-
Layer Network Partitioning for Deployment on Edge and Fog Computing
Nodes

Thus, by performing orthogonal transformation and dividing the coefficients into modules, for
example, with the help of ideal digital filters, we obtain a group of feature modules, which can be
used to train several ANN modules. In this case, each layer in the ANN modules is reduced
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proportionally to the amount of the coefficient modules and does not require from the computational
node such a high performance that is required for the ANN as a whole. The real discrete Fourier
transform and DCT were chosen for the experiment. The first step is to evaluate the quality of ANN
training in time and frequency domains.

The PyTorch library [28] was used to implement the ANN, with the MNIST database [30] serving
as the training data. The experiment was conducted on a personal computer running the Windows
10 Home operating system, equipped with an Intel Core i7-10510U processor and 16 GB of RAM.

Fig. 1 shows that training of ANN in the frequency domain using Fourier transform takes 5 times
more cycles than in the time domain.
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Fig. 1. ANN learning processes in time and frequency domains using the Fourier transform.

However, the application of DCT showed a slightly different picture (Fig. 2). ANN training in the
frequency domain outperformed training in the time domain by only a factor of 2. This can be
explained by the compression properties of DCT mentioned earlier.
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Fig. 2. ANN learning processes in time and frequency domains using DCT.

The problems of optimisation and design of distributed ANNs have a common solution: in
optimisation, as many modules are placed on a computing node as the node's computing power

allows. And in the design of distributed ANNs, the modules are placed on different nodes connected
by communication channels.
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Consider the construction of modular ANNs. The first layer performs an orthogonal transformation
based on the weights set and fixed in the neurons of the first layer [24]. Furthermore, the
transformation coefficients obtained after passing through the first layer are divided into two equal
parts and sent for processing to different ANNSs with layer sizes reduced by a factor of 2. The outputs
of the two ANNSs are combined in a layer with 20 inputs and 10 outputs. Fig. 3 shows the training
processes of the modular ANNs on MNIST data presented in the frequency domain using Fourier
transform (Fig. 3a) and using DCT (Fig. 3b). The learning rate is approximately the same and
comparable to the learning rate of the monolithic ANN in the frequency domain.

The characteristics of the modular ANNSs obtained for optimisation and construction of distributed
neural networks are considered. Table 1 presents the characteristics of 2-modular ANN.

Table 1. Characteristics of the 2-module ANN.

Module 1 Module 2
Recognition quality, % 79.63 69.02
Average time of 1 cycle, sec 0.029 0.024

Table 1 confirms that the recognition quality of the second module is lower than that of the first
module. This is due to the fact that the integral energy spectrum used to train the first module was
larger than that used for the second module.

Table 2 presents the characteristics of the four-module ANN.
Table 2. Characteristics of a 4-module ANN.

Module 1 Module 2 Module 3 Module 4
Recognition 78.76 37.39 17.49 20.86
quality, %
Average time of 0.013 0.012 0.013 0.012
1 cycle, sec

Table 2 shows that the average execution time per cycle for all modules is approximately the same,
while the recognition quality decreases as the module number increases. Module 4 is the exception,
with recognition quality exceeding that of module 3. This can be explained by the high-frequency
oscillations at the object boundaries, which cause the input signal to the ANN to be not completely
smooth.

Table 3 presents the characteristics of the 4-module ANN when the modules are connected in turn.
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Table 3. Characteristics of ANN when several modules are connected.

Module 1 Module 2 Module 3 Module 4
Recognition 78.76 94.01 97.22 98.05
quality, %
Average time of 0.013 0.017 0.022 0.028
1 cycle, sec

Table 3 shows the improvement in ANN recognition quality with the addition of modules. The
average cycle time increases at a slower rate than the number of connected modules. Therefore, the
time required for four modules is only twice that of one module. This is due to the parallelism of the
modules working simultaneously.

The Haar wavelet transform is used as an orthogonal transform for constructing a modular ANN.
The procedure for wavelet transformation involves passing the input signal through a half-band
digital filter with frequency response h(n) (high-pass filter) or g(n) (low-pass filter) [25, 27]:

x(n) * h(n) = Z x(k)h(n — k),

k

|0 9 = PIRIGIICET)
k

If the input signal of the ANN is a one-dimensional series of numbers with a length of n, we can
obtain wavelet transform coefficients at the output by using a one-dimensional convolution layer
with either kernel h(n) or g(n). To reduce the number of ANN layers, we can use one layer with
two or more different kernels. To achieve this, we create a convolution layer with one input, two or
more outputs, and a step equal to the dimensionality of the wavelet kernel. In this case, a convolution
layer will be created with two kernels, where the values of h(n) and g(n) are inputted [25].

The Haar wavelet transform, as shown in Table 4, distributes significant features in the frequency-
time matrix more strictly. This allows for the separate use of the first module with ~ 1% loss in
accuracy. Additionally, the module's speed is slightly increased due to the use of the convolutional
layer as an orthogonal transformer. The use of wavelets for constructing modular ANNs is discussed
in more detail in [27].

Table 4. Characteristics of 2-module ANN using wavelet transform.

Module 1 Module 2
Recognition quality, % 97.01 53.12
Average time of 1 cycle, sec 0.019 0.019

4. Conclusion

The article discusses the use of orthogonal transformations, specifically the Fourier transform,
discrete cosine transform, and Haar wavelet transform, for constructing distributed modular ANNs.
The approaches outlined in detail in [10] enable the use of these transformations for training ANNs
and dividing the input vector into parts for modular network application. The examples provided
demonstrate the potential for optimising ANNs for use on low-performance computing devices.
They also enable the creation of distributed computing systems with performance equal to that of a
monolithic network. The proposed approach is considered advantageous due to its independence
from the ANN architecture. This allows for the separation of input information and a reduction in
the size of modules, which can be applied to any neural network architecture using standard libraries.
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