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Abstract. Addressing software defects is an ongoing challenge in software development, and effectively
managing and resolving defects is vital for ensuring software reliability, which is in turn a crucial quality
attribute of any software system. Software defect prediction supported by Machine Learning (ML) methods
offers a promising approach to address the problem of software defects. However, one common challenge in
ML-based software defect prediction is the issue of data imbalance. In this paper, we present an empirical study
aimed at assessing the impact of various class balancing methods on the issue of class imbalance in software
defect prediction. We conducted a set of experiments that involved nine distinct class balancing methods across
seven different classifiers. We used datasets from the PROMISE repository, provided by the NASA software
project. We also employed various metrics including AUC, Accuracy, Precision, Recall, and the F1 measure to
gauge the effectiveness of the different class balancing methods. Furthermore, we applied hypothesis testing to
determine any significant differences in metric results between datasets with balanced and unbalanced classes.
Based on our findings, we conclude that balancing the classes in software defect prediction yields significant
improvements in overall performance. Therefore, we strongly advocate for the inclusion of class balancing as
a pre-processing step in this domain.
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Annoramus. IToctosHHOM mpoGneMoil B pa3paboTKe MPOTPAMMHOTO OOECIICUeHHUs SIBISIETCSI yCTpaHEHHE
nedexToB B 3TOM obecrieuenun. U addexTrBHOE ynpaBieHue W ycTpaHeHHe Ne(pEKTOB UMEIOT )KU3HEHHO
BA)XHOE 3HA4YCHWE Il OOecHedeHHs] HaJeKHOCTH IPOrpaMMHOTO oOecHedeHHs, YTO, B CBOIO OdYepelb,
SIBIIIETCS BXKHEHIIIMM aTpHOyTOM KadecTBa JI0OOH CHCTEMBI IpOrpaMMHOTro obecriedenwst. [Iporno3upoBanue
HPOrpaMMHBIX Ie(eKTOB, 10 IEPKUBAEMOE METOIaMU MAlIMHHOTO 00ydenus (ML) — 310 MHOrOOGCmAO I
HOAXOA K PElIeHHIO NPOoOJeMBl NporpaMMHEIX AedekroB. Tem He MeHee, OfHOH M3 o0muX mpobieM B
NPOTHO3UPOBaHUK J1e(eKTOB MPOrpaMMHOro obecreuenust Ha ocHoBe ML sBiseTcst mpobGiiema qucbOananca
JaHHBIX. B 3TOI cTaThe MBI IPEACTaBIAIEM IMITUPUIECKOE UCCIEA0BAHNE, HAMIPABICHHOE HA OIIEHKY BIUSIHUA
pa3IMYHBIX METOJIOB 0aJaHCHPOBKM KIACCOB Ha mpoOieMy ucOanaHca KJIacCOB B IIPOTHO3HMPOBAHHUH
ne(eKTOB MPOrpaMMHOTO oOecredeHus. Mbl NPOBENH PAI 3KCICPHMEHTOB, KOTOPbIE BKIIOYAIN JEBATH
Pa3IMYHBIX METONOB OATAHCHPOBKM KJIACCOB MO CEMH Pa3JIMYHBIM KiaccH(pHUKaTopaM. MBI HCIOIB30BAIN
Habopbl KaHHBIX U3 penosutopusi PROMISE, npenocrasnennsie nporpaMMHbIM poekToM NASA. Mbl Takoxke
HCTIONIb30BAIN Pa3IMuHble MeTpUKH, BKIo9as AUC, TOUHOCTh, TOJHOTA, OT3bIB U Mepy F1, 4TOOBI OLIeHUTD
3¢ PEeKTUBHOCTE METOJOB OAJAHCHPOBKU Pa3JIMYHBIX KiaccoB. Kpome TOro, Mbl NpPUMEHWIN IPOBEPKY
THIOTE3, YTOOBI OIPEAEINTH JIF00BIE CYIIECTBEHHBIEC A3l B METPHIECKUX Pe3yJIbTaTax Mexay Habopamu
JAHHBIX cO cOAAHCHPOBAHHBIMH U HecOaIaHCUPOBAHHBIMH KiaccaMi. OCHOBBIBASsICh Ha HAIINX BBIBOAAX, MBI
NPUILUIM K BEIBOAY, YTO OalaHCHPOBKA KJIACCOB B MPOTHO3UPOBAHUH () EKTOB IPOrPaMMHOTO o0ecnedeHnst
JaeT 3HAUYMTENbHOE YJydIIeHHe OOIeld MpOW3BOIUTENBHOCTH. [103TOMYy MBI PENIMTENBHO BBICTYIIAEM 3a
BKJIFOUEHHE OalaHCUPOBKH KIIACCOB B KaYECTBE dTAra MPeIBapUTEIbHONH 00paOOTKH B 3TOH 00JIacTH.

