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Abstract. The Residue Number System is a widely used non-positional number system. Residue Number 

System can be effectively used in applications and systems with a predominant proportion of addition, 

subtraction and multiplication operations, due to the parallel execution of operations and the absence of inter-

bit carries. The reverse conversion of a number from Residue Number System to positional notation requires 

the use of special algorithms. The main focus of this article lies in introducing the new conversion method, 

which incorporates Chinese Remainder Theorem, Akushsky Core Function and rank of number. The step-by-

step procedure of the conversion process is detailed, accompanied by numerical examples. The proof of the 

relationship between the ranks of positional characteristics using the Chinese Remainder Theorem is presented. 

Through careful analysis and comparison with existing transformation methods, it is concluded that the 

presented approach takes on average 8 % less time than the Approximate Method. 
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Аннотация. Система остаточных классов – это распространенная непозиционная система счисления. 

Система остаточных классов может эффективно использоваться в приложениях с преобладающей 

долей операций сложения, вычитания и умножения благодаря параллельному выполнению операций и 

отсутствию битовых сдвигов. Обратное преобразование числа из системы остаточных классов в 

позиционную систему счисления требует использования специальных алгоритмов. Основное внимание 

в данной статье уделено представлению нового метода преобразования, который использует 

Китайскую теорему об остатках, функцию ядра Акушского и ранг числа. Подробно описан алгоритм 

преобразования, представлены числовые примеры. Представлено доказательство связи между рангами 

позиционных характеристик с помощью Китайской теоремы об остатках. В результате тщательного 

анализа и сравнения с существующими методами преобразования сделан вывод, что представленный 

подход занимает в среднем на 8 % меньше времени, чем приближенный метод. 

Ключевые слова: система остаточных классов; Китайская теорема об остатках, приближенный метод; 

функция ядра Акушского; немодулярные операции. 
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1. Introduction 

In today's world, where computational systems play an increasingly significant role in various fields 

of activity, the question of efficiently converting numbers between different numeral systems 

becomes particularly relevant. One such system is the Residue Number System (RNS), which 

provides unique capabilities for handling large numbers through parallel computations [1]. RNS is 

applied in the following areas: blockchain [2], homomorphic encryption [3], digital signal and image 

processing [4], neural networks [5]. 

However, there are cases where it is necessary to translate numbers from RNS to positional notation, 

which is commonly used in most computational devices [6]. Efficient methods for converting 

numbers from RNS to positional notation must be developed. 

In [7] the authors introduced a technique based on the Chinese Remainder Theorem (CRT) and 

employed optimized modular arithmetic operations to achieve faster conversions. The algorithm was 

evaluated on a variety of RNS moduli sets and demonstrated significant improvements in conversion 

time compared to previously known methods. 

Chervyakov et al. [8] focused on developing a hybrid conversion method that combines RNS and 

binary arithmetic to achieve more efficient conversions. The proposed method utilized operand 

scanning techniques to identify patterns in the RNS representation and optimize the conversion 

process. The authors demonstrated that their hybrid approach outperforms conventional conversion 

methods in terms of both speed and hardware resource utilization. 
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The article [9] focuses on hardware acceleration for RNS-to-decimal conversion using Field-

Programmable Gate Arrays (FPGAs). The authors designed a specialized hardware accelerator 

capable of handling large-scale RNS numbers and converting them efficiently to decimal format. 

The proposed FPGA-based implementation demonstrated substantial speedup compared to 

software-based conversion methods, making it suitable for real-time applications. 

In [10-11] proposed energy efficient conversion algorithms which minimizes the energy 

consumption in the process of number conversion and number sign determination. By optimizing 

the use of resources and considering the power constraints of the base equipment, the proposed 

methods provide significant energy savings compared to conventional conversion methods.  

Advances in this area have paved the way for improved performance, reduced power consumption 

and increased fault tolerance, making RNS a more attractive option in various domains [12]. 

However, further research is still warranted to explore new techniques and optimizations that can 

further enhance the conversion process and maximize the potential of RNS in modern computing 

systems. 

This paper researches methods of converting numbers from RNS to the positional notation. The 

main methods are the CRT based method, the Interval Method, the Mixed Radix Conversion (MRC) 

method, the Diagonal Function (DF) method and the Approximate Method. 

The purpose of this paper is to present a high-speed method for converting numbers from RNS to 

positional notation based on the use of Akushsky core function and number rank. 

The paper is organized as follows. In Section 2, we give a brief overview of the Residue Number 

System. In Section 3, various techniques for converting numbers from RNS to positional notation 

are described. Section 4 deals with performance evaluation. Finally, Section 5 concludes with some 

final thoughts and considerations, including possible directions for future research. 

2. Residue Number System 

In RNS, numbers are expressed as sets of residues obtained by performing modular arithmetic 

operations on those numbers with respect to a set of coprime moduli. The use of coprime moduli 

ensures that there is no overlap or interference between the residues, allowing for parallel 

computation of operations on individual residues [12]. 

The numerical representation in RNS utilizes the Chinese Remainder Theorem. Let {𝑝1, 𝑝2 , … , 𝑝𝑛} 
be mutually prime moduli, and 𝑃 = 𝑝1 ∙ 𝑝2 ∙ … ∙ 𝑝𝑛 be their product. For each number 𝑋, there exists 

a set of remainders 𝑥1, 𝑥2, … , 𝑥𝑛, where 0 ≤ 𝑥𝑖 < 𝑝𝑖 , and these remainders form the RNS 

representation of 𝑋. Put differently, 𝑋 exhibits congruence with the residues 𝑥𝑖 modulo 𝑝𝑖 . 

