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Abstract. Atrial fibrillation is the most common arrhythmia with a major impact on public health. This paper 

presents a model for automatic detection of atrial fibrillation episodes in ECG, using information compression 

and numerical differentiation for classification of beat-to-beat interval sequences. The core of the model is 

normalized compression distance based on the theory of universal similarity metrics. To enable class 

discrimination by compression we consider finite-difference representation of interval sequences with 

subsequent quantization procedure. In particular, we introduce a simple Δ5RR-interval representation which 

improves the sensitivity of the model to heart rhythm fluctuations. Our model achieves 96.37% sensitivity, 

97.74% specificity and 0.935 MCC in 8x5-fold cross-validation on the MIT-BIH AFDB dataset using a segment 

window of 128 R-peaks. The particular advantage of the model is the classification quality in a few-shot 

learning setting, i.e., a training set with a small number of sequence observations can be used for classification 

of sufficiently large test sets. 

Keywords: normalized compression distance; few-shot learning; atrial fibrillation detection; heart rate; RR-

interval sequences. 

For citation: Markov N.S. A Model for Atrial Fibrillation Detection Based on Differentiation and Compression 

of Interbeat Interval Sequences. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 2, 2025, pp. 281-300. DOI: 

10.15514/ISPRAS-2025-37(2)-21. 

Acknowledgements. The author would like to thank Olga Eduardovna Solovyova for scientific supervision. 

The work was supported by the state task to IIP UrB RAS № 122022200089-4. 

  



Markov N.S. A Model for Atrial Fibrillation Detection Based on Differentiation and Compression of Interbeat Interval Sequences. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 2, 2025. pp. 263-309. 

282 

Модель детекции фибрилляции предсердий, основанная на 
дифференцировании и сжатии интервалограмм 

Н.С. Марков, ORCID: 0000-0001-8913-9962 <ns.markov@iip.uran.ru> 

Институт иммунологии и физиологии УрО РАН, 

Россия, 620078, г. Екатеринбург, ул. Первомайская, 106. 

Уральский Федеральный Университет имени Б.Н. Ельцина, 

Россия, 620062, Свердловская область, г. Екатеринбург, ул. Мира, д. 19. 

Аннотация. Фибрилляция предсердий – это наиболее распространенная в популяции аритмия, 

оказывающая существенное влияние на систему здравоохранения. В данной работе представлена 

модель автоматической детекции эпизодов фибрилляции предсердий на ЭКГ, использующая сжатие 

информации и численное дифференцирование для классификации последовательностей интервалов 

между сердцебиениями. В основе модели лежит нормализованное расстояние сжатия, основанное на 

теории универсальных метрик информационной близости. Чтобы обеспечить дискриминацию классов 

путем сжатия, в работе рассматривается конечно-разностное представление интервальных 

последовательностей с последующей процедурой квантования. В частности, вводится простое Δ5RR-

интервальное представление последовательности, которое улучшает чувствительность модели к 

флуктуациям сердечного ритма. Предлагаемая модель достигает 96.37% чувствительности, 97.74% 

специфичности и 0.935 коэффициента корреляции Мэтьюса при 8x5-кратной кросс-валидации на базе 

данных MIT-BIH AFDB с использованием окна из 128 R-пиков. Особым преимуществом модели 

является качество классификации при обучении с малым количеством проб, то есть обучающая 

выборка с небольшим числом наблюдений последовательностей может использоваться для 

классификации достаточно больших тестовых выборок. 

Ключевые слова: нормализованное расстояние сжатия; обучение с малым количеством проб; детекция 

фибрилляции предсердий; ритм сердца; RR-интервалограммы. 

Для цитирования: Марков Н.С. Модель детекции фибрилляции предсердий, основанная на 

дифференцировании и сжатии интервалограмм. Труды ИСП РАН, том 37, вып. 2, 2025 г., стр. 281–300 

(на английском языке). DOI: 10.15514/ISPRAS–2025–37(2)–21. 

Благодарности: Автор выражает благодарность Соловьёвой Ольге Эдуардовне за научное 

руководство. Работа была выполнена при поддержке гос. темы ИИФ УрО РАН №122022200089-4. 

1. Introduction 

In a healthy heart, the cardiac rhythm is entirely governed by a special functional structure, the sinus 

node. Atrial fibrillation (AF) is a heart condition in which the atria beat spontaneously as the sinus 

node loses control over the heartbeat cycle. The rhythm of AF is characterized by an increased 

average frequency and quasi-chaotic fluctuations of heartbeats. The incidence of AF in the 

population of developed countries reaches 1-2%, making it the most common cardiac arrhythmia 

[1]. For this reason, AF is considered one of the most pressing public health problems. 

Automatic detection of atrial fibrillation episodes is an important diagnostic task critical to patient 

monitoring. A lot of classification models designed for automatic detection of AF were published in 

the 21st century [2], as more ECG data had been made available through repositories such as 

PhysioNet [3]. The reliable approach to discriminate between a normal rhythm and an AF episode 

is to analyze irregularities in a sequence of beat-to-beat RR-intervals on ECG. RR-sequences are 

robust to noise [4] and can be recorded by inexpensive consumer devices [5]. 