KioueBble cjioBa: MPOrHO3UPOBaHHE AC(PEKTOB MPOTPAMMHOIO OOECIICYECHHS; CTATUCTHUCCKUH aHAIM3;
HecOamaHcupoBaHHbIH Kiace; pernosutopuit PROMISE; HaGops!l naHHBIX; METPUKH; M30BITOUHAsT BBIOODKA,
HEZ0CTaTOYHast BEIOOpPKA.

Jast uutupoBanus: Canuec-I'apeust A. X., Jlumon K., Jomunrec-Ucuapo C., Onsepa-Buitena /1. X., Ilepec-
Appuara X. K. INogxoxs! k GaaHCHpOBKE KJIACCOB JUIS YIydIICHUS OLEHOK IPOTHO3UPOBAHMS HE(EKTOB
nporpammHoro obecrniedenust. Tpyast ICII PAH, Tom 36, Bem. 6, 2024 1., ctp. 19-38 (Ha aHrIHiiCKOM SI3BIKE).
DOI: 10.15514/ISPRAS-2024-36(6)-2.

1. Introduction

This paper is an extension of work originally presented in 2023 11th International Conference in
Software Engineering Research and Innovation (CONISOFT) [1]. The original work addressed a
systematic literature review on class balancing methods in software defect prediction data sets.
Software Engineering is a discipline that aims to develop and deliver quality software products,
through the execution of quality processes. Quality can be defined as “the degree to which a
component, system or process satisfies the specified requirements and/or the needs and expectations
of the user/customer” [2].

One of the most important attributes to satisfy customer requirements is reliability, which is defined
as “the probability of failure- free operation in a specific environment during a given period of time”
[3]. System defects, which are imperfections or deficiencies in a system or component that could
prevent it from carrying out its intended purpose, can have an impact on this reliability [4].
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This is important because “quality is inversely proportional to the number of defects found in a
system” [5], including an impact on software reliability.

An area of software engineering that is gaining importance due to the need to increase the reliability
of a software system is the well-known software defect prediction (SDP). This area aims to predict
the presence of defects in the software during or after its development. To make these predictions,
it is necessary to have historical data that allows generating prediction models based on some metrics
taken from software projects.

One of the most used historical data repositories for defect prediction is the PROMISE Software
Engineering repository [6], which consists of several datasets for different purposes, such as effort
or defect prediction.

The main data sets for SDP in PROMISE repository are provided by NASA software projects, which
are:

1) CML1, which is a NASA spacecraft instrument written in the C programming language.

2) JM1 is written in the C programming language, and it is from a real-time predictive ground
system.

3) KC1 written in C++ programming language, is a system implementing storage management
for receiving and processing ground data.

4) KC2 dataare from C++ functions as part of the same project of KC1.

5) PC1 data from C functions for a flight software for earth orbiting satellite.

These five datasets include data obtained from McCabe [7] and Halstead [8] static code metrics.
These data sets contain a class label that states whether the record is defect-prone or not, making it
a classification problem.

However, as Table 1 shows, the number of records of each class (yes or no) is unbalanced, which
impacts the precision of prediction models, since models bias toward the most common value,
causing prediction errors, which can impact software engineering practitioners.

Table 1. Distribution of classes by data set.

Data set Instances Class Yes Class No
cMm1 498 49 (9.83 %) 449 (90.16%)
JM1 10,885 8,779 (80.65%) 2,106 (19.35%)
KC1 2,109 326 (15.45%) 1,783 (84.54%)
KC2 522 105 (20.5%) 415 (79.5%)
PC1 1,1109 1,032 (94.05%) 77 (6.94%)

It is important to highlight that class unbalance is a prevalent challenge in software defect prediction.
The five datasets discussed in this paper serve as illustrative examples to emphasize the prominence
of this issue.

When a data set is unbalanced, machine learning (ML) algorithms will more frequently predict
values from the majority class to increase the value of predictions with the training data. This also
implies that learning models could not generalize new data that is not part of the training data. In
conclusion, these datasets serve as valuable reference points for researchers aiming to enhance
classifiers for SDP, as well as for software engineers who seek optimal classifier options for this
task. Nevertheless, it is crucial to recognize that the accuracy of these classifiers may be affected by
bias arising from the number of examples in the majority class.

