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Abstract. Program Synthesis is the process of automatically generating software from a requirement
specification. This paper presents a systematic literature review focused on program synthesis from
specifications expressed in natural language. The research problem centers on the complexity of automatically
generating accurate and robust code from high-level, ambiguous natural language descriptions — a barrier that
limits the broader adoption of automatic code generation in software development. To address this issue, the
study systematically examines research published between 2014 and 2024, focusing on works that explore
various approaches to program synthesis from natural language inputs. The review follows a rigorous
methodology, incorporating search strings tailored to capture relevant studies from five major data sources:
IEEE, ACM, Springer, Elsevier, and MDPI. The selection process applied strict inclusion and exclusion criteria,
resulting in a final set of 20 high-quality studies. The findings reveal significant advancements in the field,
particularly in the integration of large language models (LLMs) with program synthesis techniques. The review
also highlights the challenges and concludes by outlining key trends and proposing future research directions
aimed at overcoming these challenges and expanding the applicability of program synthesis across various
domains.
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AnHoTanus. [IporpaMMHBII CHHTE3 — 3TO MPOIECC ABTOMAaTUUECKOTO CO3AaHUs TPOrPaMMHOT0 00eCTIeueHUs
Ha OCHOBE crenu(ukanuy TpedoBaHuil. B 3Toil cTaThe mpeacTaBieH CHCTEMAaTHIECKU 0030p JIUTEPATypHI,
MOCBSIIIEHHBIA CHHTE3Y MPOrpaMM U3 crienu(HKAIMi, BRIPA)KCHHBIX HA €CTECTBEHHOM si3bIke. Mccnemyemas
npo0iIeMaTHKa 3aKII0YaeTcss B CIOXKHOCTH aBTOMATHYECKOIO CO3JaHUS TOYHOTO M HAJEKHOTO KOJa M3
BBICOKOYPOBHEBBIX, HEOJHO3HAUHBIX ONHMCAHUH Ha €CTECTBEHHOM SI3bIKE — Oapbhep, KOTOPHIH OrpaHHYHBaET
GoJiee MMPOKOE UCIIOIB30BAaHUE CPEACTB aBTOMATU3ALMHU TIpU pa3paboTKe MporpaMMHOro obecrnedenus. [
HCCIIeI0BaHMS STOH IPOOGIEMBI aBTOPHI CHCTEMAaTHUECKU N3yJaln paboThl, OITyOIHKOBaHHEIE B mepuoj ¢ 2014
mo 2024 ropn, nmemas akIeHT Ha pabOTHI, B KOTOPBIX PACCMATPHBAIOTCS DPA3IMYHBIC IOAXOABI K CHHTE3Y
IIPOrpaMM Ha OCHOBE JaHHBIX Ha €CTECTBEHHOM si3bIke. O030p clieyeT CTPOroi MeTOA0JIO0THH, BKIFOUYAoIIeit
MIOUCKOBBIE CTPOKH, aJaNTHPOBAaHHBIE Ui cOOpa COOTBETCTBYIOLIMX HCCIIEIOBAaHMI M3 ISATH OCHOBHBIX
ucrounukoB nanusix: IEEE, ACM, Springer, Elsevier 1 MDPI. B nporecce 0T60pa MPUMEHSIIUCH CTPOTHE
KPHUTEPHHU BKJIIOUCHUS M HCKITIOUCHUS, YTO MPUBEJIO K OKOHYATEIbHOMY Ha0opy U3 20 BEICOKOKaYeCTBEHHBIX
uccienoBaHUi. Pe3ynpTaThl NMOKa3pIBAIOT 3HAYUTEIBHBIE JOCTIDKEHHs B JTOH 001acTd, OCOOEHHO B
HHTErpanuy 6ombImKX sA36IKOBEIX Moxenel (LLM) ¢ meronamu cuntesa mporpamm. OG30p Takke ocBemaeT
poOJIeMBbl M 3aBEPLIASTCS] W3JIOKEHHEM KIIOYEBBIX TEHJACHLMH M NpeIoKeHHeM OyIyIIMX HarpaBlIeHUH
HCCIIeIOBAaHNH, HAILENICHHBIX HA IIPEOJOJICHHE 3THUX TNPOOIeM U paclIUpeHne HPUMEHHMOCTH CHHTE3a
MIPOTPaMM B Pa3INIHBIX 00IACTSIX.

KuioueBble cji0Ba: CHHTE3 MPOrpaMM; FeHepanys nporpaMm; 00paboTKa eCTECTBEHHOTO S3bIKA.

Jast uutupoBanusi: Pamupec-Pysaa P., benurec-I'yappepo 2., Mesypa-T'onoii K., bapcenac 2. lecsatunerue
JIOCTIDKEHUH B CHHTE3€ IPOrpaMM IO CreHU(UKAIMAM Ha €CTECTBEHHOM S3bIKE: CHCTEMAaTHYECKHil 0030p
mureparypel. Tpynst UCIT PAH, tom 36, Bem. 6, 2024 r., ctp. 59-82 (ma anrmmiickom s3eike). DOI:
10.15514/ISPRAS-2024-36(6)—4.

BaaromapnocTn. DTa pabora Oblla YaCTUYHO BHINOJHEHA NpPH Mojanepxke HaruoHanbHOro coBera MO
ryMaHUTapHBIM HaykaM, Hayke U TexHuke (CONAHCYT-Mekcuka) B pamkax npoekra “Infrastructura para
Agilizar el Desarrollo de Sistemas Centrados en el Usuario” (Catedras, Ref. 3053). Kpome Toro, aBTopsI
omaronapst coeT CONAHCYT 3a JOKTOPCKYO CTHIICHIUIO, IPEIOCTABICHHYO IEPBOMY aBTOpPY. MBI Takxke
OnmaromapuM YHUBEpCHUTET ITata Bepakpyc 3a moAnep Ky B IPOBEJICHUH 3TOTO HCCIECAOBAHMS.

1. Introduction

The development of a software system encompasses a detailed life cycle that includes stages such
as requirement specification, design, prototyping, and testing [1]. Traditionally, this process is slow
and susceptible to errors. To enhance efficiency and reduce errors, employing models at various
abstraction levels, along with their mappings, can facilitate the automatic generation of code from
high-level descriptions. These models, which capture the behavior and structure of the system, can
be developed manually or derived from requirement specifications. Despite the benefits, the process
of generating code from models necessitates establishing the models themselves, defining rules for
mapping elements between models, and creating rules to generate code in the target programming
language. These tasks require expert knowledge and sophisticated tools.

