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Abstract. This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. Designed to 

enhance data transfer efficiency in modern networking environments, it is built on the principles of Nagle's 

algorithm. DAPB addresses the limitations of existing buffering techniques by dynamically adjusting its 

behavior based on real-time network conditions, application requirements, and latency sensitivity. The 

algorithm incorporates context-sensitive buffering, adaptive timeout mechanisms, and machine learning-driven 

predictions to achieve a balance between efficiency, latency, and energy consumption. DAPB's context-aware 

buffering tailors its strategy to the specific needs of the application, minimizing buffering for latency-sensitive 

applications like VoIP and online gaming, while maximizing buffering for throughput-sensitive applications 

like file transfers. The adaptive timeout mechanism dynamically adjusts the waiting timeout based on network 

conditions such as round-trip time, packet loss, and jitter, ensuring optimal performance under varying 

workloads. Machine learning models are used to predict optimal buffer sizes and timeout values, leveraging 

historical data and real-time metrics to improve decision-making. The algorithm also features selective 

aggregation, intelligently deciding which packets to aggregate and which to send immediately. This ensures 

that urgent packets are transmitted without delay, while nonurgent packets are aggregated to reduce overhead. 

Additionally, DAPB prioritizes energy efficiency by optimizing buffer sizes and timeout values, making it 

suitable for energy-constrained environments like edge computing and IoT devices. The DAPB algorithm is 

expected to improve the data transfer performance in various scenarios. Compared to the standard Nagle 

algorithm, the DAPB algorithm is expected to reduce latency, improve throughput, and enhance energy 

efficiency. This paper is the result of a research project implemented as part of the Basic Research Program at 

the National Research University Higher School of Economics (HSE University). 
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Национальный исследовательский университет «Высшая школа экономики», 

Россия, 109028, г. Москва, ул. Покровский бульвар, д. 11. 

Аннотация. Данная статья представляет алгоритм динамической адаптивной буферизации пакетов 

(Dynamic Adaptive Packet Buffering, DAPB). Разработанный для повышения эффективности передачи 

данных в современных сетевых средах, алгоритм основан на принципах алгоритма Нейгла. DAPB 

преодолевает ограничения существующих методов буферизации за счет динамической адаптации 

поведения на основе текущих сетевых условий, требований приложений и чувствительности к 

задержкам. Алгоритм сочетает контекстно-зависимую буферизацию, адаптивные механизмы таймаутов 

и прогнозирование на основе машинного обучения для оптимального баланса между эффективностью, 

задержкой и энергопотреблением. Контекстно-ориентированная буферизация адаптирует стратегию 

под конкретные приложения: минимизирует буферизацию для чувствительных к задержкам сервисов 

(VoIP, онлайн-игры) и максимизирует для throughput-ориентированных задач (передача файлов). 

Адаптивный механизм таймаутов динамически регулирует период ожидания с учетом времени 

кругового обхода (RTT), потерь пакетов и джиттера, обеспечивая оптимальную производительность 

при изменяющейся нагрузке. Модели машинного обучения предсказывают оптимальные размеры 

буфера и значения таймаутов, используя исторические данные и метрики реального времени. Алгоритм 

реализует селективную агрегацию пакетов, интеллектуально определяя какие пакеты следует 

агрегировать, а какие передавать немедленно. DAPB уделяет особое внимание энергоэффективности за 

счет оптимизации параметров буферизации, что делает его применимым в энергоограниченных средах 

(edge computing, IoT устройства). По сравнению со стандартным алгоритмом Нейгла, DAPB 

демонстрирует снижение задержек, увеличение пропускной способности и улучшение 

энергоэффективности. Исследование выполнено в рамках Программы фундаментальных исследований 

Национального исследовательского университета "Высшая школа экономики" (НИУ ВШЭ). 

Ключевые слова: динамическая адаптивная буферизация пакетов (DAPB); расширенный фильтр 

пакетов Беркли (eBPF); обработка пакетов в ядре; service mesh 

Для цитирования: Джамбонг Тенке Х-Д., Александров Д.В.. Алгоритм динамической адаптивной 

буферизации пакетов (DAPB) для повышения производительности Service Mesh на основе eBPF. Труды 

ИСП РАН, том 37, вып. 5, 2025 г., стр. 93–110 (на английском языке). DOI: 10.15514/ISPRAS–2025–

37(5)-7. 

