
Труды ИСП РАН, том 36, вып. 6, 2024 г. // Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024

59

DOI: 10.15514/ISPRAS-2024-36(6)-4

A Decade of Advancements in Program Synthesis
from Natural Language:

A Systematic Literature Review

1 R. Ramirez-Rueda, ORCID: 0009-0004-2084-7505 <zS20000354@estudiantes.uv.mx>
1 E. Benitez-Guerrero, ORCID: 0000-0001-5844-4198 <edbenitez@uv.mx>

1 C. Mezura-Godoy, ORCID: 0000-0002-5386-107X <cmezura@uv.mx>
2 E. Barcenas, ORCID: 0000-0002-1523-1579 <barcenas@fi-b.unam.mx>

1 Facultad de Estadistica e Informatica, Universidad Veracruzana, Xalapa, Mexico.
2 Universidad Nacional Autonoma de Mexico Ciudad de Mexico, Mexico.

Abstract. Program Synthesis is the process of automatically generating software from a requirement

specification. This paper presents a systematic literature review focused on program synthesis from

specifications expressed in natural language. The research problem centers on the complexity of automatically

generating accurate and robust code from high-level, ambiguous natural language descriptions – a barrier that

limits the broader adoption of automatic code generation in software development. To address this issue, the

study systematically examines research published between 2014 and 2024, focusing on works that explore

various approaches to program synthesis from natural language inputs. The review follows a rigorous

methodology, incorporating search strings tailored to capture relevant studies from five major data sources:

IEEE, ACM, Springer, Elsevier, and MDPI. The selection process applied strict inclusion and exclusion criteria,

resulting in a final set of 20 high-quality studies. The findings reveal significant advancements in the field,

particularly in the integration of large language models (LLMs) with program synthesis techniques. The review

also highlights the challenges and concludes by outlining key trends and proposing future research directions

aimed at overcoming these challenges and expanding the applicability of program synthesis across various

domains.

Keywords: program synthesis; program generation; natural language processing.

For citation: Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A. Decade of

Advancements in Program Synthesis from Natural Language: A Systematic Literature Review. Trudy ISP

RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82. DOI: 10.15514/ISPRAS-2024-36(6)-4.

Acknowledgments. This work was partially developed under the support of the National Council of

Humanities, Science and Technology (CONAHCYT-Mexico) in the scope of the project “Infraestructura para

Agilizar el Desarrollo de Sistemas Centrados en el Usuario” (Catedras, Ref. 3053). In addition, the authors

thank CONAHCYT for the doctoral scholarship granted to the first author. We also thank the Universidad

Veracruzana for the support in the development of this research.

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

60

Десятилетие достижений в синтезе программ по спецификациям
на естественном языке: систематический обзор литературы

1 Р. Рамирес-Руэда, ORCID: 0009-0004-2084-7505 <zS20000354@estudiantes.uv.mx>
1 Э. Бенитес-Гуэрреро, ORCID: 0000-0001-5844-4198 <edbenitez@uv.mx>

1 К. Мезура-Годой, ORCID: 0000-0002-5386-107X <cmezura@uv.mx>
2 Э. Барсенас, ORCID: 0000-0002-1523-1579 <barcenas@fi-b.unam.mx>
1 Факультет статистики и информатики Университета Веракруса,

Халапа, Мексика.
2 Национальный автономный университет города Мехико, Мексика.

Аннотация. Программный синтез – это процесс автоматического создания программного обеспечения

на основе спецификации требований. В этой статье представлен систематический обзор литературы,

посвященный синтезу программ из спецификаций, выраженных на естественном языке. Исследуемая

проблематика заключается в сложности автоматического создания точного и надежного кода из

высокоуровневых, неоднозначных описаний на естественном языке – барьер, который ограничивает

более широкое использование средств автоматизации при разработке программного обеспечения. Для

исследования этой проблемы авторы систематически изучали работы, опубликованные в период с 2014

по 2024 год, делая акцент на работы, в которых рассматриваются различные подходы к синтезу

программ на основе данных на естественном языке. Обзор следует строгой методологии, включающей

поисковые строки, адаптированные для сбора соответствующих исследований из пяти основных

источников данных: IEEE, ACM, Springer, Elsevier и MDPI. В процессе отбора применялись строгие

критерии включения и исключения, что привело к окончательному набору из 20 высококачественных

исследований. Результаты показывают значительные достижения в этой области, особенно в

интеграции больших языковых моделей (LLM) с методами синтеза программ. Обзор также освещает

проблемы и завершается изложением ключевых тенденций и предложением будущих направлений

исследований, нацеленных на преодоление этих проблем и расширение применимости синтеза

программ в различных областях.

Ключевые слова: синтез программ; генерация программ; обработка естественного языка.

Для цитирования: Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие

достижений в синтезе программ по спецификациям на естественном языке: систематический обзор

литературы. Труды ИСП РАН, том 36, вып. 6, 2024 г., стр. 59–82 (на английском языке). DOI:

10.15514/ISPRAS–2024–36(6)–4.

Благодарности. Эта работа была частично выполнена при поддержке Национального совета по

гуманитарным наукам, науке и технике (CONAHCYT-Мексика) в рамках проекта “Infrastructura para

Agilizar el Desarrollo de Sistemas Centrados en el Usuario” (Catedras, Ref. 3053). Кроме того, авторы

благодарят совет CONAHCYT за докторскую стипендию, предоставленную первому автору. Мы также

благодарим Университет штата Веракрус за поддержку в проведении этого исследования.

1. Introduction

The development of a software system encompasses a detailed life cycle that includes stages such

as requirement specification, design, prototyping, and testing [1]. Traditionally, this process is slow

and susceptible to errors. To enhance efficiency and reduce errors, employing models at various

abstraction levels, along with their mappings, can facilitate the automatic generation of code from

high-level descriptions. These models, which capture the behavior and structure of the system, can

be developed manually or derived from requirement specifications. Despite the benefits, the process

of generating code from models necessitates establishing the models themselves, defining rules for

mapping elements between models, and creating rules to generate code in the target programming

language. These tasks require expert knowledge and sophisticated tools.

An alternative method is program synthesis [2], which involves generating software automatically

from a requirement specification. Relying on artificial intelligence and formal methods, this

approach aims to produce correct programs by formulating rules that map input specifications

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

61

directly to programs, thus accelerating development. However, it is critical to acknowledge that

software developed through this approach may be more prone to errors and could lack robustness.

In the realm of specifying systems, one commonly uses expressions in predicate logic, necessitating

specialized expertise. To make this approach accessible not only to experts but also to end-users,

specifications should ideally be articulated in a more intuitive form, such as natural language.

Our research takes as reference the work proposed by [3] and [4], which extensively review code

generation with natural language, although they examine approaches that automatically generate

source code from a description In natural language, we want to emphasize the areas of application,

as well as to make known the types of inputs and outputs that are necessary to generate automatic

code from natural language and finally analyze future trends.

To ensure the relevance of our study in this rapidly evolving domain, we consider recent

advancements in natural language processing and artificial intelligence, particularly as they pertain

to program synthesis. This includes the exploration of models like GPT-4 and other advanced

transformer architectures to understand how they can be adapted for interpreting natural language

program specifications. Moreover, we address the current challenges, such as achieving precision in

interpreting complex requirements and the implications of automating code generation.

It is important to note that this work extends the paper “Program Synthesis and Natural Language

Processing: A Systematic Literature Review,” presented at the International Conference on Research

and Innovation in Software Engineering (CONISOFT 2023). In this updated study, we expand the

analysis by covering an additional five years and incorporating a new digital library (MDPI), thereby

covering the last decade. Our objective is to analyze publications, identify emerging trends, and

highlight opportunities for future research that were not addressed in the previous work. We selected

twenty articles from major databases, including IEEE, ACM, Springer, Elsevier, and MDPI.

These studies investigate various methods of program synthesis, ranging from rule-based

approaches, which employ explicit translation rules from natural language to code, to more advanced

techniques that learn these rules from input-output pairs, integrating generative artificial intelligence

models.