An alternative method is program synthesis [2], which involves generating software automatically
from a requirement specification. Relying on artificial intelligence and formal methods, this
approach aims to produce correct programs by formulating rules that map input specifications
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directly to programs, thus accelerating development. However, it is critical to acknowledge that
software developed through this approach may be more prone to errors and could lack robustness.
In the realm of specifying systems, one commonly uses expressions in predicate logic, necessitating
specialized expertise. To make this approach accessible not only to experts but also to end-users,
specifications should ideally be articulated in a more intuitive form, such as natural language.

Our research takes as reference the work proposed by [3] and [4], which extensively review code
generation with natural language, although they examine approaches that automatically generate
source code from a description In natural language, we want to emphasize the areas of application,
as well as to make known the types of inputs and outputs that are necessary to generate automatic
code from natural language and finally analyze future trends.

To ensure the relevance of our study in this rapidly evolving domain, we consider recent
advancements in natural language processing and artificial intelligence, particularly as they pertain
to program synthesis. This includes the exploration of models like GPT-4 and other advanced
transformer architectures to understand how they can be adapted for interpreting natural language
program specifications. Moreover, we address the current challenges, such as achieving precision in
interpreting complex requirements and the implications of automating code generation.

It is important to note that this work extends the paper “Program Synthesis and Natural Language
Processing: A Systematic Literature Review,” presented at the International Conference on Research
and Innovation in Software Engineering (CONISOFT 2023). In this updated study, we expand the
analysis by covering an additional five years and incorporating a new digital library (MDPI), thereby
covering the last decade. Our objective is to analyze publications, identify emerging trends, and
highlight opportunities for future research that were not addressed in the previous work. We selected
twenty articles from major databases, including IEEE, ACM, Springer, Elsevier, and MDPI.

These studies investigate various methods of program synthesis, ranging from rule-based
approaches, which employ explicit translation rules from natural language to code, to more advanced
techniques that learn these rules from input-output pairs, integrating generative artificial intelligence
models.

The paper is structured as follows: We begin with background information on the relevant research
areas of program synthesis, natural language processing, and generative models. Next, we detail the
methodology employed for the SLR, followed by a discussion of the findings. The paper concludes
with a summary of the research outcomes.

2. Background

2.1 Program synthesis

In this section we discuss Program synthesis is an intriguing research domain focused on the
automatic generation of programs from detailed specifications. This field is particularly valuable for
creating small, complex programs that are verifiable and correct based on comprehensive
specifications.
The domain is characterized by three critical dimensions [5]: the types of constraints that express
user intentions, the operational search space, and the search techniques employed. User intentions
can be depicted through various forms such as logical relations between inputs and outputs,
demonstrations, natural language, input-output examples, or inefficient or related programs. The
search space may be confined by potential program types, computational models like context-free
grammars, or logical frameworks. Search techniques employed include exhaustive searches, version
space exploration, machine learning, and logical reasoning.
Program synthesis can further be classified into methods such as deductive synthesis from full
specifications [6], which generates programs based on probabilistic selection mechanisms. The
viability of a program is determined by its alignment with specified criteria derived from its
specifications. Despite its effectiveness, generating these detailed specifications is a considerable
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challenge and verifying them is computationally intensive.

Alternately, inductive synthesis starts with incomplete problem descriptions, which may include test
cases, specified desired and undesired behaviors, input-output examples, or execution traces for
particular inputs [7]. While this approach ensures correctness by construction, the creation of
extensive programs remains a significant computational challenge, often requiring more effort to
define a complete and correct specification than to write the program itself. Fig. 1 shows the possible
program synthesis approaches.

Synthesis
Paradigm
Inductive Deductive
Example Oracle Component Theorem Transformation
Guided Guided Based proving Rules
Mathematllcal Predlcate_Loglc Declarative Imperative
Induction Extension

Fig. 1. Program Synthesis Paradigms [8].

Conversely, the integration of generative artificial intelligence is reshaping the software industry,
not only by advancing techniques and tools but also by democratizing software development [9]. A
significant obstacle in traditional program synthesis has been the requirement for complete
specifications. However, modern advancements in software development are transforming this
challenge by employing models capable of interpreting natural language descriptions to synthesize
code across various programming languages. This transformation greatly simplifies the synthesis
process and broadens access to those without specialized expertise.

A prime example is the use of large language models (LLMSs), which empower non-programmers to
create applications through intuitive natural language interfaces. This capability could herald a major
shift in information technology education and training, with a greater emphasis on design and project
management skills rather than on pure coding [10].

Unlike traditional expert systems that merely analyze or interact with existing data, program
synthesis harnesses vast data sets and complex architectures to generate new and varied content. By
leveraging continued advances in computing power, this approach employs deep neural networks,
transformers, generative adversarial networks, and autoencoders to capture the complexity of data
and effectively model high-dimensional probabilistic distributions across both specific and general
domains [11].

Furthermore, by incorporating techniques that map the latent semantic space of language or images
to multimedia representations in text, audio, or video, generative models can convert any type of
input into a variety of output formats [12] [13]. This versatility makes generative models invaluable
in numerous applications.

The extensive data access and complex architectures of these models offer unprecedented potential
for content creation and transformation. Their ability to learn from diverse sources, generate various
multimedia formats, and convert inputs from one format to another opens up a wide array of
possibilities in multimedia generation and conversion, making these models indispensable tools in
today’s technologically advanced world.

In summary, program synthesis is revolutionizing problem-solving by enabling non-experts to
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automate solutions without requiring deep knowledge of algorithm design and implementation [14].
Through the strategic use of various constraints, search spaces, and synthesis methods—both
deductive and inductive—the field of program synthesis continues to evolve. While the need for
complete specifications has historically been a barrier, recent technological advancements now
allow for the use of natural language, thereby enhancing the field’s accessibility and practical
application.

2.2 Natural Language Processing

Artificial intelligence systems have significantly advanced the development of complex cognitive
tasks. Natural Language Processing (NLP) serves as a pivotal bridge between human languages and
computers, facilitating a myriad of applications [15]. Among the foundational techniques in NLP
are regular expressions, which are essential for executing various practical NLP tasks.

