Tpyowr UCIT PAH, mom 36, éwin. 4, 2024 2. //Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 4, 2024

DOI: 10.15514/ISPRAS-2024-36(4)-11 tocld

Generation of Spatial Time Series Data

1 A.M. Kropacheva, ORCID: 0009-0002-7703-4762 <st086907 @student.spbu.ru>
! D.V. Girdyuk, ORCID: 0000-0003-4679-7281 <d.girdyuk@spbu.ru>
21.L. lov, ORCID: 0000-0002-6140-9382 <illariov1809@gmail.com>
1 A.Y. Pershin, ORCID: 0000-0003-2108-1906 <a.pershin@spbu.ru>

1St. Petersburg State University,
7/9, University Embankment, St. Petersburg, 199034, Russia.
2ITMO University,
49A, Kronverksky pr., St. Petersburg, 197101, Russia.

Abstract. In the era of deep learning, global-local deep neural networks are gradually replacing statistical
approaches for time-series forecasting, especially for the spatiotemporal modeling field. However, the
development of such methods is hindered by the lack of open benchmark datasets in this research domain.
Generating synthetic data is an alternative solution to data collection, but prior works focus mainly on
generating uncorrelated independent time series. In this work, we present a method for spatially correlated time-
series generation. It uses a set of parametric autoregressive models for univariate time series generation in
combination with the approach for sampling model parameters which allows one to simulate spatial
relationships. We describe its implementation and conduct experiments showing the validity of the data for
spatiotemporal modeling.

Keywords: time-series generation; spatiotemporal modeling; autoregressive model.

For citation: Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 4, 2024. pp. 143-154. DOI: 10.15514/ISPRAS-2024-36(4)-11.

Acknowledgements. The research was carried out within the state assignment of Ministry of Science and
Higher Education of the Russian Federation (project No. FSER-2024-0004).

FeHepauusa BpeMeHHbIX PAAOB C NPOCTPAHCTBEHHbLIMMU
B3aMMOCBSA3SIMU

1 A.M. Kponauesa, ORCID: 0009-0002-7703-4762 <st086907 @student.spbu.ru>
L 11.B. T'uporox, ORCID: 0000-0003-4679-7281 <d.girdyuk@spbu.ru>
21.J1. Hos, ORCID: 0000-0002-6140-9382 <illariov1809@gmail.com>
L A.JO. Hepwun, ORCID: 0000-0003-2108-1906 <a.pershin@spbu.ru>

L Canxm-Ilemepbypackuii 2ocyoapcmeennvlii yHugepcumen,
Poccus, 199034, 2. Cankm-Ilemepbype, Ynueepcumemckas nao., 0. 7-9.
2 Vuueepcumem UTMO,

Poccusa, 197101, . Canxkm-Ilemepbype, 0. 49, aum. A.

AHHoTanmusi. B smoxy riy6okoro oOydeHHs HEHPOHHBIE CETH IMOCTEHNECHHO 3aMEHSIOT CTaTHCTHUECKUE
MOAXOAbl K IPOTHO3MPOBAHHMIO BPEMEHHBIX pSIOB B pa3iM4HBIX oOnacTsaxX, Hampumep, B chepe
IPOCTPAHCTBEHHO-BPEMEHHOT0 MojenupoBanus. OIHAKO HEIOCTAaTOK OTKPBHITBIX HAO0OPOB JAHHBIX B ITOM
00JIacTH MPEMATCTBYET Pa3BUTHIO HEHPOCETEBBIX METO/IOB. ABTEPHATUBHBIM PEIICHUEM IS cOOpa JaHHBIX

143

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

SIBIIIETCSA TEHepalusl CHHTETHYECKHX IaHHBIX, HO CYIIECTBYIOIIHE METOJAbl (DOKyCHPYIOTCS TONBKO Ha
TeHepaly HEKOPPEIUPOBAaHHBIX HE3AaBUCHMBIX BPEMEHHBIX PsAA0B. B 3T0i# paboTe MBI MpeacTaBIsieM METOT
reHepalyy BpeMEHHBIX PSIIOB C MPOCTPAHCTBEHHON Koppersinuel. OH HCIob3yeT Habop mapaMeTpru3yeMbIX
aBTOPErPECCUOHHBIX MOJENIeH IJI TeHepalud OAHOMEPHBIX BPEMEHHBIX PAJOB B COUYETAHUU C MOAXOJOM K
BBIOOpY ITApaMeTPOB MOJIEIH, YTO IO3BOJIIET MOJEIMPOBATH IPOCTPAHCTBEHHBIE B3aMMOOTHOIICHNS. B paboTte
IIPUBE/ICHA pealu3alys MEeTOAa U Pe3yIbTaThl IKCIIEPUMEHTOB, KOTOPBIE II0Ka3bIBAlOT IPUMEHUMOCTb JaHHBIX
JUISL TIPOCTPAHCTBEHHO-BPEMEHHOTO MOIETHPOBAHUSL.

