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Abstract. Addressing software defects is an ongoing challenge in software development, and effectively 
managing and resolving defects is vital for ensuring software reliability, which is in turn a crucial quality 

attribute of any software system. Software defect prediction supported by Machine Learning (ML) methods 

offers a promising approach to address the problem of software defects. However, one common challenge in 

ML-based software defect prediction is the issue of data imbalance. In this paper, we present an empirical study 
aimed at assessing the impact of various class balancing methods on the issue of class imbalance in software 

defect prediction. We conducted a set of experiments that involved nine distinct class balancing methods across 

seven different classifiers. We used datasets from the PROMISE repository, provided by the NASA software 

project. We also employed various metrics including AUC, Accuracy, Precision, Recall, and the F1 measure to 
gauge the effectiveness of the different class balancing methods. Furthermore, we applied hypothesis testing to 

determine any significant differences in metric results between datasets with balanced and unbalanced classes. 

Based on our findings, we conclude that balancing the classes in software defect prediction yields significant 

improvements in overall performance. Therefore, we strongly advocate for the inclusion of class balancing as 
a pre-processing step in this domain. 
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Аннотация. Постоянной проблемой в разработке программного обеспечения является устранение 

дефектов в этом обеспечении. И эффективное управление и устранение дефектов имеют жизненно 

важное значение для обеспечения надежности программного обеспечения, что, в свою очередь, 
является важнейшим атрибутом качества любой системы программного обеспечения. Прогнозирование 

программных дефектов, поддерживаемое методами машинного обучения (ML) – это многообещающий 

подход к решению проблемы программных дефектов. Тем не менее, одной из общих проблем в 

прогнозировании дефектов программного обеспечения на основе ML является проблема дисбаланса 
данных. В этой статье мы представляем эмпирическое исследование, направленное на оценку влияния 

различных методов балансировки классов на проблему дисбаланса классов в прогнозировании 

дефектов программного обеспечения. Мы провели ряд экспериментов, которые включали девять 

различных методов балансировки классов по семи различным классификаторам. Мы использовали 
наборы данных из репозитория PROMISE, предоставленные программным проектом NASA. Мы также 

использовали различные метрики, включая AUC, точность, полнота, отзыв и меру F1, чтобы оценить 

эффективность методов балансировки различных классов. Кроме того, мы применили проверку 

гипотез, чтобы определить любые существенные различия в метрических результатах между наборами 
данных со сбалансированными и несбалансированными классами. Основываясь на наших выводах, мы 

пришли к выводу, что балансировка классов в прогнозировании дефектов программного обеспечения 

дает значительное улучшение общей производительности. Поэтому мы решительно выступаем за 
включение балансировки классов в качестве этапа предварительной обработки в этой области. 

Ключевые слова: прогнозирование дефектов программного обеспечения; статистический анализ; 

несбалансированный класс; репозиторий PROMISE; наборы данных; метрики; избыточная выборка; 
недостаточная выборка. 
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1. Introduction 

This paper is an extension of work originally presented in 2023 11th International Conference in 

Software Engineering Research and Innovation (CONISOFT) [1]. The original work addressed a 

systematic literature review on class balancing methods in software defect prediction data sets. 

Software Engineering is a discipline that aims to develop and deliver quality software products, 

through the execution of quality processes. Quality can be defined as “the degree to which a 

component, system or process satisfies the specified requirements and/or the needs and expectations 

of the user/customer” [2]. 

One of the most important attributes to satisfy customer requirements is reliability, which is defined 

as “the probability of failure- free operation in a specific environment during a given period of time” 

[3]. System defects, which are imperfections or deficiencies in a system or component that could 

prevent it from carrying out its intended purpose, can have an impact on this reliability [4].  
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This is important because “quality is inversely proportional to the number of defects found in a 

system” [5], including an impact on software reliability. 

An area of software engineering that is gaining importance due to the need to increase the reliability 

of a software system is the well-known software defect prediction (SDP). This area aims to predict 

the presence of defects in the software during or after its development. To make these predictions, 

it is necessary to have historical data that allows generating prediction models based on some metrics 

taken from software projects. 

One of the most used historical data repositories for defect prediction is the PROMISE Software 

Engineering repository [6], which consists of several datasets for different purposes, such as effort 

or defect prediction. 

