TTpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-7 tocld

The Dynamic Adaptive Packet Buffering (DAPB)
Algorithm for Service Mesh Performance
Enhancement Based on eBPF

H-D. Djambong Tenkeu, ORCID: 0009-0002-4689-1665 <Dzhambong.T.K@hse.ru>
D.V. Alexandrov, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>
National Research University “Higher School of Economics”

11, Pokrovsky blvd, Moscow, 109028, Russia.

Abstract. This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. Designed to
enhance data transfer efficiency in modern networking environments, it is built on the principles of Nagle's
algorithm. DAPB addresses the limitations of existing buffering techniques by dynamically adjusting its
behavior based on real-time network conditions, application requirements, and latency sensitivity. The
algorithm incorporates context-sensitive buffering, adaptive timeout mechanisms, and machine learning-driven
predictions to achieve a balance between efficiency, latency, and energy consumption. DAPB's context-aware
buffering tailors its strategy to the specific needs of the application, minimizing buffering for latency-sensitive
applications like VolP and online gaming, while maximizing buffering for throughput-sensitive applications
like file transfers. The adaptive timeout mechanism dynamically adjusts the waiting timeout based on network
conditions such as round-trip time, packet loss, and jitter, ensuring optimal performance under varying
workloads. Machine learning models are used to predict optimal buffer sizes and timeout values, leveraging
historical data and real-time metrics to improve decision-making. The algorithm also features selective
aggregation, intelligently deciding which packets to aggregate and which to send immediately. This ensures
that urgent packets are transmitted without delay, while nonurgent packets are aggregated to reduce overhead.
Additionally, DAPB prioritizes energy efficiency by optimizing buffer sizes and timeout values, making it
suitable for energy-constrained environments like edge computing and loT devices. The DAPB algorithm is
expected to improve the data transfer performance in various scenarios. Compared to the standard Nagle
algorithm, the DAPB algorithm is expected to reduce latency, improve throughput, and enhance energy
efficiency. This paper is the result of a research project implemented as part of the Basic Research Program at
the National Research University Higher School of Economics (HSE University).

Keywords: dynamic adaptive packet buffering (DAPB); extended Berkeley packet filter (eBPF); kernel-level
packet processing; service mesh

For citation: Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB)
Algorithm for Service Mesh Performance Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol.
37, issue 5, 2025, pp. 93-110. DOI: 10.15514/ISPRAS-2025-37(5)-7.

93

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

AnropuTm AMHaAMM4YeCKOW aganTUBHOW Oydepusaumm nakeTtoB
(DAPB) ans noBbiweHUsA nponsBoauTenbHocTn Service Mesh Ha
ocHoBe eBPF

X-Z. Jloicambone Tenke, ORCID: 0009-0002-4689-1665 <Dzhambong.T.K@hse.ru>
J.B. Anexcanopos, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

Hayuonansuwlii uccredosamenvckuil yuugepcumem « Bulcuias wkona 3KOHOMUKUY,
Poccus, 109028, 2. Mockea, ya. Ilokpoeckuii Oynveap, 0. 11.

AHHOTanus. J[aHHAS CTaThsl MPEACTABISIET AJITOPUTM AMHAMHYECKOH ajanTHBHOW Oydepu3aluy MakeToB
(Dynamic Adaptive Packet Buffering, DAPB). PaspaGoTanHblii 1yist TIOBBIICHHS 5(()EKTHUBHOCTH TIepeadn
JTAaHHBIX B COBPEMEHHBIX CETEBBIX Cpelax, ajJrOpPUTM OCHOBaH Ha NMpHHUUMIAx amroputMma Heiirma. DAPB
[PEOJI0JICBACT OTPAHUYCHHUS CYIICCTBYIOIIMX METONOB Oydepusamuu 3a cyeT AWHAMHYECKOH ajanramun
MOBEICHUSI Ha OCHOBE TEKYIIHX CETEBBIX YCJOBHUii, TPEOOBaHMIl NPUIIOKEHHH W UYYBCTBHTEIBHOCTH K
3a/iepiKKaM. AJITOPUTM COYETAeT KOHTEKCTHO-3aBHCHMYIO OydepH3aluio, afanTHBHBIC MEXaHU3MBbI TAHMAyTOB
U POTHO3MPOBaHNE Ha OCHOBE MALIMHHOTO O0YYEHHs ISl ONITUMAJILHOTO Oaanca Mexay 3G (eKTHBHOCTBIO,
3a/IepKKOil 1 HepromnoTpebiaeHneM. KOHTEKCTHO-OpHeHTHpOBaHHas Oydepu3anus aJanTHPYeT CTPATErHIo
0/1 KOHKPETHBIC TIPUIIOKEHHUS: MUHUMH3HPYET Oy(hepru3anuio 1Jisk YyBCTBUTEIIBHBIX K 3a/IeP)KKaM CEpPBHCOB
(VolIP, omnaiiH-urpsl) 1 Makcummsupyer 1uisi throughput-opueHTupoBaHHBIX 3amau (mepenaua (aiiios).
AnanTHBHBI MEXaHU3M TalMayTOB IMHAMHMYECKH DPETyJIUpPYeT IMEPHOA OXHIAHHUS C YYETOM BpPEMEHH
kpyrosoro o6xozxa (RTT), moTeps makeToB u JUKUTTEpa, 00ECIeUnBas ONTHMAIBHYIO TIPOM3BOAUTEILHOCTh
[pH M3MEHSIOIIEHCs Harpy3ke. MoOJend MaIIMHHOTO O0YYeHHUs MPEACKAa3bIBAIOT ONTUMAIBHBIC pa3Mepbl
Oydepa 1 3HaUYCHHUSI TAIMAYTOB, HCHIOJIB3YsI ICTOPUYCCKHE JaHHBIC H METPUKH PEATbHOTO BPEMEHHU. AJITOPUTM
pea3yeT CENEKTUBHYIO arperamio I[1aKeTOB, HHTEIUICKTYalbHO OMpPEACIsis KaKue MaKeThl CIeAyeT
arperupoBathk, a Kakue nepenaBarb HememieHHo. DAPB ynenser ocoboe BHUMaHNE YHEPTro3()HEKTHBHOCTH 32
CYET ONTHMHU3ALMHU NTapaMeTpoB Oy(depu3aiu, 4To JeaeT ero NpUMEHIMBIM B SHEPrOOrPAHUYCHHBIX Cpeaax
(edge computing, 10T ycrpoiictBa). I[To cpaBHEHHIO CO CTaHAapTHBIM anroputmMom Heiirma, DAPB
JIEMOHCTPUPYET ~ CHIDKCHHE 3aJIep)KEK, YBCJIMYCHHE IPOMYCKHOW CIOCOOHOCTH M YIy4IICHHE
sHeproadpexruBHOCTH. MccaenoBaHie BBIOIHEHO B paMKax [IporpaMmbl yHIaMEHTAIBHBIX HCCIICA0BaHHUN
HanuonansHoro uccnenoBarensckoro ynusepeureta "Boicias mxona skonomuxu" (HUY BID).

