
Труды ИСП РАН, том 36, вып. 6, 2024 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024

39

DOI: 10.15514/ISPRAS-2024-36(6)-3

Domain-Driven Design in Microservices

Architecture

J. Sangabriel-Alarcón, ORCID: 0009-0002-2682-502X <josusangabriel@uv.mx>

J. O. Ocharán-Hernández, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>

X. Limón, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>

M. K. Cortés-Verdín, ORCID: 0000-0002-6453-180X <kcortes@uv.mx>

School of Statistics and Informatics, Universidad Veracruzana,

Xalapa, Veracruz, México.

Abstract. With the increment in software development complexity, approaches such as Domain-Driven Design

(DDD) are needed to tackle contemporary business domains. DDD is already being used in various software
projects with different architectural styles. Although some studies have explored the decomposition of business
domains or legacy monolithic systems into microservices, there is a lack of concrete information regarding the
practical implementation of DDD in this architectural style. The paper systematizes findings on the purpose of
using DDD, its patterns, associated technologies, and techniques to increase the clarity about the use of DDD
in microservices-based systems development. A systematic literature review of 35 articles was conducted.
Thematic analysis was employed to identify five high-order themes and 11 themes. Based on our analysis, we
have concluded that microservice identification emerges as the primary motivation behind developers' adoption

of DDD, but not the only usage of DDD reported in the literature. Finally, our analysis found benefits and
challenges in the use of DDD in Microservices Architecture which are translated to opportunity areas for future
works.

Keywords: domain-driven design; microservices architecture; systematic literature review; thematic analysis.

For citation: Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven
Design in Microservices Architecture. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58. DOI:
10.15514/ISPRAS-2024-36(6)-3.

Acknowledgements. This work was supported by ongoing institutional funding. No additional grants to carry

out or direct this particular research were obtained.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

40

Предметно-ориентированное проектирование в микросервисной

архитектуре

Х. Сангабриэль-Аларкон, ORCID: 0009-0002-2682-502X <josusangabriel@uv.mx>

Х. О. Очаран-Эрнандес, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>

К. Лимон, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>

M. К. Кортес-Вердин, ORCID: 0000-0002-6453-180X <kcortes@uv.mx>

Школа статистики и информатики, Университет Веракруса,

Халапа, Веракрус, Мексика.

Аннотация. С увеличением сложности разработки программного обеспечения для решения
современных бизнес-задач необходимы такие подходы, как предметно-ориентированное
проектирование (Domain-Driven Design, DDD). DDD уже используется в различных программных
проектах с разными архитектурными стилями. Хотя в некоторых исследованиях изучалось разложение
бизнес-доменов или унаследованных монолитных систем на микросервисы, пока отсутствует

конкретная информация относительно практической реализации DDD в этом архитектурном стиле. Для
повышения ясности в отношении использования DDD в разработке систем на основе микросервисов в
нашей статье систематизированы выводы о целях использования DDD, его моделях, связанных
технологиях и методах. Нами был проведен систематический обзор литературы из 35 статей.
Тематический анализ помог выявить 11 тем и пять тем более высокого порядка. Основываясь на
проделанном анализе, мы пришли к выводу, что идентификация микросервисов становится основной
мотивацией принятия разработчиками DDD, но при этом вовсе не является единственной причиной
использования DDD, о которой сообщается в литературе. Наконец, наш анализ выявил преимущества

и проблемы в использовании DDD в архитектуре микросервисов, которые будут учитываться при
проведении работ в будущем.

Ключевые слова: предметно-ориентированное проектирование; микросервисная архитектура;
систематический литературный обзор; тематический анализ.

Для цитирования: Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К.
Предметно-ориентированное проектирование в микросервисной архитектуре. Труды ИСП РАН, том 36,
вып. 6, 2024 г., стр. 39–58 (на английском языке). DOI: 10.15514/ISPRAS–2024–36(6)–3.

Благодарности. Работа была поддержана текущим институциональным финансированием. Никаких

дополнительных грантов для проведения или руководства этим конкретным исследованием получено
не было.

1. Introduction

This paper is an extension of work initially presented at the 11th International Conference in Software

Engineering Research and Innovation (CONISOFT 2023) [1]. The original study is a systematic

mapping study on Domain-Driven Design (DDDS) for Microservices Architecture Systems

Development. In this paper, we conducted a comprehensive systematic literature review and

employed thematic synthesis to identify and analyze patterns in the uses of DDD in this context.

This study synthesizes the findings from a broader range of primary studies and search strategies.

Since the release of Eric Evans' book "The Blue Book" in 2004 [2], a community of practitioners

has emerged who explore the use of DDD and patterns in different software development projects.
DDD can be understood as an approach that addresses the complexities of a business by emphasizing

the team's focus on domain knowledge [2]. Some authors [3-5] have proposed patterns and

techniques to analyze business domains and incorporate that knowledge into software projects.

DDD patterns can be classified as strategic and tactical designs, which are the key elements of this

approach. Strategic design involves domain analysis and decomposition. On the other hand, tactical

design translates the knowledge acquired from strategic design into actual lines of code [4].

When applying MSA in practice, developers have encountered a range of challenges in achieving

the desired properties of this architectural style [6-9]. Based on the challenges highlighted by various

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

41

authors concerning MSA, several studies aim to reduce the complexity in the development of

microservices-based systems. While some proposals have been put forth to address these challenges,

no definitive solution has emerged. However, the use of DDD has been featured prominently in

these proposals. This connection between DDD and MSA can be traced back to the 2014 definition

of MSA, and the principles of DDD have frequently been referenced within microservices.

Despite the theoretical discussion [10-11] of the relationship between these approaches,

uncertainties have surrounded their practical application. Additionally, the challenges associated

with MSA [7, 9], combined with those of DDD [11], have given rise to new challenges in the

practical implementation of microservices development with DDD. This lack of clarity regarding

DDD for microservices development has created a gap between theory and practice. The issue

concerning the knowledge gap between the theory and practice of DDD is directly tied to the

practical advantages it offers in designing microservices-based systems. In some studies, [12-13], a

set of strategies and techniques to design APIs have been reported to deal important decisions about

microservices, where the granularity definition of microservices has been one of the most important

themes around mentioned architecture. However, various ideas, patterns, and techniques within
DDD have often been cited concerning achieving mentioned benefits related to well-defined

granularity for microservices. Moreover, incorporating DDD principles suggests enhanced

efficiency in stakeholder collaborative work [13]. The mentioned benefits of DDD are examples of

potential solutions for microservices challenges, which are hindered by the lack of knowledge about

the use of DDD principles and patterns in a practical context.