The main data sets for SDP in PROMISE repository are provided by NASA software projects, which 

are: 

1) CM1, which is a NASA spacecraft instrument written in the C programming language. 

2) JM1 is written in the C programming language, and it is from a real-time predictive ground 

system. 

3) KC1 written in C++ programming language, is a system implementing storage management 

for receiving and processing ground data. 

4) KC2 data are from C++ functions as part of the same project of KC1. 

5) PC1 data from C functions for a flight software for earth orbiting satellite. 

These five datasets include data obtained from McCabe [7] and Halstead [8] static code metrics. 

These data sets contain a class label that states whether the record is defect-prone or not, making it 

a classification problem. 

However, as Table 1 shows, the number of records of each class (yes or no) is unbalanced, which 

impacts the precision of prediction models, since models bias toward the most common value, 

causing prediction errors, which can impact software engineering practitioners. 

Table 1. Distribution of classes by data set. 

Data set Instances Class Yes Class No 

CM1 498 49 (9.83 %) 449 (90.16%) 

JM1 10,885 8,779 (80.65%) 2,106 (19.35%) 

KC1 2,109 326 (15.45%) 1,783 (84.54%) 

KC2 522 105 (20.5%) 415 (79.5%) 

PC1 1,1109 1,032 (94.05%) 77 (6.94%) 

It is important to highlight that class unbalance is a prevalent challenge in software defect prediction. 

The five datasets discussed in this paper serve as illustrative examples to emphasize the prominence 

of this issue. 

When a data set is unbalanced, machine learning (ML) algorithms will more frequently predict 

values from the majority class to increase the value of predictions with the training data. This also 

implies that learning models could not generalize new data that is not part of the training data. In 

conclusion, these datasets serve as valuable reference points for researchers aiming to enhance 

classifiers for SDP, as well as for software engineers who seek optimal classifier options for this 
task. Nevertheless, it is crucial to recognize that the accuracy of these classifiers may be affected by 

bias arising from the number of examples in the majority class. 

As stated, and demonstrated in [9], there is no ML algorithm that has the best performance for all 
data sets. Therefore, given the class unbalance nature of SDP, we propose to carry out an empirical 

and statistical study, applying different algorithms and approaches for class balancing to the data 

sets of SDP, with the aim of establishing which approaches can be used by software engineers to 

obtain better predictions of software defects, and consequently, deliver reliable and quality products. 
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Due to what was mentioned above and what is described in section 2 (Related work), our main 

contributions in this work are: 

 Unlike similar studies, we experimented with three class balancing approaches: 

oversampling, undersampling, and a combination of them. 

 We tested the class balancing algorithms with eight classification algorithms from different 

approaches such as decision trees, K-nearest neighbor, Bayesian approaches, neural 

networks and ensemble classifiers (both boosting and bagging). 

 We provide details for our experiments, such as the versions of the classification 

algorithms, type of implementation and parameters used, so that the results can be 
replicated. 

 The data sets used are public, unlike studies where their own data sets are used. 

 Our results not only report the approach that showed the best performance during the 

experiments, but the results are statistically validated to know if in the prediction results, 

there is a significant difference in performance when balancing the data sets. 

This paper is structured as follows: Section 2 mentions related work. Section 3 presents the 

background of class balancing algorithms. Section 4 describes the characteristics of the 

experimentation and evaluation. Section 5 analyzes the results obtained. Section 6 identifies some 

validity threats of this study. Finally, section 7 draws conclusions and presents future work. 

2. Related work 

In our literature review reported in the last 6 years (until 2024), 40 studies were found that 
implemented proposals to balance classes in data sets of software defect prediction, of which 60% 

used Oversampling techniques, 18% Undersampling, 15% Oversamplig + Undersampling, and 8% 

Ensemble approaches. Table 2 shows the studies grouped by their balancing approach. 

Table 2. Distribution of studies according to the balancing class approach. 

Approach Studies 

Oversampling 
[10], [11], [12], [13], [14], [15], [16], [17], [18], 

[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], 

[29], [30], [31], [32], [33], [34], [35], [36], [37], [38] 
Undersampling [39], [40], [41], [11], [17], [18], [20], [34], [36], [37] 
Combination (oversampling + undersampling) [42], [43], [44], [45], [46], [47] 
Ensemble [48], [49], [50] 

Of the 40 studies identified, only three of them [34-36] carry out an experiment like our proposal. 