KioueBble ciioBa: auHamudeckas anantuBHas Oydepmsanus naketoB (DAPB); pacmmpeHHbIH (QUIbTp
naketoB bepxiu (eBPF); o6paboTka maketoB B siape; Service mesh

Jas uutupoBanus: [xambonr Tenke X-JI., Anexcangpos JI.B.. Anroput™M auHaAMHYECKOH aJanTHBHOU
O6ydepusaruu naketoB (DAPB) s moBeimenuns npoussoautenbHocTH Service Mesh Ha ocHoBe eBPF. Tpy st
HUCII PAH, tom 37, Beim. 5, 2025 1., crp. 93-110 (ma anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2025-
37(5)-7.

1. Introduction

The proliferation of micro-services as the de-facto standard for building scalable and resilient
applications has necessitated the evolution of underlying infrastructures that can adeptly manage the
complexities of distributed systems. Service meshes have emerged as a critical component in the
cloud-native ecosystem, offering a dedicated infrastructure layer that simplifies inter-service
communication, enforces security policies, and provides observability across microservices. Istio, a
leading service mesh implementation, exemplifies this by deploying a sidecar proxy alongside each
microservice, thus abstracting the intricacies of network management from the application logic.

Despite the advantages conferred by service meshes, they are not without their challenges. The
introduction of an intermediary proxy layer, while beneficial for manageability and control,
inadvertently introduces additional overheads (like higher latency) in the communication path.
These overheads are particularly pronounced within the Linux kernel network stack, where packet
transmission is subject to several context switching and kernel-space to user-space communication.

94

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

As microservices continue to scale and the demand for low-latency, high-throughput systems grow,
the need to address these overheads becomes increasingly critical.

One of the main approaches to solving these issues consists of performing traffic buffering. It allows
optimizing data transmission and managing network congestion. One of the most popular buffering
algorithms is Nagle’s algorithm, introduced by John Nagle in 1984. Improves TCP communication
by reducing the transmission of small packets over networks [1]. Designed to address inefficiencies
caused by applications sending frequent, tiny data bursts, it mitigates network congestion by
temporarily buffering small writes until either an acknowledgment (ACK) is received for previous
data or enough data accumulates to form a full TCP segment. The algorithm ensures that only one
small packet remains unacknowledged at a time, preventing the network from being flooded with
tiny packets.

Although effective for bulk data transfers, Nagle’s algorithm can introduce latency in interactive
applications like gaming or SSH due to its interaction with TCP’s delayed ACK mechanism, which
waits up to 200 milliseconds to combine ACKSs with outgoing data. This trade-off led to criticism
[2]. The main point is that the strength of this algorithm (reducing small packets) is also its weakness.
Modern systems often disable it for latency-sensitive applications (e.g., VolP) using the
TCP_NODELAY socket option, but it remains valuable for optimizing high-throughput workloads
like file transfers.

This paper introduces a novel algorithm to improve data transfer efficiency by dynamically adapting
to real-time network conditions and application needs. It does so through context-sensitive buffering,
adaptive timeouts, and machine learning. Such an algorithm shall help improving performance,
namely reducing latency, and improve energy efficiency in modern networking environments.

The remainder of the paper is organized as follows. Section 2 discusses the related works, while
Section 3 presents the background and motivation of the new algorithm. Section 4 describes the new
algorithm. Section 5 defines the performance metrics that can be used to assess the performance of
the new algorithm. Section 6 contains the risks and limitations of the DAPB algorithm. Section 7
specifies the next steps of this research.

2. Related works

eBPF (extended Berkeley Packet Filter) enables the execution of user-defined programs within the
Linux kernel. Its lineage begins with the Berkeley Packet Filter (BPF), introduced in 1993 by
McCanne and Jacobson as a mechanism to efficiently capture network packets in user space [3].
Classic BPF (cBPF) employed a simple register-based virtual machine to execute filter programs in
the kernel, reducing unnecessary data copying between the kernel and the user space.

The transition to eBPF began in 2014 with its integration into Linux kernel 3.18. This overhaul, led
by Alexei Starovoitov, reimagined BPF as a general-purpose execution environment [4]. Key
enhancements included a 64-bit register model, a Just-In-Time (JIT) compiler, and a richer
instruction set, enabling eBPF programs to interact safely with kernel data structures. The most
transformative applications of eBPF have emerged in networking. The 2018 introduction of XDP
(eXpress Data Path) [5] marked a paradigm shift by enabling packet processing at the driver layer,
bypassing the kernel network stack entirely.

Network congestion is a common issue in computer network engineering. To solve it, several
buffering algorithms and techniques were created. The Sliding Window Protocol, as described in
[6], is fundamental to TCP’s flow control, allowing multiple packets to remain in transit before
requiring acknowledgments. This approach maximizes throughput while preventing receiver
overload by dynamically adjusting the window size based on network conditions.

Modern congestion control algorithms such as TCP BBR ([7] & [8]) represent another category,
using bandwidth and latency measurements to dynamically optimize transmission rates. Meanwhile,
at the hardware level, Direct Memory Access (DMA) [9] and Zero-Copy Buffering [10] minimize

95

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

CPU involvement by enabling direct data transfers between devices and memory, significantly
reducing latency in high-speed networks.

Nagle’s algorithm reduces TCP overhead by buffering small writes until either: (1) enough data
accumulate to fill a packet or (2) all sent data are acknowledged. Although it minimizes "tinygrams"
that waste bandwidth, it can increase latency [6], prompting many real-time systems to disable it via
‘TCP_NODELAY". The algorithm remains fundamental in throughput-latency tradeoff studies.
Compared to existing network (Table 1) enhancement algorithms, the DAPB algorithm introduces
several novel improvements. Context-sensitive adaptability and machine learning-driven
optimization as key novelties. Unlike traditional Nagle’s algorithm, which uses fixed rules, DAPB
dynamically adjusts buffer sizes and timeout mechanisms based on real-time network conditions.
These conditions include (but are not limited to) packet round-trip time (RTT), the variability in
packet arrival times (known as jitter), and the packet loss. The DAPB algorithm also considers
application requirements (e.g. latency sensitivity). Using machine learning, it can predict optimal
configurations [11], ensuring better performance in diverse scenarios. Additionally, DAPB
incorporates selective buffering to prioritize urgent packets, reducing latency for real-time
applications, while optimizing energy efficiency for resource-constrained environments like 10T.
This makes DAPB more versatile, efficient, and adaptive than static or rule-based algorithms.