The paper is structured as follows: We begin with background information on the relevant research

areas of program synthesis, natural language processing, and generative models. Next, we detail the

methodology employed for the SLR, followed by a discussion of the findings. The paper concludes

with a summary of the research outcomes.

2. Background

2.1 Program synthesis

In this section we discuss Program synthesis is an intriguing research domain focused on the

automatic generation of programs from detailed specifications. This field is particularly valuable for

creating small, complex programs that are verifiable and correct based on comprehensive

specifications.

The domain is characterized by three critical dimensions [5]: the types of constraints that express

user intentions, the operational search space, and the search techniques employed. User intentions

can be depicted through various forms such as logical relations between inputs and outputs,

demonstrations, natural language, input-output examples, or inefficient or related programs. The

search space may be confined by potential program types, computational models like context-free

grammars, or logical frameworks. Search techniques employed include exhaustive searches, version

space exploration, machine learning, and logical reasoning.

Program synthesis can further be classified into methods such as deductive synthesis from full

specifications [6], which generates programs based on probabilistic selection mechanisms. The

viability of a program is determined by its alignment with specified criteria derived from its

specifications. Despite its effectiveness, generating these detailed specifications is a considerable

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

62

challenge and verifying them is computationally intensive.

Alternately, inductive synthesis starts with incomplete problem descriptions, which may include test

cases, specified desired and undesired behaviors, input-output examples, or execution traces for

particular inputs [7]. While this approach ensures correctness by construction, the creation of

extensive programs remains a significant computational challenge, often requiring more effort to

define a complete and correct specification than to write the program itself. Fig. 1 shows the possible

program synthesis approaches.

Fig. 1. Program Synthesis Paradigms [8].

Conversely, the integration of generative artificial intelligence is reshaping the software industry,

not only by advancing techniques and tools but also by democratizing software development [9]. A

significant obstacle in traditional program synthesis has been the requirement for complete

specifications. However, modern advancements in software development are transforming this

challenge by employing models capable of interpreting natural language descriptions to synthesize

code across various programming languages. This transformation greatly simplifies the synthesis

process and broadens access to those without specialized expertise.

A prime example is the use of large language models (LLMs), which empower non-programmers to

create applications through intuitive natural language interfaces. This capability could herald a major

shift in information technology education and training, with a greater emphasis on design and project

management skills rather than on pure coding [10].

Unlike traditional expert systems that merely analyze or interact with existing data, program

synthesis harnesses vast data sets and complex architectures to generate new and varied content. By

leveraging continued advances in computing power, this approach employs deep neural networks,

transformers, generative adversarial networks, and autoencoders to capture the complexity of data

and effectively model high-dimensional probabilistic distributions across both specific and general

domains [11].

Furthermore, by incorporating techniques that map the latent semantic space of language or images

to multimedia representations in text, audio, or video, generative models can convert any type of

input into a variety of output formats [12] [13]. This versatility makes generative models invaluable

in numerous applications.

The extensive data access and complex architectures of these models offer unprecedented potential

for content creation and transformation. Their ability to learn from diverse sources, generate various

multimedia formats, and convert inputs from one format to another opens up a wide array of

possibilities in multimedia generation and conversion, making these models indispensable tools in

today’s technologically advanced world.

In summary, program synthesis is revolutionizing problem-solving by enabling non-experts to

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

63

automate solutions without requiring deep knowledge of algorithm design and implementation [14].

Through the strategic use of various constraints, search spaces, and synthesis methods—both

deductive and inductive—the field of program synthesis continues to evolve. While the need for

complete specifications has historically been a barrier, recent technological advancements now

allow for the use of natural language, thereby enhancing the field’s accessibility and practical

application.

2.2 Natural Language Processing

Artificial intelligence systems have significantly advanced the development of complex cognitive

tasks. Natural Language Processing (NLP) serves as a pivotal bridge between human languages and

computers, facilitating a myriad of applications [15]. Among the foundational techniques in NLP

are regular expressions, which are essential for executing various practical NLP tasks.

Progress in NLP has led to sophisticated approaches for tasks such as text classification, knowledge

discovery, and word recommendation. Prominent algorithms for word embedding—such as

Word2Vec [16], GloVe [17], and Gensim [18] – play critical roles in these areas by capturing

semantic relationships between words and enabling vector representations that are used in

downstream tasks. Furthermore, deep learning-based sequence to sequence models (seq2seq) [19]

have proven highly effective in machine translation tasks, facilitating the transformation of text from

one language to another with high accuracy. Techniques that consider word order and linguistic

elements like phonemes and sentences are instrumental in enabling inference and generating novel

sentence elements, making models like Transformers especially powerful in generating human-like

text [20-21].

Sequence modeling is another critical domain within NLP. Long Short-Term Memory networks

(LSTM)[22] are particularly advantageous for these tasks due to their capacity to retain long-term

information in a sequence. Unlike recurrent neural networks (RNN), which typically process

information through tree structures in a seq2tree fashion, LSTMs incorporate bidirectional flows,

thereby enhancing efficiency and performance in a variety of tasks, including speech recognition,

time series prediction, and text generation[23]. More recent advancements, such as Bidirectional

Encoder Representations from Transformers (BERT), further extend the capabilities of sequence

models by pretraining on large corpora and fine-tuning for specific tasks, achieving state-of-the-art

results in many NLP benchmarks. In conclusion, NLP technologies enable the seamless integration

of natural language understanding within systems, thereby meeting diverse end-user needs and

expanding the scope of possible applications. These advancements have profound implications not

only in traditional applications like translation and sentiment analysis but also in emerging areas

such as conversational AI, content generation, and human-computer interaction, where the ability to

understand and generate natural language is crucial. In the next section we will analyze the method

we used for this research.

3. Method

To explore diverse perspectives and support the research presented in this work, we adopted the

systematic literature review methodology proposed by [24], while also incorporating

recommendations from [25–28]. This methodology provides a rigorous framework for exploring the

synergies between program synthesis and natural language processing, thereby enriching the

research landscape and informing future studies in these areas. Additionally, this research considers

fundamental aspects such as requirements, models, input-output formats, and evaluation metrics.

The systematic mapping we employ follows a structured approach that includes Research Questions,

Search String, Data Sources, Selection Criteria, and Quality Assessment.

3.1 Research Questions

The objective of our systematic literature review is to obtain a comprehensive understanding of the

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

64

key components involved in program synthesis and code generation, particularly through the lens of

Natural Language Processing. We aim to reveal the mechanisms underlying automatic program

generation and identify areas needing further research to thoroughly understand the context and

advantages of program generation via synthesis.

The research questions formulated for this study are designed to systematically dissect these aspects:

Q1. What are the application areas?

Q2. What are the inputs used to synthesize a program?

Q3. What are the outputs generated from the program synthesizer and how are they used?

Q4. What type of synthesis is used?

3.2 Search String

We defined a search string aimed at capturing the intersection of key research domains:

[((“Program” OR “Code”) AND (“Synthesis” OR “Generation”)) AND (“Natural Language

Processing” OR “NLP”). This string was used to ensure that all pertinent literature was considered.

Depending on the database, a general search string was defined and adapted to each search engine.

3.3 Data Sources

Five major data sources were selected to conduct a comprehensive search for literature related to

program synthesis and natural language processing. The sources include ACM Digital Library, IEEE

Xplore, Springer, Elsevier, and MDPI. These platforms were chosen for their extensive repositories

of scientific papers and their relevance to the fields under study.

3.4 Selection Criteria

To ensure a focused and relevant data collection process, several inclusion and exclusion criteria

were meticulously applied:

The exclusion criteria eliminated other types of documents, such as unpublished works, books,

courses, newspapers, and master’s and doctoral theses.

The inclusion criteria considered only journal articles and conference proceedings published

between 2014 and 2024, which allowed us to capture the most recent advances in the field. The

search parameters were carefully established to filter data by titles, abstracts, and keywords of

journal articles and conference proceedings that met the inclusion criteria. This methodological rigor

ensured the collection of the most relevant and beneficial data for our systematic review.

3.5 Quality Assessment

Each study was evaluated using the criteria from the Center for Reviews and Dissemination (CRD)

of the University of York, as well as the Database of Abstracts of Reviews of Effects (DARE) [29].