Mathematically, this can be expressed as: 

𝑥𝑖 ≡ 𝑋(𝑚𝑜𝑑 𝑝𝑖). (1) 

Thus, the number 𝑋 is written in the RNS in the following form: 

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), (2) 

The computations for the reductions 𝑥𝑖 can be derived through the application of the following 

equation: 

𝑥𝑖  = 𝑋 − ⌈
𝑋

𝑝𝑖
⌉ ∙ 𝑝𝑖 , (3) 

To perform operations on numbers in RNS, such as addition and multiplication, operations are 

carried out independently on the remainders of each modulo. For example, calculations in RNS are 

performed according to equation: 

𝑋 ∗ 𝑌 = (𝑥1 ∗ 𝑦1, 𝑥2 ∗ 𝑦2, … , 𝑥𝑛 ∗ 𝑦𝑛). 

Here, the symbol ∗ represents arithmetic operations, encompassing addition (+), subtraction (−), or 

multiplication (∙). Note that each modulo within the RNS is coprime with every other modulo, 

satisfying the condition: (𝑝𝑖 , 𝑝𝑗) = 1, where 𝑖 ≠ 𝑗. 
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3. Methods for Conversion Numbers from RNS to Positional Notation 

3.1 Chinese Remainder Theorem 

If the number 𝑋 is given as residues (𝑥1, 𝑥2, … , 𝑥𝑛) from division by moduli {𝑝1, 𝑝2, … , 𝑝𝑛}, the 

number 𝑋 can be obtained from the equation based on the CRT [9]: 

𝑋 = |∑𝑃𝑖 ∙ 𝑥𝑖 ∙ |𝑃𝑖
−1|𝑝𝑖

𝑛

𝑖=1

|

𝑃

=∑𝑃𝑖 ∙ 𝑥𝑖 ∙ |𝑃𝑖
−1|𝑝𝑖

𝑛

𝑖=1

− 𝑟(𝑋) ∙ 𝑃, (4) 

where 𝑃 is the dynamic range, 𝑃𝑖 =
𝑃

𝑝𝑖
, |𝑃𝑖

−1|𝑝𝑖 is the multiplicative inversion of 𝑃𝑖  modulo 𝑝𝑖 , and 

the operator |𝑋|𝑝𝑖 denotes the remainder of division 𝑋 by 𝑝𝑖 , that is 𝑋 𝑚𝑜𝑑 𝑝𝑖 and 𝑟(𝑋) is the rank 

of the number indicating how many times the range value must be subtracted from the resulting 

number to bring it back into the range. Let us consider the process of number reconstruction as an 

example. 

Example 1. Given a system of bases 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7, 𝑝5 = 11 the volume of the 

dynamic range 𝑃 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 = 2310. Convert the number 𝑋 = (1, 2, 1, 4, 7) to a positional 

system. 

For this purpose, find the values of 𝑃𝑖: 

𝑃1 =
𝑃

𝑝1
= 1155, 𝑃2 =

𝑃

𝑝2
= 770, 𝑃3 =

𝑃

𝑝3
= 462, 

𝑃4 =
𝑃

𝑝4
= 330, 𝑃5 =

𝑃

𝑝5
= 320. 

Subsequently, our focus turns to the computation of multiplicative inversion, a process entailing the 

determination of 𝛼 such that 𝛼 ∙ 𝑃𝑖 ≡ 1(𝑚𝑜𝑑 𝑝𝑖). Thus: 

|𝑃1
−1|𝑝1 = 1, |𝑃2

−1|𝑝2 = 2, |𝑃3
−1|𝑝3 = 3, |𝑃4

−1|𝑝4 = 1, |𝑃5
−1|𝑝5 = 1. 

With these values, we can calculate the value of the number 𝑋, according to the (4): 

𝑋 = |8411|2310 = 1481. 

3.2 Approximate Method Based on CRT 

In [10, 13] a fractional, approximate representation of numbers based on CRT is proposed. Let us 

divide (4) by 𝑃 and obtain 

𝑋

𝑃
= |∑𝑥𝑖 ∙

|𝑃𝑖
−1|𝑝𝑖
𝑝𝑖

𝑛

𝑖=1

|

1

  =   |∑𝑥𝑖

𝑛

𝑖=1

  ∙  𝑘𝑖|

1

. (5) 

where 𝑘𝑖   =  
|𝑃𝑖
−1|

𝑝𝑖

𝑝𝑖
 constants of the chosen system, and the (5) gives a result within the interval 

[0, 1). In this context, the process of determining the remainder with a larger modulo is replaced by 

simply discarding the integer part, a simple operation to implement. To get the exact value, the 

fractional part is multiplied by 𝑃. Consider a similar example. 

Example 2. Given a system of bases 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7, 𝑝5 = 11 and the number 𝑋 =
(1, 2, 1, 4, 7). Find the constants  𝑘𝑖: 

𝑘1 =
1

2
,  𝑘2 =

2

3
,  𝑘3 =

3

5
, 𝑘4 =

1

7
,  𝑘5 =

1

11
. 

Then by (5) it is easy to find: 

𝑋

𝑃
=   |1  ∙

1

2
+ 2 ∙

2

3
+ 1 ∙

3

5
+ 4 ∙

1

7
+ 7 ∙

1

11
|
1
= |1

52

105
|
1
=
52

105
, 

Hence 



Луценко В.В., Бабенко М.Г., Хамидов М.М. Высокоскоростной метод перевода чисел из системы остаточных классов в 

позиционную систему счисления. Труды ИСП РАН, 2024, том 36, вып. 4, с. 117-132. 

