Tpyowr ICIT PAH, mom 36, éwin. 6, 2024 2./ Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024

DOI: 10.15514/ISPRAS-2024-36(6)-3 ‘@H

Domain-Driven Design in Microservices
Architecture

J. Sangabriel-Alarcén, ORCID: 0009-0002-2682-502X <josusangabriel@uv.mx>
J. O. Ocharan-Hernandez, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>
X. Lim6n, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>
M. K. Cortés-Verdin, ORCID: 0000-0002-6453-180X <kcortes@uv.mx>

School of Statistics and Informatics, Universidad Veracruzana,
Xalapa, Veracruz, México.

Abstract. With the increment in software development complexity, approaches such as Domain-Driven Design
(DDD) are needed to tackle contemporary business domains. DDD is already being used in various software
projects with different architectural styles. Although some studies have explored the decomposition of business
domains or legacy monolithic systems into microservices, there is a lack of concrete information regarding the
practical implementation of DDD in this architectural style. The paper systematizes findings on the purpose of
using DDD, its patterns, associated technologies, and techniques to increase the clarity about the use of DDD
in microservices-based systems development. A systematic literature review of 35 articles was conducted.
Thematic analysis was employed to identify five high-order themes and 11 themes. Based on our analysis, we
have concluded that microservice identification emerges as the primary motivation behind developers' adoption
of DDD, but not the only usage of DDD reported in the literature. Finally, our analysis found benefits and
challenges in the use of DDD in Microservices Architecture which are translated to opportunity areas for future
works.

Keywords: domain-driven design; microservices architecture; systematic literature review; thematic analysis.

For citation: Sangabriel-Alarcdn J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven
Design in Microservices Architecture. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58. DOI:
10.15514/ISPRAS-2024-36(6)-3.

Acknowledgements. This work was supported by ongoing institutional funding. No additional grants to carry
out or direct this particular research were obtained.

39

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

MNpenmeTHO-OpMEeHTUPOBAHHOE NPOEKTUPOBaHME B MUKPOCEPBUCHOM
apXuTeKType

X. Caneabpusnv-Anapron, ORCID: 0009-0002-2682-502X <josusangabriel@uv.mx>
X. O. Ouapan-Ipnanoec, ORCID: 0000-0002-2598-1445 <jocharan@uv.mx>
K. Jlumon, ORCID: 0000-0003-4654-636X <hlimon@uv.mx>
M. K. Kopmec-Bepoun, ORCID: 0000-0002-6453-180X <kcortes@uv.mx>

LlIxona cmamucmuxu u ungpopmamuxu, Ynusepcumem Bepakpyca,
Xanana, Bepaxpyc, Mexcuxa.

AnHorammsi. C yBelMYeHHWEM CIOXHOCTH pa3pabOTKM MPOrpaMMHOIO OOECHEeUYeHUs Ul penIeHHs
COBpEMEHHBIX OW3Hec-3aJad HEOOXOAMMBI TaKWe TIIOAXOABI, KaK IPeJMETHO-OPHEHTHPOBAHHOE
npoektupoBanre (Domain-Driven Design, DDD). DDD yxe HcHoib3yeTcst B pa3inyuHbIX MPOrPaMMHBIX
MIPOEKTAX C Pa3HBIMH aPXUTEKTYPHBIMHU CTHIISIMH. XOTSI B HEKOTOPBIX HCCIEOBAHMAX H3yJaJIOCh Pa3IOKeHNE
OM3HEC-TOMEHOB WM YHACJIEIOBAaHHBIX MOHOJNWTHBIX CHCTEM HAa MHKPOCEPBHCHI, IIOKA OTCYTCTBYET
KOHKpeTHast ”H(OpMAaIHs OTHOCHTENBHO pakTHdeckolt peanm3anuy DDD B sTom apxurexrypHoM cruie. J{is
TIOBBIIIEHHS SICHOCTH B OTHOIIEHNH Hcrionb3oBaHuss DDD B pa3paboTke cucTeM Ha OCHOBE MUKPOCEPBHCOB B
Halel CTaThe CHCTEMAaTH3MPOBAaHBI BBIBOABI O ILENsX ucronb3oBaHusi DDD, ero momensx, CBS3aHHBIX
TEXHOJIOTMAX M Meronax. Hamu Obl1 mpoBesieH cucTeMarhueckuid o030op nurepatypbl n3 35 crareil.
Temarnyecknii aHaaW3 MOMOT BBISBUTH 11 TeM M mATH TeM Ooiiee BhICOKOTO rmopsiaka. OCHOBBIBasCh Ha
MIPOJIETTAHHOM aHaJIM3€e, MbI IPHUILTH K BBIBOAY, YTO HACHTU(HUKAIMSI MUKPOCEPBUCOB CTAHOBHUTCS OCHOBHOM
MOTHBaIel NpuHATHs pazpadorunkamu DDD, HO mpu 3TOM BOBCE HE SIBIISETCS €IMHCTBEHHOW NPHYNHOM
ucronb3oBanus DDD, o kotopoii coobmaercs B auTeparype. HakoHer, Hall aHaiu3 BBISIBUIT TIPEUMYIIECTBA
u npobnemMsl B ucnonb3oBaHun DDD B apXuTeKType MHKPOCEPBHCOB, KOTOpbIe OYIYT YYUTHIBATHCS HPH
MpoBeieHUU paboT B OyaymieM.

KioueBbie cJioBa: NPEeIMETHO-OPUCHTUPOBAHHOC IIPOCKTUPOBAHUEC; MHMKPOCEPBHCHAs ApPXUTCKTYpa;
CUCTEeMATHYECKUI J'IPITepaTypHLIfI 0630p; TEMaTUYECKUH aHalu3.

Jst nurupoBanusi: Canrabpuanb-Anapkon X., Ouapan-Opnangec X. O., Jlumon K., Koprec-Bepnun M. K.
[IpeaMeTHO-OpHEHTUPOBAHHOE IPOSKTUPOBaHKE B MUKpocepBUcHOH apxutekrype. Tpyast UCIT PAH, Tom 36,
Bl 6, 2024 1., crp. 39-58 (Ha anrmiumiickom s3bike). DOI: 10.15514/ISPRAS-2024-36(6)-3.

BaarogapHoctu. PaGora Obuia mojgepkaHa TEKYIIUM HHCTHUTYIIHMOHAIBHBIM (puHaHCHpOBaHHeM. Hukakux
JOTOIHUTEIBHBIX TPAHTOB ISl IIPOBEJICHHS WIIM PYKOBOJCTBA 3THM KOHKPETHBIM HCCIISIOBAHUEM IMOIYYEHO
He OBLIO.

1. Introduction

This paper is an extension of work initially presented at the 11" International Conference in Software
Engineering Research and Innovation (CONISOFT 2023) [1]. The original study is a systematic
mapping study on Domain-Driven Design (DDDS) for Microservices Architecture Systems
Development. In this paper, we conducted a comprehensive systematic literature review and
employed thematic synthesis to identify and analyze patterns in the uses of DDD in this context.
This study synthesizes the findings from a broader range of primary studies and search strategies.
Since the release of Eric Evans' book "The Blue Book™ in 2004 [2], a community of practitioners
has emerged who explore the use of DDD and patterns in different software development projects.
DDD can be understood as an approach that addresses the complexities of a business by emphasizing
the team's focus on domain knowledge [2]. Some authors [3-5] have proposed patterns and
techniques to analyze business domains and incorporate that knowledge into software projects.
DDD patterns can be classified as strategic and tactical designs, which are the key elements of this
approach. Strategic design involves domain analysis and decomposition. On the other hand, tactical
design translates the knowledge acquired from strategic design into actual lines of code [4].