This lack of clarity can be mitigated by analyzing practical cases documented in the literature

regarding the utilization of DDD in the development of microservices-based systems. While other

studies have addressed this issue, none provide specific reasons for authors' decisions to employ

DDD in microservices development and the corresponding outcomes. Among these unexplored

aspects, it is crucial to determine the DDD techniques employed, identify the patterns utilized in

microservices design, and explore other pertinent details that shed light on the limitations and areas

of opportunity in using DDD for microservices-based development.

To better understand the practical use of DDD in developing microservices-based systems, this study

extends our previously systematic mapping study [1]. We conducted a systematic literature review

complemented with a thematic analysis. The objective was to investigate the current state of the art

in microservices development with DDD in practical scenarios. We compiled and analyzed a

collection of diverse studies that reported the use of DDD in their microservices projects from 2014
to 2023. The findings obtained from this evidence can assist developers in identifying the practical

applications and adaptations made by their peers when utilizing DDD. Furthermore, this research

can also help uncover DDD's limitations and identify areas of opportunity where this approach can

effectively address the main challenges associated with microservices development.

This study is organized as follows: Section 2 provides an overview of the related work in this field.

Section 3 outlines the research method chosen for conducting the systematic literature review. The

execution of this research method is described in Section 4. The results obtained from the research

method are presented in Section 5, followed by a discussion in Section 6. Section 7 addresses the

potential threats to the validity of this study. Finally, Section 8 presents the conclusions drawn from

the evidence collected in this research.

2. Related work

This section provides an overview of the research work associated with the objective of this study.

In a study by Singjai et al. 2021 [14], the authors investigated Architectural Design Decisions (ADD)

associated with API design and DDD patterns using a grounded theory research method. The APIs

developed using DDD served as the foundation for modeling microservices. Specifically, Singjai et

al. identified six ADDs and 27 decision options about utilizing the DDD domain model and strategic

patterns for delineating API specifics. It is important to note that this study was limited to gray

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

42

literature and did not analyze white literature sources. Singjai et al. acknowledged the risk of

generalizing their findings, underscoring the potential for additional resources in different data

sources relevant to the research topic.

Schmidt et al. also conducted a relevant study in 2020 [15], which entailed a systematic literature

review focused on microservices identification proposals. This study examined two distinct

development approaches: Model-Driven Development (MDD) and DDD. The authors collected a

set of primary studies from 2013 to 2019, of which 27 were considered for review. Among these 27

primary studies, only four included DDD patterns specifically for microservices identification.

While the study primarily focused on white literature, it did not specifically address the examination

of DDD and MSA practices as its main objective. Given the time frame covered by Schmidt et al.

and the recent surge in research highlighting the relationship between DDD and MSA, as mentioned

in various studies [16-18], there arises a clear need for a dedicated study that concentrates on the

utilization of DDD within the context of developing microservices-based systems.

This study will solely encompass white literature to narrow the research scope and delve into

previously unexplored evidence of the integration of DDD and MSA. By concentrating solely on

white literature, we aim to complement existing related work and provide an analysis of DDD's

application in developing microservices-based systems.

3. Research method and conduction

This section describes the method followed for our systematic literature review. Firstly, we followed

the Kitchenham proposal [19] for evidence-based research on software engineering. In addition,

other methods were selected to complement some phases and activities of the research. The methods
used to complement the systematic literature review were: (I) Automatic search with Zhang et al.

proposal [20], (II) Snowballing process proposed by Wohlin [21], (III) Narrative synthesis from

Popay et al. proposal [22], and (IV) Thematic synthesis from the proposal of Cruzes & Dyba [23].

To complement the analysis with thematic synthesis, some guidelines of the Thematic analysis

method proposed by Clark & Braun [24] were performed in this study.

3.1 Search process

We started following Phase 1 of the systematic literature review method proposed by Kitchenham.

Following the mentioned method, we defined and refined a set of research questions (RQ) during

the research process. These RQs were documented in a systematic literature review protocol [25]

and uploaded in Zenodo [25].

These RQs were guidelines for the research process and the key criteria for discarding or selecting

papers during the search process. Through a manual search, relevant studies were identified, and

they were the basis for performing an automatic search. We chose the proposal from Zhang et al.

[20] to create a search string that facilitates the identification of primary studies on different engines.

The automatic search method of Zhang et al. is closely related to systematic literature review studies

[19], and the proposal of strict metrics to evaluate the quality of a search string (Recall and Precision)

reduces the likelihood of missing relevant studies.

Following the automatic search proposal by Zhang et al., the relevant studies found from manual

search formed the Quasi-Gold Standard (QGS) [20]. The relevant studies identified after manual

search were published in the following databases: IEEE Xplore, ACM Digital Library,
ScienceDirect, and SpringerLink. With 18 studies that conformed to the QGS and IEEE Xplore

selected as the evaluation engine, we evaluated different versions of the search string with the Recall

and Precision metrics following the recommendations of Zhang et al. [20], where the search string

was only approved when its recall was at least 80%. Several iterations of search string evaluation

were performed.

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

43

3.2 Selection process

Once the search string was built, we established inclusion and exclusion criteria based on the

characteristics of primary studies that formed the QGS. For the filter process, the selection criteria

were grouped into four stages. Stage 1 was performed through the year and type filters of engines
selected. Stage 2 grouped exclusion criteria related to the access of papers and the duplicated studies

between engines. This duplication was identified mainly between ACM Digital Library and IEEE

Xplore, where four duplicated studies were found during the manual search. Stage 3 involved the

reading of the title and abstract of each paper. Lastly, in Stage 4, the papers were downloaded and

read to confirm that the content answered at least one RQ.

As a result of the selection process, some papers were included and excluded through different

stages. A sum of 624 studies was collected from the execution of search strings in all engines. After

Stage 1, 357 studies were filtered. In Stage 2, 155 studies were discarded. After Stage 3, 79 studies

were discarded, obtaining 123 relevant studies. As a result of Stage 4, 31 primary studies were

identified.

3.3 Snowballing process

After the selection process, 31 primary studies were identified. However, some primary studies

could have been omitted during the selection process, so we decided to perform a snowballing

process. We chose the process proposed by Wohlim [21]. This method proposes a systematic

selection based on the relationship between studies through their references, which allows the

division of the entire process into backward and forward. Firstly, we performed a backward

snowballing, followed by a foreward snowballing. At the end of the snowballing process, 35 primary
studies were identified as sum of the primary studies of automatic search and the four primary studies

found in snowballing [26-60].

