Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-11 tOC-EH

Designing Refactoring Tool for Object-Oriented
Code Based on Metrics

1A.O. Korznikov, ORCID: 0009-0006-3941-9214 <artemkorz@mail.ru>
23N.N. Datsun, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

! Perm State University,
15, Bukireva st., Perm, 614068, Russia.

2HSE University, Perm,
38, Studencheskaya st., Perm, 614070, Russia.

$PSHPU, Perm,
24, Sibirskaya st., Perm, 614990, Russia.

Abstract. Currently, the information technologies industry is a leader in growth rate among the main economic
sectors. However, the most important components of the development process, such as estimation and
refactoring of program products, still remain without generic tools. Therefore, our main goal is to design a mean
of unified modification and formal evaluation for code in object-oriented programming languages. We use
refactoring patterns to define code modifications, and code metrics calculation to assess its characteristics. Our
tool should help developers to make decisions connected with code quality and its modification necessity,
automatize that change. Actually, it may be used in organizations and educational institutions. We have
developed a domain specific language to unify the specification of object-oriented languages. Furthermore, a
research prototype of the tool has been created. 3 object-oriented languages descriptions and 6 diverse
refactoring patterns have been developed to demonstrate capabilities of the approach.

Keywords: refactoring; domain specific language; code metrics calculation; object-oriented language;
refactoring patterns.

For citation: Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on
Metrics. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 143-156. DOI: 10.15514/ISPRAS-2025-
37(5)-11.

143

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

NMpoekTMpoBaHue MHCTPYMeEHTa Ans pedakTopuHra o6 bLEKTHO-
OpPMEHTUPOBAHHOrO KoAa C UCMOoNb30BaHUEM pacyeTa MeTpPUK

1 4.0. Kopsnuxos, ORCID: 0009-0006-3941-9214 <artemkorz@mail.ru>
23 H.H. Jlayyn, ORCID: 0000-0001-8560-7036 <nndatsun@inbox.ru>

L Hepmckuii 2ocyoapcmeentviii HAYUOHATBHBIL UCCTE006AMENbCKULL YHUSEDCUMENT,
Poccus, 614068, . Ilepmvb, yn. Bykupesa, 0. 15.

2 HUY BIILD, [epmw,
Poccus, 614070, . [lepmo, yn. Cmyoenueckast, 0. 38.

8 [epmckuii 20cydapcmeennplii 2yMaHUMapHo-nedazo2uteckuii Yuueepcumen,
Poccus, 614990, 2. I[lepms, ya. Cubupckas, 0. 24.

AnHoTaumsi. Ha nanneiii MoMeHT oTpacib umHGopManuoHHBIX TexHojoruil (UT) 3aHMMaeT MuaAnpYyIOIIyIO
MO3HLHIO 110 TEMIIaM POCTa CPEeI OCHOBHBIX OTpacieil 5KOHOMHKH. OZHAKO, HE CYILIECTBYET YHHUBEPCAIBHBIX
U CTAQHIAPTH30BaHHBIX MHCTPYMEHTOB JUIS BaKHEHIIMX KOMIIOHEHTOB Ipoliecca pa3pabOoTKU: OLEHKH U
pedakTopuHra MporpaMMHBIX MPOXYKTOB. I103TOMY Hamieli OCHOBHOH HENbIO SBIACTCS HMPOCKTHPOBAHHE
Cpe/CTBA Ul YHUPUIIMPOBAHHOTO M3MEHEHUS U (OPMAIIbHON OLIEHKU KOJa Ha 00BEKTHO-OPHEHTHPOBAHHOM
SI3BIKE MTPOTrpaMMHUpOBaHus. sl OmHMcaHus M3MEHEHHH KOJa HCIIONIB3YIOTCS IalIOHBl peaKTOpHHTa, JUIs
OLICHKH €ro XapaKTepHCTHK — pacueT METpHK Koja. llenpro Hamlero WHCTpyMEHTa SIBISIETCS ITOMOIIb
[IPOTPAaMMHCTaM B TPUHATHH pPEIICHHH, CBA3aHHBIX C KAa4eCTBOM KOJa M HEOOXOIMMOCTHIO BHECCHUS
U3MCHCHUH B KOJI, aBTOMATH3AIMs STHX U3MEHEHHUIT. [IpUIIo)KeHHE MOXKET HCIIOIb30BaThCsl B OPraHU3aLUsAX 1
00pa3oBaTeNIbHBIX ~ YYPEKACHUSX. bBbUl pa3paboTaH HPEAMETHO-OPUCHTUPOBAHHBIA S3BIK, YTOOBI
YHUQULIUPOBATh ONUCaHHE OOBEKTHO-OPUCHTUPOBAHHBIX fA3BIKOB. Kpome Toro, ObUI co3aaH
UCCIIEJOBATENbCKUH MPOTOTHI MHCTPpyMeHTa. JIIsi AEMOHCTpAli BO3MOKHOCTEH MPEIOKEHHOTO MOAX0/1a
OBLTH CO3/1aHbI 3 OIMCaHNs 00BEKTHO-OPHEHTUPOBAHHBIX SI3BIKOB M 6 Pa3IMYHBIX NIA0JOHOB pehaKTOPHHTA.

KiroueBbie cioBa: pe(baKTOpI/IHF; l'[peI[MeTHO-OpPIeHTPIpOBaHHLIfI SA3BIK; pacyeT METPUK KOJa, 00BEKTHO-
OpI/IeHTI/IpOBaHHI:Iﬁ SI3BIK, 1a0JI0HBI pe(baKTOpI/IHFa.