1. Introduction 

The proliferation of micro-services as the de-facto standard for building scalable and resilient 

applications has necessitated the evolution of underlying infrastructures that can adeptly manage the 

complexities of distributed systems. Service meshes have emerged as a critical component in the 

cloud-native ecosystem, offering a dedicated infrastructure layer that simplifies inter-service 

communication, enforces security policies, and provides observability across microservices. Istio, a 

leading service mesh implementation, exemplifies this by deploying a sidecar proxy alongside each 

microservice, thus abstracting the intricacies of network management from the application logic. 

Despite the advantages conferred by service meshes, they are not without their challenges. The 

introduction of an intermediary proxy layer, while beneficial for manageability and control, 

inadvertently introduces additional overheads (like higher latency) in the communication path. 

These overheads are particularly pronounced within the Linux kernel network stack, where packet 

transmission is subject to several context switching and kernel-space to user-space communication. 
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As microservices continue to scale and the demand for low-latency, high-throughput systems grow, 

the need to address these overheads becomes increasingly critical. 

One of the main approaches to solving these issues consists of performing traffic buffering. It allows 

optimizing data transmission and managing network congestion. One of the most popular buffering 

algorithms is Nagle’s algorithm, introduced by John Nagle in 1984. Improves TCP communication 

by reducing the transmission of small packets over networks [1]. Designed to address inefficiencies 

caused by applications sending frequent, tiny data bursts, it mitigates network congestion by 

temporarily buffering small writes until either an acknowledgment (ACK) is received for previous 

data or enough data accumulates to form a full TCP segment. The algorithm ensures that only one 

small packet remains unacknowledged at a time, preventing the network from being flooded with 

tiny packets. 

Although effective for bulk data transfers, Nagle’s algorithm can introduce latency in interactive 

applications like gaming or SSH due to its interaction with TCP’s delayed ACK mechanism, which 

waits up to 200 milliseconds to combine ACKs with outgoing data. This trade-off led to criticism 

[2]. The main point is that the strength of this algorithm (reducing small packets) is also its weakness. 

Modern systems often disable it for latency-sensitive applications (e.g., VoIP) using the 

TCP_NODELAY socket option, but it remains valuable for optimizing high-throughput workloads 

like file transfers. 

This paper introduces a novel algorithm to improve data transfer efficiency by dynamically adapting 

to real-time network conditions and application needs. It does so through context-sensitive buffering, 

adaptive timeouts, and machine learning. Such an algorithm shall help improving performance, 

namely reducing latency, and improve energy efficiency in modern networking environments. 

The remainder of the paper is organized as follows. Section 2 discusses the related works, while 

Section 3 presents the background and motivation of the new algorithm. Section 4 describes the new 

algorithm. Section 5 defines the performance metrics that can be used to assess the performance of 

the new algorithm. Section 6 contains the risks and limitations of the DAPB algorithm. Section 7 

specifies the next steps of this research. 

2. Related works 

eBPF (extended Berkeley Packet Filter) enables the execution of user-defined programs within the 

Linux kernel. Its lineage begins with the Berkeley Packet Filter (BPF), introduced in 1993 by 

McCanne and Jacobson as a mechanism to efficiently capture network packets in user space [3]. 

Classic BPF (cBPF) employed a simple register-based virtual machine to execute filter programs in 

the kernel, reducing unnecessary data copying between the kernel and the user space. 

The transition to eBPF began in 2014 with its integration into Linux kernel 3.18. This overhaul, led 

by Alexei Starovoitov, reimagined BPF as a general-purpose execution environment [4]. Key 

enhancements included a 64-bit register model, a Just-In-Time (JIT) compiler, and a richer 

instruction set, enabling eBPF programs to interact safely with kernel data structures. The most 

transformative applications of eBPF have emerged in networking. The 2018 introduction of XDP 

(eXpress Data Path) [5] marked a paradigm shift by enabling packet processing at the driver layer, 

bypassing the kernel network stack entirely. 

Network congestion is a common issue in computer network engineering. To solve it, several 

buffering algorithms and techniques were created. The Sliding Window Protocol, as described in 

[6], is fundamental to TCP’s flow control, allowing multiple packets to remain in transit before 

requiring acknowledgments. This approach maximizes throughput while preventing receiver 

overload by dynamically adjusting the window size based on network conditions. 

Modern congestion control algorithms such as TCP BBR ([7] & [8]) represent another category, 

using bandwidth and latency measurements to dynamically optimize transmission rates. Meanwhile, 

at the hardware level, Direct Memory Access (DMA) [9] and Zero-Copy Buffering [10] minimize 
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CPU involvement by enabling direct data transfers between devices and memory, significantly 

reducing latency in high-speed networks. 