The criteria are based on three quality assessment (QA) questions:

QA1. Are sufficient details about the individual included studies presented?

QA2. Does it provide evidence to answer the research questions for this systematic review?

QA3. Is it a referenced study?

The questions were scored as follows:

• QA1: Y (yes), presents sufficient details in the study, P (Partially), presents information

partially; N (no), does not have details and cannot be easily inferred.

• QA2: Y (yes), The authors based their research in such a way that they included appropriate

strategies, identified and made reference to all the journals that addressed the topic of

interest, and the study answered all the research questions; P (Partially), The study only

partially answered the research questions, N (no), They did not answer the research

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

65

questions, and lacked adequate context.

• QA3: Y (yes), They are highly referenced studies, P (Partially), The study has a certain

number of citations, N (no), The study does not have citations.

The scoring procedure was Y = 1, P = 0.5, N = 0 where information is not specified. Consequently,

the possible score that could be obtained for assessing the quality of a primary study was in the range

of 0 to 3 points. In this sense, the articles considered had to achieve a rating of 1.5 at least. In the

next chapter we will discuss the results obtained.

4. Results

We thoroughly analyzed the full texts of 20 articles that met our selection criteria. Below, we present

the initial results obtained from these articles, providing a summary of the studies included in our

systematic review. This summary aims to establish a foundational understanding of the scope and

impact of the research conducted in the field.

Following the initial overview, we present the quality evaluation of each article to ensure the

reliability and validity of the reported findings. This evaluation was essential to maintaining the

integrity of our systematic review.

Next, we will demonstrate how we answered the specific research questions posed at the beginning

of our study. This analysis will help us identify key trends, gaps in current research, and potential

areas for future research, aligning our findings with the overall objectives of our research.

4.1 Summary of the Studies

In this section we present a summary of the works examined, with the goal of answering the research

questions formulated. The systematic search across the specified data sources initially yielded a total

of 680,924 articles. By applying the inclusion criterion of publication years from 2014 to 2024 and

the focus on journals and conferences, the results were refined to 401,104 articles. Further

application of criteria related to the research topic narrowed this down to 20 articles directly relevant

to the research objectives. The methodology applied in this search is summarized in Fig. 2.

Among these 20 relevant articles, 6 (30%) were published in journals, while 14 (70%) appeared in

conference proceedings, as depicted in Fig. 3. We observed a clear trend of increasing publications

up until 2021 and 2022, followed by a sharp decline in 2023. This trend could potentially reverse in

2024, influenced by emerging developments in the field.

The research questions and corresponding answers presented in this study have significant

implications only 20 papers were directly relevant to the research questions under consideration, as

detailed in Table 1.

Among the data sources, the ACM Digital Library demonstrated the highest precision, with an

accuracy rate of 0.00215% in yielding relevant articles. A detailed distribution of relevant articles

from each source is presented in Table 2. This allows for a discussion on how each identified source

contributes to the understanding of program synthesis and natural language processing as outlined

by the objective of this paper.

4.2 Quality evaluation

The results of the application of the quality evaluation show that, on average, the studies had a score

of 2 points, with the exception of studies S1 and S2 that obtained a score of 1.5. As it can be seen in

Table 3, the articles are of good quality and relevant to the investigation.

4.3 Application areas (Q1)

Program synthesis has become a pivotal tool in various domains, demonstrating significant utility,

particularly in software engineering. Below we can see the application areas identified in the selected

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

66

papers:

• Program Synthesis for Education: Enhancing learning and teaching in logic
and programming through the generation of code from natural language problems.

• Program Synthesis for Software Development: Improving developer
efficiency and productivity by automatically generating code, API calls, and
optimizing program synthesis tools.

• Program Synthesis for Robotics and AI: Simplifying the programming of
complex tasks in robotics and generating solutions for various NLP problems
through advanced AI models.

Fig. 2. Steps for the extraction of relevant documents from the selected sources.

Fig. 3. Type of articles according to inclusion criteria and average of article

according to year of publication.

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

67

Table 1. Selected Papers.

Title Author(s) Year Ref

S1 Domain specific program synthesis
Archana, P., Harish, P. B., Rajan,

N., P, S., and Kumar, N. S.
2021 [30]

S2 Collective intelligence for smarter neural

program synthesis
Daiyan. W, Wei. D, and Yating. Z. 2020 [31]

S3 Generating context-aware API calls from natural

language description using neural embeddings and

machine translation

Phan, H., Sharma, A., and Jannesari,

A.
2021 [32]

S4 HISyn: Human Learning-Inspired Natural

Language Programming
Nan, Z., Guan, H., and Shen, X. 2020 [33]

S5 Interactive Program Synthesis by Augmented

Examples

Zhang, T., Lowmanstone, L., Wang,

X., and Glassman, E. L.
2020 [34]

S6 Deep nlp-based co-evolvement for synthesizing

code analysis from natural language

Nan, Z., Guan, H., Shen, X., and

Liao, C.
2021 [35]

S7 Interactive synthesis of temporal specifications

from examples and natural language

Gavran, I., Darulova, E., and

Majumdar, R.
2020 [36]

S8 Programming bots by synthesizing natural

language expressions into API invocations

Zamanirad, S., Benatallah, B.,

Barukh, M. C., Casati, F., and

Rodriguez, C.

2017 [37]

S9 Egeria – A Framework for Automatic Synthesis

of HPC Advising Tools through Multi-Layered

Natural Language Processing

Hui. G, Xipeng. S, and Hamid. K. 2017 [38]

S10 Interactive Synthesis using Free-Form Queries Tihomir. G and Viktor. K. 2015 [39]

S11 Jigsaw – Large Language Models meet Program

Synthesis

Naman. J, Skanda. V, Arun. I,

Nagarajan. N,
2022 [40]

S12 Many-objective Grammar-guided Genetic

Programming with Code Similarity Measurement for

Program Synthesis

Ning. T, Anthony. V, and

Takfarinas. S.
2023 [41]

S13 Program Synthesis Through Learning the Input-

Output Behavior of Commands

Sihyung. L, Seung. Y. Nam, and

Jiyeon. K.
2022 [42]

S14 Assessing Similarity-Based Grammar-Guided

Genetic Programming Approaches for Program

Synthesis

Ning. T, Anthony. V, Takfarinas. K. 2022 [43]

S15 Generative Model for NLP Applications based

on Component Extraction

Bhardwaj, P. Khanna, S. Kumar,

and Pragya.
2020 [44]

S16 Multi-modal program inference: a marriage of

pre-trained language models and component-based

synthesis

Kia. R, Mohammad. R, Summit. G

and Vu. L.
2021 [45]

S17 Prompt Problems: A New Programming

Exercise for the Generative AI Era

Amarouche, B. A. Becker, and B. N.

Reeves.
2024 [46]

S18 Automatic Acquisition of Annotated Training

Corpora for Test-Code Generation
Magdalena. K and John. D. K. 2019 [47]

S19 Natural Language Generation and

Understanding of Big Code for AI-Assisted

Programming

Man-Fai, W. Shangxin. G, and

Ching-Nam. H.
2023 [48]

S20 Effectiveness of ChatGPT in Coding: A

Comparative Analysis of Popular Large Language

Models

Carlos. E. C, Mohammed. N. A, and

R. K.
2024 [49]

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

68

Table 2. Total items extracted.

Data Sources Result Useful Articles Accuracy

IEEE 384457 9 0.00002%

ACM 2781 6 0.00215%

SPRINGER 494 1 0.00202%

ELSEVIER 2708 1 0.00036%

MDPI 10664 3 0.00028%

Table 3. Evaluation of the quality of the studies.

