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Abstract. In the era of deep learning, global-local deep neural networks are gradually replacing statistical 

approaches for time-series forecasting, especially for the spatiotemporal modeling field. However, the 

development of such methods is hindered by the lack of open benchmark datasets in this research domain. 

Generating synthetic data is an alternative solution to data collection, but prior works focus mainly on 

generating uncorrelated independent time series. In this work, we present a method for spatially correlated time-

series generation. It uses a set of parametric autoregressive models for univariate time series generation in 

combination with the approach for sampling model parameters which allows one to simulate spatial 

relationships. We describe its implementation and conduct experiments showing the validity of the data for 

spatiotemporal modeling. 
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Аннотация. В эпоху глубокого обучения нейронные сети постепенно заменяют статистические 

подходы к прогнозированию временных рядов в различных областях, например, в сфере 

пространственно-временного моделирования. Однако недостаток открытых наборов данных в этой 

области препятствует развитию нейросетевых методов. Альтернативным решением для сбора данных 
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является генерация синтетических данных, но существующие методы фокусируются только на 

генерации некоррелированных независимых временных рядов. В этой работе мы представляем метод 

генерации временных рядов с пространственной корреляцией. Он использует набор параметризуемых 

авторегрессионных моделей для генерации одномерных временных рядов в сочетании с подходом к 

выбору параметров модели, что позволяет моделировать пространственные взаимоотношения. В работе 

приведена реализация метода и результаты экспериментов, которые показывают применимость данных 

для пространственно-временного моделирования. 

Ключевые слова: генерация временных рядов; пространственно-временное моделирование; 

авторегрессионная модель. 
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1. Introduction 

Time series are widely used in numerous domains, including forecasting financial data, examining 

road traffic patterns, predicting weather conditions, identifying anomalies in the network traffic, etc. 

[1]. In recent years, many time series datasets have been published in open source. Competitions 

focused on the time series forecasting became popular [2-3]. There is also a growing interest in tasks 

associated with time series, such as hierarchical forecasting [4] and spatiotemporal modeling [5]. 

However, there are several problems in the time series analysis field. Time series presented in many 

open datasets are quite homogeneous. Their application for evaluating the effectiveness of predictive 

models is limited [6]. Additionally, it is often difficult (or even impossible) to find open datasets for 

certain tasks [1]. Therefore, methods for generating time series can help create additional data not 

only to improve the training process of currently popular global neural network models for time 

series forecasting but also to create benchmark datasets suitable for their comprehensive testing. 

Examples of such models include both global models, like Informer, FEDformer, TFT, as well as 

foundation models like TimeGPT, TimesNet, and TimeLLM (see reviews [7-8]). 

Methods for time series generation can be divided into two groups: statistical and neural network-

based [9]. In the first group, the autoregressive approach is a popular choice. In the second group, 

methods are often based on the application of generative adversarial networks (GANs) or variational 

autoencoders (VAEs). Thus, the methods of the first group use parameterized autoregressive models 

to generate time series. Methods of the second group use neural network models that are trained to 

generate time series from random noise based on existing datasets. The first approach is 

implemented in such tools as GRATIS [6], timeseries-generator [10], and mockseries [11]. The 

second is widely used in fields with many real observations, e.g., economics and finance [12]. 

Nevertheless, the overwhelming majority of existing solutions lack support for generating correlated 

time series. These time series are often observed in tasks involving spatiotemporal dependencies 

between time series and the objects that generate them. For example, in road traffic intensity 

forecasting, sensors installed on roads measure the number of passing vehicles and/or their average 

speed. The corresponding time series between adjacent crossroads often exhibit strong correlation, 

which can be used to improve the forecasting quality, for example, using spatiotemporal graph 

neural networks (STGNN) [13]. The emergence of open traffic datasets, such as PEMS-BAY and 

METR-LA [5], has allowed researchers to standardize the way they compare their models. This has 

significantly accelerated progress in the development of modeling spatiotemporal relationships. 

However, similar types of relationships are encountered in many other areas, such as 

telecommunications, neurobiology, epidemiology, meteorology, and others. Yet, at the current 

moment, in many fields, either open datasets are completely absent, or they are insignificant in size. 

This fact once again confirms the necessity of developing methods for time series generation. 
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Moreover, time series analysis is not limited to prediction alone. Different tasks such as anomaly 

detection in observations, searching for causal relationships, and adaptive prediction of time series 

that allow changes in value distributions currently attract significant interest. 