Jnsi mutupoBanms: Kopsuukos A.O., [anyn H.H. IlpoextnpoBaHue MHCTpyMEHTa Uit pedakTOpHHTa
00BEKTHO-OPUECHTHPOBAHHOTO KOJIa C UCTIONB30BaHNeM pacdera MeTpuk. Tpyast UCIT PAH, Tom 37, Beim. 5,
2025 r., ctp. 143-156 (Ha anrmmiickom sizeike). DOI: 10.15514/ISPRAS-2025-37(5)-11.

1. Introduction

At present a rapid rise of IT industry occurs. Despite this, a number of significant issues that inhibit
the effective work and development of organizations are detected. Firstly, there are no standardized
tools for evaluating computer programs. Secondly, refactoring is a key and integral part of software
maintenance, but there is no common tool for it. Thirdly, a rate of technology substitution is high,
and it is vital for organizations to use effective ones to stay competitive.

Metrics can be considered as a tool for formal evaluation of code characteristics. However, the recent
researches show that applications based on metrics have a low true positive rate [1]. The authors
believe that lack of an actual context is the main reason [2]. In our work, the metrics are interpreted
by a programmer, who uses our tool. Developer as an expert assesses a code quality using personal
professional experience and recommended limits for metrics values provided by the tool. Moreover,
it is a useful practice to compare the characteristics of different program projects.

Refactoring is a mean of the uncontrollable growth prevention of a program code length, number of
errors hidden, and design issues (technical debts). Therefore, the significance of refactoring cannot
be underestimated, but its implementation is connected with high complexity and time cost,
especially when changing the whole project [3]. Modern IDEs include means of metrics calculation
as well as rapid global refactoring while coding (floss refactoring) [4: 163]. However, they may be
inconvenient in some cases due to massiveness. Furthermore, IDEs focus on supporting a small
number of programming languages and specific refactoring operations. In addition, researches show

144

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

that many developers are cautious about these tools and prefer to perform refactoring manually
[4: 163, 5: 4, 6: 1]. Our proposed approach and a research prototype based on it are independent of
object-oriented programming (OOP) language.

Actually, different organizations use various versions and extensions for programming languages,
some of them develop the own languages to solve particular tasks in a specific domain. On the one
hand, it helps to accelerate the development and simplify understanding, but on the other hand,
refactoring and metrics calculation may become complicated. Thus, extra financial resources are
required to develop appropriate tools for automatic execution of those actions.

To implement the tool for refactoring object-oriented code using metrics calculation, the following
tasks must to be solved to:

e analyze requirements;

o analyze existing software;

e design the program tool;

o design a domain specific language (DSL);
e implement the tool and test it.

2. Requirements

To solve these problems, a tool independent of a specific object-oriented languages set should be
developed. It must:

e provide means of a unified description of various languages and refactoring operations;
o use terms of the procedural and OOP paradigms to calculate the respective metrics;

e describe languages and refactoring operations in a similar way to simplify the tasks of
programmer;

o apply refactoring to the whole project or its individual physical (files) and logical
(hierarchies of classes) parts;

o allow developers to evaluate the formal characteristics of program code, compare metrics
of refactored code with initial values.

3. Related works

3.1 Technical debt and code smells

In practice, developers often use refactoring to remove “technical debt”, particularly “code smells”
[7]. Technical debt means a decrease of code quality in its development [1]. In the long term, it leads
to such serious consequences as an increase in cost of defects correction, further development and
making changes [1, 8]. Code smells are the most studied and recognizable type of technical debt
related to design problems [8]. The term is firmly entrenched in the context of refactoring and
combines the problems encountered in object-oriented code [1].

Code metrics can also be used to determine this kind of drawback [1], especially Chidamber and
Kemerer set is often used. According to various works, metrics in the context of refactoring are
applied for identification of low-quality code parts [9], comparing a source code with refactored one
[10] and estimating a cost of refactoring application [11].

3.2 Refactoring tools

The study of current refactoring tools is presented in a systematic mapping study [12]. According to
the data obtained, there is a set of refactoring applications that recommend changes, perform
refactoring and detect it [12]. The most commonly considered language is Java, and there are also

145

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

tools working with code in C, JavaScript, and various DSL (e.g., CSS). The denoted tools are
focused on applying specific refactoring operations within a certain set of languages.

In the review [13], Eclipse, Xcode are named among the popular refactoring tools. Moreover, some
of the applications solve similar issues, such as refactoring tests, performed using DARTS [10] and
B-refactoring [12]. Other systems are highly specialized and work with a particular domain: RIdiom
automatically replaces all code fragments that do not correspond to Python idioms [14]; ReSwither
modifies structure of a switch operator in Java [15]; Android Studio plugin works with energy
efficiency [16]. Besides, a lot of the presented tools are either unavailable in Russia or are not free:
Synchronizer, Asyncdroid, XII and others [12].

3.3 Tools for code metrics calculation

Systematic mapping studies (SMS) [17-19] examine the possibilities of tools for automated metric
calculation. It is worth noting a similar study, the authors of which indicated that SourceMeter and
Metrics are most often used to calculate program metrics; PMD and JDeodorant are commonly used
for detection and removing bad smells; JDeodorant and Eclipse are most frequently applied for
refactoring [20: 929]. However, the applications for refactoring, metrics calculation, and tools
proposed by IDEs, which are discussed in these papers, are not universal.