Study QA1 QA2 QA3 Total Score

S1 P Y N 1.5

S2 P Y N 1.5

S3 Y Y P 2.5

S4 Y Y P 2.5

S5 Y Y Y 3

S6 Y Y P 2.5

S7 Y Y P 2.5

S8 P Y P 2

S9 Y Y N 2

S10 P P Y 2

S11 Y Y Y 3

S12 P Y P 2

S13 Y Y N 2

S14 Y Y P 2.5

S15 Y Y Y 3

S16 Y Y Y 3

S17 Y Y N 2

S18 Y Y P 2.5

S19 Y Y Y 3

S20 Y Y N 2

Education:

• [30] focuses on the use of program synthesis to solve propositional logic problems in an

educational context, emphasizing the generation of code from problems described in natural

language. This approach is ideal for teaching and learning in fields related to logic and

programming.

• [46] introduces “Prompt Problems” to teach students how to write effective prompts for

generating code using large language models (LLMs), helping them develop skills in

formulating natural language prompts that produce functional code.

Software Development:

• [31] integrates collective intelligence and bio-inspired algorithms to optimize accuracy in

code generation from user intents.

• [32] improves developer efficiency by automatically generating API calls based on natural

language descriptions and the context of the surrounding code.

• [33] enhances code generation through natural language understanding, specifically aimed

at software development.

• [34] develops interactive program synthesis tools, particularly for creating regular

expressions, using augmented examples to clarify user intent and facilitate automatic code

generation.

• [35] evaluates the effectiveness of ChatGPT and other large language models in code

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

69

generation tasks, highlighting their utility as programming assistance tools.

• [37] focuses on the development of interactive program synthesis tools for creating regular

expressions using augmented examples.

• [38] creates a platform called BotBase that allows the transformation of natural language

expressions into API invocations, facilitating bot programming.

• [39] creates advisory tools for optimizing high-performance computing programs using

natural language processing.

• [40] develops a support tool for IDEs that generates Java code snippets based on free-text

queries combining English and code.

• [41] uses pre-trained language models like GPT-3 and Codex to generate code from natural

language descriptions, optimized for complex APIs like Python Pandas.

• [42] employs grammar-guided genetic programming for program synthesis, using multiple

code similarity measures to improve accuracy in generating code from textual descriptions

and input/output examples.

• [43] evaluates and improves the use of grammar-guided genetic programming for program

synthesis, guiding the evolutionary process with code similarity measures.

• [45] combines pretrained language models with component-based synthesis techniques to

generate programs from natural language descriptions and specific examples, particularly

for generating regular expressions and CSS selectors.

• [47] focuses on the automatic creation of annotated data sets to generate automated test

cases from quasi-natural language descriptions, using machine learning and machine

translation techniques.

• [48] reviews the use of large language models trained with Big Code for various AI-assisted

programming tasks, including code generation, completion, translation, refinement,

summarization, defect detection, and clone detection.

Robotics:

• [36] facilitates task specification for robots using linear temporal logic (LTL) from natural

language examples and interactions, simplifying the programming of complex and specific

tasks in robotics applications.

Artificial Intelligence:

• [44] creates a generative model for natural language processing (NLP) applications,

extracting meaningful components from case studies to address problems such as reading

text, interpreting speech, measuring sentiment, and determining important parts, generating

optimized solutions for different NLP problems.

4.4 Inputs used to synthetize a program (Q2)

In this section, the primary focus is to identify the different types of inputs that will be processed by

the synthesizer programs. The exploration of the literature has allowed us to identify how these

works take natural language expressions and synthesize examples based on the user’s intended

purpose, using different techniques to achieve the various objectives proposed by the authors. The

results of relevant articles are detailed in Table 4.

The study by [30] introduces a tool for end-user programming designed to simplify the programming

process and enable programmers to focus more on the core logic of the program. This tool removes

the need to deal with language syntax and other domain-specific aspects. User input is provided in

the form of a propositional verbal problem, which consists of facts, conditionals, and questions,

thereby establishing the basis for a learning approach.

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

70

[31] centers on the automatic generation of source code from various user intents. The authors

utilized natural language task descriptions as inputs, enabling the identification of web page tags

that align with these characteristics. This study demonstrates the versatility of user intent expression

and represents significant progress in solving programming tasks based on natural language

descriptions, requiring minimal information about the target program.

Table 4: Types of inputs from different examples of program synthesis using NL.

Types of inputs Articles

Verbal problems (Query) [30]

Natural language task descriptions [31], [48], [46]

Sentences and a part of the surrounding context. [32], [39]

Natural language (query) [33], [38], [45]

Description of a method in NL [34], [47]

NL queries based on dependency structure [35]

Specific descriptions [36], [40]

Short description of a specification [37], [42]

High-level specifications [41]

Textual Problem Descriptions [43], [44]

Programming Prompts [49]

Similarly, the study in [32] employed a unique method involving the pairing of an instruction

sentence with a section of corresponding code. The input consisted of a natural language user intent

and a drafted method, using the Java language. A method name generator was then employed to

extract tokens and variable names from natural language descriptions and adjacent code tokens, thus

predicting potential method names.

The research presented in [33] adopts an approach driven by natural language understanding. The

input consists of a natural language query containing a list of synonyms, named entities, and a

dictionary of prepositions. This method reduces the need for extensive labeled examples, thereby

freeing users from the task of gathering examples and facilitating natural language programming,

especially in domains where labeled examples are difficult to obtain. The study in [34] investigates

the use of natural language descriptions of methods as input to improve concrete word recognition.

The researchers introduce a semantic analyzer that links variables to specific operational

information, thus describing the method’s particular behavior, parameter name, and return value

information.

The field of code analysis presents numerous complexities, especially those associated with data

types and operations. The research in [35] introduces a tool that significantly mitigates these

complexities. This tool leverages natural language queries, drawing upon dependency structures in

language, to interpret the code. The tool specifically automates the analysis of asymmetric binary

relations between words in a sentence, such as subordinate words and their dependencies. In other

words, it uses the syntactic structures of natural language to build a semantic understanding of code.

This approach not only aids in extracting the core meaning of the code but also makes the process

more comprehensible and accessible to programmers.

Simultaneously, natural language descriptions and programming by example have emerged as “user-

friendly” alternatives for specifying complex tasks. [36] addresses these issues by using specific

descriptions as inputs. This method generates grammatical rules for producing parseable commands,

thus facilitating the straightforward specification of complex, repetitive tasks.

Lastly, although modern bot creation systems detect user intent, they require considerable

development and configuration effort for each use case. [37] introduces a tool that uses a concise

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

71

specification description as input, assisting in the generalization of critical tasks in the program

generation process.

The inputs of Egeria [38] include optimization guides or other domain-specific documents relevant

to HPC. Additionally, user queries or performance profiling reports can be fed into the synthesized

advising tool to receive specific optimization advice.

The inputs used by the synthesis tool proposed in [39] include free-form queries composed of a

mixture of English and Java code. These queries can describe desired functionalities or operations

in natural language, possibly combined with partial code snippets. The system also incorporates

context from the developer’s current work in the IDE, such as the cursor position and existing code,

to better understand and generate the appropriate code fragments.

Jigsaw [40] accepts multi-modal inputs for synthesizing programs. Users can input their intent or

requirements in natural language and also include test cases, input/output examples. These are used

to further specify the intended functionality of the code, helping to refine the synthesis process and

ensure that the generated code meets the user’s needs.

The inputs for synthesizing a program using MaOG3P [41] include high-level specifications or

textual descriptions of the desired functionality of the program. Particularly, input/output examples

specify what the program should produce given certain inputs, helping to guide the genetic

programming process to evolve correct and efficient code.

The inputs for the program synthesis system proposed by [42] take the form of short descriptions of

specifications. The system understands the available commands and their syntax, which guide the

synthesis process. For instance, the system uses examples of desired inputs to learn and generate the

corresponding program.

The inputs used in [43] include textual problem descriptions that describe a programming task

provided in natural language, grammatical specifications, such as a defined grammar that dictates

the syntax of the programming language in which the programs are developed, and similar code that

is used to evaluate the suitability of evolved programs against a target source code, improving the

relevance of the generated programs for the given problem descriptions.

The inputs for the NLP generative model discussed in [44] take the form of a Textual Problem

Description, which is a description provided in natural language that outlines the problem to be

solved by the model. These descriptions are extracted from case studies that identify significant

components relevant to the problem being addressed.