Table 1: Comparative analysis of buffering algorithms.

Characteristic = Nagle’s BBR Circular QUIC DAPB
Adaptivity Fixed Congestion Fixed Per-conn ML-driven
Latency Poor Moderate Low Excellent Context
Throughput Moderate High High High Adaptive
Energy None Partial None None QOptimized
Protocol TCP Transport Generic QUIC Multi-protocol
Layer Kernel cC User User Kernel | (BPF
ML No No No No Yes
Priority None None None Stream Urgency
Dynamic No RTT No Per-flow RTT | Jitter | Packet loss
HW Accel No No No No Partial

o Comparison includes classic (Nagle’s, Cirenlar) and modern (BBR, QUIC) approaches
s DAPB introduces ML-driven adaptivity and multi-protocol support
» Evaluated for clond-native service mesh requirements

3. Background and motivation

3.1 Flow of traffic within the service mesh and Linux operating system

In a service mesh architecture, communication between application components occurs through a
dedicated infrastructure layer composed of programmable proxies (Fig. 1). These proxies, deployed
as sidecars (e.g., Envoy, Linkerd-proxy), run alongside application containers in user space. Instead
of applications directly managing network logic, they delegate tasks like service discovery, retries,
or mutual Transport Layer Security (mTLS) to their sidecars via local inter-process communication
(IPC) mechanisms such as Unix domain sockets.

The service mesh divides responsibilities between a control plane (e.g., Istio Pilot [12], Linkerd’s
control plane) and a data plane (sidecar proxies). The control plane acts as a centralized orchestrator,
distributing policies, routing rules, and security configurations (e.g., certificates for mTLS) to data
plane proxies. These proxies enforce rules at the application layer (Layer 7), enabling features like
HTTP/2-based load balancing, circuit breaking, and header-based routing. Unlike the Linux kernel’s
IP/TCP-centric approach, service meshes prioritize protocols like HTTP, gRPC, or service-specific
APIs.

96

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Service — P Service
Instance Y k! Instance
Socket (1) Socket (2) Socket (3) Socket (4) Socket (5) Socket (6)
sendl recv send I recy [~*|send I recv send | recv |-»|send I recv sendl recv
t [} t] Y t [}

|— ----------------------------------- 1
1 —» Kernel — Istioproxy =~ —» Application
N m - - - - - - ------ - ’

Fig. 1. Traffic flow within Istio service mesh.

Proxies intercept traffic using mechanisms like iptables rules or eBPF programs to redirect packets
to the sidecar before reaching the application. For example, in Kubernetes, an init container may
configure networking rules to ensure that all ingress/egress traffic flows through the proxy.

Within the Linux operating system (Fig. 2), data travels across multiple layers with distinct
responsibilities. Applications in user space initiate communication using programming interfaces
like sockets and system calls. For example, a web browser might use TCP socket functions from the
standard C library to send HTTP requests. These requests get passed to the kernel via syscalls like
sendto() or write(), which transition the execution from user mode to kernel mode.

Process / Process /
User space Application Pod A Envoy proxy Envoy proxy | Pod B Application

systemcalls - e renec it b b

5! |socket (1)| |Socket
Kernel space Eh
A szndl recv| | Tcp / IP

1 [socket (2)] |socket (3) Socket |

socket (4)| |socket (5)| | Socket socket (6)| |Socket|

Seﬂdlf“ZCV Seﬂdl recvl | Tcp/IP sendlrecv send|recv| [cp / 1P send|recv| [tcp /1P

Linux Network Stack

Linux Network Stack

Network Interface] Controller (NIC)

Host network namespace (ethO, wlan0, etc)

Fig. 2. Traffic flow in Linux OS running within a service mesh.

3.2 Nagle’s algorithm

Nagle’s algorithm is used to optimize TCP communication by decreasing the number of small
packets transmitted over the network [12]. Introduced by John Nagle in 1984, it is particularly
effective in situations where applications frequently send small amounts of data. Its main objective
is to reduce the overhead that comes with sending numerous small packets, which can contribute to
network congestion and inefficient bandwidth usage. Here is how it works:

e Buffering Small Packets: When an application transmits a small amount of data (less than
the Maximum Segment Size (MSS), Nagle’s algorithm temporarily stores those data in a
buffer instead of sending them immediately as a separate packet. This design reduces
overhead by minimizing the number of small packets, a trade-off between latency and
efficiency noted in [14] and [15].

e Combining Packets: The algorithm waits for one of the following conditions to occur:

v An acknowledgment (ACK) from the receiver for data that has already been sent, or

v Additional data from the application that can be combined with the buffered data.
97

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

This approach, while effective for bulk data transfers, can introduce undesirable latency for
interactive applications, as observed in [16] and [17].

e Sending Large Packets: Once one of these conditions is satisfied, the algorithm transmits
the buffered data along with any new data as a single larger packet. This optimization
leverages network efficiency by amortizing per-packet overhead, a principle further
analyzed in [18] and [19].

3.3 The eBPF Technology

eBPF (extended Berkeley Packet Filter) is a Linux kernel innovation that enables developers to run
custom, event-driven programs securely within the kernel space without modifying kernel source
code or rebooting the system. Originally designed for network packet filtering, eBPF has evolved
into a versatile framework to improve performance, observability, and security in modern computing
environments [20].

eBPF programs are executed in a sandbox environment, ensuring safety by verifying the code before
execution to prevent crashes or resource leaks. These programs attach to predefined hooks in the
kernel, such as network events, system calls, or function entries/exits, allowing real-time data
processing. For example, eBPF can intercept network packets to optimize routing, monitor
application behavior for debugging, or enforce security policies by auditing system activity. It offers
the following key advantages:

e Performance: by operating in-kernel, eBPF minimizes context switches and data copying,
reducing overhead for tasks like packet processing or monitoring.

* Flexibility: developers can dynamically load programs to adapt to changing needs, such as
scaling service mesh traffic or troubleshooting latency.

e Safety: a built-in verifier ensures that programs run without destabilizing the kernel,
enforcing strict rules on memory access and loop structures.