Neural network-based models undoubtedly achieve the best results in the task of heart rhythm 

classification [2]. However, neural networks are computationally expensive to run, and the models 

themselves tend to overfit to certain data sets, leading to poor generalization across population [6]. 

This aspect makes it difficult to implement neural network models in remote health systems used 

for routine ECG monitoring and detection of AF episodes in patients with suspected disease. 
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Therefore, there is still a need for "lightweight" and efficient AF detection models that do not require 

large amount of data for training and can be implemented on low-cost low-energy devices. One such 

promising alternative is classification by compression, which uses heuristic information 

compression to highlight irregularities and patterns in the data. 

This paper proposes a classification model that uses the proximity between interbeat interval 

sequences captured by a compression algorithm for automatic detection of AF episodes. The core 

of the model is normalized compression distance [7], which serves as an approximation of the 

incomputable universal similarity metric. However, to enable discriminative properties of 

compression we consider differentiation of RR-sequences, and a quantization procedure which turns 

scalar sequences into symbolic strings. For the former we introduce a Δ5RR-interval representation 

which uses a finite-difference scheme to emphasize rhythm fluctuations, leading to a better 

sensitivity of the model. 

Statistical validation of the model is performed on the open MIT-BIH Atrial Fibrillation Database 

under repeating fivefold cross-validation. This approach allows us to evaluate the classification 

quality, select the best model configuration and compare it with arrhythmia detectors presented in 

other works. 

The resulting classification model requires the selection of only two hyperparameters. Therefore, 

we further evaluate the quality of the model in a few-shot learning setting with a limited training 

sample. This allows us to assess the degree of generalization achieved by the model and its 

effectiveness for tasks with limited amounts of data. 

2. Methods 

2.1 Finite-difference representation of interbeat interval sequences 

Let (Ri) be the sequence of time coordinates of R-peaks corresponding to heartbeats on the ECG 

recording. RR-interval sequence (RRi) is a dynamic series of time intervals between adjacent R-

peaks: RRi = Ri - Ri-1  

RR-sequences display a natural trend: a person's heart rate varies in response to a variety of external 

factors such as stress, exercise, stimulation, sleep, etc. A ΔRR-representation is introduced to 

eliminate the linear trend for classification [8]: 

. (1) 

As can be seen from the formula, the ΔRRi represents the difference between adjacent RR-intervals. 

This can be thought of as taking the second numerical derivative using a three-point scheme along 

the original sequence of R-peaks. We propose and investigate an analogous finite-difference Δ5RR-

representation using a five-point scheme [9]: 

. 
(2) 

In this paper three representations of interbeat sequence – RR, ΔRR and Δ5RR – were considered. 

The study was carried out with respect to a segment window M. This value indicates the number of 

R-peaks used for classification. In practice, a classifier using a smaller M is preferred because it 

allows the use of shorter ECG recordings for the detection of arrhythmia episodes. In this paper, the 

quality of classification was investigated for windows M = 32, 64 and 128. 

2.2 Quantization 

It is known that compression algorithms are designed primarily for binary and text data. Therefore, 

we propose a quantization procedure to transform interbeat interval sequences into symbolic strings. 
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Let X be a sequence of real values. A mapping function q(x) is called a quantizer if it is defined for 

any x ∈ X and takes a finite number Q of values a1, ..., aQ, which we call an alphabet 𝒜. We consider 

scalar quantization, i.e., X ⊆ ℝ. Quantizer can be viewed as a surjective function q(x): ℝ → 𝒜. 

From the surjectivity of the function q(x) it follows that the quantizer assigns discrete states to the 

elements x ∈ X depending on whether they belong to some non-overlapping subsets ℬ1, ..., ℬQ: 

 (3) 

For scalar quantizer these subsets can be given as semi-intervals: ℬ1 ⊆ (–∞, b1], ℬ2 ⊆ (b1, b2], …, 

ℬQ ⊆ (bQ-1, –∞). Thus, the quantizer q(x) can be defined by selecting the boundaries of the semi-

intervals b1, ..., bQ-1 and images a1, ..., aQ. 

Compression algorithms are robust to alphabet permutations, so the images {ai}i=1..Q can be chosen 

arbitrarily – in this paper they are Unicode symbols in UTF-8 encoding with positions from 1 to Q. 

On the other hand, the semi-interval boundaries {bi}i=1..Q-1 should be selected depending on the 

distribution of elements in X, the frequency of occurrence of particular values. 

Let c1, ..., cQ be the centroids of ℬ1, ..., ℬQ. We can determine whether an element x belongs to a 

certain semi-interval by its nearest centroid: 

 
(4) 

Given the ordering of centroids (∀𝒜, 𝒜 1 ≤ 𝒜 < 𝒜 ≤ 𝒜 : 𝒜𝒜 < 𝒜𝒜) it is obvious that for the chosen 

{𝒜𝒜}𝒜=1..𝒜 the quantization boundaries are the midpoints on the numerical line between successive 

centroids:  

 
(5) 

Thus, the problem of semi-interval boundary selection can be reduced to the problem of centroid 

optimization. 

For a finite scalar sequence 𝒜 = (𝒜1, 𝒜2, ..., 𝒜𝒜) we select the semi-interval centroids by minimizing 

the quadratic error: 

 

(6) 

The k-means++ clustering algorithm [10] deterministically finds near-optimal values of {𝒜𝒜}𝒜=1..𝒜 

for a given X and alphabet size Q (assigning Q as the number of centroids k in the algorithm). Found 

scalar function q(x) is used for the whole set quantization with X being the "flattened" training 

sample. Therefore, Q is the only parameter of the whole quantization procedure. 