Progress in NLP has led to sophisticated approaches for tasks such as text classification, knowledge
discovery, and word recommendation. Prominent algorithms for word embedding—such as
Word2Vec [16], GloVe [17], and Gensim [18] — play critical roles in these areas by capturing
semantic relationships between words and enabling vector representations that are used in
downstream tasks. Furthermore, deep learning-based sequence to sequence models (seg2seq) [19]
have proven highly effective in machine translation tasks, facilitating the transformation of text from
one language to another with high accuracy. Techniques that consider word order and linguistic
elements like phonemes and sentences are instrumental in enabling inference and generating novel
sentence elements, making models like Transformers especially powerful in generating human-like
text [20-21].

Sequence modeling is another critical domain within NLP. Long Short-Term Memory networks
(LSTM)[22] are particularly advantageous for these tasks due to their capacity to retain long-term
information in a sequence. Unlike recurrent neural networks (RNN), which typically process
information through tree structures in a seq2tree fashion, LSTMs incorporate bidirectional flows,
thereby enhancing efficiency and performance in a variety of tasks, including speech recognition,
time series prediction, and text generation[23]. More recent advancements, such as Bidirectional
Encoder Representations from Transformers (BERT), further extend the capabilities of sequence
models by pretraining on large corpora and fine-tuning for specific tasks, achieving state-of-the-art
results in many NLP benchmarks. In conclusion, NLP technologies enable the seamless integration
of natural language understanding within systems, thereby meeting diverse end-user needs and
expanding the scope of possible applications. These advancements have profound implications not
only in traditional applications like translation and sentiment analysis but also in emerging areas
such as conversational Al, content generation, and human-computer interaction, where the ability to
understand and generate natural language is crucial. In the next section we will analyze the method
we used for this research.

3. Method

To explore diverse perspectives and support the research presented in this work, we adopted the
systematic literature review methodology proposed by [24], while also incorporating
recommendations from [25-28]. This methodology provides a rigorous framework for exploring the
synergies between program synthesis and natural language processing, thereby enriching the
research landscape and informing future studies in these areas. Additionally, this research considers
fundamental aspects such as requirements, models, input-output formats, and evaluation metrics.
The systematic mapping we employ follows a structured approach that includes Research Questions,
Search String, Data Sources, Selection Criteria, and Quality Assessment.

3.1 Research Questions

The objective of our systematic literature review is to obtain a comprehensive understanding of the
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key components involved in program synthesis and code generation, particularly through the lens of
Natural Language Processing. We aim to reveal the mechanisms underlying automatic program
generation and identify areas needing further research to thoroughly understand the context and
advantages of program generation via synthesis.

The research questions formulated for this study are designed to systematically dissect these aspects:
Q1. What are the application areas?

Q2. What are the inputs used to synthesize a program?

Q3. What are the outputs generated from the program synthesizer and how are they used?

Q4. What type of synthesis is used?

3.2 Search String

We defined a search string aimed at capturing the intersection of key research domains:
[((“Program” OR “Code”) AND (“Synthesis” OR “Generation”)) AND (‘“Natural Language
Processing” OR “NLP”). This string was used to ensure that all pertinent literature was considered.
Depending on the database, a general search string was defined and adapted to each search engine.

3.3 Data Sources

Five major data sources were selected to conduct a comprehensive search for literature related to
program synthesis and natural language processing. The sources include ACM Digital Library, IEEE
Xplore, Springer, Elsevier, and MDPI. These platforms were chosen for their extensive repositories
of scientific papers and their relevance to the fields under study.

3.4 Selection Criteria

To ensure a focused and relevant data collection process, several inclusion and exclusion criteria
were meticulously applied:

The exclusion criteria eliminated other types of documents, such as unpublished works, books,
courses, newspapers, and master’s and doctoral theses.

The inclusion criteria considered only journal articles and conference proceedings published
between 2014 and 2024, which allowed us to capture the most recent advances in the field. The
search parameters were carefully established to filter data by titles, abstracts, and keywords of
journal articles and conference proceedings that met the inclusion criteria. This methodological rigor
ensured the collection of the most relevant and beneficial data for our systematic review.

3.5 Quality Assessment
Each study was evaluated using the criteria from the Center for Reviews and Dissemination (CRD)
of the University of York, as well as the Database of Abstracts of Reviews of Effects (DARE) [29].
The criteria are based on three quality assessment (QA) questions:
QAL. Are sufficient details about the individual included studies presented?
QA2. Does it provide evidence to answer the research questions for this systematic review?
QAB3. Is it a referenced study?
The questions were scored as follows:
e QAIL:Y (yes), presents sufficient details in the study, P (Partially), presents information
partially; N (no), does not have details and cannot be easily inferred.

e QAZ2:Y (yes), The authors based their research in such a way that they included appropriate
strategies, identified and made reference to all the journals that addressed the topic of
interest, and the study answered all the research questions; P (Partially), The study only
partially answered the research questions, N (no), They did not answer the research
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questions, and lacked adequate context.

e QA3:Y (yes), They are highly referenced studies, P (Partially), The study has a certain
number of citations, N (no), The study does not have citations.

The scoring procedure was Y = 1, P = 0.5, N = 0 where information is not specified. Consequently,
the possible score that could be obtained for assessing the quality of a primary study was in the range
of 0 to 3 points. In this sense, the articles considered had to achieve a rating of 1.5 at least. In the
next chapter we will discuss the results obtained.

4. Results

We thoroughly analyzed the full texts of 20 articles that met our selection criteria. Below, we present
the initial results obtained from these articles, providing a summary of the studies included in our
systematic review. This summary aims to establish a foundational understanding of the scope and
impact of the research conducted in the field.

Following the initial overview, we present the quality evaluation of each article to ensure the
reliability and validity of the reported findings. This evaluation was essential to maintaining the
integrity of our systematic review.

Next, we will demonstrate how we answered the specific research questions posed at the beginning
of our study. This analysis will help us identify key trends, gaps in current research, and potential
areas for future research, aligning our findings with the overall objectives of our research.

4.1 Summary of the Studies

In this section we present a summary of the works examined, with the goal of answering the research
questions formulated. The systematic search across the specified data sources initially yielded a total
of 680,924 articles. By applying the inclusion criterion of publication years from 2014 to 2024 and
the focus on journals and conferences, the results were refined to 401,104 articles. Further
application of criteria related to the research topic narrowed this down to 20 articles directly relevant
to the research objectives. The methodology applied in this search is summarized in Fig. 2.

Among these 20 relevant articles, 6 (30%) were published in journals, while 14 (70%) appeared in
conference proceedings, as depicted in Fig. 3. We observed a clear trend of increasing publications
up until 2021 and 2022, followed by a sharp decline in 2023. This trend could potentially reverse in
2024, influenced by emerging developments in the field.