To understand eBPF, it is essential to explore its core concepts, including program types, maps, and
specialized frameworks such as XDP.

3.3.1 eBPF program types

eBPF supports a variety of program types, each designed for specific use cases. These program types
determine where and how eBPF programs can be attached within the kernel. Some common eBPF
program types include the following:

® Socket Filtering: Used for filtering and processing network packets at the socket level.

e Kprobes and Uprobes: allow tracing of kernel and user-space functions, respectively, for
debugging and observability.

® Tracepoints: Attach to predefined kernel tracepoints to monitor system events.

e XDP (eXpress Data Path): a high-performance program type for processing network
packets at the earliest possible point in the kernel’s networking stack.

e TC (Traffic Control): used for advanced packet processing and traffic shaping in the
kernel’s networking subsystem.

® Perf Events: Enable monitoring of hardware and software performance events.

3.3.2 eBPF Maps

eBPF maps are key-value data structures that allow eBPF programs to store and share data between
user space and kernel space, or between multiple eBPF programs. They are a fundamental building

98

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

block for creating complex and stateful eBPF applications. Common types of eBPF maps include
the following:

® Hash Maps: store key-value pairs in a hash table for efficient lookups.
* Array Maps: use integer keys to store fixed-size values, providing fast access.

® Per-CPU Maps: maintain separate data for each CPU core, great for high-performance use
cases.
® Ring buffer: a high-throughput data structure for passing data between eBPF programs and
the user space.
® | RU (Least Recently Used) Maps: automatically evict least recently used entries to manage
memory efficiently.
Maps enable eBPF programs to maintain state, aggregate data, and communicate with user space
applications, making them indispensable for advanced use cases like network monitoring and
security enforcement.

3.3.3 eXpress Data Path (XDP)

XDP is a high-performance eBPF program type designed to process network packets at the earliest
possible point in the kernel’s networking stack, often before they reach the kernel’s network layer.
This makes XDP ideal for use cases requiring low-latency packet processing, such as:

e DDoS mitigation: dropping malicious packets before they consume system resources.
¢ | oad balancing: distributing network traffic across multiple servers with minimal overhead.
e Packet filtering: implementing custom filtering logic at line rate.
® Protocol parsing: extracting and processing custom protocol headers efficiently.
XDP programs are typically attached to network interfaces and operate in one of three modes:
* Native Mode: runs the XDP program directly on the network interface card (NIC) driver.

o Off-loaded mode: offloads the XDP program to the NIC hardware for maximum
performance.

e Generic Mode: runs the XDP program in the kernel as a fallback when hardware offloading
is not available.

3.3.4 Use cases of eBPF
eBPF has found applications in a wide range of domains. Some notable use cases include:

* Networking: eBPF is widely used to optimize network performance by enabling efficient
packet filtering, load balancing, and traffic shaping. For example, tools such as Cilium [21]
leverage eBPF to implement high-performance Kubernetes networking and security
policies.

® Observability: eBPF provides deep visibility into system and application behavior without
requiring invasive instrumentation. Tools such as BPF Compiler Collection (BCC) and
bpftrace allow developers to trace system calls, monitor file 1/0, and analyze performance
bottlenecks in real time.

e Security: eBPF enables runtime security enforcement by monitoring system calls, file
access, and network activity. It can detect and prevent malicious behavior, such as privilege
escalation attempts or unauthorized data exfiltration.

® Tracing and Profiling: eBPF can be used to trace function calls, measure latency, and profile
applications, making it invaluable for debugging and performance tuning.
99

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

3.4 Problem statement

Service meshes in distributed systems face significant inefficiencies in data transfer due to the
prevalence of small, unaggregated packets. These inefficiencies manifest as such:

® High Latency: Frequent small-packet transmissions introduce delays from protocol
overhead (e.g., TCP headers, ACKSs) and kernel processing.

¢ Low Throughput: Low network bandwidth caused by excessive packet fragmentation and
interrupt handling.

® Energy Overhead: Increased CPU cycles for per-packet processing, increasing power
consumption in data centers.

Current buffering algorithms are static and do not adapt to dynamic network conditions (e.g.,
variable RTT, congestion) or application-specific requirements (e.g., latency-sensitive vs. batch
traffic).

Research Gap: Lack of adaptive, context-aware buffering mechanisms capable of dynamically
balancing these trade-offs based on real-time network state and traffic patterns.

4. The Dynamic Adaptive Packet Buffering (DAPB) algorithm

4.1 The DAPB algorithm’s technical architecture

The DAPB algorithm is a novelty designed to improve data transfer efficiency in modern networking
environments. It operates within 4 cornerstones (Fig. 3):

4.1.1 Data Collection and Learning Layer

The architecture begins with metric collectors in user space, which gather real-time network data
(e.g., latency, throughput, packet loss) from the Linux network stack and service instances. These
metrics feed into a reinforcement learning model that optimizes buffering policies through
continuous interaction with the environment. Historical data are stored for history-based
recommendations, while an optimization neural network, tuned via differential evolution, refines
decision-making parameters. This layer ensures DAPB adapts dynamically to changing network
conditions and application needs.

4.1.2 Decision and Control Plane

The decision model synthesizes inputs from the learning layer to generate adaptive buffering
policies. It balances competing objectives (e.g., latency vs. throughput) using the reinforcement
model’s predictions. The control plane enforces these policies across the system, coordinating with
the policy applier to translate decisions into actionable rules. This centralized intelligence allows
DAPB to adjust buffer sizes, timeouts, and aggregation strategies in real time, tailored to specific
traffic patterns (e.g., prioritizing VVolP packets over file transfers).

4.1.3 Kernel-Level Execution

Policies are executed in kernel space via eBPF data structures, which enable efficient packet
processing without modifying the kernel. The eBPF components intercept traffic at the socket and
TCP/IP layers, applying buffering rules while minimizing overhead. By operating close to the
Network Interface Controller (NIC), DAPB reduces context switches and leverages kernel bypass
techniques when possible. This design ensures low-latency processing while maintaining
compatibility with existing Linux networking infrastructure.

100

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

History based
recommendation

Re-enforcement
Optimization

Neural Network
using Differential Evolution

Buffering

policies

. Policy Service Metric
applyer instance collector “

B T e PP

socket (1)| LSocket

sendl recv

TCP /TP

Network Interface Controller (NIC)

Fig. 3. The DAPB algorithm’s technical architecture.