2.3 Classification model 

The complete proposed model combines the finite-difference representation of the interbeat interval 

sequences and subsequent quantization with classification using normalized compression distance 

and k-nearest neighbour method. Below is a formalization of the entire model. 

Let ℝM be the event space. Finite monotone sequences of R-peak time coordinates are observations 

of events: x = (x1, ..., xM) ∈ ℝM. Let ℒ be the space of classes of events. We consider a binary 

classification, hence ℒ = {1,0}, where positive and negative classes 1 and 0 are episodes of AF and 

normal rhythm respectively. 

Let (x𝒜, y𝒜)𝒜=1..N be a training sample of 𝒜 observation of events x1..𝒜 ∈  𝒜𝒜𝒜𝒜𝒜𝒜 with known classes 

y1..N ∈ Ytrain . The complete classification procedure consists of four steps. 
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Step 1. The sequences xi are transformed into either RR, ΔRR or Δ5RR-interval representation 

(Section 2.1):  

 (7) 

 (8) 

 

  (9) 

 

If we denote x̃i,j as the value of the j-th element in the i-th sequence after the chosen finite-difference 

transformation, the training sample is a matrix X̃ = (x̃i,j)1 ≤ i ≤ N, 1 ≤ j ≤ m where m is the new length of 

the sequence. Depending on sequence representation m = M – 1, m = M – 2 or m = M – 4. 

Step 2 involves the scalar quantizer training. For this, X̃ is represented as a “flattened” one-

dimensional scalar sequence X̃flat = (x̃(r div m) + 1, (r mod m) + 1) with an abstract index 1 ≤ 𝒜 ≤ 𝒜 × 𝒜. The 

quantizer 𝒜(·) is found according to Section 2.2 by minimizing the expression (6). The size of the 

alphabet 𝒜 is a hyperparameter of the complete classification model. 

Step 3. Let x̂ = (x̂1, …, x̂m) ∈ ℝm
 be the sequence undergoing classification (transformed to the 

corresponding finite-difference representation beforehand) and ŷ be the sought unknown class. This 

step is the calculation of normalized compression distances between the classified observation and 

the sequences in the training sample. 

We denote by q the vectorized version of the quantizer, i.e., q(x) = (𝒜(𝒜1), ..., 𝒜(𝒜m)). Distances 

(di)𝒜=1..𝒜 are calculated by the normalized compression distance formula [7], given as: 

 

(10) 

where q(x̂)q(xĩ) is concatenation of the classified sequence with the i-th observation from the 

training sample, C(·) – symbol length of the compressed sequence we compute using gzip [11] 

compressor. Normalized compression distance, when used with compressors based on Lempel-Ziv 

algorithm such as gzip, serves as a pseudo-metric approximation of universal normalized 

information distance [12]. The universal information distance itself is defined through Kolmogorov's 

complexity and acts as the lowest theoretical limit for computable information metrics [7,13]. 

Step 4. is classification using the k-nearest neighbour method. Let s(i) be a sorting index for (di)𝒜=1..𝒜 

satisfying the following conditions: 

 
(11) 

 

 

Here, in the case of equal distances, the second condition sets the sorting priority of known positive 

classes over negative ones in the training sample. Then, for binary classification, k-nearest neighbour 

method can be reduced to computing a single decision coefficient wknn: 

 
     (12) 

and the sought class is determined according to the sign of the coefficient: 
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(13) 

Thus, the number of nearest neighbours k in (12) is the second hyperparameter of the complete 

model. Value of k must be an odd number to avoid choice uncertainty in (13). 

Steps 3 and 4 extend element-wise to any set of classified sequences {x̂i}i =1..l in the testing sample 

Xtest without the need for quantizer retraining in Step 2. Since the complete model does not have 

hidden parameters (intermediate parameters non-deterministically calculated according to the 

input), the information model can be viewed as a family of classifiers ℋ (Q, k). The choice of the 

sequence representation in Step 1 is another part of the model configuration. This paper explores the 

influence of selected finite-difference representation (RR, ΔRR or Δ5RR), the number of nearest 

neighbours k and the alphabet size Q on the quality of performed classification. 

2.4 Data 

The efficacy of the model was investigated using the open MIT-BIH Atrial Fibrillation Database 

(AFDB), one of the most popular databases for the validation of AF classification methods [14-15]. 

AFDB consists of 25 Holter ECG monitoring recordings of 10 hours duration, sampled at 250 Hz. 

The database comes annotated with time coordinates of R-peaks and class labels for signals. 

The R-peak coordinate sequences and their corresponding class labels were extracted from each 

recording and partitioned into sub-sequences of non-overlapping windows of length M = 32, 64, 

128. A full sample was created for each considered M. Subsequences included normal or AF rhythm 

only. If, according to the annotations, a transition from one rhythm to another was observed in an 

ECG corresponding to the window, that subsequence was excluded from the sample. The number 

of subsequences in both classes extracted for each window size is shown in Table 1. There is a slight 

class imbalance in the samples with a bias towards normal rhythm sequences. 