Pandey and Tripathi in [34] presented an empirical study in which the influence, in terms of F-score 

and Mathews Correlation Coefficient (MCC), of four sampling techniques (Class Balancer, 

Resample technique, Synthetic minority oversampling technique (SMOTE), and Spread subsample) 

were evaluated in twelve different classifiers: Naïve Bayes (NB), Logistic Regression (LR), 

Multilayer Perceptron (MLP), Instance-based learning (IBK), AdaBoost, Bagging (Bagg), Logistic 

Boost (LB), Repeated incremental pruning to produce error reduction (RIPPER), Decision Tree 

(J48), and Random Forest (RF). The authors considered 22 datasets in the Software Defect 

Prediction domain in their experiments. In their findings, the authors highlighted that MCC is the 

most helpful performance metric for the imbalance dataset; the Resample technique gave the best 

results in most ML techniques. Finally, the authors leave open the investigation regarding the 

relationship between the classifier and the sampling methods. 

On the other hand, Zhang et al. in [35] measured the effect of using four Oversampling techniques 

for class balancing in just-in-time SDP: i) Random Oversampling, ii) SMOTE, iii) Borderline-

SMOTE, and iv) ADASYN. The authors proposed the OSNECL method, which combines 
Oversampling techniques with ensemble classification methods, such as Bagging, AdaBoost, 

Random Forest, and GBDT. In their experiments, six opensource projects written in C++ and Java 
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(Bugzilla, Columba, Eclipse JDT, Mozilla, Eclipse Platform, and Postgres) were used, from which 

16 characteristics related to the defects were extracted with the SZZ algorithm. As a result of the 

experiments, it was found that the combination of Random Forest and Random Oversampling 

provided the best results. 

However, the authors left it open to continue researching class balancing with Deep Ensemble 

learning methods to explore new ways to improve the balancing problem. 

Finally, Yang et al. [36] conducted a study that evaluated the impact of sampling, Random 

Under/Oversampling, SMOTE, and OSS techniques for the class balancing problem on Deep 

learning-based vulnerability detection (DLVD). The DLVD techniques used in their experiments 

were Deving, Reveal, IVDetect, and LineVul. Additionally, they selected three benchmark datasets, 

with which different findings could be obtained, such as Oversampling outperforms Undersampling 

approaches, sampling on raw data outperforms sampling on feature space; generally, Random 

Oversampling on raw data performing the best among all studied sampling methods, including 

SMOTE and OSS. 

Table 3 compares the sampling techniques analyzed in the studies where we identify them as similar 

to our experimentation, where it can be seen that the comparison was carried out with a maximum 

of four class balancing algorithms, none of them is a combination of oversampling and 

undersampling. Our study proposes the comparison of nine class balancing algorithms, including a 

combination of oversampling and undersampling. 

Table 3. Sampling techniques analyzed in related works. 

Sampling Method [34] [35] [36] 

Random undersampling   

Random Oversampling   

SMOTE   

OSS   

Class balancer    

Resample    

Spread subsample    

Borderline – SMOTE    

ADASYN    

Table 4 presents the learning techniques with which the techniques were combined. In the case of 

the study [36], they used specific deep- learning techniques to detect vulnerabilities, which is not 

directly related to SDP. We also include different classification approaches and algorithms. 

Table 4. Learning methods studied in related works. 

Learning classifier [34] [35] [36] 

Naïve Bayes (NB)    

Multiplayer perceptron (MLP)    

K-Nearest Neighbor (KNN)    

Decision Tree (DT)    

AdaBoost (AB)    

Bagging    

Logistic Boost (LB)    

RIPPER    

Random Forest (RF)    

Gradient Boosting (GB)    

Deep learning approaches   
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3. Class balancing methods 

We examined nine representative methods to address class imbalance in our experiments. These 

methods can be classified into three categories as it is shown in Fig. 1: oversampling, undersampling, 

and combined. Below, we provide an explanation of each method. 

 
Fig. 1. Balancing class approaches chosen for experimentation. 