4.1.4 Feedback and Optimization Loop

The architecture closes the loop with knowledge persistence, where outcomes of applied policies
(e.q., actual latency improvements) are logged and fed back into the learning layer. This continuous
feedback enables the system to refine its models, ensuring long-term adaptability. The integration
of differential evolution further optimizes neural network weights, while the control plane
orchestrates iterative policy updates. Together, these components create a self-tuning system that
evolves with network demands, achieving optimal performance across diverse service mesh
environments.

As a result, the DAPB algorithm can be deployed and operate at the level of a whole service mesh
installation (Fig. 4), managing buffering simultaneously for all containers within the installation.

4.2 The DAPB algorithm'’s features

The DAPB algorithm introduces several innovative features to address the limitations of existing
buffering techniques.

4.2.1 Context-sensitive buffering

Unlike Nagle’s algorithm, which uses a one-size-fits-all approach, DAPB tailors its buffering
strategy to the specific needs of the application. For example, in latency-sensitive applications such
as VolP or online gaming, DAPB minimizes buffering to reduce delays. In contrast, in throughput-
sensitive applications such as file transfers, it maximizes buffering to improve efficiency.

101

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

Process / Process /
User space Application Pod A GO Envoy proxy Pod B Application

T e e B T T L B e o e e

g

socket (2)| |socket (3)| |Socket] :

=

&
&
&

' '
socket (1)| |Socket socket (4)| |socket (5)| | Socket : socket (6)| |Socket !

Kernel space

send]recv sendlrecv TCP/Ip

- S g """"" & kg E@ﬁ O -

Network Interfacel Controller (NIC)

sendlrecv Tcp /1P sendlrecv sendl recy| [Tcp /1p|!

sendl recvl |1cp /1P ’
(Ll S
'

Linux Network Stack

Linux r:le_fwgr_k Stack
Linux r:.le_ngr‘k Stack

&

Host network namespace (ethO, wlan0, etc)
Fig. 4. Packet buffering using eBPF in Linux Kernel throughout service mesh.
Considering the following:
e B(t) — the buffer size at time ¢, in bytes.

e [(t) —the latency sensitivity of the application at time ¢ (e.g., L(t) = 1 for latency-sensitive
applications, L(t) = 0 for throughput-sensitive applications).

* ((t) —the network conditions at time ¢t, including round-trip time (RTT), packet loss rate p,

jitter ()).
Boin il L{f) = 1 (latency-sensitive)
B(t) = { B il L(t) = 0 (throughput-sensitive) , (1)
J(C(1)) olherwise
where:

® Bnin—the minimum buffer size for latency-sensitive applications (in bytes).
® Bnax— the maximum buffer size for throughput-sensitive applications (in bytes).
e f(C(t)) — a function that adjusts the buffer size based on network conditions.
F(C(8) = Bosn + - RTT(H) + A plt) + - J(2), (2)
where a, B, and y are weighting factors.

4.2.2 Adaptive timeout
While Nagle’s algorithm relies on a fixed timeout, DAPB dynamically adjusts the waiting timeout
based on real-time network conditions. If the network is congested, DAPB increases the timeout to
allow more data buffering, thereby improving efficiency. However, if the network is underutilized,
it reduces the timeout to minimize latency. This dynamic approach ensures that the DAPB strikes
the right balance between efficiency and responsiveness. The timeout T(¢) is adjusted dynamically
based on network conditions:
T(t) = Toaue + 0 - RTT(t) + € - plt) + £ - J (1), (3)

where:

e T(t) - the timeout period at time ¢ (in ms).

® Thase— the base timeout value (in ms).

* §, ¢ and & — weighting factors that determine the influence of RTT, packet loss, and jitter
on timeout.

102

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

4.2.3 Machine learning-driven predictions

DAPB incorporates machine learning-driven predictions to optimize its performance. The algorithm
uses an Al model to predict network traffic. It provided a solid foundation for making informed
decisions about buffer sizes and timeout values. For example, in a video streaming application, the
Al component might analyze past transfer patterns to predict the best buffer size for a given video
quality. This predictive capability ensures that DAPB remains effective even as network conditions
and application requirements evolve. The predicted optimal buffer size P(t) is derived from a
machine learning model MM:

P(t) = M(C(t), H(1)), (4)
where:
® P(t) — predicted optimal buffer size at time t, derived from an Al model (in ms).
e ((t) — current network conditions.

® H(t)— historical data (e.g., past buffer sizes, network conditions, and performance metrics).
The buffer size B(t) is then updated based on the prediction:

B(t) = min(Bz, maz(Buin, P(1))). (5)

4.2.4 Selective buffering

The algorithm intelligently decides which packets to buffer (and aggregate) and which to send
immediately. Small packets that are part of a larger data stream are aggregated to reduce overhead,
while urgent packets (e.g., control messages) are sent immediately to minimize latency. This
selective approach ensures that the DAPB maintains high performance without compromising
responsiveness. The average urgency of packets in the buffer at time ¢ is given by:

N(t)

Ut) = % Zir.t-{t], (6)

where:
® yui(t) is the urgency of the i-th packet at time ¢ (0 < ui(t) < 1),
® [J(t) is the average urgency at time ¢,
® N(t) is the number of packets in the buffer at time ¢,

The urgency ui(t) can be established either by using protocol headers or the application context. The
first approach consists of extracting priority flags (e.g., HTTP/2 stream priorities, DSCP/T0S bits in
IP headers, or gRPC metadata). The second consists of integrating with service mesh APIs (e.g.,
Istio virtual service) to label latency-sensitive traffic (e.g., VoIP, gaming) as high urgency. The
decision to send the buffer is based on the following condition: send buffer if U(t) > Umor B(t) 2
Bmax, Where U is a threshold for the urgency of the packet.

4.2.5 Energy efficiency

Energy efficiency is also a priority for DAPB. By optimizing buffer sizes and timeout values, the
algorithm reduces unnecessary resource consumption, making it particularly valuable for energy
constrained environments like edge computing and 10T devices. For example, in an 10T sensor
network, DAPB can minimize buffer sizes during periods of low activity, saving energy without
compromising performance. The energy cost E(t) is modeled as:

E(©)=n-B(t)+6-T(t), (7

where n and 6 are weighting factors that represent the energy cost of buffering and waiting,
respectively.
103

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

5. Performance Metrics

After applying the DAPB algorithm to service mesh using eBPF in Linux, 6 performance metrics
should be collected (evaluated) and analyzed. Each of them is presented below.