The research questions and corresponding answers presented in this study have significant
implications only 20 papers were directly relevant to the research questions under consideration, as
detailed in Table 1.

Among the data sources, the ACM Digital Library demonstrated the highest precision, with an
accuracy rate of 0.00215% in yielding relevant articles. A detailed distribution of relevant articles
from each source is presented in Table 2. This allows for a discussion on how each identified source
contributes to the understanding of program synthesis and natural language processing as outlined
by the objective of this paper.

4.2 Quality evaluation

The results of the application of the quality evaluation show that, on average, the studies had a score
of 2 points, with the exception of studies S1 and S2 that obtained a score of 1.5. As it can be seen in
Table 3, the articles are of good quality and relevant to the investigation.

4.3 Application areas (Q1)

Program synthesis has become a pivotal tool in various domains, demonstrating significant utility,
particularly in software engineering. Below we can see the application areas identified in the selected
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papers:
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+ Program Synthesis for Education: Enhancing learning and teaching in logic
and programming through the generation of code from natural language problems.

¢ Program Synthesis for Software Development: Improving developer
efficiency and productivity by automatically generating code, API calls, and
optimizing program synthesis tools.
+ Program Synthesis for Robotics and AI: Simplifying the programming of
complex tasks in robotics and generating solutions for various NLP problems
through advanced AI models.

2014 2015
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Springer Link
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Search String
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Fig. 2. Steps for the extraction of relevant documents from the selected sources.
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Fig. 3. Type of articles according to inclusion criteria and average of article
according to year of publication.
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Table 1. Selected Papers.

Title Author(s) Year | Ref
. . . Archana, P., Harish, P. B., Rajan,
S1 Domain specific program synthesis N., P, S. and Kumar, N. S. 2021 | [30]
S2 Collective mtglllgence for smarter neural Daiyan. W, Wei. D, and Yating, Z. 2020 | [31]
program synthesis
S3 Generating context-aware API calls from natural .
language description using neural embeddings and Zhan, H., Sharma, A., and Jannesari, 2021 | [32]
machine translation '
S4 HISyn: Human Lgarnmg-lnsplred Natural Nan, Z., Guan, H., and Shen, X. 2020 | [33]
Language Programming
S5 Interactive Program Synthesis by Augmented Zhang, T., Lowmanstone, L., Wang,
2020 | [34]
Examples X., and Glassman, E. L.
S6 Deep nlp-based co-evolvement for synthesizing | Nan, Z., Guan, H., Shen, X., and
. - 2021 | [35]
code analysis from natural language Liao, C.
S7 Interactive synthesis of temporal specifications Gavran, I., Darulova, E., and 2020 | [36]
from examples and natural language Majumdar, R.
. L. Zamanirad, S., Benatallah, B.,
S8 Programmmg.bots_by synthgsumg _natural Barukh, M. C.. Casati, F., and 2017 | [37]
language expressions into API invocations )
Rodriguez, C.
S9 Egeria — A Framework for Automatic Synthesis
of HPC Advising Tools through Multi-Layered Hui. G, Xipeng. S, and Hamid. K. 2017 | [38]
Natural Language Processing
S10 Interactive Synthesis using Free-Form Queries | Tihomir. G and Viktor. K. 2015 | [39]
S11 Jigsaw — Large Language Models meet Program| Naman. J, Skanda. V, Arun. I,
> : 2022 | [40]
Synthesis Nagarajan. N,
S12 Many-objective Grammar-guided Genetic .
Programming with Code Similarity Measurement for Ning. T Anthony. V, and 2023 | [41]
- Takfarinas. S.
Program Synthesis
S13 Program Synthesis Through Learning the Input- | Sihyung. L, Seung. Y. Nam, and 2022 | [42]
Output Behavior of Commands Jiyeon. K.
S14 Assessing Similarity-Based Grammar-Guided
Genetic Programming Approaches for Program Ning. T, Anthony. V, Takfarinas. K. | 2022 | [43]
Synthesis
S15 Generative Model for NLP Applications based | Bhardwaj, P. Khanna, S. Kumar,
: 2020 | [44]
on Component Extraction and Pragya.
$16 Multi-modal program inference: a marriage of . .
pre-trained language models and component-based Kia. R, Mohammad. R, Summit. G 2021 | [45]
. and Vu. L.
synthesis
S17 Prompt Problems: A New Programming Amarouche, B. A. Becker, and B. N. 2024 | [46]
Exercise for the Generative Al Era Reeves.
S18 Automatic Acquisition of Annotated Training
Corpora for Test-Code Generation Magdalena. K and John. D. K. 2019 | [47]
S19 Natural Language Generation and . .
Understanding of Big Code for Al-Assisted Ma_n-Fa|, W. Shangxin. G, and 2023 | [48]
- Ching-Nam. H.
Programming
S20 Effectiveness of ChatGPT in Coding: A
Comparative Analysis of Popular Large Language CRiar}I<os. E. C, Mohammed. N. A, and 2024 | [49]
Models T
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Table 2. Total items extracted.

Data Sources Result Useful Articles Accuracy
IEEE 384457 9 0.00002%
ACM 2781 6 0.00215%

SPRINGER 494 1 0.00202%
ELSEVIER 2708 1 0.00036%
MDPI 10664 3 0.00028%
Table 3. Evaluation of the quality of the studies.
Study QA1 QA2 QA3 Total Score
S1 P Y N 15
S2 P Y N 15
S3 Y Y P 2.5
S4 Y Y P 2.5
S5 Y Y Y 3
S6 Y Y P 2.5
S7 Y Y P 2.5
S8 P Y P 2
S9 Y Y N 2
S10 P P Y 2
S11 Y Y Y 3
S12 P Y P 2
S13 Y Y N 2
S14 Y Y P 2.5
S15 Y Y Y 3
S16 Y Y Y 3
S17 Y Y N 2
S18 Y Y P 2.5
S19 Y Y Y 3
S20 Y Y N 2

Education:

[30] focuses on the use of program synthesis to solve propositional logic problems in an
educational context, emphasizing the generation of code from problems described in natural
language. This approach is ideal for teaching and learning in fields related to logic and
programming.

[46] introduces “Prompt Problems” to teach students how to write effective prompts for
generating code using large language models (LLMs), helping them develop skills in
formulating natural language prompts that produce functional code.