3.1 Oversampling 

Fig. 2 shows the strategy of class balancing by oversampling, where it consists of artificially 

increasing the number of samples of the minority class to balance the class distribution. 

Three algorithms based on this approach are presented below. 

1) Random over sampling: Also known as Random Over Sampling Examples (ROSE) [51], 

this simple method involves randomly selecting examples from the minority class or classes 

and repeating them with replacement. This process creates a new dataset that is balanced 

by increasing the representation of the minority class. 

2) SMOTE [52], an acronym for Synthetic Minority Oversampling Technique, is a widely 

used oversampling method designed to address class imbalance. It involves the creation of 

synthetic data points in the feature space for the minority class. To over sample the minority 

class, SMOTE takes each minority class sample and generates synthetic examples along 

the line segments that connect the sample to its k-nearest neighbors from the same class. 

The value of k determines the number of nearest neighbors considered. The amount of 

oversampling required can be adjusted, and random selection is used to choose neighbors 

from the k-nearest neighbors. 

3) ADASYN [53], short for Adaptive Synthetic Sampling Approach for Imbalanced Learning, 

is an oversampling technique specifically designed to address class imbalance. It involves 

the creation of synthetic data points for the minority class. The fundamental concept behind 

ADASYN is to use a weighted distribution to generate synthetic data based on the level of 

difficulty of learning for each minority class example. The algorithm identifies minority 

class examples that are harder to learn and generates a higher number of synthetic data 

points for them compared to examples that are easier to learn. ADASYN employs a density 

distribution based on the k-nearest neighbors of each minority class example to determine 

the number of synthetic samples to be generated. 
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3.2 Undersampling 

Undersampling is another technique used to address class imbalance in data sets, where unlike 

oversampling, in this approach the number of samples of the majority class is reduced to equalize 

the class distribution with the minority class as can be seen in Fig. 3. 

 
Fig. 2. Oversampling strategy. 

Below, four selected undersampling methods are described. 

1) Random undersampling is a technique used to reduce the number of majority class 

examples in a dataset. It is similar to random oversampling, but with the opposite objective. 

Random undersampling (RUS) [54] randomly selects examples from the majority class, 

either with or without replacement. The number of examples selected in random 

undersampling depends on the desired balancing goal. In a fully balanced dataset, the 

number of selected examples would equal the number of examples from the minority class. 

2) NearMiss is an undersampling technique originally introduced in [55]. This method aims 

to balance class distribution by selecting a subset of majority class examples that are closest 

to the minority class examples based on their k-nearest neighbors. The NearMiss method 
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consists of three variants: NearMiss-1, NearMiss-2, and NearMiss-3. 

• NearMiss-1: this variant focuses on selecting majority class examples that are closest 

to some of the minority class examples. It identifies majority class examples with the 

smallest average distance to their k-nearest minority class examples. The objective is 

to remove majority class examples that are farthest from the minority class. 

 

Fig. 3. Undersampling strategy. 

• NearMiss-2: this variant selects majority class examples that are closest to all 

minority class examples. It chooses examples based on their average distances to the 

k farthest minority class examples. 

• NearMiss-3: selects a specific number of closest majority class examples for each 

minority class example. The intention is to ensure that each minority class example 

is surrounded by some majority class examples. 

3) ENN (Edited Nearest Neighbors), proposed by [56], is an undersampling method for 
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addressing class imbalance. The ENN algorithm operates by examining the k-nearest 

neighbors of each example in the dataset. If a majority class example is misclassified, it is 

removed from the dataset. On the other hand, if a minority class example is misclassified, 

its k neighbors belonging to the majority class are removed. The k value proposed in the 

original work is 3. It is important to note that ENN is primarily designed to remove noisy 

and ambiguous examples, rather than achieving perfect class balance. 

4) AllKNN (All K-Nearest Neighbors), proposed in a study by [57], is an iterative 

undersampling method that extends the concept of ENN. Rather than using a fixed value of 
k, AllKNN repeatedly applies ENN with increasing values of k starting from 1. This 

iterative process continues until a maximum value of k is reached or until the minority class 

becomes the majority class. The use of progressively larger k values allows AllKNN to 

capture more information from the nearest neighbors and potentially achieve better 

imbalance reduction. 