In addition to AFDB, a MIT-BIH Arrhythmia Database (MITDB) was used as an external test 

sample [3]. MITDB consists of 48 half-hour ECG recordings sampled at 360 Hz. Eight of the 

contained recordings included AF episodes. Interval sequences of normal rhythm from all 48 

recordings and of AF episodes from 8 recordings were extracted for each window size. Other rhythm 

types were excluded. Not surprisingly, the extracted normal rhythm sequences were significantly 

more numerous than the AF sequences (Table 1). 

Table 1. Number of interbeat interval sequences per class extracted from AFDB and MITDB recordings for 

each window size M. 

AFDB 

Extracted for M = 32 Extracted for M = 64 Extracted for M = 128 

Normal AF Normal AF Normal AF 

20447 16032 10106 7896 4975 3851 

Overall: 36479 Overall: 18002 Overall: 8826 

MITDB 

Extracted for M = 32 Extracted for M = 64 Extracted for M = 128 

Normal AF Normal AF Normal AF 

2212 289 1028 124 456 49 
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Overall: 2501 Overall: 1152 Overall: 505 

2.5 Validation procedures 

Statistical validation of the classification model was performed with two data partitioning 

procedures: using the full available dataset and under few-shot learning setting. The procedures 

differed in ways the splits into training and test samples were formed, and in the sizes of the training 

samples. 

The full dataset procedure was a repeating fivefold cross-validation on the population. AFDB 

recordings were divided into 5 random groups of equal size, from which 5 possible population splits 

were created, with one group being the test population and the other 4 groups combined to form the 

training population. The procedure was repeated 8 times. This resulted in 40 splits into training and 

test populations of 20 and 5 recordings respectively. Extracted interval sequences from recordings 

were divided into training and test samples according to populations in order to prevent data leaks.  

The external dataset procedure was used to supplement cross-validation on a single database, 

Experiments using MITDB as a test sample were performed with the whole AFDB database used as 

a training sample. 

The few-shot learning procedure was used to assess the quality of classification in the context of 

a limited amount of training data. AFDB recordings were randomly divided into a training and a test 

population of 20 and 5 recordings respectively. All extracted interval sequences from the recordings 

of the test population formed the test sample. In turn, n random observations of sequences of both 

classes were randomly selected from the 20 recordings of the training population. This procedure 

was repeated 500 times for n = 5, 10, 20, 50, 100. I.e., 500 experiments were performed with a 

training sample consisting of n normal rhythm sequences and n AF sequences for each value of n. 

The splits within procedures were made for a fixed window M and sequence representation. As three 

window sizes (M = 32, 64, 128) and three interval sequence representations (RR, ΔRR, Δ5RR) were 

investigated, classifications were repeated with the resulting training-test samples for all nine 

window/representation combinations. The same population splits were used for each configuration. 

The Matthews correlation coefficient was used as the main measure to compare the quality of 

classification. Given the values of confusion matrix, MCC is determined by the formula: 

 
      (14) 

where TP, TN, FP, FN are the numbers of true-positive, true-negative, false-positive, false-negative 

classifications. MCC is considered one of the most informative measures of binary classification 

quality [16], because it accounts for all four underlying basic rates of confusion matrix (sensitivity, 

specificity, predictive positive and negative values) and assigns equal importance to ratios of 

successful positive and negative predictions. The latter is particularly important given the class 

imbalance (Table 1). 

In the present work, the average MCC between validation samples was the main quality measure for 

a fixed model configuration. In addition to MCC, sensitivity and specificity values indicating the 

proportions of true-positive and true-negative classifications are also provided. 

3. Results 

3.1 Distance matrix and quantization analysis 

To make a preliminary assessment about the ability of the proposed model to discriminate between 

classes we selected a random training-test sample of two non-overlapping groups of patients from 

AFDB, each consisting of 100 observations per normal rhythm and AF rhythm (M = 128). Matrices 
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of compression distances (10) calculated for Δ5RR, ΔRR, RR representations with columns and 

rows sorted by class are presented in Fig. 1.  

We can visually assess that the matrices for all three representations were clearly divided into 4 

square clusters and show the necessary characteristics for classification – between-class distances 

(top-right and bottom-left parts of the matrices) are higher than intra-class distances (top-left and 

bottom-right parts of the matrices). This observation was confirmed by average distances d̄ inside 

clusters and their 95% confidence intervals (provided in Fig. \ref{img:ch2distance_matrix_big}). 

However, the RR representation led to the worst separability of the AF class, as the between-class 

distances (d̄ = 0.757, 0.767) were not much higher than intra-class distances (d̄ = 0.726). This can 

be said in contrast to Δ5RR representation which led to the highest between-class distances (d̄ = 

0.788, 0.786) and the lowest intra-class distances for the AF class (d̄ = 0.647). In turn, the ΔRR 

representation led to the lowest intra-class distances for normal rhythm (d̄ = 0.591). Based on these 

results, we can assume that the use of Δ5RR in the model achieves fewer false-negatives (meaning 

higher sensitivity) and better quality overall. The use of ΔRR results in fewer false-positive 

classifications and therefore higher specificity. Qualitatively, these results were observed for any 

random sample. 
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Fig. 1. Compression distance matrices for Δ5RR, ΔRR, RR between two data samples. The columns and rows 

of the matrix are sorted by AF and normal rhythm (denoted as NRM in the Figure). The mean distances and 

95% confidence intervals (calculated by bootstrapping [17]) are provided for rectangular clusters. 
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Fig. 2. Interval sequences of a normal rhythm episode with a single arrhythmic contraction, shown in Δ5RR 

and ΔRR representations. Symbolic images for each interval after quantization (black letters denote images 

for Δ5RR representation, red letters for ΔRR) are given as well. 