Nagle’s algorithm reduces TCP overhead by buffering small writes until either: (1) enough data 

accumulate to fill a packet or (2) all sent data are acknowledged. Although it minimizes "tinygrams" 

that waste bandwidth, it can increase latency [6], prompting many real-time systems to disable it via 

‘TCP_NODELAY‘. The algorithm remains fundamental in throughput-latency tradeoff studies. 

Compared to existing network (Table 1) enhancement algorithms, the DAPB algorithm introduces 

several novel improvements. Context-sensitive adaptability and machine learning-driven 

optimization as key novelties. Unlike traditional Nagle’s algorithm, which uses fixed rules, DAPB 

dynamically adjusts buffer sizes and timeout mechanisms based on real-time network conditions. 

These conditions include (but are not limited to) packet round-trip time (RTT), the variability in 

packet arrival times (known as jitter), and the packet loss. The DAPB algorithm also considers 

application requirements (e.g. latency sensitivity). Using machine learning, it can predict optimal 

configurations [11], ensuring better performance in diverse scenarios. Additionally, DAPB 

incorporates selective buffering to prioritize urgent packets, reducing latency for real-time 

applications, while optimizing energy efficiency for resource-constrained environments like IoT. 

This makes DAPB more versatile, efficient, and adaptive than static or rule-based algorithms. 

Table 1: Comparative analysis of buffering algorithms. 

 

3. Background and motivation 

3.1 Flow of traffic within the service mesh and Linux operating system 

In a service mesh architecture, communication between application components occurs through a 

dedicated infrastructure layer composed of programmable proxies (Fig. 1). These proxies, deployed 

as sidecars (e.g., Envoy, Linkerd-proxy), run alongside application containers in user space. Instead 

of applications directly managing network logic, they delegate tasks like service discovery, retries, 

or mutual Transport Layer Security (mTLS) to their sidecars via local inter-process communication 

(IPC) mechanisms such as Unix domain sockets. 

The service mesh divides responsibilities between a control plane (e.g., Istio Pilot [12], Linkerd’s 

control plane) and a data plane (sidecar proxies). The control plane acts as a centralized orchestrator, 

distributing policies, routing rules, and security configurations (e.g., certificates for mTLS) to data 

plane proxies. These proxies enforce rules at the application layer (Layer 7), enabling features like 

HTTP/2-based load balancing, circuit breaking, and header-based routing. Unlike the Linux kernel’s 

IP/TCP-centric approach, service meshes prioritize protocols like HTTP, gRPC, or service-specific 

APIs. 
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Fig. 1. Traffic flow within Istio service mesh. 

Proxies intercept traffic using mechanisms like iptables rules or eBPF programs to redirect packets 

to the sidecar before reaching the application. For example, in Kubernetes, an init container may 

configure networking rules to ensure that all ingress/egress traffic flows through the proxy. 

Within the Linux operating system (Fig. 2), data travels across multiple layers with distinct 

responsibilities. Applications in user space initiate communication using programming interfaces 

like sockets and system calls. For example, a web browser might use TCP socket functions from the 

standard C library to send HTTP requests. These requests get passed to the kernel via syscalls like 

sendto() or write(), which transition the execution from user mode to kernel mode. 

 

Fig. 2. Traffic flow in Linux OS running within a service mesh. 

3.2 Nagle’s algorithm  

Nagle’s algorithm is used to optimize TCP communication by decreasing the number of small 

packets transmitted over the network [12]. Introduced by John Nagle in 1984, it is particularly 

effective in situations where applications frequently send small amounts of data. Its main objective 

is to reduce the overhead that comes with sending numerous small packets, which can contribute to 

network congestion and inefficient bandwidth usage. Here is how it works: 

• Buffering Small Packets: When an application transmits a small amount of data (less than 

the Maximum Segment Size (MSS), Nagle’s algorithm temporarily stores those data in a 

buffer instead of sending them immediately as a separate packet. This design reduces 

overhead by minimizing the number of small packets, a trade-off between latency and 

efficiency noted in [14] and [15]. 

• Combining Packets: The algorithm waits for one of the following conditions to occur: 

 An acknowledgment (ACK) from the receiver for data that has already been sent, or 

 Additional data from the application that can be combined with the buffered data. 
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This approach, while effective for bulk data transfers, can introduce undesirable latency for 

interactive applications, as observed in [16] and [17]. 

• Sending Large Packets: Once one of these conditions is satisfied, the algorithm transmits 

the buffered data along with any new data as a single larger packet. This optimization 

leverages network efficiency by amortizing per-packet overhead, a principle further 

analyzed in [18] and [19]. 