3.3 Combination 

Finally, by combining oversampling and undersampling techniques, the strengths of each approach 

can be leveraged for better classification results. Two algorithms that combine the two previous 

approaches are described below. 

1) SMOTEEN (SMOTE Edited Nearest Neighbors), proposed by [58], is a method that 

leverages both oversampling and undersampling techniques to address class imbalance. 

The SMOTEEN algorithm combines the synthetic minority oversampling technique 

(SMOTE) with the edited nearest neighbors (ENN) undersampling. It follows a two-step 
process to rebalance the dataset. First, SMOTE is applied to the minority class to generate 

synthetic instances, thereby increasing its representation. Next, ENN is employed to 

remove potentially noisy or mislabeled instances from both the minority and majority 

classes. The SMOTEEN process may be repeated until achieving a balanced dataset or 

reaching a stopping criterion. 

2) SMOTETomek [59] is a combination of oversampling technique SMOTE, and 

undersampling technique Tomek Links [60]. SMOTETomek consists of two main steps. In 

the first step, SMOTE is applied to the minority class, oversampling with synthetic data 

and balancing the dataset. The second step of SMOTETomek utilizes Tomek Links. Tomek 

Links identify specific pairs of instances, one from the majority class and one from the 

minority class, that are nearest neighbors to each other. These pairs are ambiguous or 

potentially noisy instances, and thus are removed from the date set, undersampling at the 

same time examples from both classes. 

4. Experimental design 

Fig. 4 shows the steps followed for the experiments in this study. For our experiments, the only 

preprocessing performed was checking for missing values. In all five data sets, only JM1 included 

5 records with at least one missing value. These records were removed. 

After data preprocessing, the class balancing algorithms mentioned in Section 3 will be applied to 

each of the five data sets. 

Subsequently, each classification learning algorithm described in section 4.1 will be tested on each 

data set (with and without class balancing). 

The models are evaluated through a k-fold cross validation process in which the data set is divided 
into k sets (one subset is used for testing and the other k-1 subsets are used as training). This process 

is executed k times, such that each record is part of both a test and training set. 
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The metrics described in section 4.2 are applied to the models to evaluate the predictions. Finally, a 

statistical analysis is performed for each metric applied to each model developed by each 

classification algorithm and to each data set obtained with and without class balancing. 

Finally, the results are statistically analyzed to empirically verify whether the results with the class 

balancing methods studied are significantly better. 

 
Fig. 4. Experimental design steps to validate models with balanced data sets. 
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4.1 Classification learning algorithms 

As demonstrated in [9], there is no ML algorithm that performs better than the others for any data 

set. Therefore, we selected a variety of classification learning algorithms for experimentation, and 

they are described below, including their characteristics, advantages and disadvantages that could 

influence in the prediction results. 

We chose several classification approaches, such as based on decision trees, class similarity (k-

nearest neighbor), ensemble algorithms for both bagging and boosting, based on Bayesian 

approaches and finally on neural networks approach. 

Decision Trees are a popular supervised learning method used for both classification and regression 

tasks [61]. They build a tree structure consisting of rules based on the input features, which guide 

the evaluation of new examples. This hierarchical representation enables visualizing the resulting 

model. Hence, Decision Trees employ a white model approach. Decision Trees have several 

advantages. Firstly, they require minimal data preparation, and they can handle both numeric and 

nominal data. Secondly, they are nonparametric, meaning they make no assumptions about the 

underlying data distribution. However, Decision Trees are prone to overfitting, to address this, 

pruning methods can be employed to simplify the tree and prevent overfitting. It is also important 

to note that Decision Trees can be affected by class imbalance [62]. 

K-Nearest Neighbors (KNN) [63] is a nonparametric and supervised method for classifying data 

instances. It utilizes a similarity metric, such as Euclidean distance, to identify the most similar 

examples and establish the concept of neighbors. By setting a parameter K, the algorithm determines 

the K-nearest neighbors. When classifying a new instance, a policy needs to be defined. A popular 

policy is majority vote, where the predicted class is the most common class among the K-nearest 

neighbors. It is important to note that the classifier’s performance is sensitive to the choice of K. 

The KNN classifier may encounter limitations when dealing with large datasets. Additionally, it is 

important to consider feature scaling to ensure accurate results. 