KiioueBble ci10Ba: reHepauus BPEMEHHBIX DSAIOB; IPOCTPAHCTBEHHO-BPEMEHHOE MOCIMPOBAHHUE;
ABTOPErpEeCCHOHHAs MOJIEb.

s uurupoBanus: Kponauesa A.M., I'mparox [1.B., Mos U.JI., [lepmun A.1O. I'eHepauus BpeMeHHBIX psAI0B
¢ mpocTpaHcTBeHHBIMH B3amMocBsizsamu. Tpyast MCIT PAH, tom 36, Bem. 4, 2024 r., ctp. 143-154 (na
anriuiickom s3bike). DOI: 10.15514/ISPRAS-2024-36(4)-11.

Baaroaapuoctu. PaGora BBIMONHEHA B paMKaX roCyJapCTBEHHOTO 331aHiss MUHHCTEPCTBA HAYKU U BBICIIETO
ob6pasoBanust Poccuiickoii ®enepanyu (poekt Ne FSER-2024-0004).

1. Introduction

Time series are widely used in numerous domains, including forecasting financial data, examining
road traffic patterns, predicting weather conditions, identifying anomalies in the network traffic, etc.
[1]. In recent years, many time series datasets have been published in open source. Competitions
focused on the time series forecasting became popular [2-3]. There is also a growing interest in tasks
associated with time series, such as hierarchical forecasting [4] and spatiotemporal modeling [5].
However, there are several problems in the time series analysis field. Time series presented in many
open datasets are quite homogeneous. Their application for evaluating the effectiveness of predictive
models is limited [6]. Additionally, it is often difficult (or even impossible) to find open datasets for
certain tasks [1]. Therefore, methods for generating time series can help create additional data not
only to improve the training process of currently popular global neural network models for time
series forecasting but also to create benchmark datasets suitable for their comprehensive testing.
Examples of such models include both global models, like Informer, FEDformer, TFT, as well as
foundation models like TimeGPT, TimesNet, and TimeLLM (see reviews [7-8]).

Methods for time series generation can be divided into two groups: statistical and neural network-
based [9]. In the first group, the autoregressive approach is a popular choice. In the second group,
methods are often based on the application of generative adversarial networks (GANS) or variational
autoencoders (VAESs). Thus, the methods of the first group use parameterized autoregressive models
to generate time series. Methods of the second group use neural network models that are trained to
generate time series from random noise based on existing datasets. The first approach is
implemented in such tools as GRATIS [6], timeseries-generator [10], and mockseries [11]. The
second is widely used in fields with many real observations, e.g., economics and finance [12].
Nevertheless, the overwhelming majority of existing solutions lack support for generating correlated
time series. These time series are often observed in tasks involving spatiotemporal dependencies
between time series and the objects that generate them. For example, in road traffic intensity
forecasting, sensors installed on roads measure the number of passing vehicles and/or their average
speed. The corresponding time series between adjacent crossroads often exhibit strong correlation,
which can be used to improve the forecasting quality, for example, using spatiotemporal graph
neural networks (STGNN) [13]. The emergence of open traffic datasets, such as PEMS-BAY and
METR-LA [5], has allowed researchers to standardize the way they compare their models. This has
significantly accelerated progress in the development of modeling spatiotemporal relationships.
However, similar types of relationships are encountered in many other areas, such as
telecommunications, neurobiology, epidemiology, meteorology, and others. Yet, at the current
moment, in many fields, either open datasets are completely absent, or they are insignificant in size.
This fact once again confirms the necessity of developing methods for time series generation.