3.4 Data extraction process

Following the recommendations of Kitchenham for a systematic literature review, we performed a
preliminary synthesis based on the proposal of Popay et al. [22] to identify the answers to the RQs.

We performed only some steps of narrative synthesis to confirm that each primary study answered

at least one RQ. This preliminary synthesis also allowed us to familiarize ourselves with the content

of primary studies. This familiarization phase is one of the first steps of thematic synthesis [23]. We

also performed a thematic synthesis, where the data was combined, and grouped into Themes to

express higher-order ideas such as Cruzes and Dyba expressed in their proposal [23].

3.5 Data synthesis

As part of Phase 2 of Kitchenham’s method is the Synthesis of research. This process is a crucial

part of the analysis of evidence. Through an interpretative and systematic process, new knowledge

is generated based on a set of data. Thematic synthesis allows us to combine, compare, and explore

the patterns in the data. These meaning patterns are helpful in generating new conclusions

(generalizations) to achieve the aim of this study and complete Kitchenham’s method. The thematic

synthesis method was based on the thematic analysis proposed by Braun and Clark [24], providing

guidelines to explore the evidence and cover the step "Data synthesis" of the Kitchenham method.
The first step of thematic synthesis corresponds to familiarization with primary studies. The

mentioned preliminary synthesis was also used to cover the first step. The second is identifying text

segments from primary studies that answer the RQs. This second step inspired the second data

extraction for thematic synthesis mentioned in Section 3.4. The third step was the label of text

segments. This step was performed through coding in MaxQDA1 2020, where the codes were filled

1 https://www.maxqda.com/

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

44

out in the tabular formats described in Section 3.4. The code labels were refined through consensus

among the authors of this study.

The fourth step was the identification of themes as a set of closely related codes. Each code
represents a relevant and single-faceted concept, while each theme represents a multi-faceted idea

[24]. Therefore, we grouped codes that explain the meaning of the same background idea. After

identifying the themes, they were grouped into higher-level taxonomies (Higher-order themes).

These higher-order themes related to a set of themes show the high-level overview of the data from

the evidence collected.

4. Results

The products obtained from the method conduction are shown in this section. These results

encompass answers for RQs and a thematic map that synthesizes all data collected by this study.

The use of DDD in microservices-based systems development has increased in recent years, where

2023 represents the year with the most significant number of primary studies published. The

distribution graphic with the publication years of primary studies is shown in Fig. 1.

Regarding the engines where primary studies were published, the IEEE Xplore was the engine where

the major number of primary studies were found, with 25 primary studies published. ACM Digital

Library was the second, with five primary studies published, ScienceDirect with three studies, and

SpringerLink with two studies. The graphic with the number of primary studies found per engine is

shown in Fig. 2.

Fig. 1. Primary studies by publication years.

4.1 Answers to research questions

The RQs were the guidelines of this study, and the findings obtained for each RQ enabled us to

understand the state of research on the use of DDD for microservices-based systems. This section

answers the research questions mainly with quantitative data and some qualitative details. However,

the product of qualitative analysis is shown in Section 5.2.

(1) RQ-1: What are the purposes of using DDD for microservices-based systems development? In

the use of DDD reported by authors, four motivations were identified in microservices-based

systems development. These motivations are shown in Fig. 3.

Publication years

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

45

As shown in Fig. 3, almost all authors of the primary studies mentioned having used DDD for

microservices identification [26-52, 54-60], which consists of decomposing a business domain or

legacy system into partitions corresponding to microservice candidates.

Fig. 2. Primary studies by engine.

Fig. 3. Purposes of DDD Usage in Microservices-Based Systems Development.

For this purpose, the strategic patterns BC and Subdomain were commonly used. The second most

frequent purpose by which authors chose DDD was the design of each microservice [28-32, 35, 37,

39, 42, 45, 51-56, 58-60]. This design took place after the microservices identification, and it refers

to the definition of a domain model that reflects business knowledge isolated into each microservice.

The third purpose shown in Fig. 3 was using Ubiquitous Language (UL) to cultivate a common

language between domain experts and the development team to increase communication

effectiveness [28, 34-37, 45, 59]. The fourth purpose was only identified in two primary studies [37,

38]. It uses a Subdomain pattern to split a broad business domain into more manageable partitions.

Unlike microservices identification, the use of DDD for wide domain decomposition is about

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

46

reducing the complexity of the business domain through partitioning, where each part of the domain

can be decomposed into several microservices.

(2) RQ-2: What is the evidence about the use of DDD for microservices-based systems
development? The first one was software systems, and the second was models. Fig. 4 shows the

systems developed by authors with DDD and Microservices Architecture. These systems were

classified into two kinds based on the details mentioned by the authors about their development

process and the context of the business domain problem.

As shown in Fig. 4, DDD was used to develop 36 microservices-based systems. Of these systems,

56,76% correspond to domains controlled and limited by authors to evaluate a proposal or explore

the use of some DDD patterns and principles (Example systems) [27, 29-30, 40, 44, 55-59]. On the

other hand, 43,24% of the mentioned systems correspond to real problems where it is necessary to

satisfy the necessity of the clients (Industry systems) [26, 28, 34-38, 45-50, 52-53, 58, 60].

Fig. 4. Microservices-Based Systems developed with DDD.

On the other hand, a set of models involved in the microservices design process were identified.

Some of them come from the DDD literature, but others were used to complement the design

obtained with DDD, according to the authors of primary studies. In Fig. 5, a set of models is shown,

classified by the type of system where the authors mentioned them.

Fig. 5 shows two DDD artifacts used during microservices design: the DDD Domain model and

Context map. However, the DDD artifacts were not enough to deal all the specification aspects of

microservices-based systems, reason why authors also used UML artifacts to complement the

preliminary design obtained with DDD models.

Some models were created by following a notation proposed by authors of primary studies, such as

the source model and sketching rough descriptions shown in Fig. 5. These artifacts do not seem to

follow a clear standard or notation.

(3) RQ-3: What DDD patterns are used in the microservices-based systems development? A

sum of 12 DDD patterns was used by the authors of primary studies in their microservices-based

systems design process. These patterns are shown in Fig. 6.

Based on Fig. 6, strategic patterns were mentioned mainly in industry systems, while tactical patterns

predominate in example systems. Fig. 6 shows BC as the DDD pattern most frequently mentioned
in primary studies [27-30, 34-38, 40, 44-48, 52, 54, 60]. This pattern was treated as a microservice

representation, and such as the definition by Evans [2], it delimits the scope of a model. The UL

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

47

pattern was used by authors of primary studies [28, 34-37, 45-46, 59] to increase the effectiveness

of communication between domain experts and the development team, enabling a clear

understanding of the problem. In addition, it is one of the patterns (together with Subdomain, ACL,

and CS) that was only mentioned by authors who developed an industry system.