4. Describing approach and designing tool

4.1 Framework

We propose a refactoring approach described in Fig. 1. An iteration of the refactoring loop [21]
requires to identify (step 3) code fragments, to recommend (steps 2, 5) metrics comparison
evaluation, and to apply (steps 4, 6) code modifications. A green outline shows a preparatory step
performed by the programmer manually. The blue frames depict steps performing semi-
automatically, when a decision is made by user. Other steps are done automatically. Thus, in
refactoring loop we suggest a user to choose the refactoring pattern and to decide whether to apply
the modification using results of the metrics comparison.

Project Fil
Language
Specifications
Project Fil > 2 Code
i Metrics - ™
1N Lang_Lla_gB Calculation
1.Creating Descriptions for| | Descriptions]

- 3.Finding Code Fragments
Programming Languages || Pattern Description Y f 1
and Refactoring Patterns P Matching Patiern

A v,

Source Code Metrics
Code Fragments

Project Fil

. ™

nt

a.h:ﬂe;g;;g%lt;t&lgt;ﬂndfor | ¢Vodified] | 4.Code Replacement |
“«—Project Files 6.Changing Project Files : Comparison Code Based on Pattemn

\. /

v,

Modified Code

Fig. 1. Proposed approach framework.

4.2 Designing tool

The main purpose of our tool is to obtain values of the formal code metrics, perform refactoring,
and compare calculated parameters. As the determined indicators, Chidamber and Kemerer, Lorenz

146

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

and Kidd metrics sets were selected. Additionally, Halstead metrics, lines of code (LOC) and
program style evaluation which are independent of a paradigm, were included in the set used.

The tool consists of 4 modules (Fig. 2): (1) an analyzer, (2) metrics calculator, (3) explanation and
(4) refactoring units. The analyzer includes lexical, syntactic and semantic code analysis. As we
develop a generic tool, only the general semantics of object-oriented languages is considered and
the rest of it must be specified in a particular language description. The metrics calculation is
performed both for individual elements of object-oriented languages and for a whole project by
calculating average values. To explain the results, a dictionary that includes namespaces and classes
is used, as well as a comparison between the calculated metrics values and numbers recommended
by their authors.

"source” “executable”
lexis json MetricsObserver exe

]]
““““““ 1 ‘module” 'module” i
- - analyzer refactoring !
source
refactoring.xml [T T
——————————————————————— \ !
' i
W R
- B - - library
[7 module module
explanation metrics calculator
"source”

Newtonsoft.Json.dll
syntax xml

-

Fig. 2. Tool architecture.

4.3 Designing DSL

To provide an opportunity of analyzing the code in various languages, a textual DSL was developed.
It allows a programmer to describe lexis and syntax of the OOP languages. The language is based
on terms such as class, namespace, operator, and operand. BNF was defined for the DSL.

A pattern description method was selected to implement refactoring [22] and code parts. Therefore,
it provides a possibility to work similarly with the language syntax and the refactoring pattern. The
refactoring pattern structure that consists of 4 parts (Fig. 3): variables, search, replace, and references
section was proposed. Firstly, a list of entities required and their initial values is described. Secondly,
elements of a language and its context must be defined as the syntax is. That definition could be
placed separately as a code fragment description.

<Refactorings> ::= <Pattern> {<SubPattern> | <Fragment>}

<SubPattern=> ::= <Pattern>

<Pattern> ::= “<Refactoring xsi:type="Pattern">" <PatternBody> <Next> “</Refactoring>"
<PatternBody> ::= <Name> <Variables> <Search> <Replace>

<Name> ::= “<Name>" <String> “</Name>"

<Variables> ::= “<Variables>" <PosEntity> {<PosEntity> | <VariableEntity>} “</Variables>"
<PosEntity> ::= <Positions Var> | <PositionVar>

<PositionsVar> ::= “<Variable xsi:type="Position">" <String> “</Variable>"

<Search> ::= “<Search>" <DescriptionBody> “</Search>"

<DescriptionBody> ::= <Instruction> {<Instruction>}

<Replace> ::= “<Replace>" {<Insert>} “</Replace>"

<Insert> ::= “<Enfity xsi:type="" <InsertType> “">" <Position> [<Description>] “</Entity>"
<Next> ;= “<Next>" <Refactor> {<Refactor>} “</Next>"

<Refactor> ::= “<Refactor>" <String> <Arguments> “</Refactor>"

<Fragment> ::= “<Refactoring xsi:type="Fragment">" <FragmentBody> “</Refactoring>"
<FragmentBody> ::== <Name> <Variables> <Description>

Fig. 3. Fragment of BNF for refactoring pattern structure.

Subsequently, the replacement part requires position of the code fragment to be defined. The location
is set as a tuple of a first character position and symbols amount. It can be found by the code
147

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

description. The code replacement requires the position and a type of change: adding or
modification. Besides, it would be inevitable to perform the search again in some cases. Thus, the
last part of the pattern is used for referring other ones and share information accumulated.
Visualization of replacements made is also a significant aspect. We decided to highlight the code
fragments related to the first entity described. As a result, the corresponding fragments of a source
and modified code are colored identically. It allowed highlighting the refactored code parts
automatically. Additionally, the developer can assign a color independently. It might be useful when
creating additional files while refactoring.

5. Implementation and testing

The implemented DSL was based on xml as it is conveniently serializable. It was necessary to define
descriptions of OOP languages for testing. For this reason, the lexis and syntax were defined for
subsets of C# 7.3, Java SE 8, and C++11 using the DSL. The main purpose of those definitions is to
provide an opportunity to test the research prototype developed. Moreover, some language details
are not significant for metrics calculation, because of that a complete description is not required
(e.g., C++ pragma instructions).

5.1 Testing refactoring patterns

We have implemented 6 refactoring instances and they have been tested using a code in C#. Fig. 4-
10 show the source code on the left and the refactored one on the right.