3.3 The eBPF Technology  

eBPF (extended Berkeley Packet Filter) is a Linux kernel innovation that enables developers to run 

custom, event-driven programs securely within the kernel space without modifying kernel source 

code or rebooting the system. Originally designed for network packet filtering, eBPF has evolved 

into a versatile framework to improve performance, observability, and security in modern computing 

environments [20]. 

eBPF programs are executed in a sandbox environment, ensuring safety by verifying the code before 

execution to prevent crashes or resource leaks. These programs attach to predefined hooks in the 

kernel, such as network events, system calls, or function entries/exits, allowing real-time data 

processing. For example, eBPF can intercept network packets to optimize routing, monitor 

application behavior for debugging, or enforce security policies by auditing system activity. It offers 

the following key advantages: 

• Performance: by operating in-kernel, eBPF minimizes context switches and data copying, 

reducing overhead for tasks like packet processing or monitoring. 

• Flexibility: developers can dynamically load programs to adapt to changing needs, such as 

scaling service mesh traffic or troubleshooting latency. 

• Safety: a built-in verifier ensures that programs run without destabilizing the kernel, 

enforcing strict rules on memory access and loop structures. 

To understand eBPF, it is essential to explore its core concepts, including program types, maps, and 

specialized frameworks such as XDP. 

3.3.1 eBPF program types  

eBPF supports a variety of program types, each designed for specific use cases. These program types 

determine where and how eBPF programs can be attached within the kernel. Some common eBPF 

program types include the following: 

• Socket Filtering: Used for filtering and processing network packets at the socket level. 

• Kprobes and Uprobes: allow tracing of kernel and user-space functions, respectively, for 

debugging and observability. 

• Tracepoints: Attach to predefined kernel tracepoints to monitor system events. 

• XDP (eXpress Data Path): a high-performance program type for processing network 

packets at the earliest possible point in the kernel’s networking stack. 

• TC (Traffic Control): used for advanced packet processing and traffic shaping in the 

kernel’s networking subsystem. 

• Perf Events: Enable monitoring of hardware and software performance events. 

3.3.2 eBPF Maps  

eBPF maps are key-value data structures that allow eBPF programs to store and share data between 

user space and kernel space, or between multiple eBPF programs. They are a fundamental building 
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block for creating complex and stateful eBPF applications. Common types of eBPF maps include 

the following: 

• Hash Maps: store key-value pairs in a hash table for efficient lookups. 

• Array Maps: use integer keys to store fixed-size values, providing fast access. 

• Per-CPU Maps: maintain separate data for each CPU core, great for high-performance use 

cases. 

• Ring buffer: a high-throughput data structure for passing data between eBPF programs and 

the user space. 

• LRU (Least Recently Used) Maps: automatically evict least recently used entries to manage 

memory efficiently. 

Maps enable eBPF programs to maintain state, aggregate data, and communicate with user space 

applications, making them indispensable for advanced use cases like network monitoring and 

security enforcement. 

3.3.3 eXpress Data Path (XDP)  

XDP is a high-performance eBPF program type designed to process network packets at the earliest 

possible point in the kernel’s networking stack, often before they reach the kernel’s network layer. 

This makes XDP ideal for use cases requiring low-latency packet processing, such as: 

• DDoS mitigation: dropping malicious packets before they consume system resources. 

• Load balancing: distributing network traffic across multiple servers with minimal overhead. 

• Packet filtering: implementing custom filtering logic at line rate. 

• Protocol parsing: extracting and processing custom protocol headers efficiently. 

XDP programs are typically attached to network interfaces and operate in one of three modes: 

• Native Mode: runs the XDP program directly on the network interface card (NIC) driver. 

• Off-loaded mode: offloads the XDP program to the NIC hardware for maximum 

performance. 

• Generic Mode: runs the XDP program in the kernel as a fallback when hardware offloading 

is not available. 

3.3.4 Use cases of eBPF  

eBPF has found applications in a wide range of domains. Some notable use cases include: 

• Networking: eBPF is widely used to optimize network performance by enabling efficient 

packet filtering, load balancing, and traffic shaping. For example, tools such as Cilium [21] 

leverage eBPF to implement high-performance Kubernetes networking and security 

policies. 

• Observability: eBPF provides deep visibility into system and application behavior without 

requiring invasive instrumentation. Tools such as BPF Compiler Collection (BCC) and 

bpftrace allow developers to trace system calls, monitor file I/O, and analyze performance 

bottlenecks in real time. 

• Security: eBPF enables runtime security enforcement by monitoring system calls, file 

access, and network activity. It can detect and prevent malicious behavior, such as privilege 

escalation attempts or unauthorized data exfiltration. 