Fig. 5. Models used with DDD for microservices design.

Regarding tactical patterns, they were presented in a DDD domain model to obtain a domain-

oriented microservices design. Entity was the tactical pattern most frequently mentioned by authors

of primary studies [28-30, 35, 37, 45, 54, 60], and it was not always related to the Aggregate pattern.

Unlike Entity, Aggregate is a pattern that requires using Entity and, optionally, other patterns such

as Value object, Domain service, Repository, and others. Value object and Domain service were

mentioned only as building blocks of the Aggregate pattern. Another pattern used with Aggregate
was Repository, which was responsible for manipulating persistent data of an Aggregate through

ACID transactions (Atomicity, Consistency, Isolation, and Durability). Event-Sourcing was a

pattern mentioned during the DDD design [30], but no details were given about its usage in the

microservices design.

(4) RQ-4: What technologies are used with DDD for microservices-based systems

development? As reported by the authors, a set of technologies was identified in the microservices-

based systems developments with DDD. Most of the technologies were used to implement

microservices-based systems, and only three were reported as complements of the design with DDD

[30, 34]. They are shown in Table 1.

(5) RQ-05: What techniques are used with DDD in the microservices-based systems

development? The techniques of DDD used to complement DDD identified during the

microservices-based systems development are shown in Fig. 7.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

48

Fig. 6. Domain-Driven Design patterns used in microservices-based systems development.

Table 1. Technologies used with DDD for microservices-based systems development.

Technology name Description Primary studies Official web site

Eclipse Papyrus Design environment used by authors for

code derivation from a DDD domain

model made with a UML Profile

PS-05 https://eclipse.dev/pa

pyrus/

ExplorViz The 3D tool used by authors to identify

coupling degrees between BCs

(microservices).

PS-09 https://explorviz.dev/

Structure
101

Static code analysis tool used to scan a

legacy monolithic project and obtain BC

candidates.

PS-09 https://structure101.c

om/

As shown in Fig. 7, the authors used two kinds of techniques during the microservices design:

elicitation techniques and DDD techniques. Context mapping was the DDD technique most

frequently used by authors to model microservices candidates as BCs in a context map [34, 36-35,

46, 52]. Event-Storming [4] was a technique related to DDD, as mentioned in PS-01 [26], to identify

subdomains, where each subdomain was considered a microservice. Although the authors of PS-01

[26] mentioned the work product obtained after Event-Storming execution (DDD subdomains), no

details were mentioned about the procedure followed to perform Event-Storming. Regarding

elicitation techniques, these were used together with UL [26, 28, 34, 36-37, 59, 60]. There are some
strategies described in DDD literature to cultivate a UL, such as Domain storytelling, Knowledge

crunching, and others. However, the authors of primary studies used interviews (mainly),

brainstorming, focus groups, and questionnaires to extract the domain knowledge from the

interaction with domain experts.

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

49

Fig. 7. Techniques used together with DDD.

(6) RQ-06: What challenges are mentioned by authors during the development of

microservices-based systems? The authors mentioned 13 challenges when they used DDD in their

development processes. These challenges are shown in Fig. 8.

The challenges identified were classified into six categories based on the problems that the authors

described in primary studies. As shown in Fig. 10, the authors of primary studies mention two main

difficulties. The first one is the procedure that is not defined [27, 30, 45]. It consists of the lack of a

strict process to apply DDD techniques and patterns "correctly." The decision of what DDD pattern

should be used and how depends on the business domain and the comprehension of a software

engineer about the context of the problem. The second main challenge mentioned by authors of

primary studies is related to the limitations mentioned by Evans [2]. When technical complexity

predominates over the complexity of the business domain, DDD can complicate the solution [30,

42, 56]. The authors mentioned this because they do not recommend using DDD for developments

where the most significant complexity is technical.

(7) RQ-7: What proposals exist for the development of microservices-based systems with

DDD? Due to the incremental use of DDD in microservices-based systems development, some

authors have proposed procedural guidelines to overcome the most frequent challenges of
Microservice Architecture with the helplessness of DDD. These proposals are shown in Fig. 9, and

they were classified according to the proposal type described by the authors of primary studies where

they were extracted.

As shown in Fig. 9, 21 proposals were identified and classified into five categories. These categories

come from the denomination authors use to refer to their proposals. For example, the authors named

their proposals "Approaches" in six primary studies [35, 40, 43, 55-57]. In five primary studies [30,

33, 37, 39, 58], authors named their proposals as "Methodologies" and so on. Based on Fig. 9, it is

also possible to see that 80,95% of proposals were evaluated by authors. In comparison, 19.05%

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

50

were not evaluated, postponing their evaluation to future works or delegating the evaluation for

interested lectures.

Fig. 8. Challenges faced with DDD in microservices-based systems development.

Fig. 9. Proposals for microservices design with DDD.

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

51

4.2 Thematic Synthesis Results

As a result of the systematic literature review, a familiarization phase recommended by Braun and

Clark [24] was performed. However, a new data extraction was conducted based on RQs and

thematic synthesis guidelines [23]. This data collection enabled us to identify meaning patterns
among the data. This first level resulted in a set of code concepts seen as building blocks of themes.

A sum of 32 codes were identified from the evidence. These codes were transformed into 11 themes

that isolate the idea behind a group of codes. In the end, five higher-order themes were identified

through theme grouping. Based on the thematic synthesis process, it is possible to describe a

particular story of collected data, as mentioned by Braun and Clark [24]. This high-level overview

synthesized with thematic synthesis can be seen in Fig. 10 in the high-order themes model.

Fig. 10. Thematic Map of Domain-Driven Microservices Design.

(1) Cross-Stakeholders Communication. According to Vlad Khononov [4], the central idea of

DDD is the communication. The domain knowledge shared between domain experts and developers

should be clear and consistent. With this similar purpose, authors of primary studies familiarized

themselves with the domain experts' jargon and used it to cultivate a UL free of technical details and

ambiguous terms. This approach forms the basis of the theme "Ubiquitous Domain Language",

which consists of using UL as a business domain glossary to enrich the domain knowledge exchange

between stakeholders. This language is product of a distillation process, which is the idea behind the

"Domain Terminology Discovery" theme, and it is related to the use of elicitation techniques

mentioned in above sections.