The inputs for synthesizing programs in [45] take the form of natural language queries. For example,

students craft prompts in natural language that describe the desired functionality or outcome of a

program. This kind of input helps define the problem that needs to be solved by the generated code,

guiding the LLM towards appropriate solutions.

The input for the multi-modal synthesis approach described in [46] is a Natural Language

Description, which is a broad, often ambiguous description of a desired functionality. This kind of

input provides a specification of how the desired code should function.

The inputs of the synthesis process described in [47] are descriptive method names, which are

extracted from source code and are used as natural language descriptions of the functionality of the

code, and also function bodies that are aligned with the method names to form a parallel text code

corpus.

The inputs used in [48] are natural language descriptions, which describe the desired functionality

in natural language, and also existing code fragments that serve as context or examples for the

desired operations.

In [49] the inputs used to synthesize programs are programming prompts, which describe what the

generated code should accomplish, as well as code examples, that can be used to guide the AI in

generating appropriate code structures.

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

72

4.5 Outputs generated from the program synthesis (Q3)

Program synthesis offers flexibility by utilizing incomplete specifications, regardless of the specific

approach employed, to generate code. The objective is to achieve a degree of final completeness in

the produced output. However, it is important to note that the generated output may not always align

with the end user’s expectations.

[30] leverages postfix expressions (Boolean Logic) to establish a foundation for a domain-

independent learning approach to problem-solving via program synthesis concepts. This process

enables users, particularly programmers, to streamline their efforts by focusing on the core logic of

the program, thereby mitigating concerns about language syntax and other domain-specific

elements. Given the input “Did Mary and Ram go to school?”, the output is “Cannot be determined

/ True”.

The development of large and complex software projects requires a workforce trained in the

fundamental structures of the programming languages they use. One potential approach to automate

this process is the generation of a common keyword list. In this scenario, programmers need not

memorize the keyword vocabulary or understand their exact implementation to write a program in

the given language. For instance, a list of expected method names could be derived from a method

description with surrounding code [32]. For example, for the input “return random number with max

value iterationWeight for Random”, the output would be new “Random().nextInt(iterationWeight)”.

Alternatively, understanding how programmers code is a complex process that demands practical

solutions. By deeply processing programmers’ intentions and API documents written in natural

language, it is possible to leverage a profound understanding through program synthesis tailored for

this specific purpose. This approach circumvents the need for a large number of labeled examples,

thus alleviating the user’s task of collecting or generating examples. It also significantly impacts

traditional methods. For instance, from the input “Find statements whose init portion declares a

single variable which is initialized to the integer literal 0”, the following code (in a DSL) is

generated:

forStmt(

 hasLoopInit(

 declStmt(

 hasSingleDecl(

 varDecl(

 hasInitializer(

 integerLiteral(

 equals(0))))))))

Code library functions have significantly increased developers’ programming efficiency. They do

so by simplifying constraint generation and accelerating constraint resolution through the creation

of complete code based on constraint models of Java classes [34]. A pertinent example is a code

fragment in a tree structure, as shown below:

(define-fun result () Int (- 1))

(define-fun this ()

 (Seq String) (seq.unit ""))

(define-fun or () String "")

This example includes encapsulated functions that streamline and speed up constraint generation

through the use of generated constraint models.

Concurrently, attaining high software quality controls is a complex task. It requires support from

various program optimizations, software debugging, security measures, and more. Therefore, code

analysis in the early stages of development can provide developers with various preemptive options

[35]. Such an approach employs “final comparison expressions” that originate from specific natural

language descriptions and assist general programmers in conducting automated program analysis.

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

73

For instance, given the input “Find all C++ call expression of the C++ method named string1”, the

generated output expression in the form of an AST is:

cxxMemberCallExpr(

 callee(

 cxxMethodDecl(

 hasName(string1))))

The correct use of specifications often poses a challenge to non-expert users. Therefore, providing

an output that illustrates a synthesized specification derived from an example and a natural language

description can significantly enhance the accuracy of the synthesis method. Furthermore, it paves

the way for the generalization of synthesized tasks to other unseen tasks [36]. For instance, for the

expression “step into water and then visit (6, 4)”, it is possible to obtain an LTL specification as

“step into water and then visit (Num, Num)”.

Undeniably, there are numerous endeavors aimed at refining the process of automatic code

generation. Each study provides a perspective on how productivity in development can be enhanced.

One increasingly popular approach is the use synthesize API calls from expressions in NL. To fully

harness the potential of this approach, [37] propose a tool designed to foster the development of

intuitive software solutions. This tool bridges the gap between user needs, expressed in natural

language, and API invocations capable of satisfying these needs. An example is: synthesize API

calls from expressions in NL

<url:https://api.yelp.com/v2,

 path:/search parameters:

 term=[italian,cafes],

 location=[sydney.opera_house]>

The outputs generated by Egeria [38] include an advising tool that provides a list of essential rules

extracted from the input documents. This tool also serves as a question-answer agent that offers

specific optimization suggestions based on user queries or performance profiling reports. Fig. 4

shows an example rule that is used to guide programmers in optimizing code more effectively

without needing to manually sift through extensive documentation.

if(tx % 2 == 0 && ty % 2 == 0)

 out[tx * width + ty] = 2.0 * in[tx * width + ty]/sum;

else if(tx % 2 == 1 && ty % 2 == 0)

 out[tx * width + ty] = in[tx * width + ty]/sum;

else if(tx % 2 == 1 && ty % 2 == 1)

 out[tx * width + ty] = (-1.0) * in[tx * width + ty]/sum;

else

 out[tx * width + ty] = 0.0f;

Fig. 4. The Optimized Block [38].

The outputs generated by [39] are Java code fragments that respect Java syntax, type, and scoping

rules, as well as conform to common usage patterns derived from a statistical analysis of existing

code. These code fragments are presented to the developer within the IDE, offering several ranked

suggestions that the developer can choose from. The primary use of these outputs is to insert

appropriate code snippets into the developer’s project, helping to bridge the gap between a high-

level concept expressed in natural language and executable Java code.

The output of Jigsaw [40] is executable code that matches the user’s specified intent and passes

given test cases. Fig. 5 shows code that is generated after processing through a series of program

analysis and synthesis techniques, which include correcting common errors detected in the initial

outputs from pre-trained language models (PTLMs) like GPT-3 or Codex. The generated code helps

programmers quickly implement solutions and focus on higher-level design and problem-solving

tasks rather than the nuances of specific API calls or syntax correctness.

The outputs generated by MaOG3P [41] are executable code snippets that meet the requirements

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

74

specified through the input descriptions and examples. These outputs are used to automate coding

tasks, reduce development time, and improve the efficiency of the programming process. By

synthesizing code that satisfies both the syntactic and semantic correctness, the generated programs

help developers by providing ready-to-use code snippets that can be integrated into larger projects

or used as standalone solutions.

Code Before Code After

out=data[data.index.isin(test.index)]

df=df[df[‘foo’]>70)|df[‘foo’]<34]

out=df.iloc[0,”HP”]

dfout=df1.append(df2,ignore_index=True)

dfout=dfin.duplicated()

train=data.drop(test)

dfin=dfin[“A”].rolling(window=3).mean()

dfout=dfin[(x<40)|(y>53)&(z==4)]

out=data[~data.index.isin(test.index)]

df=df[(df[‘foo’]>70)|(df[‘foo’]<34)]

out=df.loc[0,”HP”]

dfout=df1.append(df2)

dfout=dfin.duplicated().sum()

train=data.drop(test.index)

dfin[“A”]=dfin[“A”].rolling(3).mean()

dfout=dfin[((x<40)|(y>53))&(z==4)]

Fig. 5. Applications (Code After) of learned transformations on code snippets produced by PTLM

(Code Before) [40].

The output from this system [42] is an executable program that conforms to the specifications

derived from the input-output examples provided. These programs can then be used directly within

software applications, helping to automate tasks or improve software functionality with minimal

human coding effort.

The outputs from the program synthesis approach proposed in [43] are executable pieces of code

that align with user-defined specifications and grammar rules. Fig. 6 shows programs that are

evaluated for similarity against target codes to ensure that they meet the specified requirements. This

can be used in Software Development to automate or speed up the development process by providing

ready-to-use code snippets that fit the user’s intent. Finally, this is an example of teaching tools to

demonstrate various programming techniques and solutions.