When applying MSA in practice, developers have encountered a range of challenges in achieving
the desired properties of this architectural style [6-9]. Based on the challenges highlighted by various
40

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

authors concerning MSA, several studies aim to reduce the complexity in the development of
microservices-based systems. While some proposals have been put forth to address these challenges,
no definitive solution has emerged. However, the use of DDD has been featured prominently in
these proposals. This connection between DDD and MSA can be traced back to the 2014 definition
of MSA, and the principles of DDD have frequently been referenced within microservices.

Despite the theoretical discussion [10-11] of the relationship between these approaches,
uncertainties have surrounded their practical application. Additionally, the challenges associated
with MSA [7, 9], combined with those of DDD [11], have given rise to new challenges in the
practical implementation of microservices development with DDD. This lack of clarity regarding
DDD for microservices development has created a gap between theory and practice. The issue
concerning the knowledge gap between the theory and practice of DDD is directly tied to the
practical advantages it offers in designing microservices-based systems. In some studies, [12-13], a
set of strategies and techniques to design APIs have been reported to deal important decisions about
microservices, where the granularity definition of microservices has been one of the most important
themes around mentioned architecture. However, various ideas, patterns, and techniques within
DDD have often been cited concerning achieving mentioned benefits related to well-defined
granularity for microservices. Moreover, incorporating DDD principles suggests enhanced
efficiency in stakeholder collaborative work [13]. The mentioned benefits of DDD are examples of
potential solutions for microservices challenges, which are hindered by the lack of knowledge about
the use of DDD principles and patterns in a practical context.

This lack of clarity can be mitigated by analyzing practical cases documented in the literature
regarding the utilization of DDD in the development of microservices-based systems. While other
studies have addressed this issue, hone provide specific reasons for authors' decisions to employ
DDD in microservices development and the corresponding outcomes. Among these unexplored
aspects, it is crucial to determine the DDD techniques employed, identify the patterns utilized in
microservices design, and explore other pertinent details that shed light on the limitations and areas
of opportunity in using DDD for microservices-based development.

To better understand the practical use of DDD in developing microservices-based systems, this study
extends our previously systematic mapping study [1]. We conducted a systematic literature review
complemented with a thematic analysis. The objective was to investigate the current state of the art
in microservices development with DDD in practical scenarios. We compiled and analyzed a
collection of diverse studies that reported the use of DDD in their microservices projects from 2014
to 2023. The findings obtained from this evidence can assist developers in identifying the practical
applications and adaptations made by their peers when utilizing DDD. Furthermore, this research
can also help uncover DDD's limitations and identify areas of opportunity where this approach can
effectively address the main challenges associated with microservices development.

This study is organized as follows: Section 2 provides an overview of the related work in this field.
Section 3 outlines the research method chosen for conducting the systematic literature review. The
execution of this research method is described in Section 4. The results obtained from the research
method are presented in Section 5, followed by a discussion in Section 6. Section 7 addresses the
potential threats to the validity of this study. Finally, Section 8 presents the conclusions drawn from
the evidence collected in this research.

2. Related work

This section provides an overview of the research work associated with the objective of this study.
In a study by Singjai etal. 2021 [14], the authors investigated Architectural Design Decisions (ADD)
associated with API design and DDD patterns using a grounded theory research method. The APIs
developed using DDD served as the foundation for modeling microservices. Specifically, Singjai et
al. identified six ADDs and 27 decision options about utilizing the DDD domain model and strategic
patterns for delineating API specifics. It is important to note that this study was limited to gray

41

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

literature and did not analyze white literature sources. Singjai et al. acknowledged the risk of
generalizing their findings, underscoring the potential for additional resources in different data
sources relevant to the research topic.

Schmidt et al. also conducted a relevant study in 2020 [15], which entailed a systematic literature
review focused on microservices identification proposals. This study examined two distinct
development approaches: Model-Driven Development (MDD) and DDD. The authors collected a
set of primary studies from 2013 to 2019, of which 27 were considered for review. Among these 27
primary studies, only four included DDD patterns specifically for microservices identification.
While the study primarily focused on white literature, it did not specifically address the examination
of DDD and MSA practices as its main objective. Given the time frame covered by Schmidt et al.
and the recent surge in research highlighting the relationship between DDD and MSA, as mentioned
in various studies [16-18], there arises a clear need for a dedicated study that concentrates on the
utilization of DDD within the context of developing microservices-based systems.

This study will solely encompass white literature to narrow the research scope and delve into
previously unexplored evidence of the integration of DDD and MSA. By concentrating solely on
white literature, we aim to complement existing related work and provide an analysis of DDD's
application in developing microservices-based systems.

3. Research method and conduction

This section describes the method followed for our systematic literature review. Firstly, we followed
the Kitchenham proposal [19] for evidence-based research on software engineering. In addition,
other methods were selected to complement some phases and activities of the research. The methods
used to complement the systematic literature review were: (I) Automatic search with Zhang et al.
proposal [20], (I1) Snowballing process proposed by Wohlin [21], (111) Narrative synthesis from
Popay et al. proposal [22], and (IV) Thematic synthesis from the proposal of Cruzes & Dyba [23].
To complement the analysis with thematic synthesis, some guidelines of the Thematic analysis
method proposed by Clark & Braun [24] were performed in this study.

3.1 Search process

We started following Phase 1 of the systematic literature review method proposed by Kitchenham.
Following the mentioned method, we defined and refined a set of research questions (RQ) during
the research process. These RQs were documented in a systematic literature review protocol [25]
and uploaded in Zenodo [25].

These RQs were guidelines for the research process and the key criteria for discarding or selecting
papers during the search process. Through a manual search, relevant studies were identified, and
they were the basis for performing an automatic search. We chose the proposal from Zhang et al.
[20] to create a search string that facilitates the identification of primary studies on different engines.
The automatic search method of Zhang et al. is closely related to systematic literature review studies
[19], and the proposal of strict metrics to evaluate the quality of a search string (Recall and Precision)
reduces the likelihood of missing relevant studies.

Following the automatic search proposal by Zhang et al., the relevant studies found from manual
search formed the Quasi-Gold Standard (QGS) [20]. The relevant studies identified after manual
search were published in the following databases: IEEE Xplore, ACM Digital Library,
ScienceDirect, and SpringerLink. With 18 studies that conformed to the QGS and IEEE Xplore
selected as the evaluation engine, we evaluated different versions of the search string with the Recall
and Precision metrics following the recommendations of Zhang et al. [20], where the search string
was only approved when its recall was at least 80%. Several iterations of search string evaluation
were performed.

42

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

3.2 Selection process

Once the search string was built, we established inclusion and exclusion criteria based on the
characteristics of primary studies that formed the QGS. For the filter process, the selection criteria
were grouped into four stages. Stage 1 was performed through the year and type filters of engines
selected. Stage 2 grouped exclusion criteria related to the access of papers and the duplicated studies
between engines. This duplication was identified mainly between ACM Digital Library and IEEE
Xplore, where four duplicated studies were found during the manual search. Stage 3 involved the
reading of the title and abstract of each paper. Lastly, in Stage 4, the papers were downloaded and
read to confirm that the content answered at least one RQ.

As a result of the selection process, some papers were included and excluded through different
stages. A sum of 624 studies was collected from the execution of search strings in all engines. After
Stage 1, 357 studies were filtered. In Stage 2, 155 studies were discarded. After Stage 3, 79 studies
were discarded, obtaining 123 relevant studies. As a result of Stage 4, 31 primary studies were
identified.