As stated, and demonstrated in [9], there is no ML algorithm that has the best performance for all
data sets. Therefore, given the class unbalance nature of SDP, we propose to carry out an empirical
and statistical study, applying different algorithms and approaches for class balancing to the data
sets of SDP, with the aim of establishing which approaches can be used by software engineers to
obtain better predictions of software defects, and consequently, deliver reliable and quality products.
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Due to what was mentioned above and what is described in section 2 (Related work), our main
contributions in this work are:

e Unlike similar studies, we experimented with three class balancing approaches:
oversampling, undersampling, and a combination of them.

o We tested the class balancing algorithms with eight classification algorithms from different
approaches such as decision trees, K-nearest neighbor, Bayesian approaches, neural
networks and ensemble classifiers (both boosting and bagging).

e We provide details for our experiments, such as the versions of the classification
algorithms, type of implementation and parameters used, so that the results can be
replicated.

e The data sets used are public, unlike studies where their own data sets are used.

e Our results not only report the approach that showed the best performance during the
experiments, but the results are statistically validated to know if in the prediction results,
there is a significant difference in performance when balancing the data sets.

This paper is structured as follows: Section 2 mentions related work. Section 3 presents the
background of class balancing algorithms. Section 4 describes the characteristics of the
experimentation and evaluation. Section 5 analyzes the results obtained. Section 6 identifies some
validity threats of this study. Finally, section 7 draws conclusions and presents future work.

2. Related work

In our literature review reported in the last 6 years (until 2024), 40 studies were found that
implemented proposals to balance classes in data sets of software defect prediction, of which 60%
used Oversampling techniques, 18% Undersampling, 15% Oversamplig + Undersampling, and 8%
Ensemble approaches. Table 2 shows the studies grouped by their balancing approach.

Table 2. Distribution of studies according to the balancing class approach.

Approach Studies
[10], [11], [12], [13], [14], [15], [16], [17], [18],
Oversampling [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37]. [38]
Undersampling [39], [40], [41], [11], [17], [18], [20], [34], [36], [37]
Combination (oversampling + undersampling) [42],[43], [44], [45], [46], [47]
Ensemble [48], [49], [50]

Of the 40 studies identified, only three of them [34-36] carry out an experiment like our proposal.
Pandey and Tripathi in [34] presented an empirical study in which the influence, in terms of F-score
and Mathews Correlation Coefficient (MCC), of four sampling techniques (Class Balancer,
Resample technique, Synthetic minority oversampling technique (SMOTE), and Spread subsample)
were evaluated in twelve different classifiers: Naive Bayes (NB), Logistic Regression (LR),
Multilayer Perceptron (MLP), Instance-based learning (IBK), AdaBoost, Bagging (Bagg), Logistic
Boost (LB), Repeated incremental pruning to produce error reduction (RIPPER), Decision Tree
(J48), and Random Forest (RF). The authors considered 22 datasets in the Software Defect
Prediction domain in their experiments. In their findings, the authors highlighted that MCC is the
most helpful performance metric for the imbalance dataset; the Resample technique gave the best
results in most ML techniques. Finally, the authors leave open the investigation regarding the
relationship between the classifier and the sampling methods.

On the other hand, Zhang et al. in [35] measured the effect of using four Oversampling techniques
for class balancing in just-in-time SDP: i) Random Oversampling, ii) SMOTE, iii) Borderline-
SMOTE, and iv) ADASYN. The authors proposed the OSNECL method, which combines
Oversampling techniques with ensemble classification methods, such as Bagging, AdaBoost,
Random Forest, and GBDT. In their experiments, six opensource projects written in C++ and Java
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(Bugzilla, Columba, Eclipse JDT, Mozilla, Eclipse Platform, and Postgres) were used, from which
16 characteristics related to the defects were extracted with the SZZ algorithm. As a result of the
experiments, it was found that the combination of Random Forest and Random Oversampling
provided the best results.

However, the authors left it open to continue researching class balancing with Deep Ensemble
learning methods to explore new ways to improve the balancing problem.

Finally, Yang et al. [36] conducted a study that evaluated the impact of sampling, Random
Under/Oversampling, SMOTE, and OSS techniques for the class balancing problem on Deep
learning-based vulnerability detection (DLVD). The DLVD techniques used in their experiments
were Deving, Reveal, IVDetect, and LineVul. Additionally, they selected three benchmark datasets,
with which different findings could be obtained, such as Oversampling outperforms Undersampling
approaches, sampling on raw data outperforms sampling on feature space; generally, Random
Oversampling on raw data performing the best among all studied sampling methods, including
SMOTE and OSS.