Software Development:

68

[31] integrates collective intelligence and bio-inspired algorithms to optimize accuracy in
code generation from user intents.

[32] improves developer efficiency by automatically generating API calls based on natural
language descriptions and the context of the surrounding code.

[33] enhances code generation through natural language understanding, specifically aimed
at software development.

[34] develops interactive program synthesis tools, particularly for creating regular
expressions, using augmented examples to clarify user intent and facilitate automatic code
generation.

[35] evaluates the effectiveness of ChatGPT and other large language models in code
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generation tasks, highlighting their utility as programming assistance tools.

e [37] focuses on the development of interactive program synthesis tools for creating regular
expressions using augmented examples.

e [38] creates a platform called BotBase that allows the transformation of natural language
expressions into API invocations, facilitating bot programming.

e [39] creates advisory tools for optimizing high-performance computing programs using
natural language processing.

e [40] develops a support tool for IDEs that generates Java code shippets based on free-text
queries combining English and code.

e [41] uses pre-trained language models like GPT-3 and Codex to generate code from natural
language descriptions, optimized for complex APIs like Python Pandas.

¢ [42] employs grammar-guided genetic programming for program synthesis, using multiple
code similarity measures to improve accuracy in generating code from textual descriptions
and input/output examples.

e [43] evaluates and improves the use of grammar-guided genetic programming for program
synthesis, guiding the evolutionary process with code similarity measures.

e [45] combines pretrained language models with component-based synthesis techniques to
generate programs from natural language descriptions and specific examples, particularly
for generating regular expressions and CSS selectors.

e [47] focuses on the automatic creation of annotated data sets to generate automated test
cases from quasi-natural language descriptions, using machine learning and machine
translation techniques.

e [48] reviews the use of large language models trained with Big Code for various Al-assisted
programming tasks, including code generation, completion, translation, refinement,
summarization, defect detection, and clone detection.

Robotics:

« [36] facilitates task specification for robots using linear temporal logic (LTL) from natural
language examples and interactions, simplifying the programming of complex and specific
tasks in robotics applications.

Artificial Intelligence:

e [44] creates a generative model for natural language processing (NLP) applications,
extracting meaningful components from case studies to address problems such as reading
text, interpreting speech, measuring sentiment, and determining important parts, generating
optimized solutions for different NLP problems.

4.4 Inputs used to synthetize a program (Q2)

In this section, the primary focus is to identify the different types of inputs that will be processed by
the synthesizer programs. The exploration of the literature has allowed us to identify how these
works take natural language expressions and synthesize examples based on the user’s intended
purpose, using different techniques to achieve the various objectives proposed by the authors. The
results of relevant articles are detailed in Table 4.

The study by [30] introduces a tool for end-user programming designed to simplify the programming
process and enable programmers to focus more on the core logic of the program. This tool removes
the need to deal with language syntax and other domain-specific aspects. User input is provided in
the form of a propositional verbal problem, which consists of facts, conditionals, and questions,
thereby establishing the basis for a learning approach.
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[31] centers on the automatic generation of source code from various user intents. The authors
utilized natural language task descriptions as inputs, enabling the identification of web page tags
that align with these characteristics. This study demonstrates the versatility of user intent expression
and represents significant progress in solving programming tasks based on natural language
descriptions, requiring minimal information about the target program.

Table 4: Types of inputs from different examples of program synthesis using NL.

Types of inputs Avrticles
Verbal problems (Query) [30]
Natural language task descriptions [31], [48], [46]
Sentences and a part of the surrounding context. [32], [39]
Natural language (query) [33], [38], [45]
Description of a method in NL [34], [47]
NL queries based on dependency structure [35]
Specific descriptions [36], [40]
Short description of a specification [37], [42]
High-level specifications [41]
Textual Problem Descriptions [43], [44]
Programming Prompts [49]

Similarly, the study in [32] employed a unique method involving the pairing of an instruction
sentence with a section of corresponding code. The input consisted of a natural language user intent
and a drafted method, using the Java language. A method name generator was then employed to
extract tokens and variable names from natural language descriptions and adjacent code tokens, thus
predicting potential method names.

The research presented in [33] adopts an approach driven by natural language understanding. The
input consists of a natural language query containing a list of synonyms, named entities, and a
dictionary of prepositions. This method reduces the need for extensive labeled examples, thereby
freeing users from the task of gathering examples and facilitating natural language programming,
especially in domains where labeled examples are difficult to obtain. The study in [34] investigates
the use of natural language descriptions of methods as input to improve concrete word recognition.
The researchers introduce a semantic analyzer that links variables to specific operational
information, thus describing the method’s particular behavior, parameter name, and return value
information.

The field of code analysis presents numerous complexities, especially those associated with data
types and operations. The research in [35] introduces a tool that significantly mitigates these
complexities. This tool leverages natural language queries, drawing upon dependency structures in
language, to interpret the code. The tool specifically automates the analysis of asymmetric binary
relations between words in a sentence, such as subordinate words and their dependencies. In other
words, it uses the syntactic structures of natural language to build a semantic understanding of code.
This approach not only aids in extracting the core meaning of the code but also makes the process
more comprehensible and accessible to programmers.

Simultaneously, natural language descriptions and programming by example have emerged as “user-
friendly” alternatives for specifying complex tasks. [36] addresses these issues by using specific
descriptions as inputs. This method generates grammatical rules for producing parseable commands,
thus facilitating the straightforward specification of complex, repetitive tasks.

Lastly, although modern bot creation systems detect user intent, they require considerable
development and configuration effort for each use case. [37] introduces a tool that uses a concise
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specification description as input, assisting in the generalization of critical tasks in the program
generation process.

The inputs of Egeria [38] include optimization guides or other domain-specific documents relevant
to HPC. Additionally, user queries or performance profiling reports can be fed into the synthesized
advising tool to receive specific optimization advice.

The inputs used by the synthesis tool proposed in [39] include free-form queries composed of a
mixture of English and Java code. These queries can describe desired functionalities or operations
in natural language, possibly combined with partial code snippets. The system also incorporates
context from the developer’s current work in the IDE, such as the cursor position and existing code,
to better understand and generate the appropriate code fragments.

Jigsaw [40] accepts multi-modal inputs for synthesizing programs. Users can input their intent or
requirements in natural language and also include test cases, input/output examples. These are used
to further specify the intended functionality of the code, helping to refine the synthesis process and
ensure that the generated code meets the user’s needs.