3.3 Snowballing process

After the selection process, 31 primary studies were identified. However, some primary studies
could have been omitted during the selection process, so we decided to perform a snowballing
process. We chose the process proposed by Wohlim [21]. This method proposes a systematic
selection based on the relationship between studies through their references, which allows the
division of the entire process into backward and forward. Firstly, we performed a backward
snowhalling, followed by a foreward snowballing. At the end of the snowballing process, 35 primary
studies were identified as sum of the primary studies of automatic search and the four primary studies
found in snowballing [26-60].

3.4 Data extraction process

Following the recommendations of Kitchenham for a systematic literature review, we performed a
preliminary synthesis based on the proposal of Popay et al. [22] to identify the answers to the RQs.
We performed only some steps of narrative synthesis to confirm that each primary study answered
at least one RQ. This preliminary synthesis also allowed us to familiarize ourselves with the content
of primary studies. This familiarization phase is one of the first steps of thematic synthesis [23]. We
also performed a thematic synthesis, where the data was combined, and grouped into Themes to
express higher-order ideas such as Cruzes and Dyba expressed in their proposal [23].

3.5 Data synthesis

As part of Phase 2 of Kitchenham’s method is the Synthesis of research. This process is a crucial
part of the analysis of evidence. Through an interpretative and systematic process, new knowledge
is generated based on a set of data. Thematic synthesis allows us to combine, compare, and explore
the patterns in the data. These meaning patterns are helpful in generating new conclusions
(generalizations) to achieve the aim of this study and complete Kitchenham’s method. The thematic
synthesis method was based on the thematic analysis proposed by Braun and Clark [24], providing
guidelines to explore the evidence and cover the step "Data synthesis" of the Kitchenham method.
The first step of thematic synthesis corresponds to familiarization with primary studies. The
mentioned preliminary synthesis was also used to cover the first step. The second is identifying text
segments from primary studies that answer the RQs. This second step inspired the second data
extraction for thematic synthesis mentioned in Section 3.4. The third step was the label of text
segments. This step was performed through coding in MaxQDA? 2020, where the codes were filled

! https://www.maxqda.com/
43

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

out in the tabular formats described in Section 3.4. The code labels were refined through consensus
among the authors of this study.

The fourth step was the identification of themes as a set of closely related codes. Each code
represents a relevant and single-faceted concept, while each theme represents a multi-faceted idea
[24]. Therefore, we grouped codes that explain the meaning of the same background idea. After
identifying the themes, they were grouped into higher-level taxonomies (Higher-order themes).
These higher-order themes related to a set of themes show the high-level overview of the data from
the evidence collected.

4. Results

The products obtained from the method conduction are shown in this section. These results
encompass answers for RQs and a thematic map that synthesizes all data collected by this study.
The use of DDD in microservices-based systems development has increased in recent years, where
2023 represents the year with the most significant number of primary studies published. The
distribution graphic with the publication years of primary studies is shown in Fig. 1.

Regarding the engines where primary studies were published, the IEEE Xplore was the engine where
the major number of primary studies were found, with 25 primary studies published. ACM Digital
Library was the second, with five primary studies published, ScienceDirect with three studies, and
SpringerLink with two studies. The graphic with the number of primary studies found per engine is
shown in Fig. 2.

8
7 7
5
3
2 2
1
0 I 0

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

[NN I -]

Primary srudies
o (] (8] = tn

=]

Publication years

Fig. 1. Primary studies by publication years.

4.1 Answers to research questions

The RQs were the guidelines of this study, and the findings obtained for each RQ enabled us to
understand the state of research on the use of DDD for microservices-based systems. This section
answers the research questions mainly with quantitative data and some qualitative details. However,
the product of qualitative analysis is shown in Section 5.2.

(1) RQ-1: What are the purposes of using DDD for microservices-based systems development? In
the use of DDD reported by authors, four motivations were identified in microservices-based
systems development. These motivations are shown in Fig. 3.

44

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

As shown in Fig. 3, almost all authors of the primary studies mentioned having used DDD for
microservices identification [26-52, 54-60], which consists of decomposing a business domain or
legacy system into partitions corresponding to microservice candidates.

30

25
25

20

15

10

Primary srudies

5
5 H = :
) - -
IEEE Xplore ACM Digital ScienceDirect SpringerLink
Library

Engine

Fig. 2. Primary studies by engine.
Microservice Identification 34
[PS-01 - P5-27, P5-29 - P5-35]
Design of each Microservice
[P5-03 - PS-07, PS-10, P5-12, PS-14, P5-17, _ 19
PS-20, PS-26 - P5$-31, P5-33 - P5-35]
Domain-Based Language Establishment 7
[P5-03, P5-09 - P5-12, P5-20, P5-34]

Wide Domain Decomposition
[PS-12, P5-13]

[
™

(=]
-
(=]

20 30 a0
Primary studies
Fig. 3. Purposes of DDD Usage in Microservices-Based Systems Development.

For this purpose, the strategic patterns BC and Subdomain were commonly used. The second most
frequent purpose by which authors chose DDD was the design of each microservice [28-32, 35, 37,
39, 42, 45, 51-56, 58-60]. This design took place after the microservices identification, and it refers
to the definition of a domain model that reflects business knowledge isolated into each microservice.
The third purpose shown in Fig. 3 was using Ubiquitous Language (UL) to cultivate a common
language between domain experts and the development team to increase communication
effectiveness [28, 34-37, 45, 59]. The fourth purpose was only identified in two primary studies [37,
38]. It uses a Subdomain pattern to split a broad business domain into more manageable partitions.
Unlike microservices identification, the use of DDD for wide domain decomposition is about

45

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

reducing the complexity of the business domain through partitioning, where each part of the domain
can be decomposed into several microservices.

(2) RQ-2: What is the evidence about the use of DDD for microservices-based systems
development? The first one was software systems, and the second was models. Fig. 4 shows the
systems developed by authors with DDD and Microservices Architecture. These systems were
classified into two kinds based on the details mentioned by the authors about their development
process and the context of the business domain problem.

As shown in Fig. 4, DDD was used to develop 36 microservices-based systems. Of these systems,
56,76% correspond to domains controlled and limited by authors to evaluate a proposal or explore
the use of some DDD patterns and principles (Example systems) [27, 29-30, 40, 44, 55-59]. On the
other hand, 43,24% of the mentioned systems correspond to real problems where it is necessary to
satisfy the necessity of the clients (Industry systems) [26, 28, 34-38, 45-50, 52-53, 58, 60].

Example systems
[PS-02, PS-04 - PS-05, PS-15, PS-19, 18 1
PS-30 - PS-34]

Industry systems

[PS-01, PS-03, PS-09 - PS-13, PS-20 1
- PS-25, PS-27 - PS-28, PS-33, PS-

35]
0 3 6 9 12 15 18 21
Microservices-based systems
H Developments from scratch Migrations Refactoring

Fig. 4. Microservices-Based Systems developed with DDD.

On the other hand, a set of models involved in the microservices design process were identified.
Some of them come from the DDD literature, but others were used to complement the design
obtained with DDD, according to the authors of primary studies. In Fig. 5, a set of models is shown,
classified by the type of system where the authors mentioned them.

Fig. 5 shows two DDD artifacts used during microservices design: the DDD Domain model and
Context map. However, the DDD artifacts were not enough to deal all the specification aspects of
microservices-based systems, reason why authors also used UML artifacts to complement the
preliminary design obtained with DDD models.

Some models were created by following a notation proposed by authors of primary studies, such as
the source model and sketching rough descriptions shown in Fig. 5. These artifacts do not seem to
follow a clear standard or notation.

(3) RQ-3: What DDD patterns are used in the microservices-based systems development? A
sum of 12 DDD patterns was used by the authors of primary studies in their microservices-based
systems design process. These patterns are shown in Fig. 6.