Table 3 compares the sampling techniques analyzed in the studies where we identify them as similar
to our experimentation, where it can be seen that the comparison was carried out with a maximum
of four class balancing algorithms, none of them is a combination of oversampling and
undersampling. Our study proposes the comparison of nine class balancing algorithms, including a
combination of oversampling and undersampling.

Table 3. Sampling techniques analyzed in related works.

Sampling Method [34] [35] [36]
Random undersampling v
Random Oversampling v v
SMOTE v v v
0SS v
Class balancer v
Resample v
Spread subsample v
Borderline — SMOTE v
ADASYN v

Table 4 presents the learning techniques with which the techniques were combined. In the case of
the study [36], they used specific deep- learning techniques to detect vulnerabilities, which is not
directly related to SDP. We also include different classification approaches and algorithms.

Table 4. Learning methods studied in related works.

Learning classifier [34] [35] [36]
Naive Bayes (NB) v
Multiplayer perceptron (MLP) 4 4
K-Nearest Neighbor (KNN) v
Decision Tree (DT) v
AdaBoost (AB) v v
Bagging v v
Logistic Boost (LB) v
RIPPER v
Random Forest (RF) v v
Gradient Boosting (GB) v
Deep learning approaches 4
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3. Class balancing methods

We examined nine representative methods to address class imbalance in our experiments. These
methods can be classified into three categories as it is shown in Fig. 1: oversampling, undersampling,
and combined. Below, we provide an explanation of each method.

Balancing class
approach

A 4 Y
[ Oversampling ] [Undersampling [ Combination ]
Y h 4 »
" Random ) S:SSros?m lin
oversampling 3 NearMissp g « SMOTEENN
« SMOTE « ENN » SMOTETomek
« ADASYN « ALKNN

Fig. 1. Balancing class approaches chosen for experimentation.

3.1 Oversampling

Fig. 2 shows the strategy of class balancing by oversampling, where it consists of artificially
increasing the number of samples of the minority class to balance the class distribution.

Three algorithms based on this approach are presented below.
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1)

2)

3)

Random over sampling: Also known as Random Over Sampling Examples (ROSE) [51],
this simple method involves randomly selecting examples from the minority class or classes
and repeating them with replacement. This process creates a new dataset that is balanced
by increasing the representation of the minority class.

SMOTE [52], an acronym for Synthetic Minority Oversampling Technique, is a widely
used oversampling method designed to address class imbalance. It involves the creation of
synthetic data points in the feature space for the minority class. To over sample the minority
class, SMOTE takes each minority class sample and generates synthetic examples along
the line segments that connect the sample to its k-nearest neighbors from the same class.
The value of k determines the number of nearest neighbors considered. The amount of
oversampling required can be adjusted, and random selection is used to choose neighbors
from the k-nearest neighbors.

ADASYN [53], short for Adaptive Synthetic Sampling Approach for Imbalanced Learning,
is an oversampling technique specifically designed to address class imbalance. It involves
the creation of synthetic data points for the minority class. The fundamental concept behind
ADASYN is to use a weighted distribution to generate synthetic data based on the level of
difficulty of learning for each minority class example. The algorithm identifies minority
class examples that are harder to learn and generates a higher number of synthetic data
points for them compared to examples that are easier to learn. ADASYN employs a density
distribution based on the k-nearest neighbors of each minority class example to determine
the number of synthetic samples to be generated.
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3.2 Undersampling

Undersampling is another technique used to address class imbalance in data sets, where unlike
oversampling, in this approach the number of samples of the majority class is reduced to equalize
the class distribution with the minority class as can be seen in Fig. 3.

N

Class A

Unbalanced
dataset

Class B

Copies of the
minority class

Class A

Balanced
dataset

Class B

-

Fig. 2. Oversampling strategy.

Below, four selected undersampling methods are described.

1)

2)

Random undersampling is a technique used to reduce the number of majority class
examples in a dataset. It is similar to random oversampling, but with the opposite objective.
Random undersampling (RUS) [54] randomly selects examples from the majority class,
either with or without replacement. The number of examples selected in random
undersampling depends on the desired balancing goal. In a fully balanced dataset, the
number of selected examples would equal the number of examples from the minority class.

NearMiss is an undersampling technique originally introduced in [55]. This method aims
to balance class distribution by selecting a subset of majority class examples that are closest
to the minority class examples based on their k-nearest neighbors. The NearMiss method
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consists of three variants: NearMiss-1, NearMiss-2, and NearMiss-3.