Analysis of interval sequences and their symbolic images after quantization allows us to suggest an 

explanation for the changes in the distances obtained for the two finite-difference representations. 

Fig. 2 shows an example of a short interval sequence of the same rhythm episode with superimposed 

Δ5RR and ΔRR representations and their symbolic images after quantization (Q = 33). This episode 

corresponded to normal rhythm with a single arrhythmic contraction of the heart. The values of the 

intervals between two representations were quite close to each other, but the magnitudes of peaks 

14 and 15 corresponding to the arrhythmic contraction were higher for five-point scheme (Δ5RR14,15 

= (–0.504, 0.440); ΔRR14,15 = (–0.408, 0.352)). Positions 13 and 16 also differed between 

representations (Δ5RR13,16 = (0.019, 0.040); ΔRR13,16 = (-0.012, 0.060)) because the five-point 

finite-difference scheme is informed by two adjacent rapid rhythm changes instead of one. 

 

Fig. 3. Quantization boundaries learned for Δ5RR (a) and ΔRR (b) representations with the same training 

sample (Q=33). Top rows of sub-figures are full boundary spreads on the same scale, bottom rows are 

zoomed to (-0.55; 0.55) range. 

Such changes in the interval distributions affect the resulting quantization boundaries. As can be 

seen in Fig. 3, the quantization boundaries for Δ5RR when compared to ΔRR were more 

consolidated around zero, but spread further when removed from zero. This was reflected in 

symbolic images of interval sequences in Fig. 2. The prefix before the peaks, reflecting a regular 

rhythm before an unscheduled heart contraction, appeared in the ΔRR representation as "H-H-H-H-

I-H-H-I-H-H-H-I-H". This is evidently a more homogeneous string than "H-H-I-H-I-H-H-H-J-I-H-
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I-I-J" in the Δ5RR representation. A similar effect was observed for the last three interval positions, 

appearing as "H-H-H" in ΔRR-representation and "G-I-H" in Δ5RR-representation. In other words, 

we can assume that the Δ5RR scheme makes it possible to obtain a quantizer that is more sensitive 

to the instantaneous changes in heart rhythm that are characteristic of arrhythmias. Differences in 

compression distances (Fig. 1) are a consequence of this effect. 

3.2 Hyperparameter grid test 

Since the classification model has only two hyperparameters Q and k, we conducted a grid test of 

classification quality. For this purpose, a full dataset validation was performed for each pair of 

hyperparameters from the Cartesian product of subsets Q = {30, 33, 36, ..., 114, 117} and k = {1, 3, 

5, ..., 499, 501}. Results in the form of average MCC heatmaps for windows M = 32, 64, 128 using 

the ΔRR representation are shown in Fig. 4.  

According to the obtained heatmaps, alphabet size had a negligible effect on the classification 

quality for small window M = 32, but larger alphabet size improves the classification quality for 

larger windows M = 64 and 128. The heat maps are given for the ΔRR scheme, but other 

representations showed a similar trend. For the remainder of the paper, Q was fixed (Table 2). For 

windows M = 64, 128 the same alphabet size Q = 102 was selected. For M = 32 it was fixed to Q = 

39. These values were selected as the highest classification quality was achieved for them. A more 

detailed statistical analysis of the model classification results with respect to the number of 

neighbours k with fixed Q is given in the following sections. 

3.3 Classification on the full dataset 

In this section, we present the full dataset classification results with quality comparison between RR, 

ΔRR and Δ5RR sequence representations for the three investigated window sizes. 

Fig. 5a shows the changes in average MCC scores and their 95% confidence intervals upon the 

number of nearest neighbors k for window M = 128. Confidence intervals for each representation 

here and below were constructed using the bootstrapping method [17], as the classification quality 

scores do not follow normal distribution laws. For a large window size, the Δ5RR representation 

significantly outperformed the ΔRR representation in terms of classification quality. The confidence 

intervals of the baseline RR representation overlapped with ΔRR for some optimal values of k, but 

generally showed a deterioration in classification quality with the increase of the number of nearest 

neighbors. 

Analogous graphs for window M = 64 are shown in Fig. 5b. As in the previous case, the classification 

quality for Δ5RR was significantly higher than for ΔRR. The basic RR representation was behind 

both finite-difference representations. 

Fig. 5c shows the MCC scores for small window M = 32. In this case we cannot confirm the 

advantage of one finite-difference representation over the other due to the intersection of the 

confidence intervals with the average curves. However, the classification quality of the baseline RR 

representation remained below that of the two finite-difference representations. 

Presented graphs show that the MCC curves rose for small values of k, peaking for k ≤ 89 and then 

entering a slow decline. Peak k values varied between different M and sequence representations. 

Empirically, in order to achieve high classification quality, we suppose that k can be chosen as 

follows: 

 (15) 

where N is the number of observations in the training sample, odd(·) is rounding to the nearest odd 

number.  