This paper presents a method for generating time series with spatial dependencies, generated by a 

set of objects (e.g., sensors on roads or cellular base stations). Time series are generated using a set 

of classical parameterized autoregressive models, such as ETS [14]. Spatiotemporal relationships 

are modeled by sampling process parameters. The proximity of objects, determined e.g. by 

Euclidean or geodesic distances on some manifold in parameter space corresponds to the similarity 

of autoregressive models. The closer the process parameters are, the more similar the time series are 

to each other.  

The paper is structured as follows. Section 2 describes existing approaches to time series generation. 

In Section 3, the method for generating time series with spatial dependencies is presented. The 

implementation of the method is described in Section 4. Section 5 contains an evaluation of the 

generator’s results. In the conclusion, the results of the work and further research plans are outlined. 

2. Related Works 

Methods for time series generation can be divided into the following groups: statistical 

(autoregressive) and neural network-based. An overview of modern neural network approaches to 

time series generation is presented in the work [9]. The method described in this paper belongs to 

autoregressive approaches. In this section, we review several existing methods and open-source 

projects that fall into this group. 

The method for generating time series with diverse controlled characteristics GRATIS [6] utilizes 

Gaussian mixture autoregressive (MAR) models. Tuning the parameters of these models allows for 

the generation of a time series with desired features. GRATIS generates realistic datasets necessary 

for research tasks such as forecasting comparison, model training on generated data, and others. 

Thus, the method provides an efficient benchmarking tool but does not consider the generation of a 

set of spatially correlated time series. 

In [15], a method is proposed to generate synthetic time series for simulation, control, and 

optimization tasks for hybrid energy systems. Fourier series and ARMA models were trained on real 

measurements, and then employed to generate time series. In addition to generating independent 

time series, the method offers a way to obtain synthetic correlated time series based on correlated 

input data. However, this method only partially meets the goals of the work. The correlation of time 

series is fully determined by the training data and applied to the entire resulting system. However, 

the concept of spatial correlation only implies correlation between those time series generated by 

similar objects. 

In addition to the methods described above, there are several open-source tools for time series 

generation. A lot of them are Python libraries for time series generation based on various stochastic 

processes. A process here is defined as some function that describes the behaviour of series values 

over time. However, these solutions do not support specifying spatial dependencies. Thus, such 

methods are only of interest because of the implemented processes, generation methods, and solution 

design. This paper considers two such packages: timeseries-generator [10] and mockseries [11]. 

The Python package timeseries-generator is widely known, providing the ability to generate 

synthetic time series. The authors propose the following implementation. A time series is 

represented as 𝑡𝑠 =  𝑣0 ∗ 𝑓1 ∗ 𝑓2 ∗ … ∗ 𝑓𝑁 + 𝑢, where 𝑣0 is the initial value, 𝑓1, … , 𝑓𝑁 are integer 

factors reflecting the characteristics of the time series (trend, seasonality, and others), and 𝑢 is 

random noise. This tool supports specifying time series features such as trend and seasonality and 

allows users to simulate changes in observations related to real events (weekends, holidays, and 

others). Nevertheless, this package does not support the usage of an external dataset to parameterize 

stochastic processes and uses only one user-defined model for time series generation. Thus, the 
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timeseries-generator package contains effective methods for generating time series but does not meet 

all the requirements of our study. 

Another Python package providing flexible capabilities for creating time series is mockseries. It has 

more components than timeseries-generator and represents time series as an additive or 

multiplicative combination of various signals (trend, seasonality, noise, and several others). For 

example, 𝑦𝑡  =  (𝑆1(𝑡) ∗  𝑇𝑙(𝑡) +  𝑆2(𝑡)) ∗  𝑢, where 𝑆1(𝑡), 𝑆2(𝑡) are different seasonal 

components, 𝑇𝑙(𝑡) is a linear trend, and 𝑢 is random noise [16]. Moreover, the package implements 

methods for changing time series values at specified time points or over a specified time interval. 

Such a method allows users to simulate anomalies and change time series values over a specified 

interval according to a certain function. Thus, using the mockseries tool, a set of time series with 

characteristics changing over time can be generated. 

In conclusion, there appear to be no methods that can generate a set of time series with spatial 

dependencies. There might be no suitable software tools to address the issue. 