Based on Fig. 6, strategic patterns were mentioned mainly in industry systems, while tactical patterns
predominate in example systems. Fig. 6 shows BC as the DDD pattern most frequently mentioned
in primary studies [27-30, 34-38, 40, 44-48, 52, 54, 60]. This pattern was treated as a microservice
representation, and such as the definition by Evans [2], it delimits the scope of a model. The UL

46

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

pattern was used by authors of primary studies [28, 34-37, 45-46, 59] to increase the effectiveness
of communication between domain experts and the development team, enabling a clear
understanding of the problem. In addition, it is one of the patterns (together with Subdomain, ACL,
and CS) that was only mentioned by authors who developed an industry system.

b P10, P20 P 5
[PS-03 - PS-05, PS-10, PS-20, PS-27 - PS-30]

Use cases model 1 5
[PS-09 - PS-11, PS-20, PS-30, PS-34]

Class model “ 1
[PS-05, PS-11, PS-15]
Database model

[PS-03, PS-10, PS-22, PS-25, PS-30] el 3

Context map 3
[PS-09, PS-11, PS-12]

Deployment model 2
[PS-11, PS-33]

Microservice interaction model 3
[PS-11, PS-35]

Sketching rough descriptions
[PS-03, PS-12]

Components model
[PS-35]

Actor context model 1
[PS-09]

Flowchart
[PS-29]
Source model
[PS-03]

0 5 10 15 20

Microservices-based Systems
m Example systems Industry systems

Fig. 5. Models used with DDD for microservices design.

Regarding tactical patterns, they were presented in a DDD domain model to obtain a domain-
oriented microservices design. Entity was the tactical pattern most frequently mentioned by authors
of primary studies [28-30, 35, 37, 45, 54, 60], and it was not always related to the Aggregate pattern.
Unlike Entity, Aggregate is a pattern that requires using Entity and, optionally, other patterns such
as Value object, Domain service, Repository, and others. Value object and Domain service were
mentioned only as building blocks of the Aggregate pattern. Another pattern used with Aggregate
was Repository, which was responsible for manipulating persistent data of an Aggregate through
ACID transactions (Atomicity, Consistency, Isolation, and Durability). Event-Sourcing was a
pattern mentioned during the DDD design [30], but no details were given about its usage in the
microservices design.

(4) RQ-4: What technologies are used with DDD for microservices-based systems
development? As reported by the authors, a set of technologies was identified in the microservices-
based systems developments with DDD. Most of the technologies were used to implement
microservices-based systems, and only three were reported as complements of the design with DDD
[30, 34]. They are shown in Table 1.

(5) RQ-05: What techniques are used with DDD in the microservices-based systems
development? The techniques of DDD used to complement DDD identified during the
microservices-based systems development are shown in Fig. 7.

47

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.

Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

Bounded context
|PS-02 - PS-05, PS-09 - PS-13, PS-15, PS-19 - PS-23, PS-27, PS-29, PS-35]

Entity
[PS-03 - PS-05, PS-10, PS-12, PS-20, PS-29, PS-35]

Aggregate
[PS-03 - PS-05, PS-10, PS-20, PS-28]

Sub-domain
[PS-01, PS-10 - PS-13, PS-24, PS-29, PS-32]

Ubiquitous language
[PS-03, PS-09 - PS-12, PS-20 - PS-21, P5-34]

Domain service
|PS-04 - PS-05, PS-34]

Domain event
|PS-01, PS-03 - PS-04]

Value object
[PS-05, PS-10, PS-20]

Anti-corruption layer
[PS-20 - PS-21]

Event-Sourcing
|PS-05]

Repository
[PS-05]

Customer-Supplier
|PS-21)

B Industry systems

2
;
5

B

1

2

2
0 4 8 12 16 20 24 28

Microservices-based systems

Example systems

Fig. 6. Domain-Driven Design patterns used in microservices-based systems development.

Table 1. Technologies used with DDD for microservices-based systems development.

Technology name Description Primary studies Official web site
Eclipse Papyrus Design environment used by authors for | PS-05 https://eclipse.dev/pa
code derivation from a DDD domain pyrus/
model made with a UML Profile
ExplorViz The 3D tool used by authors to identify PS-09 https://explorviz.dev/
coupling degrees between BCs
(microservices).
Structure Static code analysis tool used to scan a PS-09 https://structure101.c
101 legacy monolithic project and obtain BC om/
candidates.

As shown in Fig. 7, the authors used two kinds of techniques during the microservices design:
elicitation techniques and DDD techniques. Context mapping was the DDD technique most
frequently used by authors to model microservices candidates as BCs in a context map [34, 36-35,
46, 52]. Event-Storming [4] was a technique related to DDD, as mentioned in PS-01 [26], to identify
subdomains, where each subdomain was considered a microservice. Although the authors of PS-01
[26] mentioned the work product obtained after Event-Storming execution (DDD subdomains), no
details were mentioned about the procedure followed to perform Event-Storming. Regarding
elicitation techniques, these were used together with UL [26, 28, 34, 36-37, 59, 60]. There are some
strategies described in DDD literature to cultivate a UL, such as Domain storytelling, Knowledge
crunching, and others. However, the authors of primary studies used interviews (mainly),
brainstorming, focus groups, and questionnaires to extract the domain knowledge from the

interaction with domain experts.

48

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

Context mapping
[PS-09, PS-11 - PS-12, PS-21, PS-27]

Interview
[PS-09, PS-11 - PS-12, PS-35]

Brainstorming
[PS-03, PS-12]

Focus group
[PS-12, PS-34]

Event storming
[PS-01]

Questionnaires
[PS-12]

o
[y

2 3

IS
wn
(=)]

Primary studies
Fig. 7. Techniques used together with DDD.

(6) RQ-06: What challenges are mentioned by authors during the development of
microservices-based systems? The authors mentioned 13 challenges when they used DDD in their
development processes. These challenges are shown in Fig. 8.

The challenges identified were classified into six categories based on the problems that the authors
described in primary studies. As shown in Fig. 10, the authors of primary studies mention two main
difficulties. The first one is the procedure that is not defined [27, 30, 45]. It consists of the lack of a
strict process to apply DDD techniques and patterns "correctly.”" The decision of what DDD pattern
should be used and how depends on the business domain and the comprehension of a software
engineer about the context of the problem. The second main challenge mentioned by authors of
primary studies is related to the limitations mentioned by Evans [2]. When technical complexity
predominates over the complexity of the business domain, DDD can complicate the solution [30,
42, 56]. The authors mentioned this because they do not recommend using DDD for developments
where the most significant complexity is technical.

(7) RQ-7: What proposals exist for the development of microservices-based systems with
DDD? Due to the incremental use of DDD in microservices-based systems development, some
authors have proposed procedural guidelines to overcome the most frequent challenges of
Microservice Architecture with the helplessness of DDD. These proposals are shown in Fig. 9, and
they were classified according to the proposal type described by the authors of primary studies where
they were extracted.

As shown in Fig. 9, 21 proposals were identified and classified into five categories. These categories
come from the denomination authors use to refer to their proposals. For example, the authors named
their proposals "Approaches" in six primary studies [35, 40, 43, 55-57]. In five primary studies [30,
33, 37, 39, 58], authors named their proposals as "Methodologies" and so on. Based on Fig. 9, it is
also possible to see that 80,95% of proposals were evaluated by authors. In comparison, 19.05%

49

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

were not evaluated, postponing their evaluation to future works or delegating the evaluation for
interested lectures.

Procedure not defined
[PS-02, PS-05, PS-20]

Untreated technical complexity
[PS-05, PS-17, PS-31]

w

Experience required
[PS-30, PS-34]

High coupling between BCs
[PS-09, PS-33]

Lack of trazability
[PS-04 - PS-05]

N

Artifacts inconsistency
[PS-07]

[y

o
-
N
w
S

Primary studies

Fig. 8. Challenges faced with DDD in microservices-based systems development.