Aggregated quality scores for classifiers with empirically derived k comparing all sequence 

representations in terms of MCC, sensitivity and specificity are presented in Table 3. Using Δ5RR 
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scheme instead of ΔRR resulted in significantly better classification quality for medium and large 

window lengths (M = 64, 128), as confirmed by the averages and confidence intervals of MCC. The 

classification model performed best for window M = 128, where Δ5RR achieved 96.37% sensitivity 

and 97.74% specificity, and ΔRR achieved 87.78% sensitivity and 99.00% specificity. The use of 

ΔRR representation led to higher classification specificity at the expense of sensitivity. This result 

confirms the assumptions about the sensitivity and specificity of the classification model made in 

Section 3.1 based on the analysis of the distance matrices (Fig 1). This means that the use of a five-

point finite difference scheme can reduce the number of false-negative predictions, and therefore 

provide a more pathology-sensitive model. 

 
Fig. 4. Heatmaps of average MCC scores using full dataset validation on a k × Q hyperparameter grid. The 

maps are presented for three investigated windows M with the fixed ΔRR scheme. 



Марков Н.С. Модель детекции фибрилляции предсердий, основанная на дифференцировании и сжатии интервалограмм. Труды 

ИСП РАН, 2025, том 37 вып. 2, с. 281-300. 

293 

Table 2. Fixed values of parameter Q relative to window size M. 

Window M Fixed Q 

32 39 

64 102 

128 102 



Markov N.S. A Model for Atrial Fibrillation Detection Based on Differentiation and Compression of Interbeat Interval Sequences. Trudy ISP 

RAN/Proc. ISP RAS, vol. 37, issue 2, 2025. pp. 263-309. 

294 

 

Fig. 5. Graphs showing dependence of average MCC scores on the number of neighbours k per sequence 

representation. 95% confidence intervals were calculated using the bootstrapping method [17]. 

Dashed lines indicate the highest scores achieved for each of the three representations. 

Subfigures a, b and c correspond to windows M = 128, 64 and 32 respectively. 

The above results allow us to conclude that both finite-difference representations significantly 

outperform the baseline RR representation in terms of classification quality for all considered M. 
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Therefore, in the next section on the few-shot learning validation procedure, the results of only ΔRR 

and Δ5RR representations are reported as clearly preferred approaches. 

Table 3. Classifiers in terms of average MCC, sensitivity and specificity with empirically derived values of k 

in the full dataset 8×5-fold cross-validation setting. 

Δ5RR 

M kempiric CI- 
Average 

MCC 
CI+ 

Average 

sensitivity 

Average 

specificity 

32 k=31 0.845 0.854 0.862 93.89% 91.87% 

64 k=25 0.895 0.913 0.929 95.05% 96.84% 

128 k=19 0.916 0.935 0.949 96.37% 97.74% 

ΔRR 

M kempiric CI- 
Average 

MCC 
CI+ 

Average 

sensitivity 

Average 

specificity 

32 k=31 0.838 0.848 0.857 94.90% 90.36% 

64 k=25 0.833 0.866 0.890 88.55% 97.94% 

128 k=19 0.829 0.874 0.906 87.78% 99.00% 

RR 

M kempiric CI- 
Average 

MCC 
CI+ 

Average 

sensitivity 

Average 

specificity 

32 k=31 0.736 0.755 0.772 80.68% 93.52% 

64 k=25 0.729 0.767 0.796 79.28% 96.53% 

128 k=19 0.773 0.815 0.845 82.29% 97.87% 

3.4 Classification on the external dataset 

This section presents results of external dataset classification. MITDB was the classified test sample, 

AFDB was the training sample. Hyperparameters Q and k were selected according to Table 2 and 

expression (15) in preceding sections. We conducted the experiments with both finite-difference 

representations and three window sizes. Results are provided in Table 4. 

A satisfactory result was observed for the medium window M = 64 with Δ5RR scheme leading to 

96.77% sensitivity, 96.00% specificity and 0.829 MCC. The best classification quality was achieved 

for the large window M = 128, with similar specificity (98.46% and 96.71%) and sensitivity (both 

97.96%) between Δ5RR and ΔRR. However, even a small increase in the number of false-positive 

predictions with ΔRR (reflected in specificity) caused a considerable reduction of the MCC score 

(0.916 against 0.840 for M = 128). This was due to a significantly uneven class distribution in 

MITDB (see Table 1). 
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The impact of imbalanced classes was especially evident in the case of M = 32. Classification of 

smaller interval sequences led to a significant increase in false positives with a marked effect on 

MCC. Sensitivity was quite high, but 87.45% and 83.45% specificity for Δ5RR and ΔRR 

representations resulted in 0.646 and 0.591 MCC scores. 

Table 4. Classifiers in terms of average MCC, sensitivity for external dataset classification. 