Problem Textual Description
Input/Output Pair

Training Testing

Number IO Given an integer and a float, print their sum. 25 1000

Median Given 3 integers, print their median. 100 1000

Smallest Given 4 integers, print the smallest of them. 100 1000

Fig. 6. Representation of target programs [43].

The outputs of the NLP generative model [44] are optimized solutions for NLP tasks. The model

generates solutions that address specific NLP-related problems like speech interpretation, sentiment

analysis, and text processing and adapted responses, because the system uses the outputs to adapt its

responses based on the input it receives, making it suitable for interactive applications such as virtual

assistants.

In the case of [45], the outputs are generated code based on prompts provided. A LLM is used to

generate code that attempts to solve a specified problem, and then the generated code is evaluated

against test cases to determine its correctness. This process aids in learning by providing immediate

feedback on the effectiveness of the prompt and the functionality of the code.

The outputs generated in [46] are executable code snippets that precisely match the combined

specifications provided by the natural language descriptions and the examples. Fig. 7 shows how

that works. The synthesized programs are used in software development to automate coding tasks,

ensuring that the generated code meets both broad functional requirements and specific operational

details.

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

75

Fig. 7. Interface layout for a Prompt Problem within the web-based Promptly tool [46].

The outputs generated [47] are code fragments. They consist of test function names (as natural

language descriptions) aligned with their respective function bodies (as code). These examples are

compiled and semantically relevant test cases generated by machine learning models trained on the

synthesized corpora. The goal is automating the creation of unit tests, reducing the time and effort

required for manual test case development.

The outputs generated by the program synthesizer in [48] include executable code, which can be run

directly or integrated into larger software projects. The study also allows generating descriptions in

natural language or summaries of code blocks, useful for documentation. These results are used to

improve productivity, improve code quality, help maintain and document code, and ensure the

reliability and security of software systems.

The outputs from the program synthesizer presented in [49] are executable code within a software

environment, as seen in Fig. 8. These results are used to directly implement functional requirements

in software projects, automate routine coding tasks, and improve overall software quality and

reliability through improved error detection and resolution capabilities.

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

76

4.6 Type of program synthesis used (Q4)

Program synthesis employs distinct methods, primarily classified into deductive and inductive

synthesis, each tailored to specific aspects of programming from formal specifications.

Deductive Program Synthesis involves formally deriving a program from a given specification,

treating the process as a theorem-proving task. It necessitates demonstrating that a program’s

output satisfies the conditions set out in the specification, a process confirmed through theorem

proof. This approach requires detailed, often complex specifications and is particularly useful when

correctness is paramount. In practice, deductive synthesis involves the use of formal methods to

ensure that every step in the program construction adheres strictly to the logical constraints outlined

in the specification. Notable works in this domain include [35], [34], and [37], which explore

various applications of theorem proving in program synthesis, demonstrating the effectiveness of

this approach in generating highly reliable software.

Fig. 8. Example of outputs obtained on a data set of basic Python problems (MBPP) [49].

Inductive Program Synthesis, in contrast, starts from incomplete problem descriptions, which

might include test cases, characteristics of desired and undesirable software behaviors, input-

output examples, or computational traces. This approach encompasses several methodologies that

aim to generalize from these examples to produce a program that satisfies the specification in a

broader sense:

• Genetic Programming and Incremental Evolution, as exemplified by [30] where the

synthesis process evolves programs iteratively, optimizing them to better fit the examples

provided.

• Counterexample-Guided Inductive Synthesis, explored in studies such as [32] and [36],

refines candidate programs by iteratively correcting them based on counterexamples, thus

gradually improving their correctness.

• Neural Program Synthesis, with key contributions from [33] and [31], leverages deep

learning models to synthesize programs from natural language or other high-level inputs,

demonstrating significant advancements in automating complex programming tasks.

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

77

Egeria [38] utilizes an unsupervised, multi-layered design leveraging NLP techniques. Although not

explicitly categorized, its synthesis approach suggests inductive reasoning through optimization

based on general guidelines and specific user queries.

Jigsaw [40] integrates inductive synthesis with corrective transformations, initially using pre-trained

language models for generating code snippets from natural language inputs, followed by corrective

transformations to ensure accuracy, blending inductive learning with deductive refinements.

MaOG3P [41] and the approach outlined in [42] emphasize inductive synthesis through genetic

programming and machine learning, respectively, focusing on evolving programs to meet specific

input-output behaviors based on learned patterns.

The synthesis methodologies in [44] and [45] also follow inductive approaches, generalizing from

specific examples to create applicable solutions across new scenarios.

Lastly, the approaches in [47], [48], and [49] exemplify the inductive synthesis prevalent in AI-

assisted programming, where large datasets of code are used to predict and generate new code

segments, demonstrating how modern AI tools, like ChatGPT, generalize from extensive training

data to produce functional programming solutions.

This study concludes with an examination of [46], which combines inductive and deductive

elements. The process starts with PTMs generating initial code candidates, followed by a

Component-Based Synthesis (CBS) approach that deductively constructs the final program,

ensuring it meets the provided examples through systematic component assembly and refinement.

In the next chapter we present our main discussions of the study.

5. Results discussion

In this section the results of this systematic literature review reveal both the progress and ongoing

challenges in the field of program synthesis, particularly when interfacing with natural language

processing (NLP). The analysis of 20 selected studies highlights several key trends and areas of

focus that have emerged over the past decade, also the systematic literature review on program

synthesis and natural language processing (NLP) reveals significant advancements and emerging

trends in this field. A key finding is the increasing integration of advanced artificial intelligence

models, especially large language models (LLMs), which have demonstrated remarkable

capabilities in interpreting natural language specifications and generating executable code.

This development is democratizing software development, allowing users with little or no

programming experience to create functional applications using natural language instructions. The

review also highlights the evolution of program synthesis methodologies, which have transitioned

from rule-based approaches to more sophisticated techniques that leverage machine learning and

genetic programming. These modern techniques can learn from input-output examples and user

interactions, thus improving the accuracy and efficiency of code generation. However, significant

challenges remain, such as achieving high precision in interpreting complex natural language

requirements and ensuring responsible AI practices to guarantee the reliability of the generated code.

On the other hand, ambiguity in natural language specifications and the scalability of program

synthesis systems represent crucial challenges in automatic code generation. Ambiguity, inherent in

natural language, can lead to multiple interpretations of the same instruction, making it difficult to

correctly understand and translate the user’s intentions into executable code. To mitigate this

problem, it is necessary to develop techniques that effectively disambiguate specifications, using

contextual models and interactive visualization tools. On the other hand, scalability is essential for

these systems to be able to handle complex tasks and large volumes of data without losing

performance. This requires the implementation of optimizations such as parallel processing and

model compression, ensuring that systems can adapt to various domains and contexts without

compromising the quality of the generated code.

Finally, the potential applications of program synthesis go beyond traditional software development.

In the educational field, program synthesis tools are used to teach logic and programming concepts,

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

78

automatically generating code from problem descriptions provided in natural language, making

programming more accessible to a broader audience.

6. Conclusions

This investigation has examined the state of program synthesis from natural language, uncovering

various trends and motivations within the field of automatic code generation. Through meticulous

analysis of current literature, this study underscores the expanding role of natural language

processing (NLP) tools and their potential to profoundly influence computing disciplines.

The advancements in NLP not only enhance communication capabilities but also facilitate the

creation of sophisticated methods for generating syntactic representations of programming

languages, as highlighted in the referenced paper [50]. Such methodologies leverage pre-trained,

language-based components, promising to refine the process of transforming human language into

executable code.

Furthermore, with AI-based systems becoming ever more integral to daily life and the disruptive

capabilities of generative AI models, the incorporation of responsible AI practices becomes

imperative. This approach will ensure the development and deployment of large language models

and other generative systems are both reliable and trustworthy, fostering greater confidence in their

applications.