» NearMiss-1: this variant focuses on selecting majority class examples that are closest
to some of the minority class examples. It identifies majority class examples with the
smallest average distance to their k-nearest minority class examples. The objective is
to remove majority class examples that are farthest from the minority class.

Class A

Class B
-/

Samples of
majority class

Unbalanced
dataset

~

Class A

Balanced
dataset

Class B

Fig. 3. Undersampling strategy.

* NearMiss-2: this variant selects majority class examples that are closest to all
minority class examples. It chooses examples based on their average distances to the
k farthest minority class examples.

* NearMiss-3: selects a specific number of closest majority class examples for each
minority class example. The intention is to ensure that each minority class example
is surrounded by some majority class examples.

3) ENN (Edited Nearest Neighbors), proposed by [56], is an undersampling method for
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addressing class imbalance. The ENN algorithm operates by examining the k-nearest
neighbors of each example in the dataset. If a majority class example is misclassified, it is
removed from the dataset. On the other hand, if a minority class example is misclassified,
its k neighbors belonging to the majority class are removed. The k value proposed in the
original work is 3. It is important to note that ENN is primarily designed to remove noisy
and ambiguous examples, rather than achieving perfect class balance.

4) AIIKNN (All K-Nearest Neighbors), proposed in a study by [57], is an iterative
undersampling method that extends the concept of ENN. Rather than using a fixed value of
k, AIIKNN repeatedly applies ENN with increasing values of k starting from 1. This
iterative process continues until a maximum value of k is reached or until the minority class
becomes the majority class. The use of progressively larger k values allows AIIKNN to
capture more information from the nearest neighbors and potentially achieve better
imbalance reduction.

3.3 Combination

Finally, by combining oversampling and undersampling techniques, the strengths of each approach
can be leveraged for better classification results. Two algorithms that combine the two previous
approaches are described below.

1) SMOTEEN (SMOTE Edited Nearest Neighbors), proposed by [58], is a method that
leverages both oversampling and undersampling techniques to address class imbalance.
The SMOTEEN algorithm combines the synthetic minority oversampling technique
(SMOTE) with the edited nearest neighbors (ENN) undersampling. It follows a two-step
process to rebalance the dataset. First, SMOTE is applied to the minority class to generate
synthetic instances, thereby increasing its representation. Next, ENN is employed to
remove potentially noisy or mislabeled instances from both the minority and majority
classes. The SMOTEEN process may be repeated until achieving a balanced dataset or
reaching a stopping criterion.

2) SMOTETomek [59] is a combination of oversampling techniqgue SMOTE, and
undersampling technique Tomek Links [60]. SMOTETomek consists of two main steps. In
the first step, SMOTE is applied to the minority class, oversampling with synthetic data
and balancing the dataset. The second step of SMOTETomek utilizes Tomek Links. Tomek
Links identify specific pairs of instances, one from the majority class and one from the
minority class, that are nearest neighbors to each other. These pairs are ambiguous or
potentially noisy instances, and thus are removed from the date set, undersampling at the
same time examples from both classes.

4. Experimental design

Fig. 4 shows the steps followed for the experiments in this study. For our experiments, the only
preprocessing performed was checking for missing values. In all five data sets, only JM1 included
5 records with at least one missing value. These records were removed.

After data preprocessing, the class balancing algorithms mentioned in Section 3 will be applied to
each of the five data sets.

Subsequently, each classification learning algorithm described in section 4.1 will be tested on each
data set (with and without class balancing).

The models are evaluated through a k-fold cross validation process in which the data set is divided
into k sets (one subset is used for testing and the other k-1 subsets are used as training). This process
is executed k times, such that each record is part of both a test and training set.
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The metrics described in section 4.2 are applied to the models to evaluate the predictions. Finally, a
statistical analysis is performed for each metric applied to each model developed by each
classification algorithm and to each data set obtained with and without class balancing.

Finally, the results are statistically analyzed to empirically verify whether the results with the class

balancing methods studied are significantly better.

Data
CM1/JM1/KC1/KC2/PC1

’»

Data preprocessing
{Withoutbalancing} { Oversampling ] [ Undersampling } { Combination ]

| | | |
v
/~ K-Fold CV N\

« Decision Tree

. Random Forest

« K-nearest neighbors

. Gradient Bosting

« Adaboost

. Naive Bayes

« Support Vector Machine

\. Neural Neltwork /
4 N\

Metrics

« AUC

« Accuracy
. Precision
. Recall

. F1

e /
!