Random Forests [64] is an ensemble technique used for classification tasks. As an ensemble 

technique, it combines multiple classification models, specifically trees. Each tree is built from 

different random subsets of the dataset, allowing for improved generalization and robustness. One 

of the key features of Random Forests is the option to use a random sample of features when 
selecting the best splitting point in each tree. This further enhances the diversity and reduces 

correlation among the individual trees. During classification of a new example, each tree in the forest 

independently classifies the instance. Then, a decision policy, such as majority vote or averaging the 

predicted probabilities from each tree, is applied to determine the final class for the new instance. 

Random Forests are well-suited for handling large datasets with a high number of examples and 

features. They are also robust against data noise and overfitting. 

AdaBoost [65] (Adaptive Boosting) is an iterative ensemble classification method that combines 

multiple weak classifiers to create a robust classifier. It utilizes a weighting strategy, where initially 

every example in the training set has equal weight. As the iterations progress, the weights of the 

examples are adjusted based on the classification performance of the classifiers. Additionally, 

AdaBoost assigns weights to each classifier based on their performance, with higher weights given 

to classifiers with better accuracy. During classification of a new instance, AdaBoost applies a 

weighted majority vote among the classifiers to determine the final class label. 

Gradient Boosting [66] is an ensemble method used for both classification and regression tasks. It 

combines multiple weak models to create a stronger model. Gradient Boosting relies on Gradient 

optimization to iteratively build the ensemble by fitting weak models to the residuals. This process 

aims to correct errors in the current ensemble for Gradient optimization, residuals representing the 

gradients of the loss function are calculated with respect to the predicted probabilities. The 

subsequent weak model is then trained on these residuals to further improve the ensemble’s 

performance. Additionally, each model in the ensemble is assigned a weight to assess its 

contribution. These weights consider the model’s performance and are used to guide the ensemble 
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towards more accurate predictions. During the classification of a new example, a weighted vote 

policy is applied. 

Naive Bayes: Naive Bayes is a supervised and probabilistic method used for classification tasks 

based on Bayes theorem [67]. It is a type of Bayesian Network method that operates under the 

assumption of feature independence. This strong hypothesis assumes that each feature in the data 

set is independent of each other given the class label. This assumption simplifies the model and 

allows for fast training as only the conditional probabilities need to be computed, while the Bayesian 

structure is predetermined. 

To classify a new instance, Naive Bayes computes the conditional probabilities based on the 

Bayesian network parameters. It selects the class that maximizes the probability as the predicted 

class label. Naive Bayes is well-known for its simplicity, yet it has the potential to achieve good 

predictive performance in various problem domains. 

A Multi-Layer Perceptron (MLP) [68] is an artificial neural network commonly used for 

classification and regression tasks. It enhances the single neuron perceptron by incorporating 

multiple layers of interconnected artificial neurons. The MLP model consists of an input layer for 

receiving data features, one or more hidden layers responsible for transforming input signals and 

adjusting connection weights between neurons, and an output layer that generates the final 

predictions. To optimize the MLP model, the log-loss function is typically used along with various 
optimization algorithms such as LBFGS (Limited-memory Broyden- Fletcher-Goldfarb-Shanno) or 

stochastic Gradient descent. These optimization algorithms aim to search for the optimal set of 

weights that minimize the loss function, allowing the model to make accurate predictions. 

4.2 Evaluation models metrics 

There are different metrics to evaluate the accuracy of a model. This is because each metric provides 

a different perspective on the performance of each algorithm and in some cases avoids biases due to 

majority classes. The metrics used to evaluate the algorithms used for this study are described below. 

AUC is obtained directly from the ROC (Receiver Operating Characteristic) curve, which is a 

graphical representation of the true positive rate (sensitivity) versus the false positive rate (1 - 

specificity) for different classification threshold values. 

The following metrics are estimated from the confusion matrix, where the true positives (TP), true 

negatives (TN), false positives (FP) and false negatives (FN) are placed: 

𝑇𝑃 + 𝑇𝑁 
𝐴𝐶𝐶 = 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
(1) 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃 + 𝐹𝑃 

 
(2) 

𝑇𝑃 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 + 𝐹𝑁 

 
(3) 

2 ∗ 𝑇𝑃 
𝐹1 = 

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 
(4) 

Accuracy is the proportion of modules correctly classified as defective and non- defective. It is 

calculated by (1). 