144

Kpomnauesa A.M., I'mparox I.B., Mo WL, ITepmmu A.1O. I'eHeparmst BpeMEHHBIX PSIOB C IPOCTPAHCTBEHHBIMH B3aHMOCBSI3IMU. Tpyobi
UCII PAH, 2024, tom 36 Bem. 4, c. 143-154.

Moreover, time series analysis is not limited to prediction alone. Different tasks such as anomaly
detection in observations, searching for causal relationships, and adaptive prediction of time series
that allow changes in value distributions currently attract significant interest.

This paper presents a method for generating time series with spatial dependencies, generated by a
set of objects (e.g., sensors on roads or cellular base stations). Time series are generated using a set
of classical parameterized autoregressive models, such as ETS [14]. Spatiotemporal relationships
are modeled by sampling process parameters. The proximity of objects, determined e.g. by
Euclidean or geodesic distances on some manifold in parameter space corresponds to the similarity
of autoregressive models. The closer the process parameters are, the more similar the time series are
to each other.

The paper is structured as follows. Section 2 describes existing approaches to time series generation.
In Section 3, the method for generating time series with spatial dependencies is presented. The
implementation of the method is described in Section 4. Section 5 contains an evaluation of the
generator’s results. In the conclusion, the results of the work and further research plans are outlined.

2. Related Works

Methods for time series generation can be divided into the following groups: statistical
(autoregressive) and neural network-based. An overview of modern neural network approaches to
time series generation is presented in the work [9]. The method described in this paper belongs to
autoregressive approaches. In this section, we review several existing methods and open-source
projects that fall into this group.

The method for generating time series with diverse controlled characteristics GRATIS [6] utilizes
Gaussian mixture autoregressive (MAR) models. Tuning the parameters of these models allows for
the generation of a time series with desired features. GRATIS generates realistic datasets necessary
for research tasks such as forecasting comparison, model training on generated data, and others.
Thus, the method provides an efficient benchmarking tool but does not consider the generation of a
set of spatially correlated time series.

In [15], a method is proposed to generate synthetic time series for simulation, control, and
optimization tasks for hybrid energy systems. Fourier series and ARMA models were trained on real
measurements, and then employed to generate time series. In addition to generating independent
time series, the method offers a way to obtain synthetic correlated time series based on correlated
input data. However, this method only partially meets the goals of the work. The correlation of time
series is fully determined by the training data and applied to the entire resulting system. However,
the concept of spatial correlation only implies correlation between those time series generated by
similar objects.

In addition to the methods described above, there are several open-source tools for time series
generation. A lot of them are Python libraries for time series generation based on various stochastic
processes. A process here is defined as some function that describes the behaviour of series values
over time. However, these solutions do not support specifying spatial dependencies. Thus, such
methods are only of interest because of the implemented processes, generation methods, and solution
design. This paper considers two such packages: timeseries-generator [10] and mockseries [11].
The Python package timeseries-generator is widely known, providing the ability to generate
synthetic time series. The authors propose the following implementation. A time series is
represented as ts = v * f; * f5 * ... * fy + u, where v, is the initial value, f;, ..., fy are integer
factors reflecting the characteristics of the time series (trend, seasonality, and others), and u is
random noise. This tool supports specifying time series features such as trend and seasonality and
allows users to simulate changes in observations related to real events (weekends, holidays, and
others). Nevertheless, this package does not support the usage of an external dataset to parameterize
stochastic processes and uses only one user-defined model for time series generation. Thus, the

145

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

timeseries-generator package contains effective methods for generating time series but does not meet
all the requirements of our study.

Another Python package providing flexible capabilities for creating time series is mockseries. It has
more components than timeseries-generator and represents time series as an additive or
multiplicative combination of various signals (trend, seasonality, noise, and several others). For
example, y, = (S;(t) * T;(¢6) + Sp(¢)) * w, where S,(t), S,(t) are different seasonal
components, T;(t) is a linear trend, and u is random noise [16]. Moreover, the package implements
methods for changing time series values at specified time points or over a specified time interval.
Such a method allows users to simulate anomalies and change time series values over a specified
interval according to a certain function. Thus, using the mockseries tool, a set of time series with
characteristics changing over time can be generated.

In conclusion, there appear to be no methods that can generate a set of time series with spatial
dependencies. There might be no suitable software tools to address the issue.