Approaches
[PS-10, PS-15, PS-18, PS-30 - PS-32]

I
(=1

Methodologies
|PS-05, PS-08, PS-12, PS-14, PS-33]

Processes
[PS-02, PS-21 - PS-22, PS-28]

Reference architectures
[PS-06 - PS-07, PS-16, PS-26]

Frameworks
[PS-03, PS-17]

0 1 2 3 4 5 6
Primary studies
u Evaluated proposals Proposals not evaluated

Fig. 9. Proposals for microservices design with DDD.

50

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

4.2 Thematic Synthesis Results

As a result of the systematic literature review, a familiarization phase recommended by Braun and
Clark [24] was performed. However, a new data extraction was conducted based on RQs and
thematic synthesis guidelines [23]. This data collection enabled us to identify meaning patterns
among the data. This first level resulted in a set of code concepts seen as building blocks of themes.
A sum of 32 codes were identified from the evidence. These codes were transformed into 11 themes
that isolate the idea behind a group of codes. In the end, five higher-order themes were identified
through theme grouping. Based on the thematic synthesis process, it is possible to describe a
particular story of collected data, as mentioned by Braun and Clark [24]. This high-level overview
synthesized with thematic synthesis can be seen in Fig. 10 in the high-order themes model.

- -
- - -
- -

- -
- -
- -~

-~
Domain Model-based il Y <=
- Microservice Design Business-Technical Alignment S
- Advantages A
" p
. ’ ’| Detailed Microservices Design Microservices Architecture
. Pie Design
e x
] Design Support Technologies '
' 1
1
]
]
1

.
~ | Domain Model impiementation
Obstacles Challenges

Inherent Complexity of Domain- /
Driven Design

Microservices Sizing Benefits
=

Domain-Driven
Microservices Design

Cross-Stakeholders
Communication

-
-

Fig. 10. Thematic Map of Domain-Driven Microservices Design.

(1) Cross-Stakeholders Communication. According to Vlad Khononov [4], the central idea of
DDD is the communication. The domain knowledge shared between domain experts and developers
should be clear and consistent. With this similar purpose, authors of primary studies familiarized
themselves with the domain experts' jargon and used it to cultivate a UL free of technical details and
ambiguous terms. This approach forms the basis of the theme "Ubiquitous Domain Language"”,
which consists of using UL as a business domain glossary to enrich the domain knowledge exchange
between stakeholders. This language is product of a distillation process, which is the idea behind the
"Domain Terminology Discovery" theme, and it is related to the use of elicitation techniques
mentioned in above sections.

(2) Microservice identification. Cultivating UL enables benefits related to effective
communication, but another consequence of its usage is the identification of BCs. Each BC acts as
a semantic boundary that delimits the meaning of the terms that conform to an UL. Through BCs, it
is possible to decompose a business domain into semantic domain partitions that represent
microservices. The theme "Domain Decomposition" encompasses all the activities and strategies
(described in the above sections) used by authors of primary studies for business domain partitioning
into BCs, subdomains, or Aggregates that represent microservices.

51

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

Another strategy was identified using DDD analysis techniques to identify clusters of domain
concepts. The authors performed Event-storming to identify microservices candidates. This
technique and the use of domain events reflect the "Domain Data Flow Analysis" theme, which
involves the analysis of the closely related domain events that allowed authors to identify clusters
treated as microservices.

(3) Microservices Architecture Design. As shown in the above sections, all tactical design patterns
were translated into using the DDD domain model to design the business domain layer for each
microservice identified with strategic design. The domain layer is a crucial part of the architecture
of the microservices-based systems developed by authors, which is why the theme "Domain Model-
Based Microservices Design" was defined. However, some other technical details were not specified
with DDD artifacts.

Mainly in industry systems development, challenges related to the design specification of
microservices were mentioned. This lack of technical specification for microservices was why other
design patterns such as CQRS, Saga, Strangler Fig, and others were used together with standardized
diagrams to describe details related to the implementation of microservices. These design resources
used to refine the preliminary design obtained with DDD were defined as the "Detailed
Microservices Design" theme. We also notice another design resource to refine the design obtained
with DDD for each microservice. This is the use of technologies mentioned in primary studies PS-
05 and PS-09. This action to complement the design of microservices was defined as the "Design
Support Technologies" theme.

(4) Challenges. In answer to RQ6, challenges mentioned by authors of primary studies were
extracted. As a result of thematic analysis, these challenges were classified into two themes that
represent the two main difficulties faced by developers during microservices design with DDD. The
theme named "Inherent Complexity of Domain-Driven Design” is related to the lack of guidelines,
checkpoints, and a strict path to know if a developer is applying DDD correctly. Another challenge
was defined as "Domain Model Implementation Obstacles", which comes from the problems faced
by authors who tried to implement the DDD domain models. Some authors have made some
proposals; however, there are no rules, guidelines, or strict specific ways to generate code from these
DDD artifacts.

(5) Benefits. Just as the authors of primary studies have reported challenges in the use of DDD for
microservices-based systems development, some authors mentioned the benefits obtained from the
execution of some of DDD techniques and the use of its patterns. Some authors of primary studies
mentioned benefits related to development complexity. In PS-04, PS-05, and PS-30, authors
described the business domain complexity isolated into some DDD patterns such as BCs,
Aggregates, or Subdomains. This isolation enabled them to tackle the most significant complexity
of their microservices-based projects, the business domain logic. These benefits were grouped into
the theme "Business-Technical Alignment Advantages".

Furthermore, other primary study authors mentioned benefits during the microservices size
definition. Based on the decomposition process followed by authors, each microservice could
sometimes be represented as a BC or an Aggregate. This decomposition proposed by DDD
contributes to modifiability. These benefits related to the size of microservices were grouped in the
theme of “Microservices Sizing Benefits”.

5. Discussion

In this study, we successfully answered all the research questions by employing the research method
conduction. Our efforts involved collecting and synthesizing a wealth of knowledge on the practical
use of Domain-Driven Design (DDD) in developing microservices-based systems.

Analyzing the demographic results of the study yielded interesting findings, particularly an
increased interest in the adoption of DDD in Microservices Architecture (MSA). It is worth noting
that a gap exists between theoretical understanding and practical implementation of certain patterns,

52

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

such as Subdomain or BC. Consequently, through this research, we have provided evidence-based
knowledge on these patterns and their application. Our findings complement the grounded theory
study published by Singjai et al. [14] and the systematic review conducted by Schmidt et al. [15],
offering valuable insights into the practical use of DDD in microservices system design.

The utilization of Domain-Driven Design (DDD) has emerged as a vital component in the domain
analysis phase of microservices-based systems development within the industry. Strategic design,
in particular, plays a crucial role in establishing a shared understanding among stakeholders,
enabling authors to express ideas unambiguously. Conversely, developers have primarily utilized
tactical design to tackle controlled domain problems and serve specific purposes. Additionally,
existing literature indicates that DDD has been employed to decompose business domains into
microservices candidates in the analysis process. However, it is important to note that the BC pattern
is not the only one utilized or emphasized in the literature. Using UL for stakeholder interaction is
a common practice in complex domains where developers may not be familiar with the domain. On
the other hand, applying Tactical design in industrial projects has been less frequent. Thus, certain
DDD patterns, such as Domain Event, Event-Sourcing, and Domain Services, remain underutilized
in real-world contexts.

6. Threats to validity and limitations

In the literature reviews, Kitchenham and other authors [19, 22-23] emphasized the importance of
reliability. This aspect was carefully considered throughout the research process, from manual
search to data synthesis using Cruzes and Dyba's proposal. We implemented a series of mitigation
measures to minimize potential biases at various stages of the research.