Precision is the proportion of TP cases. In the SDP, it is the number of defective modules that were 

found correctly, and it is calculated by (2). 

Recall measures the proportion of TP that there should be and is calculated using (3). 
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Finally, F1-measure is used when there is an unbalanced data set and combines the benefits of 

precision and recall as shown in (4). 

4.3 Classifiers parameters 

The implementations of algorithms were carried out in the Python language with the skit- learn 1.4.2 

library. Table 5 shows the parameters of the classifiers used for out experiments. In the algorithms 

that shared some parameter, such as balancing the number of estimators, it was the same for all. The 

Random state parameter indicates the seed that was the same for all classification algorithms. 

5. Results analysis 

The average results obtained by the k-fold cross-validation process with k = 10 by each metric were 

analyzed, both for the data sets without applying any class balancing method and the application of 

each method described in section 3. 

Table 5. Parameters used for each classifier. 

Classifier algorithm Parameters 
Decision tree Criterion: Gini 

Max Depth: None 

Max leaf nodes: None 

Min impurity decrease: 0.0 

Class weight: None 

Random state: 42 
K-NN N neighbors: 3 

Metric: Euclidean distance 
Random Forest N estimators: 50 

Criterion: Gini 

Max Depth: None 

Max leaf nodes: None 

Min impurity decrease: 0.0 

Class weight: None 

Random state: 42 
Ada boost N estimators: 50 

Algorithm: SAMME.R 

Learning rate: 1.0 

Random state: 42 
Gradient Boosting N estimators: 50 

Loss: log loss 

Learning rate: 1.0 

Criterion: Friedman mse 

Max depth: 3 

Min impurity decrease: 0.0 
Naive Bayes Distribution: Gaussian 
Multilayer perceptron Hidden layer: 5 

Random state: 42 

Alpha: 0.0005 

5.1 Balancing class approaches results 

The results show that applying a class balancing method increases the prediction accuracy of 

different classifiers with different subsets of data through cross-validation, contributes to the 

increase of reliability in predictions. 

With respect to the CM1 data set, performing a random undersampling class balancing procedure 

worsens the results, while with ALKNN practically the same results are obtained. 

For the JM1 data set, all the balancing methods outperform the results without applying any class 

balancing method except with random undersampling, which obtains very similar results. 
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Regarding the KC1 data set, most class balancing algorithms outperform the average predictions of 

using an unbalanced data set. However, using undersampling in the assembled algorithms 

(AdaBoost and Gradient boosting) results in lower precision values. 

All class balancing algorithms outperform the prediction values using the raw KC2 data set. 

Finally, the results of the PC1 data set show that the ENN and ALLKNN undersampling algorithms 

have the worst performance, almost equal to not using a class balancing method. 

5.2 Classifiers results 

The results show that the classifiers that had the best results in the selected model evaluation metrics 

are the ensemble classifiers, that is, random forest, AdaBoost and Gradient boosting. The classifier 

that showed the worst results was the multilayer perceptron. With these results, software engineering 

practitioners can opt for ensemble classifiers, as it is shown that it is advisable to invest in the 

processing of several weak classifiers to obtain better prediction accuracy. 

5.3 Metrics results 

The results of the AUC, accuracy, precision, recall and F1 metrics are similar when the values of 

the classes of the data sets are balanced. It is quantitatively verified that when the data sets are not 

balanced, the recall, F1 and precision metrics tend to be lower than accuracy. This is because 

classifiers tend to predict the majority class, and by performing an evaluation on all the predictions, 

there is a greater probability that the majority class matches the predicted value. For this reason, it 

is better to have an overview of different metrics that evaluate accuracy rates differently. 

5.4 Statistical Analysis 

The metric values are not sufficient to establish a statistically significant improvement in the 

predictions. Therefore, a suitable statistical test was applied to compare the accuracies among the 

class balancing models [69]. 

First, 2, Shapiro-Wilk, skewness and kurtosis normality tests for each set of predictions (ten for 

each metric that were obtained from the cross-validation process) to check if the normality 

assumption was met were applied. 