3. Generation Method
The proposed method for generating time series consists of the following components and ideas:

e aset of stochastic processes supporting parameterization, such as ETS (error, trend,
seasonal) [14]) family;

e generation of a schedule, i.e., a mechanism for creating complex time series models;
e generation of points with a clustered division on the sphere as a time series source;
e process parameterization method.

The generation scheme is shown in Fig. 1.

1. Generate source points 2. Cluster points 3. Aggregate point coordinates

(x, v.2)

aggregated
value

o

4. Generate schedule for each Generate time series according to
cluster schedules

v
schedule 3

hy schedule 3
schedule 1 schedule 1

aggregated opagule 2

schedule 2 value

time series

Fig. 1. Time series generation scheme.

3.1 Stochastic Processes

Stochastic processes are the functions that determine the behavior of a time series and include a
component of random error. They describe the growth, decline, stationarity, seasonality, dispersion,
and other characteristics of the time series. Processes allow for the computation of a new value in

146

Kpomnauesa A.M., I'mparox I.B., Mo WL, ITepmmu A.1O. I'eHeparmst BpeMEHHBIX PSIOB C IPOCTPAHCTBEHHBIMH B3aHMOCBSI3IMU. Tpyobi
UCII PAH, 2024, tom 36 Bem. 4, c. 143-154.

the series based on several previous ones. Time series created by the same sequence of processes
are expected to be similar.

In our method, the process is represented as follows: p = f(X, Xi—1, .., Xe—1, &;0), where
X, Xi_q, ..., X, are the set of previous values in the series, 0 is the parameter vector, and ¢ is the
random error component [17]. Thus, the time series becomes a sequence of values from a process
list. At the start of each time series generation, the empty sequence is filled with a small set of
random initial data. This set size is equal to the number of values that the first process requires.
Processes then use the required number of previous values and add their generated data to the
sequence.

The method uses ETS models (Error, Trend and Seasonality) to ensure the generated time series
resembles real data. In the implementation of the time series generator, all ETS models are additive,
represented as a sum of several components:

ts=a-L(t)+b-T(t) +c-Si(t) +d- U(t),
where L(t) is the long-term component, T(t) is the trend, S;(t) is the seasonal component with

frequency [, and U(t) is the random error [14]. Parameters a, b,c,d € N denote the number of
components of the corresponding type, which the user specifies.

3.2 Time Series Schedule Generator

A schedule is an order of processes, each associated with a sequence of parameters. The order of
processes is a sequence of pairs (process;, steps;), where process; is a randomly selected process
from the list of available process types, and steps; € N is the number of time steps allocated for the
process. Let k specify the number of pairs in the sequence, and n be the total number of observations
in the time series. Then we have Y¥ , steps; = n.

For each pair (process;, steps;), we generate another sequence of pairs (steps;;, parameters;;),
where parameters;; is the set of parameters of the process, and steps;; is the number of steps
allocated to the process to work with this set of parameters. If q determines the number of pairs in
the parameter sequence, then we have Zj?=1 steps;; = steps;.

3.3 Source Data Generation

In previous sections, we described the generation of uncorrelated time series. To update the method
with spatial correlations, we first need to obtain a set of initial parameter sets for the generator, each
representing an object. Sensors installed on roads may be treated as objects, the physical location of
each acting as a parameter, as described in Section 1. The closer the sensors are placed, the more
similar their time series will be. Using the spatial relationships between objects, one can unite the
objects into a graph based on Euclidean distances. In the current implementation, points from the
space R3are used as objects, and their coordinates naturally serve as parameters of the points.
Points are sampled and clustered with the k-means method on the unit sphere centered at zero. The
cluster structure of objects allows for the parameterization of a complex time series model. For each
cluster, a schedule is generated, and all objects generate time series using the schedule of the parent
cluster. In our method, the parent cluster fully defines the schedule parameters for each object.

3.4 Process Parameterization

We propose a parameterization method to allow the time series to depend on the characteristics of
the parent object. If the characteristics of objects are similar, a time series will be generated from
sets of processes with close parameters. One challenge of parameterization is the transformation of
characteristics into process parameters: the dimensionality may vary, specific limitations exist for
many parameters, etc. This issue can be addressed with the following approaches. One is to treat
characteristics as parameters in order and adjust them to the required range. If the number of

147

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

parameters is not enough, use additional aggregated values. Another way is to aggregate all the
characteristics and use the resulting value to generate all process parameters. This approach is used
in the current implementation.