121 

𝑋 =
52

105
∙ 2310 = 1481. 

Obviously, these calculations are simpler than in the CRT-based method, but in hardware 

calculations the fractional coefficients  𝑘𝑖 can rarely be represented as finite fractions, so there is a 

question of rounding accuracy. To perform approximate calculations the fractional coefficients  𝑘𝑖 
are multiplied by 2𝑁, where 𝑁 signifies the count of binary digits located beyond the decimal point, 

which provides the required level of calculation accuracy, each resulting number is rounded up to 

the next integer and then all calculations are performed modulo 2𝑁. 

3.3 Mixed Radix Conversion Method 

The Mixed Radix Conversion technique involves systematically translating a numerical 

representation from RNS to Weighted Number System (WNS) through a sequential process 

[14].This method involves subtracting moduli and multiplying by the multiplicative inversion of a 

modulo. In WNS the translated number has the following form: 

𝑋 = 𝑑1 + 𝑑2𝑝1 + 𝑑3𝑝1𝑝2 +⋯+ 𝑑𝑛𝑝1𝑝2…𝑝𝑛−1, (6) 

where 0 ≤ 𝑑1 ≤ (𝑝𝑖+1 − 1). The parameters 𝑑𝑖 are known as WNS digits. 

The WNS digits can be obtained from the ratios: 

𝑑1 = 𝑋 − 𝑋1 ∙ 𝑝1, 𝑋1 = ⌈
𝑋

𝑝1
⌉ ,

𝑑2 = 𝑋1 − 𝑋2 ∙ 𝑝2, 𝑋2 = ⌈
𝑋1
𝑝2
⌉ ,

⋮

𝑑𝑛 = 𝑋𝑛−1 − 𝑋𝑛 ∙ 𝑝𝑛 , 𝑋𝑛 = ⌈
𝑋𝑛−1
𝑝𝑛
⌉ .

(7) 

The conversion carried out according to the algorithm (7) contains 2(𝑛 − 1) only residual arithmetic 

operations of subtraction and division without remainder, where is the number of moduli of the 

system. Some modification of the considered algorithm can be proposed in the sense that the division 

operation is replaced by the multiplication operation. For this purpose we pre-calculate constants 

𝜏𝑘𝑗 that satisfy the condition 

𝜏𝑘𝑗𝑝𝑘 ≡ 1 (𝑚𝑜𝑑 𝑝𝑗), (1 ≤ 𝑘 < 𝑗 ≤ 𝑛) (8) 

It is noteworthy to highlight that the constants 𝜏𝑘𝑗 are entirely dictated by the selected system of 

bases, rendering them computable beforehand and amenable to storage in a designated table. 

If the constants 𝜏𝑘𝑗 are calculated, the calculation of the digits 𝑑𝑖 WNS by the algorithm (6) can be 

rewritten in the form: 

𝑑1 ≡ 𝑥1 (𝑚𝑜𝑑 𝑝1),

𝑑2 ≡ (𝑥2 − 𝑑1)𝜏12 (𝑚𝑜𝑑 𝑝2),

𝑑3 ≡ ((𝑥3 − 𝑑1)𝜏13 − 𝑑2)𝜏23 (𝑚𝑜𝑑 𝑝3)

⋮
𝑑𝑛 ≡ (… (𝑥𝑛 − 𝑑1)𝜏1𝑛 −⋯𝑑𝑛−1)𝜏𝑛−1𝑛 (𝑚𝑜𝑑 𝑝𝑛).

(9) 

The constants  𝜏𝑘𝑗 are multiplication inverses for the numbers 𝑝𝑘 modulo 𝑝𝑗 

Consider the algorithm (9) with an example. 

Example 3. Let a system of bases 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7, 𝑝5 = 11 be given. The volume of 

the dynamic range 𝑃 = 2 ∙ 3 ∙ 5 ∙ 7 ∙ 11 = 2310. Convert the number 𝑋 = (1, 2, 1, 4, 7) to WNS. 

We first find the constants  𝜏𝑘𝑗. For convenience, we write the constants 𝜏𝑘𝑗 as a matrix 𝑘 × 𝑗: 
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(

0 2
0 0

3 4 6
2 5 4

0 0
0 0

0 3 9
0 0 8

) 

Now run the algorithm (9) and write the results in Tab. 1. 

Table 1. Algorithm of the MRC method. 

Actions 
Moduli 

Digits 
𝑝1 = 2 𝑝2 = 3 𝑝3 = 5 𝑝4 = 7 𝑝5 = 11 

𝑋 − 𝑑1 
1
1

 
2
1

 
1
1

 
4
1

 
7
1

 𝑑1 = 1 

(𝑋 − 𝑑1)𝜏1𝑗 0 
1
2

 
0
3

 
3
4

 
6
6

  

𝑋1 − 𝑑2  
2
2

 
0
2

 
5
2

 
3
2

 𝑑2 = 2 

(𝑋1 − 𝑑2)𝜏2𝑗  0 
3
2

 
3
5

 
1
4

  

𝑋2 − 𝑑3   
1
1

 
1
1

 
4
1

 𝑑3 = 1 

(𝑋2 − 𝑑3)𝜏3𝑗   0 
0
3

 
3
9

  

𝑋3 − 𝑑4    
0
0

 
5
0

 𝑑4 = 1 

(𝑋3 − 𝑑4)𝜏4𝑗    0 
5
8

  

𝑋4      𝑑5 = 7 

Thus, 

𝑋 = 𝑑1 + 𝑑2𝑝1 + 𝑑3𝑝1𝑝2 + 𝑑4𝑝1𝑝2𝑝3 + 𝑑4𝑝1𝑝2𝑝3 + 𝑑5𝑝1𝑝2𝑝3𝑝4 = 

= 1 + 2 ∙ 2 + 1 ∙ 2 ∙ 3 + 0 ∙ 2 ∙ 3 ∙ 5 + 7 ∙ 2 ∙ 3 ∙ 5 ∙ 7 = 1481. 