3. Generation Method 

The proposed method for generating time series consists of the following components and ideas: 

 a set of stochastic processes supporting parameterization, such as ETS (error, trend, 

seasonal) [14]) family; 

 generation of a schedule, i.e., a mechanism for creating complex time series models; 

 generation of points with a clustered division on the sphere as a time series source; 

 process parameterization method. 

The generation scheme is shown in Fig. 1. 

 
Fig. 1. Time series generation scheme. 

3.1 Stochastic Processes 

Stochastic processes are the functions that determine the behavior of a time series and include a 

component of random error. They describe the growth, decline, stationarity, seasonality, dispersion, 

and other characteristics of the time series. Processes allow for the computation of a new value in 
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the series based on several previous ones. Time series created by the same sequence of processes 

are expected to be similar. 

In our method, the process is represented as follows: 𝑝 =  𝑓(𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑙 , 𝜉; 𝜃), where 

𝑋𝑡 , 𝑋𝑡−1, … , 𝑋𝑡−𝑙  are the set of previous values in the series, θ is the parameter vector, and ξ is the 

random error component [17]. Thus, the time series becomes a sequence of values from a process 

list. At the start of each time series generation, the empty sequence is filled with a small set of 

random initial data. This set size is equal to the number of values that the first process requires. 

Processes then use the required number of previous values and add their generated data to the 

sequence. 

The method uses ETS models (Error, Trend and Seasonality) to ensure the generated time series 

resembles real data. In the implementation of the time series generator, all ETS models are additive, 

represented as a sum of several components: 

ts = a · L(t) + b · T(t) + c · Sl(t) + d · U(t), 

where 𝐿(𝑡) is the long-term component, 𝑇(𝑡) is the trend, 𝑆𝑙(𝑡) is the seasonal component with 

frequency 𝑙, and 𝑈(𝑡) is the random error [14]. Parameters 𝑎, 𝑏, 𝑐, 𝑑 ∈  𝑁 denote the number of 

components of the corresponding type, which the user specifies. 

3.2 Time Series Schedule Generator 

A schedule is an order of processes, each associated with a sequence of parameters. The order of 

processes is a sequence of pairs (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖, 𝑠𝑡𝑒𝑝𝑠𝑖), where 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖  is a randomly selected process 

from the list of available process types, and 𝑠𝑡𝑒𝑝𝑠𝑖  ∈ 𝑁 is the number of time steps allocated for the 

process. Let k specify the number of pairs in the sequence, and 𝑛 be the total number of observations 

in the time series. Then we have ∑ 𝑠𝑡𝑒𝑝𝑠𝑖
𝑘
𝑖=1 = 𝑛. 

For each pair (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖, 𝑠𝑡𝑒𝑝𝑠𝑖), we generate another sequence of pairs (𝑠𝑡𝑒𝑝𝑠𝑖𝑗, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑖𝑗), 

where 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑖𝑗  is the set of parameters of the process, and 𝑠𝑡𝑒𝑝𝑠𝑖𝑗  is the number of steps 

allocated to the process to work with this set of parameters. If q determines the number of pairs in 

the parameter sequence, then we have ∑ 𝑠𝑡𝑒𝑝𝑠𝑖𝑗
𝑞
𝑗=1 = 𝑠𝑡𝑒𝑝𝑠𝑖 . 

3.3 Source Data Generation 

In previous sections, we described the generation of uncorrelated time series. To update the method 

with spatial correlations, we first need to obtain a set of initial parameter sets for the generator, each 

representing an object. Sensors installed on roads may be treated as objects, the physical location of 

each acting as a parameter, as described in Section 1. The closer the sensors are placed, the more 

similar their time series will be. Using the spatial relationships between objects, one can unite the 

objects into a graph based on Euclidean distances. In the current implementation, points from the 

space R3 are used as objects, and their coordinates naturally serve as parameters of the points. 

Points are sampled and clustered with the k-means method on the unit sphere centered at zero. The 

cluster structure of objects allows for the parameterization of a complex time series model. For each 

cluster, a schedule is generated, and all objects generate time series using the schedule of the parent 

cluster. In our method, the parent cluster fully defines the schedule parameters for each object. 