• Tracing and Profiling: eBPF can be used to trace function calls, measure latency, and profile 

applications, making it invaluable for debugging and performance tuning. 
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3.4 Problem statement  

Service meshes in distributed systems face significant inefficiencies in data transfer due to the 

prevalence of small, unaggregated packets. These inefficiencies manifest as such: 

• High Latency: Frequent small-packet transmissions introduce delays from protocol 

overhead (e.g., TCP headers, ACKs) and kernel processing. 

• Low Throughput: Low network bandwidth caused by excessive packet fragmentation and 

interrupt handling. 

• Energy Overhead: Increased CPU cycles for per-packet processing, increasing power 

consumption in data centers. 

Current buffering algorithms are static and do not adapt to dynamic network conditions (e.g., 

variable RTT, congestion) or application-specific requirements (e.g., latency-sensitive vs. batch 

traffic). 

Research Gap: Lack of adaptive, context-aware buffering mechanisms capable of dynamically 

balancing these trade-offs based on real-time network state and traffic patterns. 

4. The Dynamic Adaptive Packet Buffering (DAPB) algorithm 

4.1 The DAPB algorithm’s technical architecture 

The DAPB algorithm is a novelty designed to improve data transfer efficiency in modern networking 

environments. It operates within 4 cornerstones (Fig. 3): 

4.1.1 Data Collection and Learning Layer 

The architecture begins with metric collectors in user space, which gather real-time network data 

(e.g., latency, throughput, packet loss) from the Linux network stack and service instances. These 

metrics feed into a reinforcement learning model that optimizes buffering policies through 

continuous interaction with the environment. Historical data are stored for history-based 

recommendations, while an optimization neural network, tuned via differential evolution, refines 

decision-making parameters. This layer ensures DAPB adapts dynamically to changing network 

conditions and application needs. 

4.1.2 Decision and Control Plane 

The decision model synthesizes inputs from the learning layer to generate adaptive buffering 

policies. It balances competing objectives (e.g., latency vs. throughput) using the reinforcement 

model’s predictions. The control plane enforces these policies across the system, coordinating with 

the policy applier to translate decisions into actionable rules. This centralized intelligence allows 

DAPB to adjust buffer sizes, timeouts, and aggregation strategies in real time, tailored to specific 

traffic patterns (e.g., prioritizing VoIP packets over file transfers). 

4.1.3 Kernel-Level Execution 

Policies are executed in kernel space via eBPF data structures, which enable efficient packet 

processing without modifying the kernel. The eBPF components intercept traffic at the socket and 

TCP/IP layers, applying buffering rules while minimizing overhead. By operating close to the 

Network Interface Controller (NIC), DAPB reduces context switches and leverages kernel bypass 

techniques when possible. This design ensures low-latency processing while maintaining 

compatibility with existing Linux networking infrastructure. 
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Fig. 3. The DAPB algorithm’s technical architecture. 

4.1.4 Feedback and Optimization Loop 

The architecture closes the loop with knowledge persistence, where outcomes of applied policies 

(e.g., actual latency improvements) are logged and fed back into the learning layer. This continuous 

feedback enables the system to refine its models, ensuring long-term adaptability. The integration 

of differential evolution further optimizes neural network weights, while the control plane 

orchestrates iterative policy updates. Together, these components create a self-tuning system that 

evolves with network demands, achieving optimal performance across diverse service mesh 

environments. 

As a result, the DAPB algorithm can be deployed and operate at the level of a whole service mesh 

installation (Fig. 4), managing buffering simultaneously for all containers within the installation. 

4.2 The DAPB algorithm’s features 

The DAPB algorithm introduces several innovative features to address the limitations of existing 

buffering techniques. 

4.2.1 Context-sensitive buffering  

Unlike Nagle’s algorithm, which uses a one-size-fits-all approach, DAPB tailors its buffering 

strategy to the specific needs of the application. For example, in latency-sensitive applications such 

as VoIP or online gaming, DAPB minimizes buffering to reduce delays. In contrast, in throughput-

sensitive applications such as file transfers, it maximizes buffering to improve efficiency. 
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Fig. 4. Packet buffering using eBPF in Linux Kernel throughout service mesh. 

Considering the following: 

• B(t) – the buffer size at time t, in bytes. 

• L(t) – the latency sensitivity of the application at time t (e.g., L(t) = 1 for latency-sensitive 

applications, L(t) = 0 for throughput-sensitive applications). 

• C(t) – the network conditions at time t, including round-trip time (RTT), packet loss rate ρ, 

jitter (J). 

 

where: 

• Bmin – the minimum buffer size for latency-sensitive applications (in bytes). 

• Bmax – the maximum buffer size for throughput-sensitive applications (in bytes). 