5.1 Reduction in small packets

This metric quantifies the decrease in the number of small data packets transmitted over the network
due to buffering. By holding data in a buffer until a predefined size or timeout is reached, fewer
packets are sent, reducing overhead and eliminating network congestion. For example, if an
application generates 1000 small packets per second but transmits only 200 after aggregation, 800
packets are eliminated, lowering processing demands on network hardware. Considering the
following variables:

e Nreduced— the reduction in small packets (in bytes).
e A(t) - the arrival rate of the packets at time t (in packets/sec).
e Noars(t) — the number of packets transmitted after buffering, at time t (in bytes).

Nreduced = 3 _(A() — Noaru(t)) (8)

5.2 Buffer efficiency

Evaluates how effectively the allocated buffer capacity is used to aggregate the data. High efficiency
means that the buffer is consistently filled to its maximum capacity before transmission, minimizing
wasted space. Lower efficiency indicates frequent early transmissions (e.g. due to timeouts), which
may under-utilize buffer resources and reduce potential throughput gains. This is important because
high efficiency directly means a reduction in latency (fewer waiting for partial fills). Considering
the following:

® Bmax(t) — the maximum buffer size at time ¢t (in bytes).
® B(t) —the actual data accumulated in the buffer at time ¢t (in bytes).
® Troaes(t) — the transmissions triggered by buffer-full or timeout events (in ms).
® 1 —the buffer efficiency.
= E?;ix(B-n:gd(ﬁl - Troars(f)
21— Buax(t)

(9)

5.3 End-to-end latency

Estimates the time it takes for a request to traverse all nodes in the service mesh, including both
network delays and buffering pauses. Highlights the bottlenecks where buffering dominates latency,
guiding changes such as adjusting buffer sizes or timeouts to maintain responsiveness across
distributed services. For each node v, considering the following:

® (vas aqueue with capacity Bmax.

® Edges ewhave a transmission delay duv.

The Nagle-inspired policy modifies the dequeue behavior of Q.. Packets are dequeued only when
[IQull = Bmax, OF T expires. After applying the DAPB algorithm, for a path P = (v,v2,...,va), the end-to-
end latency becomes:

104

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

n—1

L= 3 (s 1 Tl 7). 10)

i=1
where:
® dyivi:1— the network delay between nodes viand vi.1 (in ms).
e [1— an indicator function for delayed transmissions (in ms).
® Tlgui<ama+ T — the buffering delay at node v;if its buffer is not yet full (in ms).

5.4 Additional delay

This metric estimates the additional delay introduced by buffering packets before transmission.
While aggregation improves throughput, it inherently adds waiting time, either until the buffer fills
or a timer expires. Applications sensitive to delays (e.g., real-time systems) must balance this trade-
off carefully to avoid degrading user experience. Considering the following variables:

® 71— the acknowledgment timeout (in ms).
o tr— the time to fill the buffer to Bmax (in ms).
® Ladded— the added latency increase (in ms).
Loddea = B [min(7, t5u)] (11}

The increase in latency can be useful to estimate the effect of buffering on latency-sensitive
applications (e.g., real-time APIs). For example, if tri= 150ms and T = 200ms, the added latency is
150 ms. However, if tin= 250ms, the added latency is 200 ms (the timeout triggers transmission).

5.5 Throughput gain

The throughput gain reflects the improvement in data transmission rates achieved by sending larger
aggregated packets instead of smaller ones. Larger packets reduce header overhead and improve
network utilization, enabling more efficient bandwidth use. For example, combining 100 small
packets into one large packet minimizes repetitive header transmissions, increasing throughput.

5.6 eBPF overhead cost

While eBPF optimizes kernel-level processing, its operations consume additional CPU cycles. This
metric assesses the computational cost of using eBPF to manage packet aggregation. The cost must
remain low enough to avoid negating the benefits of aggregation, ensuring net performance gains.
It can be estimated as the additional processing time, memory increase, and energy consumption
introduced by eBPF hooks to intercept, buffer, and redirect packets. Considering the following
variables:

o Xiuie — the time (or memory or energy) to process a packet in the native Linux stack.
proc

o Xaurr _ the time (or memory or energy) of all eBPF logics (e.g., aggregation, buffering).

® C.sprr — the overhead cost induced by eBPF.
Cenpr = X:.T::}.- X (13)

native

An important aspect of this indicator is that it allows to verify that eBPF enhancements are not
less than the cost due to increased resource usage. For example, if Cespr = 5 ps/packet, and the
packet arrival rate A(t) = 1000 packets/sec the overhead is about 5 seconds of CPU time per second.

105

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

5.7 Performance metrics conclusion
The metrics can be interpreted holistically as follows:

¢ Reduction in Small Packets (Nreduced) and Throughput Gain (Tyain) measure improvements
in network efficiency from aggregation. These are critical for throughput-sensitive
applications (e.g., file transfers).

e End-to-End Latency (Lp) and Latency Increase (Ladded) Capture responsiveness trade-offs,
vital for real-time systems (e.g., VoIP).

® The buffer efficiency (n) reflects resource utilization, indicating how well DAPB adapts
buffer usage to dynamic conditions.

The context-specific guidance for the ML models is as follows:

¢ In throughput-sensitive context: prioritize Nreduced, Tgain, and 1. The cost (Cesrr) is tolerable
if the gains exceed it.

® In latency-sensitive context: minimize Lpand Ladded; tolerate lower n or higher Cegpr.
® In energy-constrained context (Edge/loT, etc.): favor n and low Cespr.

6. Risks and limitations

The DAPB algorithm introduces significant improvements over static buffering approaches, but its
adaptive and machine learning-driven nature presents several challenges that must be carefully
mitigated.

1. Prediction Inaccuracies in Dynamic Environments

Risk: the machine learning model’s reliance on historical data and real-time metrics may
yield suboptimal predictions under sudden network changes (e.g., flash crowds, DDoS
attacks). Noisy or incomplete data (e.g., inaccurate RTT measurements due to asymmetric
routes) could degrade performance.
Mitigation: incorporate ensemble methods (e.g., random forests [23]) to reduce variance
and fallback mechanisms (e.g., reverting to Nagle-like static thresholds when prediction
confidence is low).

2. Overhead from Adaptive Mechanisms
Risk: the computational cost of dynamically adjusting buffer sizes and timeouts may offset
throughput gains, especially in resource-constrained edge/loT environments. The eBPF
overhead metric must be monitored to ensure net benefits.
Mitigation: profile the algorithm’s CPU/memory footprint under varying loads and
optimize the eBPF bytecode (e.g., reducing redundant calculations in the f{C(t)) and T(t)
functions).