3.4 Interval Method 

Sufficiently effective methods of converting numbers from RNS to positional representation is the 

interval method, based on the interval characteristics of numbers. One of these characteristics is the 

interval number [15]. 

Let RNS is given by a system of bases {𝑝1 , 𝑝2, … , 𝑝𝑛}, with the volume of the range 𝑃 = ∏ 𝑝𝑖
𝑛
𝑖=1 . 

Choose a splitting modulo 𝑝𝑖  and split the given range into intervals by dividing 𝑃 by the modulo 

𝑝𝑖 . Then the number of intervals is 𝑚 = 𝑃𝑖 =
𝑃

𝑝𝑖
, and the length of an interval is determined by the 

modulo value. As a result, the value of any number 𝑋 given in RNS on the chosen bases can be 

determined by the interval number: 

𝑙𝑋 = ⌈
𝑋

𝑝𝑖
⌉ . (10) 

which contains the number 𝑋 and by digit 𝑥𝑖 of the number 𝑋 in the RNS modulo 𝑝𝑖 , i.e. 

𝑋 = 𝑝𝑖𝑙𝑋 + 𝑥𝑖 . (11) 

Since (𝑝𝑖 , 𝑃𝑖) = 1 , by Euler's theorem: 

𝑃𝑖
𝜑(𝑝𝑖) ≡ 1 (𝑚𝑜𝑑 𝑝𝑖), (12) 

where 𝜑(𝑝𝑖) is an Euler function. If 𝑝𝑖  is a prime number, then 𝜑(𝑝𝑖) = 𝑝𝑖 − 1. 

Substituting (12) into (4) the number 𝑋 can be written as 
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𝑋 = |∑𝑃𝑖
𝜑(𝑝𝑖)

𝑛

𝑖=1

𝑥𝑖|

𝑃

. (13) 

To determine the interval number 𝑙𝑋, substitute (13) into (10): 

𝑙𝑋 = ⌈
∑ 𝑃𝑖

𝜑(𝑝𝑖)𝑥𝑖
𝑛
𝑖=1 − 𝑟(𝑋)𝑃

𝑝𝑖
⌉ . (14) 

Since 𝑝𝑖  is a divisor of the numbers 𝑃
𝑗

𝜑(𝑝𝑗)
 (𝑖 ≠ 𝑗),  𝑃𝑖

𝜑(𝑝𝑖)  − 1,  𝑃 then 

𝑙𝑋 = 𝑙𝑋1𝑥1 + 𝑙𝑋2𝑥2 +⋯+ 𝑙𝑋𝑛𝑥𝑛 − 𝑟𝑋𝑃. (15) 

where 𝑙𝑋𝑗 =
𝑃
𝑗

𝜑(𝑝𝑗)

𝑝𝑖
, (𝑖 ≠ 𝑗) and 𝑙𝑋𝑗 =

𝑃
𝑖

𝜑(𝑝𝑖)−1

𝑝𝑖
 are constant coefficients defined by the base system. 

Thus we have, 

𝑙𝑋 = |∑|𝑙𝑋𝑖𝑥𝑖|𝑃𝑖

+
𝑛

𝑖=1

|

𝑃𝑖

+

. (16) 

Substituting (16) into (11), we obtain a positional notation of the number 𝑋: 

𝑙𝑋 = (|∑|𝑙𝑋𝑖𝑥𝑖|𝑃𝑖

+
𝑛

𝑖=1

|

𝑃𝑖

+

)𝑝𝑖 + 𝑥𝑖 . (17) 

It may be noted here that it is more appropriate to choose the largest modulo in the system as the 

split modulo. In this case, modular operations are performed with a smaller modulo value. 

We will illustrate this method with an example. 

Example 4. Let a system of bases 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7, 𝑝5 = 11 be given. Convert the 

number 𝑋 = (1, 2, 1, 4, 7) to a positional notation. Let us choose 𝑝5 = 11 as the splitting modulo, 

then 𝑃5  =  
𝑃

𝑝5
  =  210, the interval number 

𝑙𝑋 = |∑|𝑙𝑋𝑖𝑥𝑖|210
+

5

𝑖=1

|

210

+

. 

and the number 𝑋 = 𝑝5𝑙𝑋 + 𝑥5. Define 𝑙𝑋𝑖 . Since 𝜑(𝑝1) = 2 − 1 = 1,  𝜑(𝑝2) = 3 − 1 =

2,  𝜑(𝑝3) = 5 − 1 = 4,  𝜑(𝑝4) = 7 − 1  = 6,  𝜑(𝑝4) = 11 − 1 = 10, then 

𝑙𝑋1 =   |
1155

11
|
210

+

= 105,  𝑙𝑋2 = |
7702

11
|
210

+

= 140,  𝑙𝑋3 = |
4624

11
|
210

+

= 126, 

𝑙𝑋4 =   |
3306

11
|
210

+

= 30,  𝑙𝑋5 = |
21010 − 1

11
|
210

+

= 19. 