Statistical analysis
among metrics

Fig. 4. Experimental design steps to validate models with balanced data sets.
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4.1 Classification learning algorithms

As demonstrated in [9], there is no ML algorithm that performs better than the others for any data
set. Therefore, we selected a variety of classification learning algorithms for experimentation, and
they are described below, including their characteristics, advantages and disadvantages that could
influence in the prediction results.

We chose several classification approaches, such as based on decision trees, class similarity (k-
nearest neighbor), ensemble algorithms for both bagging and boosting, based on Bayesian
approaches and finally on neural networks approach.

Decision Trees are a popular supervised learning method used for both classification and regression
tasks [61]. They build a tree structure consisting of rules based on the input features, which guide
the evaluation of new examples. This hierarchical representation enables visualizing the resulting
model. Hence, Decision Trees employ a white model approach. Decision Trees have several
advantages. Firstly, they require minimal data preparation, and they can handle both numeric and
nominal data. Secondly, they are nonparametric, meaning they make no assumptions about the
underlying data distribution. However, Decision Trees are prone to overfitting, to address this,
pruning methods can be employed to simplify the tree and prevent overfitting. It is also important
to note that Decision Trees can be affected by class imbalance [62].

K-Nearest Neighbors (KNN) [63] is a nonparametric and supervised method for classifying data
instances. It utilizes a similarity metric, such as Euclidean distance, to identify the most similar
examples and establish the concept of neighbors. By setting a parameter K, the algorithm determines
the K-nearest neighbors. When classifying a new instance, a policy needs to be defined. A popular
policy is majority vote, where the predicted class is the most common class among the K-nearest
neighbors. It is important to note that the classifier’s performance is sensitive to the choice of K.
The KNN classifier may encounter limitations when dealing with large datasets. Additionally, it is
important to consider feature scaling to ensure accurate results.

Random Forests [64] is an ensemble technique used for classification tasks. As an ensemble
technique, it combines multiple classification models, specifically trees. Each tree is built from
different random subsets of the dataset, allowing for improved generalization and robustness. One
of the key features of Random Forests is the option to use a random sample of features when
selecting the best splitting point in each tree. This further enhances the diversity and reduces
correlation among the individual trees. During classification of a new example, each tree in the forest
independently classifies the instance. Then, a decision policy, such as majority vote or averaging the
predicted probabilities from each tree, is applied to determine the final class for the new instance.
Random Forests are well-suited for handling large datasets with a high number of examples and
features. They are also robust against data noise and overfitting.

AdaBoost [65] (Adaptive Boosting) is an iterative ensemble classification method that combines
multiple weak classifiers to create a robust classifier. It utilizes a weighting strategy, where initially
every example in the training set has equal weight. As the iterations progress, the weights of the
examples are adjusted based on the classification performance of the classifiers. Additionally,
AdaBoost assigns weights to each classifier based on their performance, with higher weights given
to classifiers with better accuracy. During classification of a new instance, AdaBoost applies a
weighted majority vote among the classifiers to determine the final class label.

Gradient Boosting [66] is an ensemble method used for both classification and regression tasks. It
combines multiple weak models to create a stronger model. Gradient Boosting relies on Gradient
optimization to iteratively build the ensemble by fitting weak models to the residuals. This process
aims to correct errors in the current ensemble for Gradient optimization, residuals representing the
gradients of the loss function are calculated with respect to the predicted probabilities. The
subsequent weak model is then trained on these residuals to further improve the ensemble’s
performance. Additionally, each model in the ensemble is assigned a weight to assess its
contribution. These weights consider the model’s performance and are used to guide the ensemble
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towards more accurate predictions. During the classification of a new example, a weighted vote
policy is applied.

Naive Bayes: Naive Bayes is a supervised and probabilistic method used for classification tasks
based on Bayes theorem [67]. It is a type of Bayesian Network method that operates under the
assumption of feature independence. This strong hypothesis assumes that each feature in the data
set is independent of each other given the class label. This assumption simplifies the model and
allows for fast training as only the conditional probabilities need to be computed, while the Bayesian
structure is predetermined.

To classify a new instance, Naive Bayes computes the conditional probabilities based on the
Bayesian network parameters. It selects the class that maximizes the probability as the predicted
class label. Naive Bayes is well-known for its simplicity, yet it has the potential to achieve good
predictive performance in various problem domains.