Time series generated from the parameters chosen randomly may be unstable. The user needs to
specify the following hyperparameters: the range [a, b] and the number of intervals m. Additionally,
the method can use generated source data to calculate these parameters. Suppose the input data is
the set of points in space R3. In that case, the parameter a is considered a minimum value over all
coordinates, and the parameter b is a maximum. Process parameters and initial values of the time
series are generated concerning these constraints.

The main aggregation function used is the weighted arithmetic mean with a sum of weights equal to
1. The aggregation function considers the order of coordinates and allows for smoothing of the
values. Other aggregation functions are the sum, maximum and minimum of all values, allowing
one to parameterize the processes with up to 4 parameters. The set of aggregation functions may be
extended with the skewness, kurtosis, quantiles and other parameters. However, high-dimensional
parameter spaces are either unreachable, or all the parameters will be similar, as the results or
aggregation functions are correlated.

Let A = (ay,a,,a3) € R® be a point, a,,, is the weighted arithmetic mean of A, a,, is the
maximum value of A. Consider the following examples of parameter calculations:

e standard deviation,
o coefficient of the time series level,
e trend coefficient,

e seasonality coefficient.

Consider the standard deviation being a parameter for all processes. Let’s denote it as o. Let s =

'b;lal, where a,b,m are hyperparameters described above. In the current implementation, the

formula for calculating the standard deviation looks as follows: ¢ = s’ + k, where k ~ N (0, g). If
no source data is passed to the process, then s’ = s, otherwise s’ = s * (1 + 27,

am

The time series level is a separate time series component, i.e., it does not depend on the trend and
seasonality. It is present in the simple exponential smoothing and Holt/Holt-Winters models. The
smoothing parameter @ € [0,1] of the level determines the weight of the last points in calculating
the new value of the time series. In the current implementation, a belongs to the interval (0,0.3) so
generated time series using the simple exponential smoothing model are stationary [17].

The trend component (T (t)) is present in the Holt and Holt-Winters models. The trend coefficient
B € [0,1] is the smoothing parameter responsible for the extent to which the time series exhibits
growth or decline. If no source data is passed to the process, then 8 ~ U[0,0.05], otherwise 8 =

Amw
204y,

The seasonal component (S(t)) is used in the Holt-Winters model. Similarly, to the trend, it has a
coefficient y € [0,1], a smoothing parameter determining the impact of seasonal patterns on the
generation [18]. An empirical rule for y isy € [0.5,1], as with y < 0.5, the seasonal component
of the time series becomes barely discernible. If no source data is passed to the process, then y ~
U[0.5,1], otherwise y = 1 — 2™

2am,

4. Implementation

The implementation of the application was divided into two parts: creating a time series generator
that supports complex user-defined or random models, and incorporating parameterization of
stochastic processes that generate time series based on input data. The scenario of time series
generation looks as follows.

148

Kpomnauesa A.M., I'mparox I.B., Mo WL, ITepmmu A.1O. I'eHeparmst BpeMEHHBIX PSIOB C IPOCTPAHCTBEHHBIMH B3aHMOCBSI3IMU. Tpyobi
UCII PAH, 2024, tom 36 Bem. 4, c. 143-154.

1) Setting hyperparameters by the user, initializing the generator.

2) Creating a schedule for all-time series, either collectively or for each individually
(depending on the configured parameters).

3) Generating time series according to the schedule.
4) Adding time series to the resulting list.
To implement the time series simulator, the following technologies were used:
Python 3.10 [19];
NumPy [20];
matplotlib [21];
scikit-learn [22].

The class diagram is shown in Appendix A. The implementation code is available in the repository
on GitHub [23].

5. Evaluation

To assess the quality of the generator’s performance, experiments were conducted on sampling
points on the sphere and generating corresponding time series. They were conveyed in the following
environment:

e CPU: AMD Ryzen 7 3750H with Radeon Vega Mobile Gfx 2.30 GHz
¢ RAM: 16GB
e OS: Windows 10 (64-bit)
The experiments consisted of generating 5 points on a sphere and 5 corresponding time series with

100 observations. The average time of a single generation is about 1-2 seconds. Peak CPU load is
about 40-50%, and memory consumption is about 100MB.