To ensure the selection of relevant papers was unbiased, we utilized a manual search approach and
established inclusion and exclusion criteria based on the Quasi-Gold Standard. These criteria helped
us avoid solely relying on one search engine's studies. Once we identified primary studies, we further
augmented our research by employing a snowballing technique. This process helped to minimize
the possibility of overlooking any relevant studies.

Once the selection process was complete, the chosen primary studies underwent a rigorous
evaluation by the authors of this study to ensure their relevance to at least one RQ. Also, the authors
continuously reviewed and revised their work during the data extraction process to maintain
accuracy. Review questions were developed and regularly evaluated to avoid omissions and confirm
that no crucial data had been missed. The same meticulous approach was applied when defining
themes and subthemes, with each code being meticulously linked to specific text segments and the
themes closely tied to these codes. In the same way, the names assigned to the codes, themes, and
higher-order themes were determined through collaborative revisions among the authors of this
study.

7. Conclusion

In this study, we adopted the systematic literature review method proposed by Kitchenham [19] to
examine the utilization of DDD in developing a microservices-based system. We formulated seven
research questions (RQs) to guide our research process and ensure focused research. Our selection
process involved both manual and automatic searches to identify relevant studies. Through this
process, we identified 31 primary studies. We also employed snowballing techniques to enhance our
selection, which led us to four additional studies. We then conducted a preliminary synthesis to
familiarize ourselves with the primary studies and address the RQs, mainly focusing on the
application of DDD in the development of microservices-based systems. To gather the necessary
data, we performed an extraction process. To provide a comprehensive analysis, we further
conducted a thematic synthesis utilizing the method proposed by Cruzes and Dyba. To complement
this approach, we also incorporated recommendations from the Braun and Clark proposal, ensuring
a robust analysis of the collected data.

53

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

Throughout our analysis, we have identified specific details regarding the application of DDD that
contribute to enhancing effective knowledge sharing between developers and domain experts. These
details primarily revolve around the integration of UL with DDD and the utilization of various
elicitation techniques. Interestingly, these aspects have not been extensively addressed in related
studies, thereby providing fresh insights into the broader scope of DDD beyond its traditional
utilization for system decomposition.

Among the different uses we discovered, the most frequently reported one involves decomposing a
business domain or legacy system into microservices. However, our analysis captured new and
pertinent details about using strategic patterns to define the business scope of microservices, as well
as variations and adaptations.

Most authors in the primary studies highlighted the successful implementation of microservices,
explicitly noting the absence of coupling issues between microservices. Some authors went so far
as to underscore DDD's potential for achieving an optimal scope of microservices based on business
capabilities. While the remaining authors did not mention any problems in their DDD-driven
microservices systems, they did not specifically address certain characteristic aspects of DDD within
the context of MSA.

Despite the overall positive outcomes reported, some challenges persist in the practical application
of DDD. These challenges primarily stem from the perceived complexity of implementing DDD,
which can be particularly daunting for developers without prior experience analyzing and designing
intricate business domains. Additionally, there is an opportunity for future work in refining the
implementation of DDD artifacts, such as the domain model, to further enhance its effectiveness and
efficiency in microservices development. Finally, we envision future work focused on delving into
the creation of DDD patterns that allow the development of code that effectively represents the
underlying business logic, with minimal dependencies on specific programming languages based on
Object-Oriented Programming.

Conflict of interest
The authors declare that they have no conflicts of interest.

References

[1]. J. Sangabriel-Alarcon, J. O. Ocharén-Hernandez, K. Cortés-Verdin, and X. Limén, “Domain-Driven
Design for Microservices Architecture Systems Development: A Systematic Mapping Study,” in 2023
11th International Conference in Software Engineering Research and Innovation (CONISOFT), 2023, pp.
25-34.

[2]. E. Evans, “Domain-driven design: tackling complexity in the heart of software,” p. 529, 2004.

[3]. E. Evans, “Domain-Driven Design Reference: Definitions and Pattern Summaries”, 2014.

[4]. V. Khononov and J. Lerman, “Learning domain-driven design: aligning software architecture and business
strategy”, p. 312, 2021.

[5]- V. Vernon, “Implementing Domain-Driven Design”, 2013.

[6]. V. Velepucha and P. Flores, “Monoliths to microservices-Migration Problems and Challenges: A SMS,”
Proceedings - 2021 2nd International Conference on Information Systems and Software Technologies,
ICI2ST 2021, pp. 135-142, Mar. 2021, doi: 10.1109/1CI125T51859.2021.00027.

[7]. G. Liu, B. Huang, Z. Liang, M. Qin, H. Zhou, and Z. Li, “Microservices: Architecture, container, and
challenges,” Proceedings - Companion of the 2020 IEEE 20th International Conference on Software
Quality, Reliability, and Security, QRS-C 2020, pp. 629-635, Dec. 2020, doi: 10.1109/QRS-
C51114.2020.00107.

[8]. R. Mubashir, J. Ahmed, F. Khakwani, and T. Rana, Microservices Architecture: Challenges and Proposed
Conceptual Design. 2019.

[9]. S. Salii, J. Ajdari, and X. Zenuni, “Migrating to a microservice architecture: benefits and challenges,”
2023.

[10]. S. Newman, “Building microservices: Designing fine-grained systems (second edition),” pp. 1-10, 2021.

54

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

[11].

[12].

[13].
[14].

[15].

[16].

[17].

[18].

[19].
[20].

[21].

[22].

[23].

[24].

[25].

[26].
[27].

[28].

[29].

[30].

F. Rademacher, J. Sorgalla, and S. Sachweh, “Challenges of domain-driven microservice design: A model-
driven perspective,” IEEE Softw, vol. 35, no. 3, pp. 36-43, May 2018, doi: 10.1109/MS.2018.2141028.
M. Tello-Rodriguez, J. O. Ocharéan-Hernéandez, J. C. Pérez-Arriaga, X. Limon, and A. J. Sanchez-Garcia,
“A Design Guide for Usable Web APIs,” Programming and Computer Software, vol. 46, no. 8, pp. 584—
593, 2020, doi: 10.1134/S0361768820080241.

B. Jin, S. Sahni, and A. Shevat, “Designing Web APIs,” 2018.

A. Singjai, U. Zdun, and O. Zimmermann, ‘“Practitioner Views on the Interrelation of Microservice APIs
and Domain-Driven Design: A Grey Literature Study Based on Grounded Theory,” in Proceedings - IEEE
18th International Conference on Software Architecture, ICSA 2021, Institute of Electrical and Electronics
Engineers Inc., Mar. 2021, pp. 25-35. doi: 10.1109/ICSA51549.2021.00011.

R. A. Schmidt and M. Thiry, “Microservices identification strategies: A review focused on Model-Driven
Engineering and Domain Driven Design approaches,” in 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI), IEEE, 2020. Accessed: Nov. 13, 2022. [Online]. Available:
https://ieeexplore-ieee-org.ezproxy.uv.mx/document/9141150/.

A. Macias, E. Navarro, C. Cuesta, and U. Zdun, “Architecting Digital Twins Using a Domain-Driven
Design-Based Approach,” International Conference on Software Architecture (ICSA), no. 62, pp. 183-
209, 2023, doi: 10.13039/501100011033.

C. Praschl, S. Bauernfeind, C. Leitner, and G. A. Zwettler, “Domain-Driven Design as Model Contract in
Full-Stack Development,” in International Conference on Electrical, Computer, Communications and
Mechatronics Engineering, ICECCME 2023, Institute of Electrical and Electronics Engineers Inc., 2023.
doi: 10.1109/ICECCME57830.2023.10252654.