A Multi-Layer Perceptron (MLP) [68] is an artificial neural network commonly used for
classification and regression tasks. It enhances the single neuron perceptron by incorporating
multiple layers of interconnected artificial neurons. The MLP model consists of an input layer for
receiving data features, one or more hidden layers responsible for transforming input signals and
adjusting connection weights between neurons, and an output layer that generates the final
predictions. To optimize the MLP model, the log-loss function is typically used along with various
optimization algorithms such as LBFGS (Limited-memory Broyden- Fletcher-Goldfarb-Shanno) or
stochastic Gradient descent. These optimization algorithms aim to search for the optimal set of
weights that minimize the loss function, allowing the model to make accurate predictions.

4.2 Evaluation models metrics

There are different metrics to evaluate the accuracy of a model. This is because each metric provides
a different perspective on the performance of each algorithm and in some cases avoids biases due to
majority classes. The metrics used to evaluate the algorithms used for this study are described below.
AUC is obtained directly from the ROC (Receiver Operating Characteristic) curve, which is a
graphical representation of the true positive rate (sensitivity) versus the false positive rate (1 -
specificity) for different classification threshold values.

The following metrics are estimated from the confusion matrix, where the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN) are placed:

TP+ TN
TP+TN + FP+ FN
TP
Precision= ——
TP + FP @
TP
Recall =
TP+ FN ©)
2% TP
Fl1= @)

2 TP+ FN + FP
Accuracy is the proportion of modules correctly classified as defective and non- defective. It is
calculated by (1).

Precision is the proportion of TP cases. In the SDP, it is the number of defective modules that were
found correctly, and it is calculated by (2).

Recall measures the proportion of TP that there should be and is calculated using (3).
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Finally, F1-measure is used when there is an unbalanced data set and combines the benefits of
precision and recall as shown in (4).

4.3 Classifiers parameters

The implementations of algorithms were carried out in the Python language with the skit- learn 1.4.2
library. Table 5 shows the parameters of the classifiers used for out experiments. In the algorithms
that shared some parameter, such as balancing the number of estimators, it was the same for all. The
Random state parameter indicates the seed that was the same for all classification algorithms.

5. Results analysis

The average results obtained by the k-fold cross-validation process with k = 10 by each metric were
analyzed, both for the data sets without applying any class balancing method and the application of
each method described in section 3.

Table 5. Parameters used for each classifier.

Classifier algorithm Parameters

Decision tree Criterion: Gini

Max Depth: None

Max leaf nodes: None

Min impurity decrease: 0.0
Class weight: None
Random state: 42

K-NN N neighbors: 3
Metric: Euclidean distance
Random Forest N estimators: 50
Criterion: Gini

Max Depth: None

Max leaf nodes: None

Min impurity decrease: 0.0
Class weight: None
Random state: 42

Ada boost N estimators: 50
Algorithm: SAMME.R
Learning rate: 1.0
Random state: 42

Gradient Boosting N estimators: 50

Loss: log loss

Learning rate: 1.0
Criterion: Friedman mse
Max depth: 3

Min impurity decrease: 0.0
Naive Bayes Distribution: Gaussian
Multilayer perceptron Hidden layer: 5

Random state: 42

Alpha: 0.0005

5.1 Balancing class approaches results

The results show that applying a class balancing method increases the prediction accuracy of
different classifiers with different subsets of data through cross-validation, contributes to the
increase of reliability in predictions.

With respect to the CM1 data set, performing a random undersampling class balancing procedure
worsens the results, while with ALKNN practically the same results are obtained.

For the JM1 data set, all the balancing methods outperform the results without applying any class
balancing method except with random undersampling, which obtains very similar results.
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Regarding the KC1 data set, most class balancing algorithms outperform the average predictions of
using an unbalanced data set. However, using undersampling in the assembled algorithms
(AdaBoost and Gradient boosting) results in lower precision values.

Al class balancing algorithms outperform the prediction values using the raw KC2 data set.
Finally, the results of the PC1 data set show that the ENN and ALLKNN undersampling algorithms
have the worst performance, almost equal to not using a class balancing method.

5.2 Classifiers results

The results show that the classifiers that had the best results in the selected model evaluation metrics
are the ensemble classifiers, that is, random forest, AdaBoost and Gradient boosting. The classifier
that showed the worst results was the multilayer perceptron. With these results, software engineering
practitioners can opt for ensemble classifiers, as it is shown that it is advisable to invest in the
processing of several weak classifiers to obtain better prediction accuracy.

5.3 Metrics results

The results of the AUC, accuracy, precision, recall and F1 metrics are similar when the values of
the classes of the data sets are balanced. It is quantitatively verified that when the data sets are not
balanced, the recall, F1 and precision metrics tend to be lower than accuracy. This is because
classifiers tend to predict the majority class, and by performing an evaluation on all the predictions,
there is a greater probability that the majority class matches the predicted value. For this reason, it
is better to have an overview of different metrics that evaluate accuracy rates differently.