Future research in the field of program synthesis should focus on improving the interpretability of

systems, allowing coding decisions to be more understandable and reliable, especially for non-expert

users. Furthermore, domain-specific synthesis models should be developed, using specialized

datasets to improve the accuracy and relevance of synthesized programs. Optimizing the scalability

and computational efficiency of these systems is equally vital, ensuring their large-scale adoption.

Finally, it is critical to incorporate ethical considerations and responsible artificial intelligence

principles, ensuring fairness, accountability, and transparency in synthesis systems, and minimizing

biases. As for practical implications, integrating program synthesis tools into educational platforms

can facilitate learning programming, while in software development, automating repetitive tasks and

codebase generation will allow developers to focus on more creative aspects. Furthermore,

improving the accessibility and usability of applications through natural language interfaces driven

by program synthesis could revolutionize human-computer interaction.

Overall, this study illuminates the dynamic field of program synthesis from natural language,

advocating for continued research and development. By harnessing advanced NLP and responsible

AI, the gap between human language and computer programming can be bridged more effectively,

setting a foundation for future innovations in automatic code generation.

References
[1]. J. Fu, F. B. Bastani, and I.-L. Yen, in Innovations for Requirement Analysis. From Stakeholders’ Needs

to Formal Designs, edited by B. Paech and C. Martell (Springer Berlin Heidelberg, Berlin, Heidelberg,

2007), pp. 43–61, ISBN 978-3-540-89778-1.

[2]. Z. Manna and R. J. Waldinger, Toward automatic program synthesis (1971), URL

https://doi.org/10.1145/362566. 362568.

[3]. S. Jiho and N. Jaechang, A survey of automatic code generation from natural language (2021).

[4]. A. Bandi, P. V. S. R. Adapa, and Y. E. V. P. K. Kuchi, The power of generative ai: A review of

requirements, models, input–output formats, evaluation metrics, and challenges (2023), URL

https://www.mdpi.com/1999-5903/15/8/260.

[5]. S. Gulwani, in Formal Methods in Computer Aided Design (2010), pp. 1–1.

[6]. Z. Manna and R. Waldinger, A deductive approach to program synthesis (1980), URL

https://doi.org/10.1145/357084. 357090.

[7]. E. Kitzelmann, in Approaches and Applications of Inductive Programming, edited by U. Schmid, E.

Kitzelmann, and R. Plasmeijer (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010), pp. 50–73, ISBN

978-3-642-11931-6.

https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://www.mdpi.com/1999-5903/15/8/260
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/357084.357090

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

79

[8]. A. F. Subahi, Cognification of program synthesis—a systematic feature-oriented analysis and future

direction (2020), URL https://www.mdpi.com/2073-431X/9/2/27.

[9]. J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, and D. Doermann, Future of software development

with generative ai (2024).

[10]. C. Ebert and P. Louridas, Generative ai for software practitioners (2023).

[11]. K. S. Kaswan, J. S. Dhatterwal, K. Malik, and A. Baliyan, in 2023 International Conference on

Communication, Security and Artificial Intelligence (ICCSAI) (2023), pp. 699–704.

[12]. G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer, Midi-vae: Modeling dynamics and

instrumentation of music with applications to style transfer (2018), URL

https://api.semanticscholar.org/CorpusID:49317433.

[13]. T. Karras, S. Laine, and T. Aila, A style-based generator architecture for generative adversarial networks

(2021), URL https://doi.org/10.1109/TPAMI.2020.2970919.

[14]. D. Jonassen, J. Howland, J. L. Moore, and R. Marra, in Learning to Solve Problems with Technology: A

Constructivist Perspective (2002).

[15]. E. D. Liddy, Natural language processing. (2001).

[16]. D. Jatnika, M. A. Bijaksana, and A. A. Suryani, Word2vec model analysis for semantic similarities in

english words (2019), the 4th International Conference on Computer Science and Computational

Intelligence (ICCSCI 2019) : Enabling Collaboration to Escalate Impact of Research Results for Society,

URL https://www.sciencedirect.com/science/article/ pii/S1877050919310713.

[17]. Venkatesh, S. U. Hegde, Z. A. S, and N. Y, in 2021 International Conference on Advances in Electrical,

Computing, Communication and Sustainable Technologies (ICAECT) (2021), pp. 1–8.

[18]. L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X. Wang, Gensim:

Generating robotic simulation tasks via large language models (2024), 2310.01361.

[19]. A. Namboori, S. Mangale, A. Rosenbaum, and S. Soltan, Gemquad : Generating multilingual question

answering datasets from large language models using few shot learning (2024), 2404.09163.

[20]. T. Mikolov, M. Karafiat, L. Burget, J. Cernocky´, and S. Khudanpur, in Recurrent neural network based

language model (2010), vol. 2, pp. 1045–1048.

[21]. T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky, Strategies for training large scale neural

network language models (2011).

[22]. S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel, G. Rjoub, and W. Pedrycz, A comprehensive

survey on applications of transformers for deep learning tasks (2023), 2306.07303.

[23]. P. Yin and G. Neubig, in A Syntactic Neural Model for General-Purpose Code Generation (2017), pp.

440–450.

[24]. B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, Information and

Software Technology 51, 7 (2009), ISSN 0950-5849, special Section – Most Cited Articles in 2002 and

Regular Research Papers, URL http: //www.sciencedirect.com/science/article/pii/S0950584908001390.

[25]. K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, in Proceedings of the 12th International Conference

on Evaluation and Assessment in Software Engineering (BCS Learning and Development Ltd., 2008),

EASE’08, p. 68–77.

[26]. N. S. M. Yusop, J. Grundy, and R. Vasa, IEEE Transactions on Software Engineering 43, 848 (2017).

[27]. R. Moguel-S´anchez, C. Mart´ınez-Palacios, J. Ochar´an-Hern´andez, X. Lim´on, and A. S´anchez-

Garc´ıa, Programming and Computer Software 49, 712 (2024).

[28]. P. O. Silva-Vasquez, V. Y. Rosales-Morales, and E. Ben´ıtez-Guerrero, Program. Comput. Softw. 48,

685–701 (2022), ISSN 0361-7688, URL https://doi.org/10.1134/S0361768822080187.

[29]. U. Dissemination, The database of abstracts of reviews of effects (dare) (2002).

[30]. P. Archana, P. B. Harish, N. Rajan, S. P, and N. S. Kumar, in 2021 Asian Conference on Innovation in

Technology (ASIANCON) (2021), pp. 1–8.

[31]. D. Wang, W. Dong, and Y. Zhang, in 2020 35th IEEE/ACM International Conference on Automated

Software Engineering Workshops (ASEW) (2020), pp. 98–104.

[32]. H. Phan, A. Sharma, and A. Jannesari, in 2021 36th IEEE/ACM International Conference on Automated

Software Engineering Workshops (ASEW) (2021), pp. 219–226.

[33]. Z. Nan, H. Guan, and X. Shen, HISyn: Human Learning-Inspired Natural Language Programming

(Association for Computing Machinery, New York, NY, USA, 2020), p. 75–86, ISBN 9781450370431,

URL https://doi.org/10.1145/3368089. 3409673.

[34]. Z. Zhang, S. Wu, R. Jiang, M. Pan, and T. Zhang, in Proceedings of the Tenth Asia-Pacific Symposium

on Internetware (Association for Computing Machinery, New York, NY, USA, 2018), Internetware ’18,

ISBN 9781450365901, URL https: //doi.org/10.1145/3275219.3275229.

https://www.mdpi.com/2073-431X/9/2/27
https://doi.org/10.1109/TPAMI.2020.2970919
https://www.sciencedirect.com/science/article/pii/S1877050919310713
https://www.sciencedirect.com/science/article/pii/S1877050919310713
http://www.sciencedirect.com/science/article/pii/S0950584908001390
http://www.sciencedirect.com/science/article/pii/S0950584908001390
https://doi.org/10.1134/S0361768822080187
https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3368089.3409673
https://doi.org/10.1145/3275219.3275229
https://doi.org/10.1145/3275219.3275229

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

80

[35]. Z. Nan, H. Guan, X. Shen, and C. Liao, in Proceedings of the 30th ACM SIGPLAN International

Conference on Compiler Construction (Association for Computing Machinery, New York, NY, USA,

2021), CC 2021, p. 141–152, ISBN 9781450383257, URL https://doi.org/10.1145/3446804.3446852.