F. Rademacher, S. Sachweh, and A. Ziindorf, “Towards a UML profile for domain-driven design of
microservice architectures,” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10729 LNCS, pp. 230-245, 2018, doi:
10.1007/978-3-319-74781-1_17/COVER.

B. A. Kitchenham, D. Budgen, and P. Brereton, “Evidence-Based Software Engineering and Systematic
Reviews,” 2015.

H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in software engineering,” Inf Softw
Technol, vol. 53, no. 6, pp. 625-637, Jun. 2011, doi: 10.1016/j.infsof.2010.12.010.

C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in software
engineering,” in Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering - EASE *14, New York, New York, USA: ACM Press, 2014, pp. 1-10. doi:
10.1145/2601248.2601268.

J. Popay et al., “Guidance on the conduct of narrative synthesis in systematic Reviews. A Product from
the ESRC Methods Programme. Version 1,” undefined, 2006, doi: 10.13140/2.1.1018.4643.

D. S. Cruzes and T. Dyb4, “Recommended steps for thematic synthesis in software engineering,” in
International Symposium on Empirical Software Engineering and Measurement, IEEE Computer Society,
2011, pp. 275-284. doi: 10.1109/esem.2011.36.

V. Clarke and V. Braun, “Thematic analysis: A practical guide,” London: SAGE, 2021, Accessed: Oct.
30, 2023. [Online]. Auvailable: https://uk.sagepub.com/en-gb/eur/thematic-
analysis/book248481#description.

J. Sangabriel-Alarcon, J. O. Ocharan-Hernandez, X. Limén, and K. Cortés-Verdin, “Domain-Driven
Design in Microservices-Based Systems Development: A Systematic Literature Review and Thematic
Analysis [Dataset].” [Online]. Available: https://zenodo.org/records/13294975.

PS-01. G.-C. Pan, P. Liu, and J.-J. Wu, “A Cloud-Native Online Judge System,” in 2022 IEEE
COMPSAC, 2022, doi: 10.1109/COMPSAC54236.2022.00204.

PS-02. N. Ivanov and A. Tasheva, “A Hot Decomposition Procedure: Operational Monolith System to
Microservices,” in 2021 IEEE ICAI, 2021, doi: 10.1109/ICA152893.2021.9639494.

PS-03. M. L Joselyne, G. Bajpai, and F. Nzanywayingoma, “A Systematic Framework of Application
Modernization to Microservice-based Architecture,” in 2021 IEEE ICEET, 2021, doi:
10.1109/ICEET53442.2021.9659783.

PS-04. A. Singjai and U. Zdun, “Conformance Assessment of Architectural Design Decisions on the
Mapping of Domain Model Elements to APIs and API Endpoints,” in 2022 IEEE ICSA-C, 2022, doi:
10.1109/ICSA-C54293.2022.00058.

PS-05. F. Rademacher, S. Sachweh, and A. Ziindorf, “Deriving Microservice Code from Underspecified
Domain Models Using DevOps-Enabled Modeling Languages and Model Transformations,” in 2020 IEEE
SEAA, 2020, doi: 10.1109/SEAA51224.2020.00047.

55

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

[31].

[32].

[33].

[34].
[35].
[36].
[37].

[38].

[39].

[40].

[41].

[42].

[43].

[44].

[45].

[46].

[47].
[48].
[49].

[50].

[51].
[52].

[53].

56

PS-06. A. Steffens, H. Lichter, and J. S. Doring, “Designing a Next-Generation Continuous Software
Delivery System: Concepts and Architecture,” in 2018 ACM Conference on Software Engineering and
Applications, 2018, doi: 10.1145/3194760.3194768.

PS-07. Y. Ding et al., “Enterprise Service Application Architecture Based on Domain Driven Model
Design,” in 2020 IEEE ITCA, 2020, doi: 10.1109/ITCA52113.2020.00167.

PS-08. P. Ray and P. Pal, “Extending the SEMAT Kemnel for the Practice of Designing and Implementing
Microservice-Based Applications using Domain Driven Design,” in 2020 IEEE CSEET, 2020, doi:
10.1109/CSEET49119.2020.9206200.

PS-09. A. Krause et al., “Microservice Decomposition via Static and Dynamic Analysis of the Monolith,”
in 2020 IEEE ICSA-C, 2020, doi: 10.1109/ICSA-C50368.2020.00011.

PS-10. C.-Y. Li, S.-P. Tseng, and T.-W. Lu, “Microservice Migration Using Strangler Fig Pattern: A Case
Study on the Green Button System,” in 2020 IEEE ICS, 2020, doi: 10.1109/ICS51289.2020.00107.
PS-11. A. Rahmatulloh et al., “Microservices-Based loT Monitoring Application with a Domain-Driven
Design Approach,” in 2021 IEEE ICADEIS, 2021, doi: 10.1109/ICADEIS52521.2021.9701966.

PS-12. M. L Josélyne et al., “Partitioning Microservices: A Domain Engineering Approach,” in2018 ACM
Conference on Software Engineering and Applications, 2018, doi: 10.1145/3195528.3195535.

PS-13. M. Pham and D. B. Hoang, “SDN Applications - The Intent-Based Northbound Interface
Realization for Extended Applications,” in 2016 IEEE NetSoft, 2016, doi:
10.1109/NETSOFT.2016.7502469.

PS-14. E. Cabrera et al., “Towards a Methodology for Creating Internet of Things (IoT) Applications
Based on Microservices,” in 2020 IEEE SCC, 2020, doi: 10.1109/SCC49832.2020.00072.

PS-15. R. Petrasch, “Model-Based Engineering for Microservice Architectures Using Enterprise
Integration Patterns for Inter-Service Communication,” in 2017 IEEE JCSSE, 2017, doi:
10.1109/JCSSE.2017.8025912.

PS-16. J. Dobaj et al., “A Microservice Architecture for the Industrial Internet-Of-Things,” in 2018 ACM
Conference on Software Engineering and Applications, 2018, doi: 10.1145/3282308.3282320.

PS-17. S. Braun, A. Bieniusa, and F. Elberzhager, “Advanced Domain-Driven Design for Consistency in
Distributed Data-Intensive Systems,” in 2021 ACM Conference on Software Engineering and
Applications, 2021, doi: 10.1145/3447865.3457969.

PS-18. M. Khemaja, “Domain Driven Design and Provision of Micro-Services to Build Emerging
Learning Systems,” in 2016 ACM Conference on Software Engineering and Applications, 2016, doi:
10.1145/3012430.3012643.

PS-19. Z. Li, “Using Public and Free Platform-as-a-Service (PaaS) Based Lightweight Projects for
Software Architecture Education,” in 2020 ACM Conference on Software Engineering and Applications,
2020, doi: 10.1145/3377814.3381704.

PS-20. P. Oukes et al., “Domain-Driven Design Applied to Land Administration System Development:
Lessons from the Netherlands,” in Land Use Policy, vol. 105, 2021, doi:
10.1016/j.landusepol.2021.105379.

PS-21. C. E. da Silva, Y. de Lima Justino, and E. Adachi, “SPReaD: Service-Oriented Process for
Reengineering and DevOps,” in Software: Practice and Experience, 2022, doi: 10.1007/s11761-021-
00329-x.

PS-22. C.-Y. Fan and S.-P. Ma, “Migrating Monolithic Mobile Application to Microservice Architecture:
An Experiment Report,” in 2017 IEEE AIMS, 2017, doi: 10.1109/AIMS.2017.23.

PS-23. A. Krylovskiy, M. Jahn, and E. Patti, “Designing a Smart City Internet of Things Platform with
Microservice Architecture,” in 2015 IEEE FiCloud, 2015, doi: 10.1109/FiCloud.2015.55.