Δ5RR 

M MCC Sensitivity Specificity 

32 0.646 96.54% 87.45% 

64 0.829 96.77% 96.00% 

128 0.916 97.96% 98.46% 

ΔRR 

M MCC Sensitivity Specificity 

32 0.591 97.58% 83.45% 

64 0.757 98.39% 93.00% 

128 0.840 97.96% 96.71% 

Outlined test results provide further evidence of the proposed model's high classification quality, 

especially for medium and large sequence windows. For short windows M = 32 the quality may be 

further improved with additional hyperparameter tuning. Curiously, in contrast to the previous 

section, the use of the Δ5RR scheme improved the specificity of the classification rather than the 

sensitivity. This may be due to differences in the datasets, as subjects in MITDB were affected by a 

broader range of heart rhythm conditions, while in AFDB the majority were AF only. 

3.5 Few-shot learning 

This subsection presents classification results under the limited dataset condition where training 

samples consisted of n observations per two rhythm classes. The few-shot learning validation was 

performed for n = 5, 10, 20, 50, 100. The number of nearest neighbors for each n was fixed at k = 

odd(√(2 × n)) (square root instead of cubic root in (15)). ΔRR and Δ5RR representations were 

compared between three investigated window sizes. As all training samples corresponded to the 

same rhythm episodes in different interval representations, the Wilcoxon test with Benjamini-

Hochberg correction [18] was used to assess the significance of differences between ΔRR and Δ5RR 

(α = 0.05). 

For the window M = 128, the classification results are shown as box plots in Fig. 6a. One can see 

that the median MCC values were quite high, but for n = 5 there were significant outliers down to 

MCC = 0. The latter indicates the occurrence of small samples leading to completely incorrect 

classifications. For each value of n, there was a significant advantage of the Δ5RR representation 

over ΔRR, confirmed by the Wilcoxon criterion with multiple test correction (all p-values < 0.001). 

In turn, for window M = 64, classification results are presented in Fig. 6b. The use of shorter 

sequences for classification led to an increase in the spread of MCC scores and a higher number of 

outliers for n = 5,10, which reduced the classification quality. The advantage of the Δ5RR 

representation for classification was still observed (highest p = 0.027 for n = 5). 

For window M = 32, results are shown in Fig. 6c. Similar to the classification on the full dataset, 

there was no clear advantage of the Δ5RR scheme over ΔRR when using short sequences. In this 



Марков Н.С. Модель детекции фибрилляции предсердий, основанная на дифференцировании и сжатии интервалограмм. Труды 

ИСП РАН, 2025, том 37 вып. 2, с. 281-300. 

297 

case, for n = 5 the Wilcoxon test did not show a statistically significant difference (p = 0.138). For 

n = 5, 10, there was also a wide spread of MCC scores and a large number of outliers. 

 

Fig. 6. Boxplots showing distributions of MCC scores in the few-shot learning setting for varying shots n. 

Numbers on boxes are MCC medians, boxes represent the interquartile range, whiskers show the edges of 

significant values within the radius of IQR × 1.5, grey dots show outliers. 

Also presented are multiple test adjusted p-values of the Wilcoxon criterion for each n. 

Subfigures a, b and c correspond to windows M = 128, 64 and 32 respectively. 

Based on the results presented, we can say that the proposed classification model has a high 

generalization capability. For medium and large windows (M = 64, 128), the Δ5RR scheme allows 

a significant increase of the classification quality. Requirement to the number of samples n for stable 

classification depends on the window size. For M = 32, a minimum of 20 observations of the two 
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rhythm classes is preferred, which was ≈ 0.0011% of the full sample (Table 1), achieving a median 

MCC of 0.871. For M = 128, at least 10 observations of each rhythm are preferred for stable 

classification, which was ≈ 0.0023 of the full sample (Table 1), achieving a median MCC of 0.914. 

In general, the model demonstrates high classification quality in the few-shot learning setting, but 

increasing the window M and expanding the training sample leads to better results. It is worth noting 

that the small training samples were randomly selected from interbeat interval sequences of 20 

patients, while the test samples consisted of the full set of sequences from 5 patients. This means 

that a good practice for classification with a limited data set is to use observations from different 

patients. 

4. Discussion and Conclusions 

In this paper we proposed the classification model using information compression and numerical 

differentiation of interbeat interval sequences to detect AF on ECG. A finite-difference scheme 

which improves classification by compression when applied to interval sequences was proposed. 

We explored the choice of hyperparameters k and Q, three representations of interbeat interval 

sequences, the size M of the R-peak segment window. 

As a method for arrhythmia detection, the model achieves strong results. With a segment window 

size of M = 64 (corresponding to 45-60 seconds of ECG), the model achieved a mean sensitivity of 

95.05% and a mean specificity of 96.84% with 8×5-fold cross-validation on the full AFDB set. With 

a wider window size of M = 128 (90-120 seconds ECG), the model achieved a mean sensitivity of 

96.37% and a mean specificity of 97.74%. For a short window of M = 32 (22-30 seconds ECG), the 

model achieved a mean sensitivity of 93.89% and a mean specificity of 91.87%. Using MITDB as 

the external test set and AFDB as the training set the model achieved 97.96% sensitivity and 98.46% 

specificity for the window M = 128. However, the main advantage of the method lies in the quality 

of classification in the few-shot learning setting, where 10-20 observations of two rhythm types are 

sufficient to classify entire test samples. 