3. Misclassification of Application Context
Risk: incorrectly labeling an application as latency-sensitive (L(t) = 1) or throughput-
sensitive (L(t) = 0) could lead to inappropriate buffering. For example, misclassifying VolP
traffic as batch processing would introduce unacceptable delays.
Mitigation: implement hybrid labeling (e.g., allow applications to declare their sensitivity
via API) and validate classifications using runtime telemetry (e.g., packet inter-arrival
times).

4. Energy Trade-offs in Adaptive Buffering
Risk: although DAPB optimizes energy use, frequent buffer resizing B(t) and timeout
adjustments T(t) may increase CPU cycles, negating energy savings in low-power devices.

106

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Mitigation: introduce hysteresis in adjustments (e.g., change B(t) only when network
conditions C(t) shift beyond a threshold) to reduce computational churn.

Scalability in Large-Scale Deployments

Risk: the centralized control plane in service meshes may struggle to propagate real-time
network conditions C(t) to all proxies, causing inconsistent buffering decisions across
nodes.

Mitigation: decentralize partial decision-making (e.g., let each proxy compute B(t) locally)
and use lightweight consensus protocols for critical updates [24].

Security Implications of eBPF Dependencies

Risk: eBPF’s kernel-level access exposes DAPB to potential exploits (e.g., buffer overflow
in eBPF programs). Maliciously crafted packets could trigger excessive buffering, leading
to resource exhaustion.

Mitigation: apply eBPF hardening techniques (e.g., verifier-based bounds checking,
ratelimiting buffer allocations) and audit the DAPB eBPF code with tools like BPFKit [25].

Interoperability with Legacy Systems
Risk: older kernels or non-Linux environments may lack eBPF support, limiting DAPB’s

applicability. Hybrid deployments (e.g., partial service meshes) could experience
performance asymmetry.

Mitigation: provide a fallback mode using socket-level buffering (e.g., TCP_CORK) with
reduced adaptability, and document compatibility matrices.

7. Next steps of the research

1.
2.
3.

© N o v

Implement the new algorithm using eBPF.
Engineer the ML model.
Prepare multiple testing environments. Make sure to have most common architectures:

e 2 containers inside a pod with one Istio sidecar (Intra-pod)
e 2 containers inside 2 pods with 2 Istio sidecars (Inter-pod)

® n containers inside n pods with n Istio sidecars (Inter-pod), where 2 < n < oo,

There are two environments for each architecture. The new algorithm is applied to the
first one, and it is not applied to the second one.

Collect basic system metrics. They include, but are not limited to, the CPU, the memory
(RAM), and the disk usage (in bytes).

Integrate the new algorithm into the corresponding testing environments.

Collect and store performance metrics. These are the metrics described in section 5.
Analyze and assess the baseline system and performance metrics.

Conclude the work.

8. Conclusion

This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. It is designed to
enhance data transfer efficiency in service mesh environments by leveraging eBPF. DAPB improves
upon existing buffering algorithms like Nagle’s algorithm by dynamically adjusting buffer sizes and
timeout values based on real-time network conditions, application requirements, and machine
learning predictions. Key features include context-sensitive buffering, adaptive timeout
mechanisms, selective aggregation, and energy efficiency optimizations, making it suitable for
diverse scenarios such as latency-sensitive applications and resource-constrained 10T devices.

107

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

Performance metrics can be used to assess the reduction in small packets, the improved throughput,
and the added latency

References

(1]

2.
3.
[4].
[5].
[6].
[7].
[8l.
[al.

[10].
[11].

[12].

[13].
[14].
[15].
[16].
[17].
[18].
[19].
[20].

[21].
[22].

[23].
[24].
[25].

[26].

. J. Nagle, Congestion control in IP/TCP internetworks, RFC Editor, RFC 896, Jan. 1984, Obsoleted by
RFC 1122, but foundational to Nagle’s algorithm. [Online]. Available: https: //tools.ietf.org/html/rfc896.
J. Nagle, “Congestion control in IP/TCP internetworks,” RFC Editor, RFC 896, (Jan. 1984), Obsoleted by
RFC 1122, but foundational to Nagle’s algorithm. [Online]. Available: https: //tools.ietf.org/html/rfc896.
TCP/IP Illustrated, Volume 1: The Protocols ([1994]), W. R. Stevens, Addison-Wesley Professional, isbn:
978-0201633467.

“The BSD packet filter: a new architecture for user-level packet capture” ([1993]), S. McCanne et al., (In:
Proceedings of the USENIX Winter 1993 Conference), pp. 259-270.

“BPF: In-kernel Virtual Machine” ([2015]), A. Starovoitov, (In: Linux Plumbers Conference).

“The eXpress Data Path: Fast Programmable Packet Processing in the Operating System Kernel” ([2018]),
T. Hoiland-Jorgensen et al., (In: Proceedings of the 14th International Conference on Emerging
Networking Experiments and Technologies), pp. 54-66, doi: 10.1145/3281411.3281443.

Computer Networks ([2011]), A. S. Tanenbaum et al., Pearson.

“BBR: Congestion-based congestion control” ([2016]), N. Cardwell, Y. Cheng, C. S. Gunn, et al., ACM
Queue, 14, 5, pp. 20-53, doi: 10.1145/3012426.3022184.

N. Cardwell, Y. Cheng, S. H. Yeganeh, et al., “Tcp bbr v2 alpha/release history,” IETF, RFC 8962, (2021).
[Online]. Available: https://tools.ietf.org/html/rfc8962.

Understanding Linux Network Internals ([2005]), C. Benvenuti, O’Reilly, isbn: 9780596002558.
“Efficient data transfer through zero copy” ([2006]), W. Ma et al., (In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing), pp. 1-12, doi: 10.1145/1188455.1188583.

“Differential evolution optimization for constrained routing in Wireless Mesh Networks” ([2014]), M.
Sanni et al., (In: International Conference on Frontiers of Communications, Networks and Applications
(ICFCNA 2014 - Malaysia)), pp. 1-6, doi: 10.1049/cp.2014.1397.

Istio, Istio: A service mesh for microservices, Official documentation, (2023). [Online]. Available:
https://istio.io/latest/docs/concepts/what-is-istio/.

“Congestion control in IP/TCP internetworks” ([1984]), J. Nagle, ACM SIGCOMM Computer
Communication Review, 14, 4, pp. 11-17, doi: 10.1145/1024908.1024910.

“Congestion avoidance and control” ([1988]), V. Jacobson, ACM SIGCOMM Computer Communication
Review, 18, 4, pp. 314-329, doi: 10.1145/52325.52341.