Then 𝑙𝑋 = |764|210
+ = 210. 

Thus, 𝑋 = 134 ∙ 11 + 7 = 1481. 

3.4 Diagonal Function 

There is another way of reconstructing the numbers in the literature [16, 17]. For RNS {𝑝1, 𝑝2, …, 𝑝𝑛} 
define the Sum of Quotients (SQ) parameter as 

𝑆𝑄 = 𝑃1 + 𝑃2  +⋯+ 𝑃𝑛 , (18) 

and the constants 

𝑘𝑖 = |− 𝑝𝑖
−1|𝑆𝑄. (19) 
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The diagonal function for a given number 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) is defined as 

𝐷(𝑋) = |𝑥1𝑘1 + 𝑥2𝑘2 +⋯+ 𝑥𝑛𝑘𝑛|𝑆𝑄 . (20) 

If (4) is multiplied by 
𝑆𝑄

𝑃
, we get the scaled value of 𝑋: 

𝑋 ∙ 𝑆𝑄

𝑃
= |∑𝑆𝑄 ∙

𝑥𝑖
𝑝𝑖
∙ |𝑃𝑖

−1|𝑝𝑖

𝑛

𝑖=1

|

𝑆𝑄

. (21) 

From the definition of 𝑘𝑖 (19) we can derive 𝛽𝑖 ∙ 𝑆𝑄 − 𝑘𝑖𝑝𝑖 = 1, where 𝛽𝑖 = |𝑃𝑖
−1|𝑝𝑖, which is 

equivalent to 𝛽𝑖   =  |𝑃𝑖
−1|𝑝𝑖. Thus, 𝑘𝑖 =

𝑆𝑄

𝑝𝑖
∙ |𝑃𝑖|𝑝𝑖 −

1

𝑝𝑖
, where 

𝑆𝑄

𝑝𝑖
∙ |𝑃𝑖

−1|𝑝𝑖 = 𝑘𝑖 +
1

𝑝𝑖
. Then 

substituting 𝑘𝑖 +
1

𝑝𝑖
 in (20) instead of 𝑘𝑖 we get the scaled value of 𝐷′(𝑋). Thus, to obtain the value 

of 𝑋, substitute the calculated values in (21) and multiply by 
𝑃

𝑆𝑄
. 

𝑋 =
𝑆𝑄

𝑃
∙ |∑𝑥𝑖 (𝑘𝑖 +

1

𝑝𝑖
)

𝑛

𝑖=1

|

𝑆𝑄

=
𝑃 ∙ 𝐷(𝑋) + ∑ 𝑥𝑖 ∙ 𝑃𝑖

𝑛
𝑖=1

𝑆𝑄
. (22) 

Consider this method with an example. 

Example 5. Similarly, we are given RNS {2,  3,  5,  7,  11} and a number 𝑋 = 1481 = (1, 2, 1, 4, 7). 
From the previous examples we know 𝑃 = 2310,  𝑃1 = 1155,  𝑃2 = 770,  𝑃3 = 462,  𝑃4 =
330,  𝑃5 = 210. Then 𝑆𝑄 = 2927 and from (19) 𝑘1 = 1463,  𝑘2 = 1951,  𝑘3 = 1756,  𝑘4 =
 418,  𝑘5 = 266. Find the diagonal function 

𝐷(𝑋) = |10655|2927 = 1874, 

From (22) find the required value: 

𝑋 =
4334887 

2927
= 1481. 

4. The Akushsky Core Function Method Based on the Rank of Number 

We present a fast technique for conversion numerical values from the RNS to positional notation. 

This approach involves using the Akushsky Core Function to find the rank of a number. The 

Akushsky Core Function [18] is defined by the following equation 

𝐶(𝑋) =∑𝑤𝑖 ⌊
𝑋

𝑝𝑖
⌋

𝑛

𝑖=1

. (23) 

where integers 𝑤𝑖  are constants determined by the choice of the interpolation point. The numbers 𝑤𝑖  
in equation (23) can be arbitrary in a certain sense. It is they that define each particular core function 

and can vary depending on the problem to be solved. An algorithm for determining the optimal 

weights for the Akushsky core function is presented in [19]. 

Core function range value is calculated as 

𝐶(𝑃) = 𝐶𝑃 =∑𝑤𝑖𝑃𝑖

𝑛

𝑖=1

. (24) 

We define the so-called orthogonal bases 𝐵𝑖  as 

𝐵𝑖 = 𝑃𝑖 ⋅ |𝑃𝑖
−1|𝑝𝑖 , 

We also define the coefficients 𝑐𝑖 as 

𝑐𝑖 = 𝐶(𝐵𝑖), 

Rewrite (23) as 
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𝐶(𝑋) = |∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

|

𝐶𝑃

=∑𝑐𝑖

𝑛

𝑖=1

⋅ 𝑥𝑖 − 𝑟̌(𝑋) ⋅ 𝐶𝑃, (25) 

Then the rank of the Akushsky core function number can be defined as 

𝑟̌(𝑋) = ⌊
∑ 𝑐𝑖
𝑛
𝑖=1 ⋅ 𝑥𝑖
𝐶𝑃

⌋ . (26) 

There are three forms of representation of the CRT, each of them corresponds to a positional 

characteristic of the number represented in RNS. 