(2) Microservice identification. Cultivating UL enables benefits related to effective

communication, but another consequence of its usage is the identification of BCs. Each BC acts as

a semantic boundary that delimits the meaning of the terms that conform to an UL. Through BCs, it

is possible to decompose a business domain into semantic domain partitions that represent

microservices. The theme "Domain Decomposition" encompasses all the activities and strategies

(described in the above sections) used by authors of primary studies for business domain partitioning

into BCs, subdomains, or Aggregates that represent microservices.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

52

Another strategy was identified using DDD analysis techniques to identify clusters of domain

concepts. The authors performed Event-storming to identify microservices candidates. This

technique and the use of domain events reflect the "Domain Data Flow Analysis" theme, which

involves the analysis of the closely related domain events that allowed authors to identify clusters

treated as microservices.

(3) Microservices Architecture Design. As shown in the above sections, all tactical design patterns

were translated into using the DDD domain model to design the business domain layer for each

microservice identified with strategic design. The domain layer is a crucial part of the architecture

of the microservices-based systems developed by authors, which is why the theme "Domain Model-

Based Microservices Design" was defined. However, some other technical details were not specified

with DDD artifacts.

Mainly in industry systems development, challenges related to the design specification of

microservices were mentioned. This lack of technical specification for microservices was why other

design patterns such as CQRS, Saga, Strangler Fig, and others were used together with standardized

diagrams to describe details related to the implementation of microservices. These design resources

used to refine the preliminary design obtained with DDD were defined as the "Detailed

Microservices Design" theme. We also notice another design resource to refine the design obtained

with DDD for each microservice. This is the use of technologies mentioned in primary studies PS-
05 and PS-09. This action to complement the design of microservices was defined as the "Design

Support Technologies" theme.

(4) Challenges. In answer to RQ6, challenges mentioned by authors of primary studies were

extracted. As a result of thematic analysis, these challenges were classified into two themes that

represent the two main difficulties faced by developers during microservices design with DDD. The

theme named "Inherent Complexity of Domain-Driven Design” is related to the lack of guidelines,

checkpoints, and a strict path to know if a developer is applying DDD correctly. Another challenge

was defined as "Domain Model Implementation Obstacles", which comes from the problems faced

by authors who tried to implement the DDD domain models. Some authors have made some

proposals; however, there are no rules, guidelines, or strict specific ways to generate code from these

DDD artifacts.

(5) Benefits. Just as the authors of primary studies have reported challenges in the use of DDD for

microservices-based systems development, some authors mentioned the benefits obtained from the

execution of some of DDD techniques and the use of its patterns. Some authors of primary studies
mentioned benefits related to development complexity. In PS-04, PS-05, and PS-30, authors

described the business domain complexity isolated into some DDD patterns such as BCs,

Aggregates, or Subdomains. This isolation enabled them to tackle the most significant complexity

of their microservices-based projects, the business domain logic. These benefits were grouped into

the theme "Business-Technical Alignment Advantages".

Furthermore, other primary study authors mentioned benefits during the microservices size

definition. Based on the decomposition process followed by authors, each microservice could

sometimes be represented as a BC or an Aggregate. This decomposition proposed by DDD

contributes to modifiability. These benefits related to the size of microservices were grouped in the

theme of “Microservices Sizing Benefits”.

5. Discussion

In this study, we successfully answered all the research questions by employing the research method

conduction. Our efforts involved collecting and synthesizing a wealth of knowledge on the practical

use of Domain-Driven Design (DDD) in developing microservices-based systems.

Analyzing the demographic results of the study yielded interesting findings, particularly an

increased interest in the adoption of DDD in Microservices Architecture (MSA). It is worth noting

that a gap exists between theoretical understanding and practical implementation of certain patterns,

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

53

such as Subdomain or BC. Consequently, through this research, we have provided evidence-based

knowledge on these patterns and their application. Our findings complement the grounded theory

study published by Singjai et al. [14] and the systematic review conducted by Schmidt et al. [15],

offering valuable insights into the practical use of DDD in microservices system design.

The utilization of Domain-Driven Design (DDD) has emerged as a vital component in the domain

analysis phase of microservices-based systems development within the industry. Strategic design,

in particular, plays a crucial role in establishing a shared understanding among stakeholders,

enabling authors to express ideas unambiguously. Conversely, developers have primarily utilized

tactical design to tackle controlled domain problems and serve specific purposes. Additionally,

existing literature indicates that DDD has been employed to decompose business domains into

microservices candidates in the analysis process. However, it is important to note that the BC pattern

is not the only one utilized or emphasized in the literature. Using UL for stakeholder interaction is

a common practice in complex domains where developers may not be familiar with the domain. On

the other hand, applying Tactical design in industrial projects has been less frequent. Thus, certain

DDD patterns, such as Domain Event, Event-Sourcing, and Domain Services, remain underutilized

in real-world contexts.

6. Threats to validity and limitations

In the literature reviews, Kitchenham and other authors [19, 22-23] emphasized the importance of
reliability. This aspect was carefully considered throughout the research process, from manual

search to data synthesis using Cruzes and Dyba's proposal. We implemented a series of mitigation

measures to minimize potential biases at various stages of the research.

To ensure the selection of relevant papers was unbiased, we utilized a manual search approach and

established inclusion and exclusion criteria based on the Quasi-Gold Standard. These criteria helped

us avoid solely relying on one search engine's studies. Once we identified primary studies, we further

augmented our research by employing a snowballing technique. This process helped to minimize

the possibility of overlooking any relevant studies.

Once the selection process was complete, the chosen primary studies underwent a rigorous

evaluation by the authors of this study to ensure their relevance to at least one RQ. Also, the authors

continuously reviewed and revised their work during the data extraction process to maintain

accuracy. Review questions were developed and regularly evaluated to avoid omissions and confirm

that no crucial data had been missed. The same meticulous approach was applied when defining

themes and subthemes, with each code being meticulously linked to specific text segments and the

themes closely tied to these codes. In the same way, the names assigned to the codes, themes, and

higher-order themes were determined through collaborative revisions among the authors of this

study.