5.4 Statistical Analysis

The metric values are not sufficient to establish a statistically significant improvement in the
predictions. Therefore, a suitable statistical test was applied to compare the accuracies among the
class balancing models [69].

First, %, Shapiro-Wilk, skewness and kurtosis normality tests for each set of predictions (ten for
each metric that were obtained from the cross-validation process) to check if the normality
assumption was met were applied.

For each metric and for each data set (set of all classifiers) it was checked if at least some test was
not significant at 95%, then a normal distribution was not considered. If all values of each metric
had a normal distribution, an ANOVA test was performed, if at least one set did not meet the
normality assumption, then Friedman non-parametric test was applied to determine whether at least
one algorithm generated significantly different results from the others. The results of the statistical
tests can be observed in [70], where it is concluded that in all groups by data set and by class
balancing algorithm, there was at least one value statistically different from the rest of them.
Finally, to know if the statistically significant differences were the results related to the data sets
without applying any class balancing algorithm, the values of the metrics of each balancing
algorithm were compared with the values of not applying a class balancing. To do this, the four
normality statistical tests were performed for each set of prediction metrics. If any of their four p-
values were lower than 0.05, then data were non-normally distributed at 95% confidence, and a
Wilcoxon test was applied (the medians of the models should be compared); otherwise, a t-paired
test was performed (the means of models were compared) [71]. The results of these tests can be
consulted in [72].

In [72] is shown that the class balancing algorithms for each metric, where the results of the
predictions were statistically different from the predictions of the same data set without using any
class balancing algorithm at 95% confidence.
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These results show that despite different class balancing algorithms and approaches, Naive Bayes
and MLP do not generate significantly better predictions. However, using the other classifiers with
any metric generally makes a significant difference in the predictions.

6. Validity threats

There are four categories of validity threats in search-based predictive modeling for Software
Engineering: conclusion, internal, external and construct [73] of which, we identify the following:
Construct: We remove five records that have null values for the JIM1 data set.

Construct: We are not involved in the acquisition of data to avoid bias due to human error.

Internal: Data is based on static code metrics only.

Internal: We did not include any processing to deal with outliers, as we wanted to evaluate them
with real data from the PROMISE repository systems.

7. Conclusions and future work

The present study experiments with different approaches to mitigate the class balancing problem in
SDP. These approaches are obtained from a literature review, of which three oversampling
algorithms, four undersampling algorithms and two from the combination of the mentioned
approaches were selected. The data sets used were those from the well-known public repository
PROMISE, to obtain predictions with the data used in software industry.

To not bias the results with a particular classifier, seven classification algorithms (based on different
approaches) were tested. Also, different metrics such as AUC, precision, accuracy, recall and F1
were evaluated to measure the performance of the algorithms with and without class balancing
through a cross- validation process. Finally, the results are statistically evaluated to conclude if there
really is a significant improvement when balancing the data sets.

With respect to the class balancing methods, we conclude that:

¢ Balancing the classes significantly improves prediction performance since learning is not
biased by the majority class.

e The oversampling and combination methods have better performance than the algorithms
based on undersampling.
With respect to the classification algorithms, we conclude that:
e The algorithms that obtained the best results were the assembled classifiers (both boosting
and bagging), which base the predicted class value on the results of several weak classifiers.

Therefore, if software engineering practitioners require greater precision, it is important to
invest resources in these types of methods.

e The multilayer perceptron and Naive Bayes algorithms are the classifier that yielded the
worst results.

In terms of evaluation metrics, we conclude that:
¢ When the data sets are unbalanced, the metrics show very variable results.
o When the data sets are balanced, the results of the metrics are more homogeneous.

Finally, it is concluded that to improve the reliability of a software product, it is necessary to have
good precision in predictions. Therefore, when the historical data to make predictions of software
defects is unbalanced, it is suggested to first apply an oversampling mechanism and then use an
ensemble classifier that strengthens the predictions, regardless of the set used for training and testing.
As future work we propose the following:

Repeat the experimentation with other classifiers including deep learning, since we only chose some
representative ones of each approach.
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As could be seen in Table 5, the classification algorithms need to adjust parameters, so it is proposed
to implement some optimization algorithm that allows knowing the best parameters for each
classification algorithm.

It is also proposed to carry out this analysis by programming language [74], since the development
language could influence the introduction of defects and the quality of the software [75].

Finally, continue with experimentation on other data sets, which allows exploring the performance
of class balancing algorithms in more dept.
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