The first form was represented in (4), the rank of a number in this representation can be calculated 

as follows 

𝑟(𝑋) = ⌊∑
1

𝑝𝑖

𝑛

𝑖=1

⋅ |𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖⌋ . (27) 

Second form 

𝑋 = |∑𝑃𝑖

𝑛

𝑖=1

⋅ ||𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

|

𝑃

=∑𝑃𝑖

𝑛

𝑖=1

⋅ ||𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

− 𝑟̂(𝑋) ⋅ 𝑃, (28) 

where 𝑟̂(𝑋) is the normalised rank of the number, which can be calculated as 

𝑟̂(𝑋) = ⌊∑
1

𝑝𝑖

𝑛

𝑖=1

⋅ ||𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

⌋ , (29) 

 

The third form is proposed and its rank is represented respectively in (25) and (26). 

Consider the following properties. 

Theorem 1. 

𝑟̂(𝑋) = −
𝑋

𝑃
+∑

||𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖
𝑝𝑖

𝑛

𝑖=1

. 

Proof: 

According to the definition 

𝑟̂(𝑋) = ⌊∑
||𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖
𝑝𝑖

𝑛

𝑖=1

⌋ = ⌊
1

𝑃
∑||𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

𝑛

𝑖=1

⋅ 𝑃𝑖⌋ . (30) 

Since ⌊
𝑋

𝑃
⌋ =

𝑋

𝑃
−
|𝑋|𝑃

𝑃
, then 

𝑟̂(𝑋) =
1

𝑃
∑||𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

𝑛

𝑖=1

⋅ 𝑃𝑖 −
1

𝑃
⋅ |∑||𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

𝑛

𝑖=1

⋅ 𝑃𝑖|

𝑃

. 

According to the CRT, |∑ ||𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

𝑛
𝑖=1 ⋅ 𝑃𝑖|

𝑃

= 𝑋, consequently, 

𝑟̂(𝑋) =
1

𝑃
∑||𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑥𝑖|𝑝𝑖

𝑛

𝑖=1

⋅ 𝑃𝑖 −
𝑋

𝑃
. 

The theorem is proved. 

Theorem 2. 

𝑟̂(1) = −
1

𝑃
+∑

|𝑃𝑖
−1|𝑝𝑖
𝑝𝑖

𝑛

𝑖=1

. 
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Proof: 

It follows directly from Theorem 1 that 𝑟̂(1) = −
1

𝑃
+∑

|𝑃𝑖
−1|

𝑝𝑖

𝑝𝑖

𝑛
𝑖=1 . 

The theorem is proved. 

Let us examine the correlation between the ranks of positional characteristics. 

Theorem 3. 

Let 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑛, the number 𝑋
𝑅𝑁𝑆
→  (𝑥1, 𝑥2, … , 𝑥𝑛) and the weights of the Akushsky core 

function 𝑤1, 𝑤2, … , 𝑤𝑛 satisfying the condition 0 ≤ 𝑋 < 𝑃, then 

𝑟̌(𝑋) = 𝑟(𝑋) + ⌊
𝐶(𝑋)

𝐶𝑃
⌋ . (31) 

Proof: 

Let us calculate 𝑐𝑖, we get 

𝑐𝑖 = 𝐶(𝐵𝑖) =∑𝑤𝑗 ⌊
|𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑃𝑖

𝑝𝑗
⌋

𝑛

𝑗=1

. (32) 

Since ∀𝑖 ≠ 𝑗: |𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑃𝑖 ≡ 0 mod 𝑝𝑗 and ∀𝑖: |𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑃𝑖 ≡ 1 mod 𝑝𝑖 , then for 𝑖 ≠ 𝑗: ⌊|𝑃𝑖
−1|𝑝𝑖 ⋅

𝑃𝑖/𝑝𝑖⌋ =
|𝑃𝑖
−1|

𝑝𝑖
⋅𝑃𝑖

𝑝𝑖
, and for 𝑖 = 𝑗: ⌊|𝑃𝑖

−1|𝑝𝑖 ⋅ 𝑃𝑖/𝑝𝑖⌋ =
|𝑃𝑖
−1|

𝑝𝑖
⋅𝑃𝑖−1

𝑝𝑖
, hence the coefficient 𝑐𝑖 can be 

represented as follows 

𝑐𝑖 = |𝑃𝑖
−1|𝑝𝑖 ⋅ 𝑃𝑖 ⋅∑

𝑤𝑗

𝑝𝑗

𝑛

𝑗=1

−
𝑤𝑖
𝑝𝑖
. (33) 

Given that ∑
𝑤𝑗

𝑝𝑗

𝑛
𝑗=1 =

𝐶𝑃

𝑃
, then (33) is transformed to the form 

𝑟̌(𝑋) = ⌊
∑ 𝑐𝑖
𝑛
𝑖=1 ⋅ 𝑥𝑖
𝐶𝑃

⌋ = ⌊
1

𝑃
⋅∑|𝑃𝑖

−1|𝑝𝑖

𝑛

𝑖=1

⋅ 𝑃𝑖 ⋅ 𝑥𝑖 −
1

𝐶𝑃
⋅∑

𝑥𝑖 ⋅ 𝑤𝑖
𝑝𝑖

𝑛

𝑖=1

⌋ . (34) 

Substituting (34) into (28), we obtain 

𝑟̌(𝑋) = ⌊𝑟(𝑋) +
𝑋

𝑃
−
1

𝐶𝑃
⋅∑

𝑥𝑖 ⋅ 𝑤𝑖
𝑝𝑖

𝑛

𝑖=1

⌋ . (35) 