The inputs for synthesizing a program using MaOG3P [41] include high-level specifications or
textual descriptions of the desired functionality of the program. Particularly, input/output examples
specify what the program should produce given certain inputs, helping to guide the genetic
programming process to evolve correct and efficient code.

The inputs for the program synthesis system proposed by [42] take the form of short descriptions of
specifications. The system understands the available commands and their syntax, which guide the
synthesis process. For instance, the system uses examples of desired inputs to learn and generate the
corresponding program.

The inputs used in [43] include textual problem descriptions that describe a programming task
provided in natural language, grammatical specifications, such as a defined grammar that dictates
the syntax of the programming language in which the programs are developed, and similar code that
is used to evaluate the suitability of evolved programs against a target source code, improving the
relevance of the generated programs for the given problem descriptions.

The inputs for the NLP generative model discussed in [44] take the form of a Textual Problem
Description, which is a description provided in natural language that outlines the problem to be
solved by the model. These descriptions are extracted from case studies that identify significant
components relevant to the problem being addressed.

The inputs for synthesizing programs in [45] take the form of natural language queries. For example,
students craft prompts in natural language that describe the desired functionality or outcome of a
program. This kind of input helps define the problem that needs to be solved by the generated code,
guiding the LLM towards appropriate solutions.

The input for the multi-modal synthesis approach described in [46] is a Natural Language
Description, which is a broad, often ambiguous description of a desired functionality. This kind of
input provides a specification of how the desired code should function.

The inputs of the synthesis process described in [47] are descriptive method names, which are
extracted from source code and are used as natural language descriptions of the functionality of the
code, and also function bodies that are aligned with the method names to form a parallel text code
corpus.

The inputs used in [48] are natural language descriptions, which describe the desired functionality
in natural language, and also existing code fragments that serve as context or examples for the
desired operations.

In [49] the inputs used to synthesize programs are programming prompts, which describe what the
generated code should accomplish, as well as code examples, that can be used to guide the Al in
generating appropriate code structures.
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4.5 Outputs generated from the program synthesis (Q3)

Program synthesis offers flexibility by utilizing incomplete specifications, regardless of the specific
approach employed, to generate code. The objective is to achieve a degree of final completeness in
the produced output. However, it is important to note that the generated output may not always align
with the end user’s expectations.

[30] leverages postfix expressions (Boolean Logic) to establish a foundation for a domain-
independent learning approach to problem-solving via program synthesis concepts. This process
enables users, particularly programmers, to streamline their efforts by focusing on the core logic of
the program, thereby mitigating concerns about language syntax and other domain-specific
elements. Given the input “Did Mary and Ram go to school?”, the output is “Cannot be determined
/ True”.

The development of large and complex software projects requires a workforce trained in the
fundamental structures of the programming languages they use. One potential approach to automate
this process is the generation of a common keyword list. In this scenario, programmers need not
memorize the keyword vocabulary or understand their exact implementation to write a program in
the given language. For instance, a list of expected method names could be derived from a method
description with surrounding code [32]. For example, for the input “return random number with max
value iterationWeight for Random”, the output would be new “Random().nextInt(iterationWeight)”’.
Alternatively, understanding how programmers code is a complex process that demands practical
solutions. By deeply processing programmers’ intentions and API documents written in natural
language, it is possible to leverage a profound understanding through program synthesis tailored for
this specific purpose. This approach circumvents the need for a large number of labeled examples,
thus alleviating the user’s task of collecting or generating examples. It also significantly impacts
traditional methods. For instance, from the input “Find statements whose init portion declares a
single variable which is initialized to the integer literal 07, the following code (in a DSL) is
generated:

forStmt (
hasLoopInit (
declStmt (
hasSingleDecl (
varDecl (
hasInitializer (
integerLiteral (
equals(0))))))))

Code library functions have significantly increased developers’ programming efficiency. They do
so by simplifying constraint generation and accelerating constraint resolution through the creation
of complete code based on constraint models of Java classes [34]. A pertinent example is a code
fragment in a tree structure, as shown below:

(define-fun result () Int (- 1))
(define-fun this ()

(Seq String) (seg.unit ""))
(define-fun or () String "")

This example includes encapsulated functions that streamline and speed up constraint generation
through the use of generated constraint models.

Concurrently, attaining high software quality controls is a complex task. It requires support from
various program optimizations, software debugging, security measures, and more. Therefore, code
analysis in the early stages of development can provide developers with various preemptive options
[35]. Such an approach employs “final comparison expressions” that originate from specific natural
language descriptions and assist general programmers in conducting automated program analysis.
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For instance, given the input “Find all C++ call expression of the C++ method named string1”, the
generated output expression in the form of an AST is:

cxxMemberCallExpr (
callee (
cxxMethodDecl (
hasName (stringl))))

The correct use of specifications often poses a challenge to non-expert users. Therefore, providing
an output that illustrates a synthesized specification derived from an example and a natural language
description can significantly enhance the accuracy of the synthesis method. Furthermore, it paves
the way for the generalization of synthesized tasks to other unseen tasks [36]. For instance, for the
expression “step into water and then visit (6, 4)”, it is possible to obtain an LTL specification as
“step into water and then visit (Num, Num)”.

Undeniably, there are numerous endeavors aimed at refining the process of automatic code
generation. Each study provides a perspective on how productivity in development can be enhanced.
One increasingly popular approach is the use synthesize API calls from expressions in NL. To fully
harness the potential of this approach, [37] propose a tool designed to foster the development of
intuitive software solutions. This tool bridges the gap between user needs, expressed in natural
language, and API invocations capable of satisfying these needs. An example is: synthesize API
calls from expressions in NL

<url:https://api.yelp.com/v2,
path:/search parameters:
term=[italian, cafes],
location=[sydney.opera house]>

The outputs generated by Egeria [38] include an advising tool that provides a list of essential rules
extracted from the input documents. This tool also serves as a question-answer agent that offers
specific optimization suggestions based on user queries or performance profiling reports. Fig. 4
shows an example rule that is used to guide programmers in optimizing code more effectively
without needing to manually sift through extensive documentation.

if(tx $ 2 == 0 && ty $ 2 == 0)

out[tx * width + ty] = 2.0 * in[tx * width + ty]/sum;
else if(tx % 2 == 1 && ty % == 0)

out[tx * width + ty] = in[tx * width + ty]/sum;
else if(tx % 2 == 1 && ty % == 1)

out[tx * width + ty] = (-1.0) * in[tx * width + ty]/sum;
else

out[tx * width + ty] = 0.0f;
Fig. 4. The Optimized Block [38].