Fig. 4 demonstrates a sort of imports. It is performed sequentially for each word in the compared
strings and started using the reserved command for the list. The corresponding lines are
automatically highlighted with colors. The corresponding declarations are created.

using System:; using System . \Windows.Forms;
using System 10; using System Threading;
using System.Ling; using System.Drawing;
using System. Text; using System.Data;
namespace Metrics namespace Metrics

class MLogic class MLogic

{ {

Fig. 4. Sorting imports.

Fig. 5 (a) shows an example of moving literals from class methods to constants using the stated
name. Actually, they are numbered automatically and the same values are considered as the same
constant. Code fragments are skipped until an operand that is a literal is encountered. The unique
values of variables are stored using sets, whereas positions and values are contained with stacks.
The corresponding changes in code have the identical color, and declarations of the constants are
highlighted with the last change color (Fig. 5, b). Fig. 6 illustrates an example with C++ code.

Fig. 7 depicts an example of the following pattern. It allows a programmer to move the code located
between comments of a certain type, defined by a regular expression. For that reason, a method with
described modifiers and name is created. Although the comments shown are convenient for
processing with that pattern, they are practically meaningless and do not contribute to documentation
of an application. After performing this type of pattern, the documentation refactoring proposed in
[23] should be performed additionally.

148

Kopsuukos A.O., Janyx H.H. [IpoexkTrpoBaHne HHCTpyMeHTa 1uIs pe)akTOpHHra 00bEKTHO-OPHEHTHPOBAHHOTO KOJIA C HCIIOIb30BAHIEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

public char GetMextch() Eublic char (et Mextchi)
{

if {curBow == null | numbCurlit == curRow Length)

if fcurRow == null | numbCurlit == curRow.Length) /

{
numbCurlit = numbCurlit = [EMpGanst;
numbCurRow++; numbCurRow-++;

curRow = sr.Readline(); curRow = sr.Readline();
if {curRow = nully if {curRow != null)
curRow = curRow. Trim Start(). TimEnd () + [%n"; curRow = curRow. TrimStart(). TimEnd|) + tempConst2;
else else
pForm. UpdateProgress(]; pForm. Update Progress();
Thread. Sleep(10); Thread. Sleep tempConst3);
//MessageBox.ShowffileName +": " = Convert. Ti #/MessageBox.ShowffileMame +": " + Convert. ToStrin
retum eof; //koHeU daiina retum eof; //oHeu paiina

} }
numbCurlit++; numbCurlit++;
char curlitera = curRow[numbCurlit - 1]; char curlitera = curRow[numbCurlit - tempConst4];
retum curlitera; retum curlitera;
} }

@)

Eublic class MID

private const string tempConst2 = "™n";
private const int tempConst3 = 10;
private const int tempConstd = 1;

(b)

Fig. 5. Transforming literals into constants (C#):
a) source and refactored code; b) declarations of constants in refactored code.

class Company

rivate:
class Company const sting tempConst2 = "a";
{ const string tempConst3 = "b™;
protected:
string name; protected:
int count; string name;
int count;
public:
Company() { count = i } public:
_ Company() { count = [EfpBaRsa; }
Companyistring name)
Companyistring name)
count = [I; {
this-=name = name; count = [EMBCONstT;
} this-=name = name;

void Hire(string name)
void Hire(string name)
Person” b =new Employee(fa". "b"):

counts+; Person® b = new EmployeetempConst2, tempConst3);
b-»show(); count++;
b-zshow();

Fig. 6. Transforming literals into constants (C++).

Fig. 8 demonstrates an example of using a pattern when a developer requires creating a
corresponding property for a public field.

Fig. 9 (a) shows an example of refactoring that extracts an interface from a class into new separated
file. After public methods are found, their signatures are transferred to the extracted interface in the
created file (Fig 8, b). Furthermore, inheritance code related to the interface is added to the class.
The color design is performed manually for inheritance, as it is a new code fragment added to the

existing set.
149

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

Fig. 10 depicts an example of move method refactoring that is often used in practice [24]. The idea
is to find a calls number of the specified method for each class and move it to the one with the
highest value.

i - ing System:;
using System: Hsing :) .
using System Collections Generic; E::g ggx.ﬁilrl;dlonsﬁenenc.
using System.Ling; using Systern:Taxtl;
using System . Text;

D ConsoleApplication 1

namespace ConsoleApplication 1
class Program

class Program
static void Main(sting[] args)

Havano Bnoka kopa

static void Main(string[] args)

/¢ Havano Gnoka koga

// Koneu Bnoka koga

Console. ReadLine(); /4 Korew Gnoka koaa
Console ReadLine();

}
i i

Fig. 7. Moving code into method using comments.

using System; using System;

namespace Consolefpplication |namespace ConsoleApplication

class Square class Square
e i of
}
}

class Program

class Program

static wvoid Main(string[] args)

{ static void Main(string[] args)
Square s = new Square(); {

s.side = 1.23; Sguare s =new Sgquare();
Console WriteLine(s side); s =123
, Console. WriteLine/(s [Sillg):
} }
}

Fig. 8. Encapsulating field.

The refactoring is divided into 2 patterns: moving a method into the class and correcting names.
Firstly, the number of calls is calculated, method is transferred if necessary, and the new location is
highlighted. Secondly, if the current position of a method does not match the class where it is
implemented, then the class name is replaced or added before the method call. The secondary pattern
is referred using an instruction and the modifications performed by it are not highlighted.

As a result of the refactoring, we have achieved an improvement in response for a class (RFC)
metric, but lack of cohesion in methods (LCOM) has also increased (Fig. 11).