5.1 Metrics

The quality criterion for the time series generator is the similarity of the time series generated by
close objects. There is an algorithm to find optimal matches between time sequences — Dynamic
Time Warping (DTW). It is effective when comparing time series, one of which is shifted,
compressed, or stretched along the time axis relative to the other. However, such an algorithm is not
suitable for this implementation of the generator. The resulting time series may differ in dynamics
and trend direction, even if they are based on the same model. Thus, quality assessment is carried
out using visual comparison.

5.2 Results

In Fig. 2, a plot of the time series returned by the generator is presented on the left, and the location
of the points on the sphere that generated the time series is shown on the right. Points belonging to
the same cluster, along with their corresponding time series, are marked with the same color.

The time series generated by the same schedule (cluster) are distinguishable, i.e., they have similar
dispersion and common segments where the characteristics of the processes and the stochastic
processes themselves change. The closer the points within the cluster, the closer their initial values
and the generated time series: this is reflected in the plots where three time series from the same
cluster are presented — two series are similar, and the third differs from the pair but still preserves a
common behavioral model.

Different objects generate time series from their own clusters, so their behavior is weakly correlated.
Nevertheless, the similarity of time series considering the coordinates of points varies with each

149

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

generation. In some datasets, similar time series appear regardless of the proximity of their parent
objects. Thus, the generation method has shown promise, but further testing is required.

One of the proposed applications of the generation method is to mock the real data and use artificial
data to pretrain models for time series forecasting, i.e. data augmentation. The technique is currently
being used for experiments with existing datasets with spatiotemporal correlations in data, such as
PEMS-BAY [24] and others (see section 1). We create custom complex processes to mock the origin
data better, then train the time-series forecast models on the synthetic data. We expect that after fine-
tuning on the origin data models will outperform their basic versions which were not trained on the
synthetic data. An example of a custom process is shown in Appendix B.

3 f
%12 ¥-fooo
u;(; s¢ foxs
1
1o 1% 4 a0
125 1
100 gL
08 075 {125

[
{150

g 178

00205875100 291 50, 755 g0 2%

228858k :
g58h%

0 20 0 60 80 100

Fig. 2. Results of the time series generator.

Conclusion and Future work

Within the scope of this work, an approach to generating time series with spatial dependencies was
presented. The following results have been achieved.

1) Areview of existing methods and software implementations of time series generators based
on autoregressive processes was conducted: GRATIS, Correlated synthetic time series
generation, timeseries-generator, mockseries.

2) A method for generating time series was developed, including:
150

Kpomnauesa A.M., I'mparox I.B., Mo WL, ITepmmu A.1O. I'eHeparmst BpeMEHHBIX PSIOB C IPOCTPAHCTBEHHBIMH B3aHMOCBSI3IMU. Tpyobi
UCII PAH, 2024, tom 36 Bem. 4, c. 143-154.

a) a set of stochastic processes generating time series;

b) a method for constructing complex models for time series generation;

c) a method for generating and clustering points on a sphere;

d) a method for generating time series parameters depending on input data.

3) The method was implemented in software.
4) The generator’s performance has been tested.

In the further development of the method, the following tasks are set: to implement various methods
for sampling points on arbitrary surfaces, to implement functions for constructing a graph of
relationships between objects and approximating geodesic distances on surfaces, to describe
abstractions for changing process parameters, and to conduct testing of new functions of the time
series generator.

References

(1

[2].

3.

[4].

[5].

[6].
[71.
[8].
[9].

[10].
[11].
[12].
[13].
[14].
[15].
[16].

[17].

Y. Hahn, T. Langer, R. Meyes, and T. Meisen, “Time series dataset survey for forecasting with deep
learning,” Forecasting, vol. 5, mno. 1, pp. 315-335, 2023, Available at:
https://www.mdpi.com/25719394/5/1/17, accessed 02.04.2024.

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m4 competition: 100,000 time series and 61
forecasting methods,” International Journal of Forecasting, vol. 36, no. 1, pp. 54-74, 2020, m4
Competition.

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The m5 competition: Background, organization, and
implementation,” International Journal of Forecasting, vol. 38, no. 4, pp. 1325-1336, 2022, special Issue:
M5 competition.

M. Abolghasemi, G. Tarr, and C. Bergmeir, “Machine learning applications in hierarchical time series
forecasting: Investigating the impact of promotions,” International Journal of Forecasting, vol. 40, no. 2,
pp. 597-615, 2024.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Graph convolutional recurrent neural network: Data-driven traffic
forecasting,” ArXiv, vol. abs/1707.01926, 2017, Available at:
https://api.semanticscholar.org/CorpuslD:195346050, , accessed 02.04.2024.