• f(C(t)) – a function that adjusts the buffer size based on network conditions. 

 
where α, β, and γ are weighting factors. 

4.2.2 Adaptive timeout 

While Nagle’s algorithm relies on a fixed timeout, DAPB dynamically adjusts the waiting timeout 

based on real-time network conditions. If the network is congested, DAPB increases the timeout to 

allow more data buffering, thereby improving efficiency. However, if the network is underutilized, 

it reduces the timeout to minimize latency. This dynamic approach ensures that the DAPB strikes 

the right balance between efficiency and responsiveness. The timeout T(t) is adjusted dynamically 

based on network conditions: 

 
where: 

• T(t) – the timeout period at time t (in ms). 

• Tbase – the base timeout value (in ms). 

• δ, ϵ, and ξ – weighting factors that determine the influence of RTT, packet loss, and jitter 

on timeout. 
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4.2.3 Machine learning-driven predictions 

DAPB incorporates machine learning-driven predictions to optimize its performance. The algorithm 

uses an AI model to predict network traffic. It provided a solid foundation for making informed 

decisions about buffer sizes and timeout values. For example, in a video streaming application, the 

AI component might analyze past transfer patterns to predict the best buffer size for a given video 

quality. This predictive capability ensures that DAPB remains effective even as network conditions 

and application requirements evolve. The predicted optimal buffer size P(t) is derived from a 

machine learning model MM: 

 
where: 

• P(t) – predicted optimal buffer size at time t, derived from an AI model (in ms). 

• C(t) – current network conditions. 

• H(t) – historical data (e.g., past buffer sizes, network conditions, and performance metrics). 

The buffer size B(t) is then updated based on the prediction: 

 

4.2.4 Selective buffering 

The algorithm intelligently decides which packets to buffer (and aggregate) and which to send 

immediately. Small packets that are part of a larger data stream are aggregated to reduce overhead, 

while urgent packets (e.g., control messages) are sent immediately to minimize latency. This 

selective approach ensures that the DAPB maintains high performance without compromising 

responsiveness. The average urgency of packets in the buffer at time t is given by: 

 
where: 

• ui(t) is the urgency of the i-th packet at time t (0 ≤ ui(t) ≤ 1), 

• U(t) is the average urgency at time t, 

• N(t) is the number of packets in the buffer at time t, 

The urgency ui(t) can be established either by using protocol headers or the application context. The 

first approach consists of extracting priority flags (e.g., HTTP/2 stream priorities, DSCP/ToS bits in 

IP headers, or gRPC metadata). The second consists of integrating with service mesh APIs (e.g., 

Istio virtual service) to label latency-sensitive traffic (e.g., VoIP, gaming) as high urgency. The 

decision to send the buffer is based on the following condition: send buffer if U(t) > Uth or B(t) ≥ 
Bmax, where Uth is a threshold for the urgency of the packet. 

4.2.5 Energy efficiency  

Energy efficiency is also a priority for DAPB. By optimizing buffer sizes and timeout values, the 

algorithm reduces unnecessary resource consumption, making it particularly valuable for energy 

constrained environments like edge computing and IoT devices. For example, in an IoT sensor 

network, DAPB can minimize buffer sizes during periods of low activity, saving energy without 

compromising performance. The energy cost E(t) is modeled as: 

E(t) = η · B(t) + θ · T(t), (7) 

where η and θ are weighting factors that represent the energy cost of buffering and waiting, 

respectively. 
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5. Performance Metrics 

After applying the DAPB algorithm to service mesh using eBPF in Linux, 6 performance metrics 

should be collected (evaluated) and analyzed. Each of them is presented below. 

5.1 Reduction in small packets 

This metric quantifies the decrease in the number of small data packets transmitted over the network 

due to buffering. By holding data in a buffer until a predefined size or timeout is reached, fewer 

packets are sent, reducing overhead and eliminating network congestion. For example, if an 

application generates 1000 small packets per second but transmits only 200 after aggregation, 800 

packets are eliminated, lowering processing demands on network hardware. Considering the 

following variables: 

 Nreduced – the reduction in small packets (in bytes). 

 λ(t) – the arrival rate of the packets at time t (in packets/sec). 

 NDAPB(t) – the number of packets transmitted after buffering, at time t (in bytes). 

 

5.2 Buffer efficiency 

Evaluates how effectively the allocated buffer capacity is used to aggregate the data. High efficiency 

means that the buffer is consistently filled to its maximum capacity before transmission, minimizing 

wasted space. Lower efficiency indicates frequent early transmissions (e.g. due to timeouts), which 

may under-utilize buffer resources and reduce potential throughput gains. This is important because 

high efficiency directly means a reduction in latency (fewer waiting for partial fills). Considering 

the following: 

• Bmax(t) – the maximum buffer size at time t (in bytes). 