5.2 Testing performance

A test bench has the following parameters: OS Windows 10 Pro, 64-bit system, Intel Core i5-6500
3.20GHz CPU, 16 GB RAM. Fig. 12 shows the chosen refactoring pattern, which have been used
to test performance of the research prototype. We have applied that pattern to a code of Metrics
Observer [25]. The project consists of 15 files written in C#.

150

Kopsuukos A.O., [lanys H.H. IIpoextupoBanue HHCTpyMeHTa /s pe(hakTOpHHTa 00BbEKTHO-OPUEHTUPOBAHHOTO KO/Ia € HCIOIb30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

using System:; using System:
namespace Conzolefpplication1 |namespace ConsoleApplication 1
class Dog class Do/ NSRS
{ {
private bool lsHumans Friend() private bool IsHumansFriend()
retum true; retum true;
{_ Eublic wvoid Eat()
} }
public void Drink{nt value) public void Drink(int value) namespace ConsoleApplication 1
i 1 interface |Animal
{
public int Sleep() public int Sleep()
{ {
retum 0; retum 0
} } }
} } }
} ! |Animal cs
(a) (b)
Fig. 9. Extracting interface and creating new file: a) source and refactored code; b) content of created file.
using System; using System;
namespace ConsoleApplication 1 namespace ConsoleApplication
{
public static class A Eublic static class &
{ methodAZ(); BmethodB1(); }
" '] public static void methodA1()
prcaraan | PSRRI
.) ; blic static woid method AZ()
public static woid method A3() I . .
{ methodA1(); BmethodB1(; } { methodA3(: B.methodB20: }
) public static woid methodA3()
{ methodA1{); AmethodB1(); }
public static class B }
{
{
public static woid methodB2{) public static void methodB2()
{ AmethodA2(): methodB1{); } . { AmethodA2(); AmethodB10; }

Fig. 10. Moving method and updating names: methodB1.

CTaHaapTHele MeTpkn MeTpuku Xonetepa | Metpukn Hunambepa Kemepepa | Metpuki Nopenua v Kinnna

BazoBkie MeTpUKK MexonHei kKon MameHeHHEIR Ko

|EEEELLIEHHbIe METD ORI Ha KNacc

|BbICOTa AEpEBa HAacnenoBaHWA

| KonuuecTeo JOYEpPHWX KNaccos

|CLLE|'IJ'IEHHE MEX Y KNaccamn

|DTKJ'IHK Knacca 5 467

|‘4cho apryMeHToB MeToaa

BEIMMCAMMBIE METPHKA

|Heﬂ.0CTETOK CEBASHOCTM B METOAAX | |1.33 | |2 |

Fig. 11. Metrics comparison for methodB1.

151

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

1 <2xml version="1.0"2>
2 <ArrayOfRefactoring xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.0rg/2001/
3 <Refactoring xsi:type="Pattern">
4 <Name >BunecTH woHCTaHTH</Name>
5 = <Variables>
€ <Variable xsi:type="Positions">constant</Variable>
7 <Variable xsi:typ ariablesUnique">constantValue</Variable>
g <Variable xsi:type="Pesition">constantPut</Variable:
9 <Variable>constantName<Value>tempConst</Value>></Variable>
10 <Variable>constantNumber</Variable>
11 <Variable>langName</Variable>
12 - </Variables>
13 B <Search>
14 <! DEOEIMTE SSH:
15 B <Entity xsi:type="Reserved">
20 <!--1 B xmacce-->
21 <Entity xsi:type kipTo">classSyEw</Entity>
22 <!--Kyna Bymer noMemeHo ofbABNSHME KOHCTAHTH-->
23 <Entity Xsi:typ kipTo" »mainStructureSy< /Entity>
24 [H <Entity xsi:type="FindPosition">
25 <Link>constantPut</Link>
B <Of>
= </Entity>
<!--2 w3 Bmos oa--3
(=5) <Entity xsi:type="SkipTo">
<l--eCiM HE KOHEN XIacca-—>

<Entity xsi:type="If">
<Check xsi:type="CheckExpression">
<Verifiable xsi:type="Not">
</Check>
«Description>
<l=-3 HafiTH HOHCTEHTY-->

<Entity xsi:ty While">
<Check xsi:type="CheckExpression">
€3 <Description>
&4 <Entity xsi:type="SkipTo">
T2 <!--4 pCM HAWTACH KOHCTEHTA - 3AMOMHMTH 3HAYSHME-—>
73 <Entity xsi:type="If">
T4 «Check xsi:type="CheckType">const</Check:>

«<Description:
<Entity xsi:typ SaveToken">constantValue</Entity>
<Entity xsi:typ FindPosition">
<Link>constant</Link>

<Of>
<Entity xsi:type="AcceptType">const</Entity>
</0f>
</Entity>
</Description>
</Entity>
</Description>
</Entity>
</Description>
</Entity>
«!--5 eCciM CIEOVDIMGT KNacc MM Hell dafina - 3aBepmeHMe——>
</Search>
<Replace>

<Entity xsi:type="TnsertAfter">
<Entity xsi:type="While">
«Check xsi:type: heckValue">constantValue</Check> <!--lloxa B CTEKe £CTL SHAUSHMA-—>
<Description>
<!--JloBasnesne obnaaNeHEMA-->
<Entity xsi:type="InsertAfter">
<Position>constantPut</Position>

= <Description>
<! ——[lojy4esne HOMEpa 3HAYeHHA KOHCTAHTH C MMeHeM constantValue——3>
<Entity xsi:type="VariablesNumber">constantValue<Link>constantNumber</Links></Entity>
<Entity xsi:type="If">
e </Description>
I </Entity>

<!--3aMeHa KOHCTaHTH Ha 3afaHHO® MMA-->
= <Entity xsi:typ
<Position>constant</Position>
= «Description>

<Entity xsi:type="NameNoSpace':constantName</Entity>
<Entity xsi:type="NameNoSpace">constantNumber</Entity>

E </Description>
L </Entity>

<Entity xsi:typ
- </Description>
- </Entity>
ke </Replace>
e </Refactoring>

Insert">

"WariablesNext'">constant</Entity>

=] <Refactoring xsi:type="Fragment">
<Name>constDel</Nams>

23] <Variables>

= <Description>

I </Refactoring>
L</array0fRefactoring>

Fig. 12. Refactoring pattern fragment for transforming literals into constants.