Y. Kang, R. J. Hyndman, and F. Li, “Gratis: Generating time series with diverse and controllable
characteristics,” 2019.

Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in time series: A survey,”
arXiv preprint arXiv:2202.07125, 2022.

J. A. Miller, M. Aldosari, F. Saeed, N. H. Barna, S. Rana, I. B. Arpinar, and N. Liu, “A survey of deep
learning and foundation models for time series forecasting,” arXiv preprint arXiv:2401.13912, 2024.

S. Wang, Y. Du, X. Guo, B. Pan, Z. Qin, and L. Zhao, “Controllable data generation by deep learning: A
review,” ACM Comput. Surv., mar 2024, Available at: https://doi.org/10.1145/3648609, accessed
02.04.2024.

“timeseries-generator”, Available at: https://github.com/Nikelnc/timeseries-generator, accessed
18.05.2024.

“mockseries”, Available at: https://github.com/cyrilou242/mockseries, accessed 18.05.2024.

M. Dogariu, L.-D. S tefan, B. A. Boteanu, C. Lamba, B. Kim, and B. Tonescu, “Generation of realistic
synthetic financial time-series,” ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 18, no. 4, p. 1-27, 2022.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven
traffic forecasting,” arXiv preprint arXiv:1707.01926, 2017.

P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. Springer, 2016.

P. W. Talbot, C. Rabiti, A. Alfonsi, C. Krome, M. R. Kunz, A. Epiney, C. Wang, and D. Mandelli,
“Correlated synthetic time series generation for energy system simulations using fourier and arma signal
processing,” International Journal of Energy Research, vol. 44, no. 10, p. 8144—8155, 2020.

“mockseries documentation.”, Available at: https://mockseries.catheu.tech/docs/tutorials/interaction-
scalaroperations, accessed 19.05.2024.

K.B. Bopon1os, “MamunHoe o0ydenue. [Iporuosuposanue BpemeHHbIX psinos. K.B. Boponuos, 1llxona
ananu3a naHubeix, Sagexc”, 2020, Available at:

151

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

[18].
[19].
[20].
[21].
[22].
[23].

[24].

https://youtu.be/Rmh6b96u6UU?si=03120WIIP5EKW2kw (in Russian), accessed 08.10.2023.

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and practice, 3rd ed. OTexts, 2021.
“Python”, Available at: https://docs.python.org/3/tutorial/index.html, accessed 11.04.2024.
“Numpy”, Available at: https://numpy.org/doc/stable/, accessed 19.05.2024.

“matplotlib”, Available at: https://matplotlib.org/stable/, accessed 17.05.2024.

“scikit-learn”, Available at: https://scikitlearn.org/stable/index.html, accessed 19.05.2024.
“time-series-generator”, Available at: https://github.com/stilmmo/time-series-generator,
01.06.2024.

Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven
traffic forecasting,” in International Conference on Learning Representations (ICLR ’18), 2018.

accessed

Appendix

A. Overall Generation Scheme

This scheme demonstrates the class architecture

of the time series generator implementation in

Python.

TimeSeriesGenerator
Linspaceinfo

cfg: DictConfi

9 ¢ start: int
linspace_info: Linspacelnfo [« X

stop: int

process_storage: .
ProcessStorage parts: int
scheduler_storage: » generate_values()

SchedulerStorage
generate_std()

generate_time_series()
generate_all()

SchedulerStorage

num_steps: int

TimeSeries linspace_info: Linspacelnfo

steps_num: int points: NDArray

I :
add_values() clusters: NDArray

get_values() create_storage()

get_cluster()

get_scheduler()

-

Scheduler

num_steps: int

BaseParametersGenerator

lag: int
linspace_info: Linspacelnfo

parameters_generation_method:
ParametersGenerationMethod

linspace_info: Linspacelnfo

process_storage:
ProcessStorage

generate_schedule()

ProcessStorage

generate_parameters()

Process

cfg_process: DictConfig
linspace_info: Linspacelnfo

generation_method:
ParametersGenerationMethod

generate_init_values()

linspace_info: Linspacelnfo

parameters_generation_method add_processes()

ParametersGenerationMethod

»| Parameters_generator:
BaseParametersGenerator

generate_time_series()

152

contains()
get_random_processes()
get_processes()

remove_processes()

Kpomauesa A.M., I'uparok [1.B., Mo U.JL., ITepumu A.}O. I'enepaiiysi BpeMEHHBIX PSIIOB € IPOCTPAHCTBEHHBIMU B3aHMOCBS3IMHU. Tpyobi
UCII PAH, 2024, tom 36 Bem. 4, c. 143-154.