R. Braden, “Requirements for internet hosts—communication layers,” IETF, RFC 1122, (1989). [Online].
Available: https://tools.ietf.org/html/rfc1122.

“Reducing web latency: the virtue of gentle aggression” ([2013]), T. Flach et al., (In: Proceedings of the
ACM SIGCOMM 2013 Conference), pp. 159-170, doi: 10.1145/2486001.2486030.

“Evaluating the impacts of alternative TCP congestion control algorithms” ([2008]), S. Ha et al., (In: IEEE
International Conference on Network Protocols), pp. 49-58, doi: 10.1109/ICNP. 2008.4697036.

“TCP Vegas: End to end congestion avoidance on a global internet” ([1995]), L. S. Brakmo et al., IEEE
Journal on Selected Areas in Communications, 13, 8, pp. 1465-1480, doi: 10.1109/ 49.464716.
Computer Networking: A Top-Down Approach ([2021]), J. F. Kurose et al., Pearson, isbn:
9780135928615.

Learning eBPF ([Mar. 2023]), L. Rice, O’Reilly, isbn: 978-1-098-13887-5.

T. Graf et al., “Cilium: eBPF-based networking, security, and observability,” Isovalent, Tech. Rep.,
(2023), Official documentation. [Online]. Available: https://docs.cilium.io/en/stable/index.html.
“Network Shortcut in Data Plane of Service Mesh with eBPF” ([Jan. 2024]), W. Yang et al., Journal of
Network and Computer Applications, 222, 1, p. 103805, doi: 10.1016/j.jnca. 2023.103805.

A. Cutler et al., “Random forests,” in Research Gate, (Jan. 2011), vol. 45, pp. 157-176, isbn:978-1-4419-
9325-0. doi: 10.1007/978-1-4419-9326-7_5.

“Reaching Consensus in the Byzantine Empire: A Comprehensive Review of BFT Consensus Algorithms”
([Jan. 2024]), G. Zhang et al., ACM Comput. Surv., 56, 5, doi: 10.1145/3636553.

Gui774ume, eBPFKit: A rootkit and intrusion detection system based on ebpf, https://
github.com/Gui774ume/ebpfkit, GitHub repository, (2021). [Online]. Available:
https://github.com/Gui774ume/ebpfkit.

108

https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://tools.ietf.org/html/rfc896
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/3012426.3022184
https://tools.ietf.org/html/rfc8962
https://tools.ietf.org/html/rfc8962
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1145/1188455.1188583
https://doi.org/10.1049/cp.2014.1397
https://doi.org/10.1049/cp.2014.1397
https://istio.io/latest/docs/concepts/what-is-istio/
https://istio.io/latest/docs/concepts/what-is-istio/
https://doi.org/10.1145/1024908.1024910
https://doi.org/10.1145/1024908.1024910
https://doi.org/10.1145/52325.52341
https://doi.org/10.1145/52325.52341
https://tools.ietf.org/html/rfc1122
https://tools.ietf.org/html/rfc1122
https://doi.org/10.1145/2486001.2486030
https://doi.org/10.1145/2486001.2486030
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/ICNP.2008.4697036
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://doi.org/10.1109/49.464716
https://docs.cilium.io/en/stable/index.html
https://docs.cilium.io/en/stable/index.html
https://docs.cilium.io/en/stable/index.html
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1016/j.jnca.2023.103805
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1007/978-1-4419-9326-7_5
https://doi.org/10.1145/3636553
https://doi.org/10.1145/3636553
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit
https://github.com/Gui774ume/ebpfkit

Jlxam6onr Tenke X-/1., Anexcanapos [.B. Anroputm auHamudeckoii anantuBHo# Oydepusannn naketos (DAPB) s mosinieHus
npousBoautensHocTH Service Mesh Ha ocrose eBPF. Tpyowr HCIT PAH, 2025, Tom 37 Beim. 5, ¢. 93-110.

Nugopmayust 06 aemopax / Information about authors

Xank-Jleoon JUKAMBOHIT TEHKE — wmarucrp mporpamMmHOil umkeHepuu, acrnupant HUY
“Bricmast [1Ikona DKOHOMHMKH, PUIJIALIEHHBIH IIperojaBarelib Ha (paKyJIbTeT KOMIBIOTEPHBIX
Hayk HUNY “Breicmas Illkoma OxoHomuku”. Cdepa HaydHBIX HWHTEPECOB. HHKEHEPHS
MPOTPaMMHOT0 00€CIEYECHUS U KOMIIBIOTEPHBIX CHCTEM.

Hank-Debain DJAMBONG TENKEU — Master of Science in Software Engineering, postgraduate
student at the National Research University “Higher School of Economics”, invited lecturer at the
Faculty of Computer Science of NRU “Higher School of Economics”. Research interests: Software
and Computer Systems Engineering.

Omurtpuit Bmagmvmuposua AJIEKCAHJIPOB sBnsercs IIpodeccopom B memaprameHnte
MPOTPaMMHOW WH)XEHepUH (aKyiabTeTa KOMITBIOTepHBIX Hayk y HUY “Breicmas Illxona
OxoHoMuKK”. OH TaKkke SBISIETCS 3aBENYIOIIUM HaydHO-y4eOHOU ITabopaTropuu OONAYHBIX H
MOOWJIBHBIX TexHojJoruii. Ero Hay4yHble WHTEpechl BKJIIOYAIOT METOAbI M TEXHOJIOTHH
HCKYCCTBEHHOTO HHTEJUICKTa, MAIMHHOe OOydeHWe W aHamu3 jaaHHbX, I0S pa3paboTka,
pa3paboTka MOOHJIBHBIX MPUIOKEHHH, pa3padoTKa mporpaMMHOro obecreuenus, indoor-
HaBHTranys, 0a3bl JaHHBIX, pa3paboTka urp.

Dmitry Vladimirovich ALEXANDROV is a Professor in the Department of Software Engineering,
Faculty of Computer Science, National Research University “Higher School of Economics”. He is
also the Head of the Research and Educational Laboratory of Cloud and Mobile Technologies. His
research interests include methods and technologies of artificial intelligence, machine learning and
data analysis, iOS development, mobile application development, software development, indoor
navigation, databases, game development.

109

Djambong Tenkeu H-D., Alexandrov D.V. The Dynamic Adaptive Packet Buffering (DAPB) Algorithm for Service Mesh Performance
Enhancement Based on eBPF. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 93-110.

110