152

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

Project files were automatically sorted in lexicographic order of their names and enumerated. Code
fragments matching the refactoring pattern were found in 10 files. We measured the time taken by
the main steps of the refactoring loop and number of logical lines of code for each file (Fig. 13).
As a result, the most time spent was equal to 589 ms. It was required to apply refactoring pattern to
syntactic analyzer class (file 7) and calculate metric values. It took 213 ms to find code fragments
in the file containing 4023 logical lines of code, and 337 ms to calculate and compare metric values.
Despite the size of code, it had only 14 literals to be transformed into constants. However, the most
amount of time spent for code modification step was required to change a code of token dictionary
(file 2), which contained the largest number of unique literals: 102.

Time spent, ms Tool pe rformance Logical LOC, operators

acrn

4023 4000
600

3500
500

Project file number

I 3. Finding code fragments [==34. Code modification 5. Metric valugs compar son — e Of COde

Fig. 13. Tool performance.

6. Discussion

Our tool requires language specifications in the DSL developed by a programmer. Nevertheless, it
provides a generic tool for object-oriented languages and refactoring operations implementation. It
may allow reducing time to deal with languages based on similar syntax and also create custom
refactoring methods, make decisions regarding code modification and accumulate experience.

The developed design of a code refactoring tool that uses metric calculation and the created research
prototype of our application demonstrated the possibility of:

o describing refactoring patterns using the developed DSL;
o generalized work with various object-oriented languages;

e comparing metrics when performing refactoring.

Our tool allows a developer to calculate metrics and refactor code using lexis and syntax descriptions
in the DSL. Furthermore, it may be used for various versions, extensions, and new programming
languages based on object-oriented paradigm.

However, despite the opportunity to deal with diverse languages and define a single refactoring
pattern in several ways, it has not already proven that an arbitrary pattern could be described with
the DSL. Another limitation is the complexity of working with text DSL:

153

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

e significant increase in the number of physical code lines compared to logical ones,
including xml tags;

e reduced clarity due to high nesting and large amount of text;
e requirement of the DSL specification due to a large number of keywords;
e unavailability of an environment for writing code in the DSL.

Currently, the smallest pattern (Fig. 6) consists of 78 lines and 155 words, whereas the most complex
one (Fig. 9) contains 434 lines and 655 words.

The performance depends on logical lines of code; complexity of code, pattern and language
descriptions used; size of entities used in refactoring pattern such as set or dictionary.

7. Conclusion

Our application requires language specifications in the DSL developed by a programmer.
Nevertheless, it provides a generic tool for object-oriented languages and refactoring operations
implementation. It allows reducing time to deal with languages based on similar syntax and also
create custom refactoring methods, make decisions regarding code modification and accumulate
experience.

In this paper we have described an approach to implement code refactoring using its metrics
calculation and refactoring patterns. The DSL, research prototype, 3 OOP languages specifications,
and 6 typical refactoring patterns have been created. These examples have demonstrated the
capabilities of this language.

Our tool may be used in organizations to refactor code and unambiguously evaluate its properties.
Moreover, it may also be applied in educational institutions to verify and correct code written by
students.

This study has a several possible directions for further activities. Firstly, an equivalent visual DSL
and a suitable development environment for it should be created. Secondly, studying of the required
language features for describing arbitrary refactoring can be necessary. Finally, proposing
recommendations for pattern application based on code metrics and confirmation profitability of
code modification may also be promising.

References

[1]. Kaganos B.B., EpmakoB M.K., ITankpatenko I'.A., Crupugoros A.B., Bomkos A.C., Mapkos C.U.
TexHuueckuit TONT B)KU3HEHHOM nukiie pazpadotku [10: 3amaxu koxa. Tpynsr UCIT PAH, Tom 33, BbIm.
6, 2021 r., crp. 95-110. DOI: 10.15514/ISPRAS-2021-33(6)-7. / Kachanov V.V., Ermakov M.K.,
Pankratenko G.A., Spiridonov A.V., Volkov A.S., Markov S.I. Technical debt in the software
development lifecycle: code smells. Trudy ISP RAN/Proc. ISP RAS, 2021, vol. 33, issue 6, pp. 95-110 (in
Russian). DOI: 10.15514/ISPRAS-2021-33(6)—7.

[2]. Sharma T., Efstathiou V., Louridas P., Spinellis D. Code smell detection by deep direct-learning and
transfer-learning. Journal of Systems and Software, vol. 176, article no. 110936, 2021, pp.1-25. DOI:
10.1016/j.jss.2021.110936.