Considering that 

∑
𝑥𝑖 ⋅ 𝑤𝑖
𝑝𝑖

𝑛

𝑖=1

=∑
(𝑋 − 𝑝𝑖 ⋅ ⌊

𝑋
𝑝𝑖
⌋) ⋅ 𝑤𝑖

𝑝𝑖

𝑛

𝑖=1

= 𝑋 ⋅∑
𝑤𝑖
𝑝𝑖

𝑛

𝑖=1

−∑⌊
𝑋

𝑝𝑖
⌋

𝑛

𝑖=1

⋅ 𝑤𝑖 = 𝑋 ⋅
𝐶𝑃
𝑃
− 𝐶(𝑋). (36) 

Substituting (36) into (35), we obtain 

𝑟̌(𝑋) = ⌊𝑟(𝑋) +
𝐶(𝑋)

𝐶𝑃
⌋ . (37) 

Since as 𝑟(𝑋) ∈ ℤ, and ∀𝑎 ∈ ℝ, 𝑛 ∈ ℤ: ⌊𝑎 + 𝑛⌋ = ⌊𝑎⌋ + 𝑛, then 

𝑟̌(𝑋) = 𝑟(𝑋) + ⌊
𝐶(𝑋)

𝐶𝑃
⌋. 

Theorem 4. Let 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑛, a number 𝑋 ∈ ℤ𝑃 and an Akushsky core function with with all 

positive weights 𝑤𝑖  be given, then 𝑟̌(𝑋) = 𝑟(𝑋). 
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Proof: 

According to Theorem 3, 𝑟̌(𝑋) = 𝑟(𝑋) + ⌊
𝐶(𝑋)

𝐶𝑃
⌋. Given that the Akushsky core function contains no 

critical cores, ∀𝑋 ∈ [0, 𝑃): 0 ≤ 𝐶(𝑋) < 𝐶𝑃. Hence ⌊
𝐶(𝑋)

𝐶𝑃
⌋ = 0, and hence 𝑟̌(𝑋) = 𝑟(𝑋). 

The theorem is proved. 

Let us consider our proposed method with an example. 

Example 6. Similarly, we are given RNS 𝑝1 = 2, 𝑝2 = 3, 𝑝3 = 5, 𝑝4 = 7, 𝑝5 = 11 and a number 

𝑋 = 1481 = (1,2,1,4,7). 𝑃 = 2310, 𝑃1 = 1155, 𝑃2 = 770, 𝑃3 = 462, 𝑃4 = 330, 𝑃5 = 210. Let us 

use a set of weights 𝑤1 = 0,𝑤2 = 0,𝑤3 = 0,𝑤4 = 0,𝑤5 = 1. 

Let us calculate the values of 𝐵𝑖: 

𝐵1 = 𝑃1 ⋅ |𝑃1
−1| = 1155, 𝐵2 = 𝑃2 ⋅ |𝑃2

−1| = 1540, 𝐵3 = 𝑃3 ⋅ |𝑃3
−1| = 1386, 

𝐵4 = 𝑃4 ⋅ |𝑃4
−1| = 330, 𝐵5 = 𝑃5 ⋅ |𝑃5

−1| = 210. 

Then we find the value of the core function range by (24) 

𝐶(𝑃) = 𝐶𝑃 = 210. 

Find the value of coefficients 𝑐𝑖: 

𝑐1 = 105, 𝑐2 = 140, 𝑐3 = 126, 𝑐4 = 30, 𝑐5 = 19. 

Then the rank of the number is 

𝑟̌(𝑋) = ⌊
105 ⋅ 1 + 140 ⋅ 2 + 126 ⋅ 1 + 30 ⋅ 4 + 19 ⋅ 7

210
⌋ = 3. 

Thus, 

𝑋 = 1155 ⋅ 1 + 1540 ⋅ 2 + 1386 ⋅ 1 + 330 ⋅ 4 + 210 ⋅ 7 − 3 ⋅ 2310 = 1481. 

5. Performance Evaluation 

The methodology expounded in Section 4 evinces an indisputable advantage over the approaches 

outlined in Section 3. 

To validate the properties of each approach, every algorithm was carefully implemented in Python, 

and a comprehensive performance analysis was executed on a computer equipped with an Intel Core 

i7-7700HQ processor running at 2.80 GHz, 8 GB DDR4 RAM at 1196 MHz, and a 512 GB SSD, 

operating on Windows 10 Home Edition. The study involves two significant phases: 

Stage A examines the performance of three moduli by processing data sets of 50000, 100000, 

200000, 350000, and 500000 using each of the proposed methods. 

In Stage B, we expanded our analysis to cover 19 sets, varying from 3 to 21 moduli, with each 

modulo having an 8-bit dimensionality. We processed a data set of 100000 numbers. 

Throughout the two-stage simulation, we measured the time characteristics of each method with 

attention to detail. To guarantee precision and dependability, we reiterated each measurement one 

hundred times and recorded the average time for evaluation. The findings of these experiments are 

presented concisely in Tables 2 and 3, with time values depicted in seconds. 

Let us conduct a detailed examination of the ensuing tables, delving deeper into the tabulated data 

with a scientific scrutiny. The provided information discusses two stages: Stage A and Stage B, 

focusing on their time characteristics and importance. Stage A is crucial for tracking method 

behavior with increasing data size. Analysis of the data shows a linear growth, which indicates the 

stability of the obtained method using the core function. To enhance understanding, graphs will be 

presented. 