For each metric and for each data set (set of all classifiers) it was checked if at least some test was 

not significant at 95%, then a normal distribution was not considered. If all values of each metric 

had a normal distribution, an ANOVA test was performed, if at least one set did not meet the 

normality assumption, then Friedman non-parametric test was applied to determine whether at least 

one algorithm generated significantly different results from the others. The results of the statistical 

tests can be observed in [70], where it is concluded that in all groups by data set and by class 

balancing algorithm, there was at least one value statistically different from the rest of them. 

Finally, to know if the statistically significant differences were the results related to the data sets 

without applying any class balancing algorithm, the values of the metrics of each balancing 

algorithm were compared with the values of not applying a class balancing. To do this, the four 

normality statistical tests were performed for each set of prediction metrics. If any of their four p-

values were lower than 0.05, then data were non-normally distributed at 95% confidence, and a 

Wilcoxon test was applied (the medians of the models should be compared); otherwise, a t-paired 

test was performed (the means of models were compared) [71]. The results of these tests can be 

consulted in [72]. 

In [72] is shown that the class balancing algorithms for each metric, where the results of the 

predictions were statistically different from the predictions of the same data set without using any 

class balancing algorithm at 95% confidence. 
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These results show that despite different class balancing algorithms and approaches, Naive Bayes 

and MLP do not generate significantly better predictions. However, using the other classifiers with 

any metric generally makes a significant difference in the predictions. 

6. Validity threats 

There are four categories of validity threats in search-based predictive modeling for Software 

Engineering: conclusion, internal, external and construct [73] of which, we identify the following: 

Construct: We remove five records that have null values for the JM1 data set. 

Construct: We are not involved in the acquisition of data to avoid bias due to human error. 

Internal: Data is based on static code metrics only. 

Internal: We did not include any processing to deal with outliers, as we wanted to evaluate them 

with real data from the PROMISE repository systems. 

7. Conclusions and future work 

The present study experiments with different approaches to mitigate the class balancing problem in 

SDP. These approaches are obtained from a literature review, of which three oversampling 

algorithms, four undersampling algorithms and two from the combination of the mentioned 

approaches were selected. The data sets used were those from the well-known public repository 

PROMISE, to obtain predictions with the data used in software industry. 

To not bias the results with a particular classifier, seven classification algorithms (based on different 
approaches) were tested. Also, different metrics such as AUC, precision, accuracy, recall and F1 

were evaluated to measure the performance of the algorithms with and without class balancing 

through a cross- validation process. Finally, the results are statistically evaluated to conclude if there 

really is a significant improvement when balancing the data sets. 

With respect to the class balancing methods, we conclude that: 

 Balancing the classes significantly improves prediction performance since learning is not 

biased by the majority class. 

 The oversampling and combination methods have better performance than the algorithms 

based on undersampling. 

With respect to the classification algorithms, we conclude that: 

 The algorithms that obtained the best results were the assembled classifiers (both boosting 

and bagging), which base the predicted class value on the results of several weak classifiers. 

Therefore, if software engineering practitioners require greater precision, it is important to 

invest resources in these types of methods. 

 The multilayer perceptron and Naïve Bayes algorithms are the classifier that yielded the 

worst results. 

In terms of evaluation metrics, we conclude that: 

 When the data sets are unbalanced, the metrics show very variable results. 

 When the data sets are balanced, the results of the metrics are more homogeneous. 

Finally, it is concluded that to improve the reliability of a software product, it is necessary to have 
good precision in predictions. Therefore, when the historical data to make predictions of software 

defects is unbalanced, it is suggested to first apply an oversampling mechanism and then use an 

ensemble classifier that strengthens the predictions, regardless of the set used for training and testing. 

As future work we propose the following: 

Repeat the experimentation with other classifiers including deep learning, since we only chose some 

representative ones of each approach. 
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As could be seen in Table 5, the classification algorithms need to adjust parameters, so it is proposed 

to implement some optimization algorithm that allows knowing the best parameters for each 

classification algorithm. 

It is also proposed to carry out this analysis by programming language [74], since the development 

language could influence the introduction of defects and the quality of the software [75]. 

Finally, continue with experimentation on other data sets, which allows exploring the performance 

of class balancing algorithms in more dept. 
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