• B(t) – the actual data accumulated in the buffer at time t (in bytes). 

• TrDAPB(t) – the transmissions triggered by buffer-full or timeout events (in ms). 

• η – the buffer efficiency. 

 

5.3 End-to-end latency 

Estimates the time it takes for a request to traverse all nodes in the service mesh, including both 

network delays and buffering pauses. Highlights the bottlenecks where buffering dominates latency, 

guiding changes such as adjusting buffer sizes or timeouts to maintain responsiveness across 

distributed services. For each node v, considering the following: 

• Qv as a queue with capacity Bmax. 

• Edges euv have a transmission delay duv. 

The Nagle-inspired policy modifies the dequeue behavior of Qv. Packets are dequeued only when 

∥Qv∥ ≥ Bmax, or τ expires. After applying the DAPB algorithm, for a path P = (v1,v2,...,vn), the end-to-

end latency becomes: 
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where: 

• dvi,vi+1 — the network delay between nodes vi and vi+1 (in ms). 

• Π — an indicator function for delayed transmissions (in ms). 

• ΠQvi<Bmax · τ — the buffering delay at node vi if its buffer is not yet full (in ms). 

5.4 Additional delay 

This metric estimates the additional delay introduced by buffering packets before transmission. 

While aggregation improves throughput, it inherently adds waiting time, either until the buffer fills 

or a timer expires. Applications sensitive to delays (e.g., real-time systems) must balance this trade-

off carefully to avoid degrading user experience. Considering the following variables: 

• τ – the acknowledgment timeout (in ms). 

• tfill – the time to fill the buffer to Bmax (in ms). 

• Ladded – the added latency increase (in ms). 

 

The increase in latency can be useful to estimate the effect of buffering on latency-sensitive 

applications (e.g., real-time APIs). For example, if tfill = 150ms and τ = 200ms, the added latency is 

150 ms. However, if tfill = 250ms, the added latency is 200 ms (the timeout triggers transmission). 

5.5 Throughput gain 

The throughput gain reflects the improvement in data transmission rates achieved by sending larger 

aggregated packets instead of smaller ones. Larger packets reduce header overhead and improve 

network utilization, enabling more efficient bandwidth use. For example, combining 100 small 

packets into one large packet minimizes repetitive header transmissions, increasing throughput. 

5.6 eBPF overhead cost 

While eBPF optimizes kernel-level processing, its operations consume additional CPU cycles. This 

metric assesses the computational cost of using eBPF to manage packet aggregation. The cost must 

remain low enough to avoid negating the benefits of aggregation, ensuring net performance gains. 

It can be estimated as the additional processing time, memory increase, and energy consumption 

introduced by eBPF hooks to intercept, buffer, and redirect packets. Considering the following 

variables: 

•  – the time (or memory or energy) to process a packet in the native Linux stack. 

•  – the time (or memory or energy) of all eBPF logics (e.g., aggregation, buffering). 

• CeBPF  – the overhead cost induced by eBPF. 

 
An important aspect of this indicator is that it allows to verify that eBPF enhancements are not 

less than the cost due to increased resource usage. For example, if CeBPF = 5 μs/packet, and the 

packet arrival rate λ(t) = 1000 packets/sec the overhead is about 5 seconds of CPU time per second. 
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5.7 Performance metrics conclusion 

The metrics can be interpreted holistically as follows: 

• Reduction in Small Packets (Nreduced) and Throughput Gain (Tgain) measure improvements 

in network efficiency from aggregation. These are critical for throughput-sensitive 

applications (e.g., file transfers). 

• End-to-End Latency (LP) and Latency Increase (Ladded) capture responsiveness trade-offs, 

vital for real-time systems (e.g., VoIP). 

• The buffer efficiency (η) reflects resource utilization, indicating how well DAPB adapts 

buffer usage to dynamic conditions. 

The context-specific guidance for the ML models is as follows: 

• In throughput-sensitive context: prioritize Nreduced, Tgain, and η. The cost (CeBPF ) is tolerable 

if the gains exceed it. 

• In latency-sensitive context: minimize LP and Ladded; tolerate lower η or higher CeBPF. 

• In energy-constrained context (Edge/IoT, etc.): favor η and low CeBPF . 

6. Risks and limitations 

The DAPB algorithm introduces significant improvements over static buffering approaches, but its 

adaptive and machine learning-driven nature presents several challenges that must be carefully 

mitigated. 