7. Conclusion

In this study, we adopted the systematic literature review method proposed by Kitchenham [19] to

examine the utilization of DDD in developing a microservices-based system. We formulated seven

research questions (RQs) to guide our research process and ensure focused research. Our selection
process involved both manual and automatic searches to identify relevant studies. Through this

process, we identified 31 primary studies. We also employed snowballing techniques to enhance our

selection, which led us to four additional studies. We then conducted a preliminary synthesis to

familiarize ourselves with the primary studies and address the RQs, mainly focusing on the

application of DDD in the development of microservices-based systems. To gather the necessary

data, we performed an extraction process. To provide a comprehensive analysis, we further

conducted a thematic synthesis utilizing the method proposed by Cruzes and Dyba. To complement

this approach, we also incorporated recommendations from the Braun and Clark proposal, ensuring

a robust analysis of the collected data.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

54

Throughout our analysis, we have identified specific details regarding the application of DDD that

contribute to enhancing effective knowledge sharing between developers and domain experts. These

details primarily revolve around the integration of UL with DDD and the utilization of various

elicitation techniques. Interestingly, these aspects have not been extensively addressed in related

studies, thereby providing fresh insights into the broader scope of DDD beyond its traditional

utilization for system decomposition.

Among the different uses we discovered, the most frequently reported one involves decomposing a

business domain or legacy system into microservices. However, our analysis captured new and

pertinent details about using strategic patterns to define the business scope of microservices, as well

as variations and adaptations.

Most authors in the primary studies highlighted the successful implementation of microservices,

explicitly noting the absence of coupling issues between microservices. Some authors went so far

as to underscore DDD's potential for achieving an optimal scope of microservices based on business

capabilities. While the remaining authors did not mention any problems in their DDD-driven

microservices systems, they did not specifically address certain characteristic aspects of DDD within

the context of MSA.

Despite the overall positive outcomes reported, some challenges persist in the practical application

of DDD. These challenges primarily stem from the perceived complexity of implementing DDD,

which can be particularly daunting for developers without prior experience analyzing and designing

intricate business domains. Additionally, there is an opportunity for future work in refining the
implementation of DDD artifacts, such as the domain model, to further enhance its effectiveness and

efficiency in microservices development. Finally, we envision future work focused on delving into

the creation of DDD patterns that allow the development of code that effectively represents the

underlying business logic, with minimal dependencies on specific programming languages based on

Object-Oriented Programming.

Conflict of interest

The authors declare that they have no conflicts of interest.

References
[1]. J. Sangabriel-Alarcón, J. O. Ocharán-Hernández, K. Cortés-Verdín, and X. Limón, “Domain-Driven

Design for Microservices Architecture Systems Development: A Systematic Mapping Study,” in 2023
11th International Conference in Software Engineering Research and Innovation (CONISOFT), 2023, pp.

25–34.
[2]. E. Evans, “Domain-driven design: tackling complexity in the heart of software,” p. 529, 2004.
[3]. E. Evans, “Domain-Driven Design Reference: Definitions and Pattern Summaries”, 2014.
[4]. V. Khononov and J. Lerman, “Learning domain-driven design: aligning software architecture and business

strategy”, p. 312, 2021.
[5]. V. Vernon, “Implementing Domain-Driven Design”, 2013.
[6]. V. Velepucha and P. Flores, “Monoliths to microservices-Migration Problems and Challenges: A SMS,”

Proceedings - 2021 2nd International Conference on Information Systems and Software Technologies,

ICI2ST 2021, pp. 135–142, Mar. 2021, doi: 10.1109/ICI2ST51859.2021.00027.
[7]. G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices: Architecture, container, and

challenges,” Proceedings - Companion of the 2020 IEEE 20th International Conference on Software
Quality, Reliability, and Security, QRS-C 2020, pp. 629–635, Dec. 2020, doi: 10.1109/QRS-
C51114.2020.00107.

[8]. R. Mubashir, J. Ahmed, F. Khakwani, and T. Rana, Microservices Architecture: Challenges and Proposed
Conceptual Design. 2019.

[9]. S. Salii, J. Ajdari, and X. Zenuni, “Migrating to a microservice architecture: benefits and challenges,”

2023.
[10]. S. Newman, “Building microservices: Designing fine-grained systems (second edition),” pp. 1–10, 2021.

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

55

[11]. F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of domain-driven microservice design: A model-
driven perspective,” IEEE Softw, vol. 35, no. 3, pp. 36–43, May 2018, doi: 10.1109/MS.2018.2141028.

[12]. M. Tello-Rodríguez, J. O. Ocharán-Hernández, J. C. Pérez-Arriaga, X. Limón, and Á. J. Sánchez-García,
“A Design Guide for Usable Web APIs,” Programming and Computer Software, vol. 46, no. 8, pp. 584–
593, 2020, doi: 10.1134/S0361768820080241.

[13]. B. Jin, S. Sahni, and A. Shevat, “Designing Web APIs,” 2018.
[14]. A. Singjai, U. Zdun, and O. Zimmermann, “Practitioner Views on the Interrelation of Microservice APIs

and Domain-Driven Design: A Grey Literature Study Based on Grounded Theory,” in Proceedings - IEEE

18th International Conference on Software Architecture, ICSA 2021, Institute of Electrical and Electronics
Engineers Inc., Mar. 2021, pp. 25–35. doi: 10.1109/ICSA51549.2021.00011.

[15]. R. A. Schmidt and M. Thiry, “Microservices identification strategies: A review focused on Model-Driven
Engineering and Domain Driven Design approaches,” in 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI), IEEE, 2020. Accessed: Nov. 13, 2022. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.uv.mx/document/9141150/.

[16]. A. Macias, E. Navarro, C. Cuesta, and U. Zdun, “Architecting Digital Twins Using a Domain-Driven
Design-Based Approach,” International Conference on Software Architecture (ICSA), no. 62, pp. 183–

209, 2023, doi: 10.13039/501100011033.
[17]. C. Praschl, S. Bauernfeind, C. Leitner, and G. A. Zwettler, “Domain-Driven Design as Model Contract in

Full-Stack Development,” in International Conference on Electrical, Computer, Communications and
Mechatronics Engineering, ICECCME 2023, Institute of Electrical and Electronics Engineers Inc., 2023.
doi: 10.1109/ICECCME57830.2023.10252654.

[18]. F. Rademacher, S. Sachweh, and A. Zündorf, “Towards a UML profile for domain-driven design of
microservice architectures,” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10729 LNCS, pp. 230–245, 2018, doi:
10.1007/978-3-319-74781-1_17/COVER.

[19]. B. A. Kitchenham, D. Budgen, and P. Brereton, “Evidence-Based Software Engineering and Systematic
Reviews,” 2015.

[20]. H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,” Inf Softw
Technol, vol. 53, no. 6, pp. 625–637, Jun. 2011, doi: 10.1016/j.infsof.2010.12.010.

[21]. C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software
engineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering - EASE ’14, New York, New York, USA: ACM Press, 2014, pp. 1–10. doi:
10.1145/2601248.2601268.