The results obtained on the open MIT-BIH AFDB database let us compare the proposed model with 

published works. The compression-based classification has the following advantages over other AF 

detection methods: 

● Tateno's model [8] was proposed in one of the key studies in the field. This paper proposed 

the use of ΔRR-interval sequences for classification. The methodology involved histogram-

template matching. In this study, 94.4% sensitivity and 97.2% specificity were achieved 

for a window size of M = 100 with AFDB and MITDB being used as respective training 

and test samples. However, the classification performance is significantly reduced for 

shorter sequences. In our work, we proposed a Δ5RR-interval representation, which 

improved the classification quality compared to ΔRR. 

● Andersen's work [19] explores the possibility of AF classification using a support vector 

machine model. The authors claimed 96.8% sensitivity and 96% specificity for window M 

= 100 with fivefold cross-validation on AFDB (but without multiple validation repeats, 

unlike our work). Fivefold cross-validation purports 80-20 train-test split and the authors 

did not investigate classification using a more conservative data division. Presumably this 

is due to kernel models such as support vector machine requiring a significant amount of 

data for training and generalization. 

● Neural network classifiers such as Xia's [20] show some of the best results in terms of 

quality (98.7% sensitivity, 98.9% specificity). However, neural network models require 

significant computational resources, and are prone to overfitting [6]. 

The few-shot learning paradigm originated in the field of neural networks, where classification 

models have achieved widespread success with large amounts of data, but struggled in applications 

with small available datasets. A significant amount of published work in this area has focused on 
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improving pre-trained models with available prior knowledge [21]. From rhythm detection 

applications, a transfer learning of a large pre-trained neural network model was conducted in work 

[22] using a small number of ECG recordings of 30-180 seconds duration for personalized AF 

classification. The great advantage of the model proposed in this paper is that it requires no prior 

information: the hypothesis space is completely determined by the used training sample. Therefore, 

it may be promising to use our approach to build truly personalized classifiers. 

During the model validation and testing of different sequence representations, it was shown that the 

numerical Δ5RR scheme introduced in our work outperforms ΔRR in most cases (in particular for 

windows M = 64, 128). The result of the Δ5RR representation can be explained by the higher order 

of accuracy of the five-point scheme compared to the three-point scheme. This gives more emphasis 

to sudden rhythm fluctuations and leads to a more sensitive sequence quantizer (Fig. 2, 3).  

The disadvantage of the proposed classification model is the computational demand when dealing 

with large amounts of data. To classify a sample of size l using a training sample of size n, it is 

necessary to compute a distance matrix of l × n dimensions, which involves compression of all 

individual sequences and all pairwise concatenations. This leads to a time complexity of at least O(l 

× n + n + l). That is why, from a practical point of view, it is of utmost importance that the presented 

model demonstrates high classification performance on small training samples. 

It should be noted that gzip compression is often optimized at the hardware level [23]. This, together 

with the model's low data and memory requirements, makes classification with compression 

particularly promising for low-energy medical devices: ECG Holter monitors, portable electronics, 

telemedicine and remote patient monitoring. Due to proposed model's generalization capability, its 

practical healthcare use could be preferable to “compressed” neural network classifiers of heart 

rhythms. Such models use a reduced number of hidden parameters and layers to lower complexity 

and increase the inference performance, making them more suitable for wearable devices [24]. 

However, it is currently postulated that neural networks with higher number of hidden parameters 

lead to better generalization [25]. Introducing shallow networks into medical practice may require 

their costly retraining to each local population. In contrast, our model may be more easily adapted 

to population shift with a few rhythm observations. 

It is of further interest to extend the model to multi-class classification. Atrial fibrillation is one of 

the most common heart diseases and it is important to investigate detection of rarer arrhythmias. 

Since normalized compression distance was initially proposed for clustering tasks [12], there is 

another prospect of non-supervised learning without labeling cardiac interval sequences into 

rhythms. 

Normalized compression distance was originally invented for time series of discrete states, such as 

texts and discrete sequences [7]. In turn, the classification model proposed in this paper is suitable 

for monotonic stochastic sequences. The methodology considered, involving differentiation of 

sequences, quantization and compression distances, was also used by the author to classify subjects 

with dyslexia using eye-tracking data [26]. Thus, we can expect further results of the present model 

in other applications. 
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[7]. Li M., Chen X., Li X., Ma B., Vitányi P. M. B. The similarity metric. IEEE transactions on Information 

Theory, vol. 50, issue 12, 2004, pp. 3250-3264. DOI:10.1109/TIT.2004.838101. 

[8]. Tateno K., Glass L. Automatic detection of atrial fibrillation using the coefficient of variation and density 

histograms of RR and ΔRR intervals. Medical and Biological Engineering and Computing, vol. 39, 2001, 

pp. 664-671. DOI:10.1007/BF02345439. 

[9]. Fornberg B. Generation of finite difference formulas on arbitrarily spaced grids. Mathematics of 

computation, vol. 51, issue 184, 2017, pp. 699-706. DOI:10.1090/S0025-5718-1988-0935077-0. 

[10]. David A., Sergei V. k-means++: The Advantages of Careful Seeding. In Proceedings of the eighteenth 

annual ACM-SIAM symposium on Discrete algorithms, 2007, pp. 1027-1035. Available at the URL: 

http://ilpubs.stanford.edu:8090/778/. 

[11]. Gailly J.L., Adler M. GNU gzip. GNU Operating System, 1992. Available at the URL: 

https://www.gnu.org/software/gzip/manual/gzip.pdf. 
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