[3]. Cepomstrukor C. B., Bponwreiin U. E., JIyrockoit H. JI. PedakropuHr B pamkax HpOrpaMMHOIO
npoekra. Tpyast UCII PAH, Tom 26, Bbim. 1, 2014 ., ctp. 395-402. DOI: 10.15514/ISPRAS-2014-26(1)-
16. / Syromyatnikov S. V., Bronshteyn I. E., Lugovskoy N. L. Refactoring on the Whole Project. Trudy
ISP RAN/Proc. ISP RAS, 2014, vol. 26, issue 1, pp. 395-402 (in Russian). DOI: 10.15514/ISPRAS-2014-
26(1)-16.

[4]. Ivers J., Nord R. L., Ozkaya ., Seifried C., Timperley C. S., Kessentini M. Industry's cry for tools that
support large-scale refactoring. In Proc. of the 44th International Conference on Software Engineering:
Software Engineering in Practice, 2022, pp. 163-164. DOI: 10.1145/3510457.3513074.

[5]. Almogahed A., Mahdin H., Omar M., Zakaria N. H., Alawadhi A., Barraood S. O. Empirical Investigation
of the Diverse Refactoring Effects on Software Quality: The Role of Refactoring Tools and Software Size.
In Proc. of the 2023 3rd International Conference on Emerging Smart Technologies and Applications,
2023, pp. 1-6. DOI: 10.1109/eSmarTA59349.2023.10293407.

154

Kopsuukos A.O., Jauyn H.H. IIpoextupoBaHue HHCTpyMeHTa Ul pe)akTOpUHTra 00BEKTHO-OPHEHTUPOBAHHOTO KOZIA C HCIIONIB30BaHHEM
pacueta metpuk. Tpyoet UCII PAH, 2025, Tom 37 Boim. 5, ¢. 143-156.

[6].

[7].

(8].

[9].

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

Golubev Y., Kurbatova Z., AlOmar E. A., Bryksin T., Mkaouer M. W. (2021) One Thousand and One
Stories: A Large-Scale Survey of Software Refactoring (online). Available at:
https://doi.org/10.48550/arXiv.2107.07357, accessed 05.05.2025.

Peruma A., AlOmar E. A., Newman C. D., Mkaouer M. W., Ouni A. Refactoring Debt: Myth or Reality?
An Exploratory Study on the Relationship Between Technical Debt and Refactoring. In Proc. of the 2022
IEEE/ACM 19th International Conference on Mining Software Repositories, 2022, pp. 127-131. DOI:
10.1145/3524842.3528527

Li Z., Avgeriou P., Liang P. A Systematic Mapping Study on Technical Debt and its Management. Journal
of Systems and Software, vol. 101, 2015, pp. 193-220. DOI: 10.1016/j.jss.2014.12.027.

Panigrahi R., Kuanar S. K., Kumar L. Application of Naive Bayes classifiers for refactoring Prediction at
the method level. In Proc. of the 2020 International Conference on Computer Science, Engineering and
Applications, 2020, pp. 1-6. DOI: 10.1109/ICCSEA49143.2020.9132849.

Lambiase S., Cupito A., Pecorelli F., De Lucia A., Palomba F. Just-In-Time Test Smell Detection and
Refactoring: The DARTS Project. In Proc. of the 2020 IEEE/ACM 28th International Conference on
Program Comprehension, 2020, pp. 441-445. DOI: 10.1145/3387904.3389296.

Perera J., Tempero E., Tu Y.-C., Blincoe K. Quantifying Requirements Technical Debt: A Systematic
Mapping Study and a Conceptual Model. In Proc. of the 2023 IEEE 31st International Requirements
Engineering Conference, 2023, pp. 123-133. DOI: 10.1109/RE57278.2023.00021.

Tavares C., Ferreira F., Figueiredo E. A Systematic Mapping of Literature on Software Refactoring Tools.
In Proc. of the XIV Brazilian Symposium on Information Systems, 2018, article no. 11, pp. 1-8. DOI:
10.1145/3229345.3229357.

Murphy-Hill E., Black A. P. Refactoring Tools: Fitness for Purpose. IEEE Software, 2008, vol. 25, issue
5, pp. 38-44. DOI: 10.1109/MS.2008.123.

Zhang Z., Xing Z., Xu X., Zhu L. Rldiom: Automatically Refactoring Non-ldiomatic Python Code with
Pythonic Idioms. In Proc. of the 2023 IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings, 2023, pp. 102-106. DOI: 10.1109/ICSE-Companion58688.2023.00034.

Zhang Y., Li C., Shao S. ReSwitcher: Automatically Refactoring Java Programs for Switch Expression.
In Proc. of the 2021 IEEE International Symposium on Software Reliability Engineering Workshops,
2021, pp. 399-400. DOI: 10.1109/ISSREW53611.2021.00108.

lannone E., Pecorelli F., Di Nucci D., Palomba F., De Lucia A. Refactoring Android-specific Energy
Smells: A Plugin for Android Studio. In Proc. of the 2020 IEEE/ACM 28th International Conference on
Program Comprehension, 2020, pp. 451-455. DOI: 10.1145/3387904.3389298.

Kopsurukos A. O., layr H. H. MeTozp! u cpencTBa pacyera u IPIMEHEHUS] METPHK KO/a IIPOrPaMMHBIX
MPOIYKTOB: CHCTeMaTH4YecKoe KapTorpaduposanue muteparypsl. M3sectus CIIGIDTY «JIDTU», Tom 17,
oI 8, 2024 ., cp. 48-64. DOI: 10.32603/2071-8985-2024-17-8-48-64. / Korznikov A. O., Datsun N.
N. Methods for Calculation and Application of Software Code Metrics: A Systematic Mapping Study.
LETI Transactions on Electrical Engineering & Computer Science, 2024, vol. 17, issue 8, pp. 48-64 (in
Russian). DOI: 10.32603/2071-8985-2024-17-8-25-64.