B. Custom process

This graph demonstrates a custom process that mocks origin data from PEMS-BAY dataset. All of
the origin time series are colored in green.

80

70

60

50

20

— PEMS-BAY-1
— PEMS-BAY-2
104 — PEMSBAY-:3
— Generated-1
—— Generated-2

0 250 500 750 1000 1250 1500 1750 2000

Ungpopmayusi 06 aemopax / Information about authors

Anena Muxaiinoena KPOITAUEBA sBisercs oOydvaromieiics ©OakaigaBpuata (akynbreTa
MaremaTtrku ¥ MexaHukd CaHKT-IleTepOyprckoro rocyaapCTBEHHOTO yHHBepcutetra. OO0JacTh
HaY4YHBIX HWHTCPCCOB: aHaJIM3 BPEMCHHBIX PAJ0B, KIACCHYCCKHUE AJITOPUTMbI KOMIIBIOTEPHOTO
3peHHsl, MAIIUHHOE 00yYEHHUE U TIIyOOKOe 00yUeHHE.

Alena Mikhailovna KROPACHEVA is an undergraduate student at the Faculty of Mathematics and
Mechanics of Saint Petersburg State University. Her research interests include time series analysis,
classical computer vision algorithms, machine learning, and deep learning.

Omurpuit BuxtopoBna TMPJIIOK sBisseTcst accucTeHTOM — Kaenpbl AHAarHOCTHKH
¢ynkronanpHelx cucreM CankT-IlerepOyprckoro rocymapcTBeHHOro yHHBepcuTera. Ero
Hay4YHbIE HHTEPEChl BKJIIOYAIOT KOMIIBIOTEPHOE 3pEHHEe, aHalIW3 BPEMEHHBIX PSJIOB,
MaTeMaTHYeCKasi IMMYHOJIOTHSI.

Dmitry Viktorovich GIRDYUK is an assistant of the Department of Functional Systems Diagnostics
of Saint Petersburg State University. His research interests include computer vision, time series
analysis, and mathematical immunology.

Wnnapron JlaBpertseBuu OB — acmmpadT mabopaTopuul MOJIENIUPOBAHUS HNPHUPOAHBIX CHCTEM
VYuusepcurera UTMO. OOGnacts Hay4HBIX MHTEPECOB: aBTOMaTHYECKOE MaIIMHHOE OOy4eHue,
NpUMEHEHHE OOJBIIMX S3BIKOBBIX MOJIETIEH JUIs ONTHMHU3AINH, aHAIN3 BPEMEHHBIX PSIOB.

Illarion Lavrentievich IOV — post graduate student at Natural Systems Simulation Lab at ITMO
University. Research interests: automated machine learning, large language models applications to
optimization, time series analysis.

Anrton IOpeeBuu I[MEPIIMH — Ph.D., moueHT kadeapsl ¢yHmamMeHTaIbHOW HHPOPMATHKH H
pacnpenenenneix cucteM Cankr-lIleTepOyprckoro rocynapctBeHHoro yHuBepcureta. Cdepa

153

Kropacheva A.M., Girdyuk D.V., lov I.L., Pershin A.Y. Generation of spatial time series data. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue
4, 2024. pp. 143-154.

HAyYHBIX HHTEPECOB: XaOTHUECKNE TUHAMUYIECKHUE CHCTEMBI, JAMHHAPHO-TYpOYJICHTHBIH Iepexo,
YHCIICHHBIC METO/IbI aHAIN3a YCTOWIMBOCTH, aHAJIM3 BPEMEHHBIX PSIOB.

Anton Yurievich PERSHIN — Ph.D., associate professor of the Department of Fundamental
Informatics and Distributed Systems of Saint Petersburg State University. Research interests:
chaotic dynamical systems, transition to turbulence, numerical methods for stability analysis, time
series analysis.

154