3.4 Process Parameterization 

We propose a parameterization method to allow the time series to depend on the characteristics of 

the parent object. If the characteristics of objects are similar, a time series will be generated from 

sets of processes with close parameters. One challenge of parameterization is the transformation of 

characteristics into process parameters: the dimensionality may vary, specific limitations exist for 

many parameters, etc. This issue can be addressed with the following approaches. One is to treat 

characteristics as parameters in order and adjust them to the required range. If the number of 
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parameters is not enough, use additional aggregated values. Another way is to aggregate all the 

characteristics and use the resulting value to generate all process parameters. This approach is used 

in the current implementation. 

Time series generated from the parameters chosen randomly may be unstable. The user needs to 

specify the following hyperparameters: the range [𝑎, 𝑏] and the number of intervals 𝑚. Additionally, 

the method can use generated source data to calculate these parameters. Suppose the input data is 

the set of points in space 𝑅3. In that case, the parameter 𝑎 is considered a minimum value over all 

coordinates, and the parameter 𝑏 is a maximum. Process parameters and initial values of the time 

series are generated concerning these constraints. 

The main aggregation function used is the weighted arithmetic mean with a sum of weights equal to 

1. The aggregation function considers the order of coordinates and allows for smoothing of the 

values. Other aggregation functions are the sum, maximum and minimum of all values, allowing 

one to parameterize the processes with up to 4 parameters. The set of aggregation functions may be 

extended with the skewness, kurtosis, quantiles and other parameters. However, high-dimensional 

parameter spaces are either unreachable, or all the parameters will be similar, as the results or 

aggregation functions are correlated. 

Let 𝐴 =  (𝑎1, 𝑎2, 𝑎3) ∈  𝑅3  be a point, 𝑎𝑚𝑤  is the weighted arithmetic mean of A, 𝑎𝑚  is the 

maximum value of 𝐴. Consider the following examples of parameter calculations: 

 standard deviation, 

 coefficient of the time series level, 

 trend coefficient, 

 seasonality coefficient. 

Consider the standard deviation being a parameter for all processes. Let’s denote it as σ. Let 𝑠 =

 
|𝑏−𝑎|

𝑚
, where 𝑎, 𝑏, 𝑚 are hyperparameters described above. In the current implementation, the 

formula for calculating the standard deviation looks as follows: 𝜎 =  𝑠′ + 𝑘, where 𝑘 ~ 𝑁(0,
𝑠

2
). If 

no source data is passed to the process, then 𝑠′ =  𝑠, otherwise 𝑠′ = 𝑠 ∗ (1 + 
𝑎𝑚𝑤

𝑎𝑚
). 

The time series level is a separate time series component, i.e., it does not depend on the trend and 

seasonality. It is present in the simple exponential smoothing and Holt/Holt-Winters models. The 

smoothing parameter 𝛼 ∈  [0,1] of the level determines the weight of the last points in calculating 

the new value of the time series. In the current implementation, 𝛼 belongs to the interval (0,0.3) so 

generated time series using the simple exponential smoothing model are stationary [17]. 

The trend component (𝑇(𝑡)) is present in the Holt and Holt-Winters models. The trend coefficient 

𝛽 ∈  [0,1] is the smoothing parameter responsible for the extent to which the time series exhibits 

growth or decline. If no source data is passed to the process, then 𝛽 ∼  𝑈[0,0.05], otherwise 𝛽 =

 
𝑎𝑚𝑤

20𝑎𝑚
. 

The seasonal component (𝑆(𝑡)) is used in the Holt-Winters model. Similarly, to the trend, it has a 

coefficient 𝛾 ∈  [0,1], a smoothing parameter determining the impact of seasonal patterns on the 

generation [18]. An empirical rule for 𝛾 is 𝛾 ∈  [0.5, 1], as with 𝛾 <  0.5, the seasonal component 

of the time series becomes barely discernible. If no source data is passed to the process, then 𝛾 ∼

 𝑈[0.5, 1], otherwise 𝛾 = 1 − 
𝑎𝑚𝑤

2𝑎𝑚
. 

4. Implementation 

The implementation of the application was divided into two parts: creating a time series generator 

that supports complex user-defined or random models, and incorporating parameterization of 

stochastic processes that generate time series based on input data. The scenario of time series 

generation looks as follows. 



Кропачева А.М., Гирдюк Д.В., Иов И.Л., Першин А.Ю. Генерация временных рядов с пространственными взаимосвязями. Труды 

ИСП РАН, 2024, том 36 вып. 4, с. 143-154. 