[22]. J. Popay et al., “Guidance on the conduct of narrative synthesis in systematic Reviews. A Product from
the ESRC Methods Programme. Version 1,” undefined, 2006, doi: 10.13140/2.1.1018.4643.

[23]. D. S. Cruzes and T. Dybá, “Recommended steps for thematic synthesis in software engineering,” in
International Symposium on Empirical Software Engineering and Measurement, IEEE Computer Society,
2011, pp. 275–284. doi: 10.1109/esem.2011.36.

[24]. V. Clarke and V. Braun, “Thematic analysis: A practical guide,” London: SAGE, 2021, Accessed: Oct.
30, 2023. [Online]. Available: https://uk.sagepub.com/en-gb/eur/thematic-
analysis/book248481#description.

[25]. J. Sangabriel-Alarcón, J. O. Ocharán-Hernández, X. Limón, and K. Cortés-Verdín, “Domain-Driven
Design in Microservices-Based Systems Development: A Systematic Literature Review and Thematic
Analysis [Dataset].” [Online]. Available: https://zenodo.org/records/13294975.

[26]. PS-01. G.-C. Pan, P. Liu, and J.-J. Wu, “A Cloud-Native Online Judge System,” in 2022 IEEE
COMPSAC, 2022, doi: 10.1109/COMPSAC54236.2022.00204.

[27]. PS-02. N. Ivanov and A. Tasheva, “A Hot Decomposition Procedure: Operational Monolith System to
Microservices,” in 2021 IEEE ICAI, 2021, doi: 10.1109/ICAI52893.2021.9639494.

[28]. PS-03. M. I. Joselyne, G. Bajpai, and F. Nzanywayingoma, “A Systematic Framework of Application

Modernization to Microservice-based Architecture,” in 2021 IEEE ICEET, 2021, doi:
10.1109/ICEET53442.2021.9659783.

[29]. PS-04. A. Singjai and U. Zdun, “Conformance Assessment of Architectural Design Decisions on the
Mapping of Domain Model Elements to APIs and API Endpoints,” in 2022 IEEE ICSA-C, 2022, doi:
10.1109/ICSA-C54293.2022.00058.

[30]. PS-05. F. Rademacher, S. Sachweh, and A. Zündorf, “Deriving Microservice Code from Underspecified
Domain Models Using DevOps-Enabled Modeling Languages and Model Transformations,” in 2020 IEEE
SEAA, 2020, doi: 10.1109/SEAA51224.2020.00047.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

56

[31]. PS-06. A. Steffens, H. Lichter, and J. S. Döring, “Designing a Next-Generation Continuous Software
Delivery System: Concepts and Architecture,” in 2018 ACM Conference on Software Engineering and
Applications, 2018, doi: 10.1145/3194760.3194768.

[32]. PS-07. Y. Ding et al., “Enterprise Service Application Architecture Based on Domain Driven Model
Design,” in 2020 IEEE ITCA, 2020, doi: 10.1109/ITCA52113.2020.00167.

[33]. PS-08. P. Ray and P. Pal, “Extending the SEMAT Kernel for the Practice of Designing and Implementing
Microservice-Based Applications using Domain Driven Design,” in 2020 IEEE CSEET, 2020, doi:
10.1109/CSEET49119.2020.9206200.

[34]. PS-09. A. Krause et al., “Microservice Decomposition via Static and Dynamic Analysis of the Monolith,”
in 2020 IEEE ICSA-C, 2020, doi: 10.1109/ICSA-C50368.2020.00011.

[35]. PS-10. C.-Y. Li, S.-P. Tseng, and T.-W. Lu, “Microservice Migration Using Strangler Fig Pattern: A Case
Study on the Green Button System,” in 2020 IEEE ICS, 2020, doi: 10.1109/ICS51289.2020.00107.

[36]. PS-11. A. Rahmatulloh et al., “Microservices-Based IoT Monitoring Application with a Domain-Driven
Design Approach,” in 2021 IEEE ICADEIS, 2021, doi: 10.1109/ICADEIS52521.2021.9701966.

[37]. PS-12. M. I. Josélyne et al., “Partitioning Microservices: A Domain Engineering Approach,” in 2018 ACM
Conference on Software Engineering and Applications, 2018, doi: 10.1145/3195528.3195535.

[38]. PS-13. M. Pham and D. B. Hoang, “SDN Applications - The Intent-Based Northbound Interface
Realization for Extended Applications,” in 2016 IEEE NetSoft, 2016, doi:
10.1109/NETSOFT.2016.7502469.

[39]. PS-14. E. Cabrera et al., “Towards a Methodology for Creating Internet of Things (IoT) Applications
Based on Microservices,” in 2020 IEEE SCC, 2020, doi: 10.1109/SCC49832.2020.00072.

[40]. PS-15. R. Petrasch, “Model-Based Engineering for Microservice Architectures Using Enterprise
Integration Patterns for Inter-Service Communication,” in 2017 IEEE JCSSE, 2017, doi:
10.1109/JCSSE.2017.8025912.

[41]. PS-16. J. Dobaj et al., “A Microservice Architecture for the Industrial Internet-Of-Things,” in 2018 ACM

Conference on Software Engineering and Applications, 2018, doi: 10.1145/3282308.3282320.
[42]. PS-17. S. Braun, A. Bieniusa, and F. Elberzhager, “Advanced Domain-Driven Design for Consistency in

Distributed Data-Intensive Systems,” in 2021 ACM Conference on Software Engineering and
Applications, 2021, doi: 10.1145/3447865.3457969.

[43]. PS-18. M. Khemaja, “Domain Driven Design and Provision of Micro-Services to Build Emerging
Learning Systems,” in 2016 ACM Conference on Software Engineering and Applications, 2016, doi:
10.1145/3012430.3012643.

[44]. PS-19. Z. Li, “Using Public and Free Platform-as-a-Service (PaaS) Based Lightweight Projects for

Software Architecture Education,” in 2020 ACM Conference on Software Engineering and Applications,
2020, doi: 10.1145/3377814.3381704.

[45]. PS-20. P. Oukes et al., “Domain-Driven Design Applied to Land Administration System Development:
Lessons from the Netherlands,” in Land Use Policy, vol. 105, 2021, doi:
10.1016/j.landusepol.2021.105379.

[46]. PS-21. C. E. da Silva, Y. de Lima Justino, and E. Adachi, “SPReaD: Service-Oriented Process for
Reengineering and DevOps,” in Software: Practice and Experience, 2022, doi: 10.1007/s11761-021-
00329-x.