PS-24. K. Zhang et al., “Design of Domain-Driven Microservices-Based Software Talent Evaluation and
Recommendation System,” in 2022 IEEE ICEKIM, 2022, doi: 10.1109/ICEKIM55072.2022.00076.
PS-25. Q. Li, W. Sun, and R. Ma, “Sharing Platform of Digital Specimen of Wood Canker Based on
WebGIS in Xinjiang Province: Architecture, Design and Implementation,” in 2022 IEEE CIPAE, 2022,
doi: 10.1109/CIPAE55637.2022.00029.

PS-26. T. Raffin et al., “A Reference Architecture for the Operationalization of Machine Learning Models
in Manufacturing,” in Procedia CIRP, vol. 2022, 2022, doi: 10.1016/j.procir.2022.10.062.

PS-27. C. Batista et al., “Towards a Multi-Tenant Microservice Architecture: An Industrial Experience,”
in 2022 IEEE COMPSAC, 2022, doi: 10.1109/COMPSAC54236.2022.00100.

PS-28. C. Praschl et al., “Domain-Driven Design as Model Contract in Full-Stack Development,” in 2023
IEEE ICECCME, 2023, doi: 10.1109/ICECCME57830.2023.10252654.

Canrabpmnb-Anapkon X., Ouapan-Opuangec X. O., Jlumon K., Koprec-Bepaun M. K. IIpeaMeTHO-0pUEHTHPOBAHHOE TPOSKTHPOBAHHE B
MHKpOCEpPBUCHOI apxutekrype. Ipyost HUCIT PAH, 2024, Tom 36 Bbim. 6, c. 39-58.

[54]. PS-29. N. Legowo et al., “Designing Service Oriented Architecture Model in Sehatin Application with a
Domain-Driven ~ Design ~ Approach,” in 2023 IEEE ICIMTech, 2023, doi:
10.1109/ICIMTech59029.2023.10278057.

[55]. PS-30. A. Macias et al., “Architecting Digital Twins Using a Domain-Driven Design-Based Approach,”
in 2023, doi: 10.13039/501100011033.

[56]. PS-31. 1. V. P. and V. P. H,, “An Approach to Clean Architecture for Microservices Using Python,” in
2023 IEEE CSITSS, 2023, doi: 10.1109/CSITSS60515.2023.10334229.

[57]. PS-32. M. Saidi, A. Tissaoui, and S. Faiz, “A DDD Approach Towards Automatic Migration To
Microservices,” in 2023 IEEE IC_ASET, 2023, doi: 10.1109/1C_ASET58101.2023.10150522.

[58]. PS-33. M. Camiilli et al., “Actor-Driven Decomposition of Microservices through Multi-Level Scalability
Assessment,” in 2023, doi: 10.1145/3583563.

[59]. PS-34. O. Ozkan, O. Babur, and M. van den Brand, “Refactoring with Domain-Driven Design in an
Industrial Context: An Action Research Report,” in Software: Practice and Experience, 2023, doi:
10.1007/s10664-023-10310-1.

[60]. PS-35. E. T. Nordli et al., “Migrating Monoliths to Cloud-Native Microservices for Customizable SaaS,”
in Information and Software Technology, vol. 2023, 2023, doi: 10.1016/j.infsof.2023.107230.

Ungpopmayusi 06 aemopax / Information about authors

Xocys CAHI'ABPUDJIbL-AJIAPKOH — wumkeHep-porpaMMHUCT, pa3pabOTYMK IMPOrpaMMHOrO
obecrieuenust YuuBepcutere Bepakpyca (Mekcuka). Chepa HaydHBIX HHTEPECOB: apXHTEKTypa
NPOrpaMMHOTO O0ECIeYeHHs, TPOSKTHPOBAHUE TIPOrPAMMHOIO OOECIeUeHHs, WHXEHEPHS
TpeOOBaHUH, MOICITUPOBAHHE JAHHBIX.

Josué SANGABRIEL-ALARCON — Software Engineer. Software Developer at Universidad
Veracruzana, Mexico (University of Veracruz). Research interests: software architecture, software
design, requirements engineering, data modeling.

Xopxe Oxrasno OUAPAH-DPHAHJIEC umeer creners PhD 1o mporpaMMupoOBaHHiO, TONEHT
(akynprera cTaTUCTHKHM 1 uHpOpMaTHku Y HuBepcutera Bepakpyca (Mekcuka). Cdepa HayuHbIX
HHTEPECOB. apXUTEKTypa NPOrPaMMHOTO OOECIedeHHs, MH)KeHepHs TPeOOBaHUM, MporpamMMHas
WHKeHepus1, pa3padoTka MPHUKIaTHBIX UHTEP(EHCOB.

Jorge Octavio OCHARAN-HERNANDEZ — PhD in Computer Science, Associate Professor at the
Facultad de Estadistica e Informatica, Universidad Veracruzana, Mexico (School of Statistics and
Informatics, University of Veracruz) since 2017. Research interests: software architecture,
requirements engineering, software engineering, API design.

Kcasbep JIMMOH wmmeer crenens PhD 1Mo MCKYCCTBEHHOMY WHTEIUIEKTY, JOLEHT (haKyibTeTa
cTatucTUKK U uHpopMmatuku YHuBepcurera Bepakpyca (Mekcuka). Chepa HaydHBIX HHTEPECOB:
WHTEJUICKTyaJIbHBIH aHAIN3 JaHHBIX, MYJIbTHATCHTHBIC H PACIIPEISIICHHBIE CHCTEMBI, apXHTEKTypa
MIPOrPaMMHOT0 00eCTIeUCHHUS.

Xavier LIMON — PhD in Artificial Intelligence, Associate Professor at Facultad de Estadistica e
Informatica, Universidad Veracruzana, Mexico (School of Statistics and Informatics, University of
Veracruz). Research interests: data mining, multiagent systems, distributed systems, software
architecture.

M. Kapern KOPTEC-BEPJIMIH umeer crenens PhD 110 HCKYCCTBEHHOMY MHTEIUIEKTY, TIpodeccop
(akympTeTa CTATUCTHKHU U WHpopMaTuku Y HuBepcurera Bepakpyca (Mekcuka). Cdhepa HayIHBIX
MHTEPECOB. ITIPOrpaMMHbBIE MPOAYKTOBBIE JHMHWH, ApXHUTEKTYpHl NPOrPaMMHOT0 OOecIeyeHus,
aCTIeKTHO-OPHEHTHPOBAHHOE IPOrpaMMHUpPOBaHUE, pa3pabOTKa IPOrpaMMHOr0 oOecTedeHws,
OPHEHTHPOBAHHOTO Ha pElIeHHe KOHKPETHBIX 3a/1a4, MPOLECCHl MPOrpaMMHPOBAHMS, KauecTBO
MIPOrPaMMHOT0 00eCIedeH s, MOJETUPOBAHNE ITPOTPAMM.

57

Sangabriel-Alarcén J., Ocharan-Hernandez J. O., Limén X., Cortés-Verdin M. K. Domain-Driven Design in Microservices Architecture.
Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 39-58.

Maria Karen CORTES-VERDIN — PhD in Computer Science, Professor at School of Statistics and
Informatics, Universidad Veracruzana, Mexico. Research interests: software product lines, software
architectures, aspect-oriented software development, concern-oriented software development,
software process, software quality, software modeling.

58

	1. Introduction
	2. Related work
	3. Research method and conduction
	3.1 Search process
	3.2 Selection process
	3.3 Snowballing process
	3.4 Data extraction process
	3.5 Data synthesis
	4. Results
	4.1 Answers to research questions
	4.2 Thematic Synthesis Results
	5. Discussion
	6. Threats to validity and limitations
	7. Conclusion
	Conflict of interest
	References
	Информация об авторах / Information about authors