1. Prediction Inaccuracies in Dynamic Environments 

Risk: the machine learning model’s reliance on historical data and real-time metrics may 

yield suboptimal predictions under sudden network changes (e.g., flash crowds, DDoS 

attacks). Noisy or incomplete data (e.g., inaccurate RTT measurements due to asymmetric 

routes) could degrade performance. 

Mitigation: incorporate ensemble methods (e.g., random forests [23]) to reduce variance 

and fallback mechanisms (e.g., reverting to Nagle-like static thresholds when prediction 

confidence is low). 

2. Overhead from Adaptive Mechanisms 

Risk: the computational cost of dynamically adjusting buffer sizes and timeouts may offset 

throughput gains, especially in resource-constrained edge/IoT environments. The eBPF 

overhead metric must be monitored to ensure net benefits. 

Mitigation: profile the algorithm’s CPU/memory footprint under varying loads and 

optimize the eBPF bytecode (e.g., reducing redundant calculations in the f(C(t)) and T(t) 
functions). 

3. Misclassification of Application Context 

Risk: incorrectly labeling an application as latency-sensitive (L(t) = 1) or throughput-

sensitive (L(t) = 0) could lead to inappropriate buffering. For example, misclassifying VoIP 

traffic as batch processing would introduce unacceptable delays. 

Mitigation: implement hybrid labeling (e.g., allow applications to declare their sensitivity 

via API) and validate classifications using runtime telemetry (e.g., packet inter-arrival 

times). 

4. Energy Trade-offs in Adaptive Buffering 

Risk: although DAPB optimizes energy use, frequent buffer resizing B(t) and timeout 

adjustments T(t) may increase CPU cycles, negating energy savings in low-power devices. 
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Mitigation: introduce hysteresis in adjustments (e.g., change B(t) only when network 

conditions C(t) shift beyond a threshold) to reduce computational churn. 

5. Scalability in Large-Scale Deployments 

Risk: the centralized control plane in service meshes may struggle to propagate real-time 

network conditions C(t) to all proxies, causing inconsistent buffering decisions across 

nodes. 

Mitigation: decentralize partial decision-making (e.g., let each proxy compute B(t) locally) 

and use lightweight consensus protocols for critical updates [24]. 

6. Security Implications of eBPF Dependencies 

Risk: eBPF’s kernel-level access exposes DAPB to potential exploits (e.g., buffer overflow 

in eBPF programs). Maliciously crafted packets could trigger excessive buffering, leading 

to resource exhaustion. 

Mitigation: apply eBPF hardening techniques (e.g., verifier-based bounds checking, 

ratelimiting buffer allocations) and audit the DAPB eBPF code with tools like BPFKit [25]. 

7. Interoperability with Legacy Systems 

Risk: older kernels or non-Linux environments may lack eBPF support, limiting DAPB’s 

applicability. Hybrid deployments (e.g., partial service meshes) could experience 

performance asymmetry. 

Mitigation: provide a fallback mode using socket-level buffering (e.g., TCP_CORK) with 

reduced adaptability, and document compatibility matrices. 

7. Next steps of the research 

1. Implement the new algorithm using eBPF. 

2. Engineer the ML model. 

3. Prepare multiple testing environments. Make sure to have most common architectures: 

• 2 containers inside a pod with one Istio sidecar (Intra-pod) 

• 2 containers inside 2 pods with 2 Istio sidecars (Inter-pod) 

• n containers inside n pods with n Istio sidecars (Inter-pod), where 2 < n < ∞. 

There are two environments for each architecture. The new algorithm is applied to the 

first one, and it is not applied to the second one. 

4. Collect basic system metrics. They include, but are not limited to, the CPU, the memory 

(RAM), and the disk usage (in bytes). 

5. Integrate the new algorithm into the corresponding testing environments. 

6. Collect and store performance metrics. These are the metrics described in section 5. 

7. Analyze and assess the baseline system and performance metrics. 

8. Conclude the work. 

8. Conclusion 

This paper introduces the Dynamic Adaptive Packet Buffering (DAPB) algorithm. It is designed to 

enhance data transfer efficiency in service mesh environments by leveraging eBPF. DAPB improves 

upon existing buffering algorithms like Nagle’s algorithm by dynamically adjusting buffer sizes and 

timeout values based on real-time network conditions, application requirements, and machine 

learning predictions. Key features include context-sensitive buffering, adaptive timeout 

mechanisms, selective aggregation, and energy efficiency optimizations, making it suitable for 

diverse scenarios such as latency-sensitive applications and resource-constrained IoT devices. 
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Performance metrics can be used to assess the reduction in small packets, the improved throughput, 

and the added latency 
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