The outputs generated by [39] are Java code fragments that respect Java syntax, type, and scoping
rules, as well as conform to common usage patterns derived from a statistical analysis of existing
code. These code fragments are presented to the developer within the IDE, offering several ranked
suggestions that the developer can choose from. The primary use of these outputs is to insert
appropriate code snippets into the developer’s project, helping to bridge the gap between a high-
level concept expressed in natural language and executable Java code.
The output of Jigsaw [40] is executable code that matches the user’s specified intent and passes
given test cases. Fig. 5 shows code that is generated after processing through a series of program
analysis and synthesis techniques, which include correcting common errors detected in the initial
outputs from pre-trained language models (PTLMs) like GPT-3 or Codex. The generated code helps
programmers quickly implement solutions and focus on higher-level design and problem-solving
tasks rather than the nuances of specific API calls or syntax correctness.
The outputs generated by MaOG3P [41] are executable code snippets that meet the requirements
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specified through the input descriptions and examples. These outputs are used to automate coding
tasks, reduce development time, and improve the efficiency of the programming process. By
synthesizing code that satisfies both the syntactic and semantic correctness, the generated programs
help developers by providing ready-to-use code snippets that can be integrated into larger projects
or used as standalone solutions.

Code Before Code After

out=data[data.index.isin (test.index) ] out=data[~data.index.isin (test.index)]
df=df [df[‘foo’ ]>70) |df[‘foo’ ]<34] df=df[(df[‘foo’]1>70) | (df[‘foo’]1<34)]
out=df.iloc[0,”HP"] out=df.loc[0,”HP"]
dfout=dfl.append(df2,ignore index=True) dfout=dfl.append(df2)
dfout=dfin.duplicated() dfout=dfin.duplicated() .sum()
train=data.drop (test) train=data.drop (test.index)
dfin=dfin[“A”].rolling (window=3) .mean () dfin[“A”]=dfin[“A”].r0lling(3) .mean ()
dfout=dfin[ (x<40) | (y>53) & (z==4) ] dfout=dfin[ ((x<40) | (y>53)) & (z==4)]

Fig. 5. Applications (Code After) of learned transformations on code snippets produced by PTLM
(Code Before) [40].

The output from this system [42] is an executable program that conforms to the specifications
derived from the input-output examples provided. These programs can then be used directly within
software applications, helping to automate tasks or improve software functionality with minimal
human coding effort.

The outputs from the program synthesis approach proposed in [43] are executable pieces of code
that align with user-defined specifications and grammar rules. Fig. 6 shows programs that are
evaluated for similarity against target codes to ensure that they meet the specified requirements. This
can be used in Software Development to automate or speed up the development process by providing
ready-to-use code snippets that fit the user’s intent. Finally, this is an example of teaching tools to
demonstrate various programming techniques and solutions.

. # Input/Output Pair
Problem Textual Description — -
Training Testing
Number 10 Given an integer and a float, print their sum. 25 1000
Median Given 3 integers, print their median. 100 1000
Smallest Given 4 integers, print the smallest of them. 100 1000

Fig. 6. Representation of target programs [43].

The outputs of the NLP generative model [44] are optimized solutions for NLP tasks. The model
generates solutions that address specific NLP-related problems like speech interpretation, sentiment
analysis, and text processing and adapted responses, because the system uses the outputs to adapt its
responses based on the input it receives, making it suitable for interactive applications such as virtual
assistants.

In the case of [45], the outputs are generated code based on prompts provided. A LLM is used to
generate code that attempts to solve a specified problem, and then the generated code is evaluated
against test cases to determine its correctness. This process aids in learning by providing immediate
feedback on the effectiveness of the prompt and the functionality of the code.

The outputs generated in [46] are executable code snippets that precisely match the combined
specifications provided by the natural language descriptions and the examples. Fig. 7 shows how
that works. The synthesized programs are used in software development to automate coding tasks,
ensuring that the generated code meets both broad functional requirements and specific operational
details.

74



Pamupec-Pysna P., benurec-I'yappepo 3., Mesypa-T'omoit K., Bapcenac D. [lecaTunetne MOCTHXCHHH B CHHTE3¢ NPOrpaMMm IO
cnenupUKausIM Ha €CTECTBEHHOM SI3BIKE: CHCTeMAaTHYeCKHH 0030p nutepatypst. Ipyost UCIT PAH, 2024, Tom 36 Boim. 6, c. 59-82.

Q Class Registration e Exercise #1

Enter your name: Bob

Representation of
Hello Bob problem (in this
case, an animation
illustrates user
interaction with
the program)

Write me a Python program that asks the user to enter
their name, and then prints the word "Hello" followed by
a space, followed by their name

CLICK HERE TO ASK CHATGPT!

ChatGPT response: P il LLM response

Prompt entry

+("Hello U +("Enter ~ name:* "))
( ell 1Npt Ente you ame: ))

Execution output
(in this case, a
success message

as all tests pass)
Fig. 7. Interface layout for a Prompt Problem within the web-based Promptly tool [46].

Code Running response:

You pass \( %o* )/ !

The outputs generated [47] are code fragments. They consist of test function names (as natural
language descriptions) aligned with their respective function bodies (as code). These examples are
compiled and semantically relevant test cases generated by machine learning models trained on the
synthesized corpora. The goal is automating the creation of unit tests, reducing the time and effort
required for manual test case development.

The outputs generated by the program synthesizer in [48] include executable code, which can be run
directly or integrated into larger software projects. The study also allows generating descriptions in
natural language or summaries of code blocks, useful for documentation. These results are used to
improve productivity, improve code quality, help maintain and document code, and ensure the
reliability and security of software systems.

The outputs from the program synthesizer presented in [49] are executable code within a software
environment, as seen in Fig. 8. These results are used to directly implement functional requirements
in software projects, automate routine coding tasks, and improve overall software quality and
reliability through improved error detection and resolution capabilities.
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4.6 Type of program synthesis used (Q4)

Program synthesis employs distinct methods, primarily classified into deductive and inductive
synthesis, each tailored to specific aspects of programming from formal specifications.

Deductive Program Synthesis involves formally deriving a program from a given specification,
treating the process as a theorem-proving task. It necessitates demonstrating that a program’s
output satisfies the conditions set out in the specification, a process confirmed through theorem
proof. This approach requires detailed, often complex specifications and is particularly useful when
correctness is paramount. In practice, deductive synthesis involves the use of formal methods to
ensure that every step in the program construction adheres strictly to the logical constraints outlined
in the specification. Notable works in this domain include [35], [34], and [37], which explore
various applications of theorem proving in program synthesis, demonstrating the effectiveness of
this approach in generating highly reliable software.