[47]. PS-22. C.-Y. Fan and S.-P. Ma, “Migrating Monolithic Mobile Application to Microservice Architecture:
An Experiment Report,” in 2017 IEEE AIMS, 2017, doi: 10.1109/AIMS.2017.23.

[48]. PS-23. A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City Internet of Things Platform with
Microservice Architecture,” in 2015 IEEE FiCloud, 2015, doi: 10.1109/FiCloud.2015.55.

[49]. PS-24. K. Zhang et al., “Design of Domain-Driven Microservices-Based Software Talent Evaluation and
Recommendation System,” in 2022 IEEE ICEKIM, 2022, doi: 10.1109/ICEKIM55072.2022.00076.

[50]. PS-25. Q. Li, W. Sun, and R. Ma, “Sharing Platform of Digital Specimen of Wood Canker Based on
WebGIS in Xinjiang Province: Architecture, Design and Implementation,” in 2022 IEEE CIPAE, 2022,

doi: 10.1109/CIPAE55637.2022.00029.
[51]. PS-26. T. Raffin et al., “A Reference Architecture for the Operationalization of Machine Learning Models

in Manufacturing,” in Procedia CIRP, vol. 2022, 2022, doi: 10.1016/j.procir.2022.10.062.
[52]. PS-27. C. Batista et al., “Towards a Multi-Tenant Microservice Architecture: An Industrial Experience,”

in 2022 IEEE COMPSAC, 2022, doi: 10.1109/COMPSAC54236.2022.00100.
[53]. PS-28. C. Praschl et al., “Domain-Driven Design as Model Contract in Full-Stack Development,” in 2023

IEEE ICECCME, 2023, doi: 10.1109/ICECCME57830.2023.10252654.

Сангабриэль-Аларкон Х., Очаран-Эрнандес Х. О., Лимон К., Кортес-Вердин M. К. Предметно-ориентированное проектирование в

микросервисной архитектуре. Труды ИСП РАН, 2024, том 36 вып. 6, с. 39-58.

57

[54]. PS-29. N. Legowo et al., “Designing Service Oriented Architecture Model in Sehatin Application with a
Domain-Driven Design Approach,” in 2023 IEEE ICIMTech, 2023, doi:
10.1109/ICIMTech59029.2023.10278057.

[55]. PS-30. A. Macías et al., “Architecting Digital Twins Using a Domain-Driven Design-Based Approach,”
in 2023, doi: 10.13039/501100011033.

[56]. PS-31. I. V. P. and V. P. H., “An Approach to Clean Architecture for Microservices Using Python,” in
2023 IEEE CSITSS, 2023, doi: 10.1109/CSITSS60515.2023.10334229.

[57]. PS-32. M. Saidi, A. Tissaoui, and S. Faiz, “A DDD Approach Towards Automatic Migration To

Microservices,” in 2023 IEEE IC_ASET, 2023, doi: 10.1109/IC_ASET58101.2023.10150522.
[58]. PS-33. M. Camilli et al., “Actor-Driven Decomposition of Microservices through Multi-Level Scalability

Assessment,” in 2023, doi: 10.1145/3583563.
[59]. PS-34. O. Özkan, Ö. Babur, and M. van den Brand, “Refactoring with Domain-Driven Design in an

Industrial Context: An Action Research Report,” in Software: Practice and Experience, 2023, doi:
10.1007/s10664-023-10310-1.

[60]. PS-35. E. T. Nordli et al., “Migrating Monoliths to Cloud-Native Microservices for Customizable SaaS,”
in Information and Software Technology, vol. 2023, 2023, doi: 10.1016/j.infsof.2023.107230.

Информация об авторах / Information about authors

Хосуэ САНГАБРИЭЛЬ-АЛАРКОН – инженер-программист, разработчик программного

обеспечения Университете Веракруса (Мексика). Сфера научных интересов: архитектура

программного обеспечения, проектирование программного обеспечения, инженерия

требований, моделирование данных.

Josué SANGABRIEL-ALARCÓN – Software Engineer. Software Developer at Universidad

Veracruzana, Mexico (University of Veracruz). Research interests: software architecture, software

design, requirements engineering, data modeling.

Хорхе Октавио ОЧАРАН-ЭРНАНДЕС имеет степень PhD по программированию, доцент
факультета статистики и информатики Университета Веракруса (Мексика). Сфера научных

интересов: архитектура программного обеспечения, инженерия требований, программная

инженерия, разработка прикладных интерфейсов.

Jorge Octavio OCHARÁN-HERNÁNDEZ – PhD in Computer Science, Associate Professor at the

Facultad de Estadística e Informática, Universidad Veracruzana, Mexico (School of Statistics and

Informatics, University of Veracruz) since 2017. Research interests: software architecture,

requirements engineering, software engineering, API design.

Ксавьер ЛИМОН имеет степень PhD по искусственному интеллекту, доцент факультета

статистики и информатики Университета Веракруса (Мексика). Сфера научных интересов:

интеллектуальный анализ данных, мультиагентные и распределенные системы, архитектура

программного обеспечения.

Xavier LIMÓN – PhD in Artificial Intelligence, Associate Professor at Facultad de Estadística e

Informática, Universidad Veracruzana, Mexico (School of Statistics and Informatics, University of

Veracruz). Research interests: data mining, multiagent systems, distributed systems, software

architecture.

М. Карен КОРТЕС-ВЕРДИН имеет степень PhD по искусственному интеллекту, профессор

факультета статистики и информатики Университета Веракруса (Мексика). Сфера научных

интересов: программные продуктовые линии, архитектуры программного обеспечения,

аспектно-ориентированное программирование, разработка программного обеспечения,

ориентированного на решение конкретных задач, процессы программирования, качество

программного обеспечения, моделирование программ.

Sangabriel-Alarcón J., Ocharán-Hernández J. O., Limón X., Cortés-Verdín M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

58

María Karen CORTÉS-VERDÍN – PhD in Computer Science, Professor at School of Statistics and

Informatics, Universidad Veracruzana, Mexico. Research interests: software product lines, software

architectures, aspect-oriented software development, concern-oriented software development,

software process, software quality, software modeling.

	1. Introduction
	2. Related work
	3. Research method and conduction
	3.1 Search process
	3.2 Selection process
	3.3 Snowballing process
	3.4 Data extraction process
	3.5 Data synthesis
	4. Results
	4.1 Answers to research questions
	4.2 Thematic Synthesis Results
	5. Discussion
	6. Threats to validity and limitations
	7. Conclusion
	Conflict of interest
	References
	Информация об авторах / Information about authors