Table 2 provides insights into the time-related features observed during Stage B, underscoring the 

significance of this phase akin to Stage A. In a practical system comprising the control system may 

encompass various configurations, such as two, four, six, or more moduli. Consequently, exploring 

the behavior of methods in relation to the number of moduli within the system becomes imperative. 
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The acquired data not only facilitates an understanding of methodological performance but also 

allows for inferences regarding the stability of the methods. 

Table 2. The result of the study of stage A. 

Amoun

t 

CRT 

Method 

Approximat

e Method 

MRC 

Method 

Interval 

Method 

DF 

Method 

Rank 

Core 

Method 

50000 
0.1718475

8 
0.15310092 

0.1717851

2 

0.8742892

7 

0.2811243

5 

0.1330851

8 

100000 
0.3749160

8 
0.33490013 

1.6195976

3 
1.9496377 

0.4842178

8 

0.2907209

9 

200000 
0.7098841

7 
0.57174363 

2.6066207

9 

3.3127629

8 

1.1952631

5 

0.4542000

3 

350000 
1.1955852

5 
1.14163585 

4.4932913

8 

5.6563546

7 

1.6890754

7 

0.8794280

9 

500000 
1.6884722

7 
1.59833269 

6.5756256

6 

8.1438398

4 

2.5465111

7 

1.2524046

9 

Table 3. The result of stage B study: dimension of modulo set p[n] where n represents modulo count in the 

ensemble. 

p[n] 
CRT 

Method 

Approximate 

Method 

MRC 

Method 

Interval 

Method 

DF 

Method 

Rank Core 

Method 

3 0.04886961 0.04188609 0.16806006 0.19650173 0.07034159 0.0388873 

4 0.04986429 0.04387736 0.21841407 0.25733018 0.08476949 0.03990845 

5 0.05085826 0.04582379 0.34164977 0.30221629 0.09973574 0.04392817 

6 0.06984472 0.07378912 0.34810019 0.33629251 0.10273242 0.0588873 

7 0.07682538 0.08676386 0.41370296 0.39549708 0.11066651 0.06990845 

8 0.07836747 0.09275365 0.51267076 0.43252301 0.12862134 0.07392817 

9 0.08676624 0.09826112 0.59272242 0.45488119 0.13066811 0.09067698 

10 0.09473872 0.10372066 0.62236333 0.53865314 0.13461476 0.09264201 

11 0.11070347 0.11968732 0.72314477 0.55988812 0.15419126 0.09558553 

12 0.11466908 0.12268424 0.77975607 0.6223812 0.17807412 0.11655969 

13 0.12469697 0.12665558 0.88087988 0.63008047 0.19151998 0.12052173 

14 0.13267827 0.12510133 1.01868820 0.66010213 0.19850206 0.12311763 

15 0.13463926 0.12766194 1.04511428 0.75057304 0.20049644 0.12251919 

16 0.16458368 0.12769699 1.15422750 0.81782241 0.20647359 0.11738696 

17 0.16755462 0.13862944 1.29933691 0.86782241 0.23633909 0.12436595 

18 0.16951680 0.14361358 1.35722113 0.87273455 0.24734974 0.13237681 

19 0.17810869 0.15760803 1.40875983 0.93827939 0.26701593 0.13935819 

20 0.18051696 0.15960505 1.51713409 0.98166609 0.26928353 0.15541186 

21 0.18350887 0.16758013 1.63444066 1.02923965 0.27526116 0.16631331 

The data from the given table were utilized to create visual representations in the form of figures. In 

addition, a more comprehensive analysis was enabled by extrapolating the acquired values through 

polynomial methods, extending the perspective on the outcomes. 

Upon scrutinizing the acquired outcomes, we can extrapolate the following deductions. Examining 

the graphical representation in Fig. 1, it becomes apparent that conventional methodologies 

demonstrate efficacy particularly when handling a limited quantity of numerical inputs. However, 

starting from the processing of two hundred thousand numbers, MRC method and interval method 

begin to lose. 
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A similar situation is apparent in the graph presented in Fig. 2. On average, our approach displays a 

time efficiency that is roughly 8 % superior to that of the Approximate Method. 

The comparative analysis conducted on methods for translating numbers from RNS to positional 

notation revealed that the method utilizing Akushsky core function and number rank offers certain 

advantages. This is due to the performance of addition and multiplication operations in positional 

notation within the mentioned approach. When performing calculations using MRC, each RNS 

modulo corresponds to a separate channel in which calculations are completed using modular 

arithmetic. However, these calculations are not performed in parallel. When using the interval 

method, it is necessary to complete operations such as addition, multiplication, and degree expansion 

in the positional system. Degree expansion can result in rather large values. One positive aspect of 

the interval method is the ability to process data in a conveyor-like manner. 

6. Conclusion 

In this paper, we have presented a high speed method for converting numbers from RNS to positional 

notation. The proposed method offers a novel approach to achieve rapid and accurate conversions. 

By leveraging the inherent properties of the RNS and optimizing algorithms, our method streamlines 

the conversion process, minimizing computational complexities, and significantly reducing 

conversion times. Experiments demonstrate its superiority over conventional methods, showcasing 

notable improvements in speed. 

While our proposed method represents a significant advancement, there is still room for further 

exploration and optimization. Future studies may investigate hybrid conversion techniques that 

combine the strengths of different algorithms, aiming to achieve even greater efficiency. 

Additionally, evaluating the proposed method's performance in large-scale systems and exploring 

its potential application in emerging technologies will be exciting avenues for future research. 

 

Fig. 1. Findings from stage A analysis. 
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Fig. 2. Findings from stage B analysis. 
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