Task_id
prompt

test_list

sum_series(n):

Fig. 8. Example of outputs obtained on a data set of basic Python problems (MBPP) [49].

Inductive Program Synthesis, in contrast, starts from incomplete problem descriptions, which
might include test cases, characteristics of desired and undesirable software behaviors, input-
output examples, or computational traces. This approach encompasses several methodologies that
aim to generalize from these examples to produce a program that satisfies the specification in a
broader sense:

e Genetic Programming and Incremental Evolution, as exemplified by [30] where the
synthesis process evolves programs iteratively, optimizing them to better fit the examples
provided.

e Counterexample-Guided Inductive Synthesis, explored in studies such as [32] and [36],
refines candidate programs by iteratively correcting them based on counterexamples, thus
gradually improving their correctness.

e Neural Program Synthesis, with key contributions from [33] and [31], leverages deep
learning models to synthesize programs from natural language or other high-level inputs,
demonstrating significant advancements in automating complex programming tasks.
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Egeria [38] utilizes an unsupervised, multi-layered design leveraging NLP techniques. Although not
explicitly categorized, its synthesis approach suggests inductive reasoning through optimization
based on general guidelines and specific user queries.

Jigsaw [40] integrates inductive synthesis with corrective transformations, initially using pre-trained
language models for generating code snippets from natural language inputs, followed by corrective
transformations to ensure accuracy, blending inductive learning with deductive refinements.
MaOG3P [41] and the approach outlined in [42] emphasize inductive synthesis through genetic
programming and machine learning, respectively, focusing on evolving programs to meet specific
input-output behaviors based on learned patterns.

The synthesis methodologies in [44] and [45] also follow inductive approaches, generalizing from
specific examples to create applicable solutions across new scenarios.

Lastly, the approaches in [47], [48], and [49] exemplify the inductive synthesis prevalent in Al-
assisted programming, where large datasets of code are used to predict and generate new code
segments, demonstrating how modern Al tools, like ChatGPT, generalize from extensive training
data to produce functional programming solutions.

This study concludes with an examination of [46], which combines inductive and deductive
elements. The process starts with PTMs generating initial code candidates, followed by a
Component-Based Synthesis (CBS) approach that deductively constructs the final program,
ensuring it meets the provided examples through systematic component assembly and refinement.
In the next chapter we present our main discussions of the study.

5. Results discussion

In this section the results of this systematic literature review reveal both the progress and ongoing
challenges in the field of program synthesis, particularly when interfacing with natural language
processing (NLP). The analysis of 20 selected studies highlights several key trends and areas of
focus that have emerged over the past decade, also the systematic literature review on program
synthesis and natural language processing (NLP) reveals significant advancements and emerging
trends in this field. A key finding is the increasing integration of advanced artificial intelligence
models, especially large language models (LLMs), which have demonstrated remarkable
capabilities in interpreting natural language specifications and generating executable code.

This development is democratizing software development, allowing users with little or no
programming experience to create functional applications using natural language instructions. The
review also highlights the evolution of program synthesis methodologies, which have transitioned
from rule-based approaches to more sophisticated techniques that leverage machine learning and
genetic programming. These modern techniques can learn from input-output examples and user
interactions, thus improving the accuracy and efficiency of code generation. However, significant
challenges remain, such as achieving high precision in interpreting complex natural language
requirements and ensuring responsible Al practices to guarantee the reliability of the generated code.
On the other hand, ambiguity in natural language specifications and the scalability of program
synthesis systems represent crucial challenges in automatic code generation. Ambiguity, inherent in
natural language, can lead to multiple interpretations of the same instruction, making it difficult to
correctly understand and translate the user’s intentions into executable code. To mitigate this
problem, it is necessary to develop techniques that effectively disambiguate specifications, using
contextual models and interactive visualization tools. On the other hand, scalability is essential for
these systems to be able to handle complex tasks and large volumes of data without losing
performance. This requires the implementation of optimizations such as parallel processing and
model compression, ensuring that systems can adapt to various domains and contexts without
compromising the quality of the generated code.

Finally, the potential applications of program synthesis go beyond traditional software development.
In the educational field, program synthesis tools are used to teach logic and programming concepts,
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automatically generating code from problem descriptions provided in natural language, making
programming more accessible to a broader audience.

6. Conclusions

This investigation has examined the state of program synthesis from natural language, uncovering
various trends and motivations within the field of automatic code generation. Through meticulous
analysis of current literature, this study underscores the expanding role of natural language
processing (NLP) tools and their potential to profoundly influence computing disciplines.

The advancements in NLP not only enhance communication capabilities but also facilitate the
creation of sophisticated methods for generating syntactic representations of programming
languages, as highlighted in the referenced paper [50]. Such methodologies leverage pre-trained,
language-based components, promising to refine the process of transforming human language into
executable code.

Furthermore, with Al-based systems becoming ever more integral to daily life and the disruptive
capabilities of generative Al models, the incorporation of responsible Al practices becomes
imperative. This approach will ensure the development and deployment of large language models
and other generative systems are both reliable and trustworthy, fostering greater confidence in their
applications.

Future research in the field of program synthesis should focus on improving the interpretability of
systems, allowing coding decisions to be more understandable and reliable, especially for non-expert
users. Furthermore, domain-specific synthesis models should be developed, using specialized
datasets to improve the accuracy and relevance of synthesized programs. Optimizing the scalability
and computational efficiency of these systems is equally vital, ensuring their large-scale adoption.
Finally, it is critical to incorporate ethical considerations and responsible artificial intelligence
principles, ensuring fairness, accountability, and transparency in synthesis systems, and minimizing
biases. As for practical implications, integrating program synthesis tools into educational platforms
can facilitate learning programming, while in software development, automating repetitive tasks and
codebase generation will allow developers to focus on more creative aspects. Furthermore,
improving the accessibility and usability of applications through natural language interfaces driven
by program synthesis could revolutionize human-computer interaction.

Overall, this study illuminates the dynamic field of program synthesis from natural language,
advocating for continued research and development. By harnessing advanced NLP and responsible
Al, the gap between human language and computer programming can be bridged more effectively,
setting a foundation for future innovations in automatic code generation.
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