[36]. I. Gavran, E. Darulova, and R. Majumdar, Interactive synthesis of temporal specifications from examples

and natural language (2020), URL https://doi.org/10.1145/3428269.

[37]. S. Zamanirad, B. Benatallah, M. C. Barukh, F. Casati, and C. Rodriguez, in 2017 32nd IEEE/ACM

International Conference on Automated Software Engineering (ASE) (2017), pp. 832–837.

[38]. H. Guan, X. Shen, and H. Krim, in SC17: International Conference for High Performance Computing,

Networking, Storage and Analysis (2017), pp. 1–14.

[39]. T. Gvero and V. Kuncak, in 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering (2015), vol. 2, pp. 689–692.

[40]. N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Rajamani, and R. Sharma, in 2022

IEEE/ACM 44th International Conference on Software Engineering (ICSE) (2022), pp. 1219–1231.

[41]. N. Tao, A. Ventresque, and T. Saber, in 2023 IEEE Latin American Conference on Computational

Intelligence (LA-CCI) (2023), pp. 1–6.

[42]. S. Lee, S. Y. Nam, and J. Kim, Program synthesis through learning the input-output behavior of commands

(2022).

[43]. N. Tao, A. Ventresque, and T. Saber, in Optimization and Learning – 5th International Conference, OLA

2022, Syracuse, Sicilia, Italy, July 18-20, 2022, Proceedings, edited by B. Dorronsoro, M. Pavone, A.

Nakib, and E.-G. Talbi (Springer, 2022), vol. 1684 of Communications in Computer and Information

Science, pp. 240–252, ISBN 978-3-031-22039-5, URL https://doi.org/10.1007/978-3-031-22039-5_19.

[44]. A. Bhardwaj, P. Khanna, S. Kumar, and Pragya, Generative model for nlp applications based on

component extraction (2020), international Conference on Computational Intelligence and Data Science,

URL https://www.sciencedirect. com/science/article/pii/S1877050920308577.

[45]. K. Rahmani, M. Raza, S. Gulwani, V. Le, D. Morris, A. Radhakrishna, G. Soares, and A. Tiwari, Multi-

modal program inference: a marriage of pre-trained language models and component-based synthesis

(2021), URL https://doi.org/10. 1145/3485535.

[46]. P. Denny, J. Leinonen, J. Prather, A. Luxton-Reilly, T. Amarouche, B. A. Becker, and B. N. Reeves, in

Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (Association

for Computing Machinery, New York, NY, USA, 2024), SIGCSE 2024, p. 296–302, ISBN

9798400704239, URL https://doi.org/10.1145/3626252.3630909.

[47]. M. Kacmajor and J. D. Kelleher, Automatic acquisition of annotated training corpora for test-code

generation (2019), URL https://www.mdpi.com/2078-2489/10/2/66.

[48]. M.-F. Wong, S. Guo, C.-N. Hang, S.-W. Ho, and C.-W. Tan, Natural language generation and

understanding of big code for ai-assisted programming: A review (2023), URL

https://www.mdpi.com/1099-4300/25/6/888.

[49]. C. E. A. Coello, M. N. Alimam, and R. Kouatly, Effectiveness of chatgpt in coding: A comparative

analysis of popular large language models (2024), URL https://www.mdpi.com/2673-6470/4/1/5.

[50]. M. Rabinovich, M. Stern, and D. Klein, Abstract syntax networks for code generation and semantic parsing

(2017), URL https://arxiv.org/abs/1704.07535.

Информация об авторах / Information about authors

Роландо РАМИРЕС-РУЭДА учится в аспирантуре по программированию в Университете

Веракруса (Мексика). Лектор отделения системного программирования в одном из

институтов этого университета. Сфера научных интересов: автоматический вывод,

искусственный интеллект, мультиагентные системы.

Rolando RAMÍREZ-RUEDA – PhD Student in Computer Science from the University of Veracruz

in Mexico. Professor in the systems department of Veracruz University Institute in Mexico.

Research interests: Automated Reasoning, Artificial Intelligence, Multiagent Systems.

Эдгард БЕНИТЕС-ГУЭРРЕРО имеет степень PhD по программированию Гренобльского

университета (Франция). Профессор факультета статистики и информатики Университета

Веракруса (Мексика). Сфера научных интересов: человеко-машинное взаимодействие,

https://doi.org/10.1145/3446804.3446852
https://doi.org/10.1145/3428269
https://doi.org/10.1007/978-3-031-22039-5_19
https://www.sciencedirect.com/science/article/pii/S1877050920308577
https://www.sciencedirect.com/science/article/pii/S1877050920308577
https://doi.org/10.1145/3485535
https://doi.org/10.1145/3485535
https://doi.org/10.1145/3626252.3630909
https://www.mdpi.com/2078-2489/10/2/66
https://www.mdpi.com/1099-4300/25/6/888
https://www.mdpi.com/2673-6470/4/1/5
https://arxiv.org/abs/1704.07535

Рамирес-Руэда Р., Бенитес-Гуэрреро Э., Мезура-Годой К., Барсенас Э. Десятилетие достижений в синтезе программ по

спецификациям на естественном языке: систематический обзор литературы. Труды ИСП РАН, 2024, том 36 вып. 6, с. 59-82.

81

искусственный интеллект, совместные вычисления, управление данными и визуализация

данных.

Edgard BENÍTEZ-GUERRERO – PhD in Computer Science from the University of Grenoble in

France. Professor at the Faculty of Statistics and Informatics of the University of Veracruz in

Mexico. Research interests: Human Computer Interaction, Artificial Intelligence, Collaborative

Computing, Data Management and Visualization.

Кармен МЕЗУРА-ГОДОЙ получил степень PhD по программированию в Университете

Савойи (Франция). Профессор факультета статистики и информатики Университета

Веракруса (Мексика). Основные научные интересы: человеко-машинное взаимодействие,

пользовательский опыт взаимодействия, совместная работа с поддержкой компьютера,

визуализация и мультиагентные системы.

Carmen MEZURA-GODOY – PhD in Computer Science from the University of Savoie in France.

Professor at the Faculty of Statistics and Informatics of the University of Veracruz in Mexico. Main

research interests: Human-Computer Interaction, User eXperience-UX, Computer-Supported

Collaborative Work, Visualization and Multiagent Systems

Эверардо БАРСЕНАС имеет степень PhD по программированию Гренобльского

университета, работает в должности доцента на факультете программной инженерии

Национального университета Мексики. Его научные интересы включают модальную логику,

теорию доказательств, автоматизированный логический вывод, описательную логику,

проверки моделей и формальные верификации.

Everardo BARCENAS holds a PhD in Computing Science from the University of Grenoble, and is

an Assistant Professor in the Computing Engineering Department of the National University of

Mexico. His research interests include: Modal Logics, Proof Theory, Automated Reasoning,

Description Logics, Model Checking and Formal Verification.

Ramirez-Rueda R., Benitez-Guerrero E., Mezura-Godoy C., Barcenas E. A Decade of Advancements in Program Synthesis from Natural

Language: A Systematic Literature Review. Trudy ISP RAN/Proc. ISP RAS, vol. 36, issue 6, 2024. pp. 59-82.

82

	1. Introduction
	2. Background
	2.1 Program synthesis
	2.2 Natural Language Processing
	3. Method
	3.1 Research Questions
	3.2 Search String
	3.3 Data Sources
	3.4 Selection Criteria
	3.5 Quality Assessment
	4. Results
	4.1 Summary of the Studies
	4.2 Quality evaluation
	4.3 Application areas (Q1)
	Education:
	Software Development:
	Robotics:
	Artificial Intelligence:
	4.4 Inputs used to synthetize a program (Q2)
	4.5 Outputs generated from the program synthesis (Q3)
	4.6 Type of program synthesis used (Q4)
	5. Results discussion
	6. Conclusions
	References
	Информация об авторах / Information about authors