149 

1) Setting hyperparameters by the user, initializing the generator. 

2) Creating a schedule for all-time series, either collectively or for each individually 

(depending on the configured parameters). 

3) Generating time series according to the schedule. 

4) Adding time series to the resulting list. 

To implement the time series simulator, the following technologies were used: 

 Python 3.10 [19]; 

 NumPy [20]; 

 matplotlib [21];  

 scikit-learn [22]. 

The class diagram is shown in Appendix A. The implementation code is available in the repository 

on GitHub [23]. 

5. Evaluation 

To assess the quality of the generator’s performance, experiments were conducted on sampling 

points on the sphere and generating corresponding time series. They were conveyed in the following 

environment: 

 CPU: AMD Ryzen 7 3750H with Radeon Vega Mobile Gfx 2.30 GHz 

 RAM: 16GB 

 OS: Windows 10 (64-bit) 

The experiments consisted of generating 5 points on a sphere and 5 corresponding time series with 

100 observations. The average time of a single generation is about 1-2 seconds. Peak CPU load is 

about 40-50%, and memory consumption is about 100MB. 

5.1 Metrics 

The quality criterion for the time series generator is the similarity of the time series generated by 

close objects. There is an algorithm to find optimal matches between time sequences — Dynamic 

Time Warping (DTW). It is effective when comparing time series, one of which is shifted, 

compressed, or stretched along the time axis relative to the other. However, such an algorithm is not 

suitable for this implementation of the generator. The resulting time series may differ in dynamics 

and trend direction, even if they are based on the same model. Thus, quality assessment is carried 

out using visual comparison. 

5.2 Results 

In Fig. 2, a plot of the time series returned by the generator is presented on the left, and the location 

of the points on the sphere that generated the time series is shown on the right. Points belonging to 

the same cluster, along with their corresponding time series, are marked with the same color. 

The time series generated by the same schedule (cluster) are distinguishable, i.e., they have similar 

dispersion and common segments where the characteristics of the processes and the stochastic 

processes themselves change. The closer the points within the cluster, the closer their initial values 

and the generated time series: this is reflected in the plots where three time series from the same 

cluster are presented – two series are similar, and the third differs from the pair but still preserves a 

common behavioral model. 

Different objects generate time series from their own clusters, so their behavior is weakly correlated. 

Nevertheless, the similarity of time series considering the coordinates of points varies with each 
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generation. In some datasets, similar time series appear regardless of the proximity of their parent 

objects. Thus, the generation method has shown promise, but further testing is required. 

One of the proposed applications of the generation method is to mock the real data and use artificial 

data to pretrain models for time series forecasting, i.e. data augmentation. The technique is currently 

being used for experiments with existing datasets with spatiotemporal correlations in data, such as 

PEMS-BAY [24] and others (see section 1). We create custom complex processes to mock the origin 

data better, then train the time-series forecast models on the synthetic data. We expect that after fine-

tuning on the origin data models will outperform their basic versions which were not trained on the 

synthetic data. An example of a custom process is shown in Appendix B. 

 
Fig. 2. Results of the time series generator. 

Conclusion and Future work 

Within the scope of this work, an approach to generating time series with spatial dependencies was 

presented. The following results have been achieved. 

1) A review of existing methods and software implementations of time series generators based 

on autoregressive processes was conducted: GRATIS, Correlated synthetic time series 

generation, timeseries-generator, mockseries. 

2) A method for generating time series was developed, including: 
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a) a set of stochastic processes generating time series; 

b) a method for constructing complex models for time series generation; 

c) a method for generating and clustering points on a sphere; 

d) a method for generating time series parameters depending on input data. 

3) The method was implemented in software. 

4) The generator’s performance has been tested. 

In the further development of the method, the following tasks are set: to implement various methods 

for sampling points on arbitrary surfaces, to implement functions for constructing a graph of 

relationships between objects and approximating geodesic distances on surfaces, to describe 

abstractions for changing process parameters, and to conduct testing of new functions of the time 

series generator. 
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Appendix 

A. Overall Generation Scheme 

This scheme demonstrates the class architecture of the time series generator implementation in 

Python. 
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B. Сustom process 

This graph demonstrates a custom process that mocks origin data from PEMS-BAY dataset. All of 

the origin time series are colored in green. 
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