Colakoglu F. N., Yazici A., Mishra A. Software Product Quality Metrics: A Systematic Mapping Study.
IEEE Access, vol. 9, 2021, pp. 44647-44670. DOI: 10.1109/ACCESS.2021.3054730.

Mshelia Y. U., Apeh S. T., Edoghogho O. A comparative assessment of software metrics tools. In Proc.
of the 2017 International Conference on Computing Networking and Informatics, 2017. P. 1-9. DOI:
10.1109/ICCNI.2017.8123809.

Agnihotri M., Chug, A. A Systematic Literature Survey of Software Metrics, Code Smells and Refactoring
Techniques. Journal of Information Processing Systems, 16(4), 2020, pp. 915-934. DOI:
10.3745/J1PS.04.0184.

Fernandes S., Aguiar A., Restivo A. LiveRef: a Tool for Live Refactoring Java Code. In Proc. of the 37th
IEEE/ACM International Conference on Automated Software Engineering, 2022, article no. 161, pp. 1-4.
DOI: 10.1145/3551349.3559532.

Mooij A. J., Ketema J., Klusener S., Schuts M. Reducing Code Complexity through Code Refactoring and
Model-Based Rejuvenation. In Proc. of the 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering, 2020, pp. 617-621. DOI: 10.1109/SANER48275.2020.9054823.
Luciv D. V., Koznov D. V., Shelikhovskii A. A., Romanovsky K. Yu., Chernishev G. A., Terekhov A. N.,
Grigoriev D. A, Smirnova A. N., Borovkov D. V., Vasenina A. |. Interactive Near Duplicate Search in
Software Documentation. Programming and Computer Software, 2019, vol. 45, pp. 346-355. DOI:
10.1134/S0361768819060045.

155

Korznikov A.O., Datsun N.N. Designing Refactoring Tool for Object-Oriented Code Based on Metrics. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025. pp. 143-156.

[24]. Dallal J. Al, Abdulsalam H., AlMarzouq M., Selamat A. Machine Learning-Based Exploration of the
Impact of Move Method Refactoring on Object-Oriented Software Quality Attributes. Arabian Journal for
Science and Engineering, 2024, vol. 49, pp. 3867-3885. DOI: 10.1007/s13369-023-08174-0.

[25]. Kop3uuko A. O., Janyn H. H. Pa3paGoTka HpHIOKEHHS Ui HOMYYCHHS METPHK MPOrPaMMHOTO
nNpoaAyKTa Ha SA3BIKE 06'I>eKTHO-OpI/IeHTI/IPOBaHHOFO nporpaMMHUpOBaHUA. BecTHuk HepMCKOFO
yHuBepcutera. Maremarnka. Mexanuka. Mupopmaruka, Bem. 3 (62), 2023 r., ctp. 76-84. DOI:
10.17072/1993-0550-2023-3-76-84. / Korznikov A.O., Datsun N.N. Program Realization for Code
Metrics Calculation in Object-Oriented Programming Language. Bulletin of Perm University.
Mathematics. Mechanics. Computer Science, 2023, issue 3(62), pp. 76-84. (in Russian). DOI:
10.17072/1993-0550-2023-3-76-84.

Ungpopmayusi 06 aemopax / Information about authors

Aptem OmeroBna KOP3HUKOB — maructpaHT GpU3NKO-MaTeMaTHIECKOro HHCTHTYTa [lepMckoro
rOCyJapCTBEHHOIO HAIMOHAJIBHOI'O HCCIENOBATENbCKOIO YHHBEPCHTETa, OaKasaBp IPHKIAIHOM
Marematuku W uH(opmaruku. Cdepa HaydyHBIX HMHTEPECOB: METPHKH KOjAa, OOBEKTHO-
OpPHUCHTHUPOBAHHLIC SA3BIKHU nmporpaMMupOBaHusd, MPEAMETHO-OPUCHTHPOBAHHBIC SA3BIKH,
pedaKTOpHHT KOJa.

Artem Olegovich KORZNIKOV — BSc (Applied Mathematics and Computer Science), Master’s
student of the Department of Physics and Mathematics of PSU. Research interests: code metrics,
object-oriented programming languages, domain specific languages, code refactoring.

Hatampss HwukomaeBma JIALIYH sBisercs mpuriamieHHBIM —IIperogaBaTelieM — Kadenpsr
nH(pOpPMAIMOHHBIX TEXHOJOTHH B OM3Hece HalmoHaabHOTO HMCCIIEIOBATENBCKOIO YHHBEPCHUTETA
«Bplcmiasgs mKoTa 3KOHOMHKW», [lepmb; HOIEHT Kadeapsl NpHKIagHONH HH(DOPMATHKH,
nHQOPMAIMOHHBIX CHCTEM M TexHomorui [lepMCKOro ToCynapCTBEHHOTO TyMaHHUTAapHO-
MeJarorMIecKOr0 YHUBEPCUTETA, KaHAUAAT (GU3MKO-MAaTEMaTHIECKUX HAYK, oUeHT. Ee HaydHbIe
MHTEPECH BKIIIOYAIOT METPHKH K02, 00bEKTHO-OPHEHTHPOBAHHBIN aHAIN3 ¥ POESKTHPOBAHME.

Natalya Nikolaevna DATSUN — Cand. Sci. (Phys.-Math,), visiting lecturer of Department of
Information Technology in Business of the National Research University Higher School of
Economics, Perm; Associate Professor, Department of Applied Informatics, Information Systems
and Technologies, Perm State Humanitarian Pedagogical University. Her research interests include
code metrics, object-oriented analysis, and design.

156

