Tpyowr UCIT PAH, mom 37, evin. 4, uacme 2, 2025 2. /| Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025

DOI: 10.15514/ISPRAS-2025-37(4)-19 tOC-EH

Relaxed Lazy Soundness Verification
for Data Petri Nets

N.M. Suvorov, ORCID: 0000-0003-2871-9757 <nmsuvorov@hse.ru>
I.A. Lomazova, ORCID: 0000-0002-9420-3751 <ilomazova@hse.ru>

HSE University,
20, Myasnitskaya Ulitsa, Moscow, 101000, Russia.

Abstract. To represent a model that includes both data and resource perspectives, Data Petri nets could be used.
In this formalism, each transition has a constraint that includes input and output conditions on variables. To
stay within decidability, the conditions should not contain arithmetic operations, so the resources are usually
represented as separate places. Existing correctness criteria such as easy, relaxed and lazy soundness could be
adapted to resource-oriented Data Petri nets but deciding them requires solving a reachability problem that is
known to have very high complexity even for classical Petri nets. In this paper, we propose a new correctness
notion called relaxed lazy soundness that incorporates the main features of the aforementioned properties and
that could be decided as a coverability problem, which is known to be less computationally complex than the
reachability one. We provide an algorithm to verify this property, prove its correctness, and implement it in the
existing soundness verification toolkit. The performance evaluation results confirm the applicability of the
algorithm to process models of a moderate size. The algorithm could be used both for verification of resource-
oriented models and for preliminary validation of arbitrary process models represented as Data Petri nets.

Keywords: data Petri net; verification of distributed processes with data; soundness verification; transition
systems.

For citation: Suvorov N.M., Lomazova |.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trudy
ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025, pp. 69-84. DOI: 10.15514/ISPRAS-2025-37(4)-19.

Acknowledgements. This study has been supported by the Basic Research Program at HSE University, Russia.

69

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

NMpoBepka ocnabneHHon neHnBon 6e3nedeKkTHOCTH
ans ceten MeTpu ¢ AaHHbIMU

H.M. Cysopos, ORCID: 0000-0003-2871-9757 <nmsuvorov@hse.ru>
H.A. Jlomazosa, ORCID: 0000-0002-9420-3751 <ilomazova@hse.ru>

Hayuonanvnouil uccnredosamenvckutl yrusepcumem « Bolcuias wkona 3KOHOMUKUY,
Poccus, 101000, . Mockea, yn. Machuykas, 0. 20.

AHHoTanus. 715 IpeAcTaBIeHNs MOJENY, BKIIOYAIOLIEH KaK JaHHBIE, TaK U PECYPChl, MOXKHO HCIIONB30BATh
ceru [lerpu ¢ mamHbBIME. Kakmomy Iepexomy B TaKHX CETSX COIOCTAaBIEHO OrpaHMYEHHE, BKIIOYAOIIee
YCIIOBHSI Ha BXOJHBIC M BBIXOJHbBIE 3HAUEHHS NEPEMEHHBIX. YCIOBHS Ha BXOAHBIE 3HAYCHUS ONPENEISIOT
IIpaBHJIA, IPH KOTOPBIX IEPEeXo]] MOXKET cpaboTaTh. Y CIIOBUS HA BBIXOIHBIC 3HAYEHHS ONPEAEIIIOT MPaBHIIa,
COTJIACHO KOTOPBIM OCYIIECTBIISIETCSI H3MCHEHNE 3HaUEHHH IIepEMEHHBIX ITPH cpabaThIBaHNH repexosa. YToOs!
OCTaBaThCs B TPAHUIIAX Pa3pPEIIMMOCTH, YCIOBHS HE IOJDKHBI COACPIKATh apUPMETHIECKUE OIICPALIMH, BBUAY
Yero pecypcbl OOBIYHO TPEACTABIAIOTCS Kak OTAeNbHble TNO3MIMHU. CyIIECTBYIOIINE KPUTEPHU
0e31e(eKTHOCTH, TaKHE KaK MpocCTasi, ocinabieHHas U JIeHnBast 0e31e(eKTHOCTE, MOTYT OBITh aJaliTHPOBAHBI K
PECYPCHO-OPHEHTHPOBAaHHBIM ceTsiM IleTpu ¢ JaHHBIMHM, HO JUIi MX BBIYMCICHHS TpeOyeTcsi pelieHHe
TIPOOJIEMBI TOCTH)XKUMOCTH, HMEIOIIEH BRICOKYIO BEIYUCIUTENBHYIO CI0KHOCTB JaXKe JUIS KITACCHYECKHX ceTel
IMerpu. B 3101 cTaThE MBI IIpE/IaraeM HOBOE CBOMCTBO Oe31e(heKTHOCTH, Ha3bIBAEMOE OCIIa0JICHHON JICHUBOH
6e31e(heKTHOCTBIO, KOTOpPOE BKJIIOYAeT B ceOs OCHOBHBIE XapaKTEPHCTHUKH BBINICYIIOMSHYTBIX CBOWCTB U
KOTOPOE MOJXKET OBITh OINpPEAENICHO IIyTeM pemIeHUs MpoOiIeMbl IOKPHITHS, HWMEIONeH MEHBIIYI0
BBIYHCIIUTENBHYIO CIOXKHOCTh YeM IpodiieMa JOCTHKUMOCTH. MBI IPEACTABIAEM AITOPUTM JUIS TIPOBEPKH
JTAaHHOTO CBOHCTBA, I0KA3bIBAEM €r0 KOPPEKTHOCTH U PEAIM3yeM €ro B CyIIECTBYIOIIEM Habope HHCTPYMEHTOB
npoBepku Oe3neeKTHOCTH. Pe3ynbTaThl OLEHKH IPOM3BOAUTENIBHOCTH TMOATBEPXKIAT HPHUMEHHMOCTD
anropuT™Ma Ui BepU(UKAIMK MOJENel CpeaHero pasmepa. AJTOPHUTM MOXKHO HCIIOJIB30BaTh Kak IS
HPOBEPKH PECYPCHO-OPHEHTHPOBAHHBIX MOJEINCH, TaK M I NPEABAPUTEIBHON IPOBEPKH MPOH3BOJBHBIX
MOJIeNeH, peCcTaBIeHHbIX ceTsIMH [1eTpy ¢ JTaHHBIMU.

KnroueBbie caoBa: cern [lerpu ¢ naHHBIMH, BepudUKanus pacHpeleleHHBIX IPOIECCOB C JaHHBIMU,
BepuduKanus 6e31eeKTHOCTH; CHCTEMbI IEPEX0/I0B.

Jas murupoBanusi: Cysopos H.M., Jlomazosa U.A. [IpoBepka ocinabiieHHO# JICHUBOW 0e31e()eKTHOCTH ISt
cereii [lerpu ¢ naraeiMu. Tpyaer UCIT PAH, Tom 37, Beim. 4, wacts 2, 2025 1., ctp. 69-84 (Ha aHrmmiickoMm
si3bike). DOI: 10.15514/ISPRAS-2025-37(4)-19.

Baaronapuoctu. JlaHHoe wmccienoBaHue monanep:kaHo [Iporpammoit (yHIaMEeHTaNbHBIX HCCIEIOBAHHUN
HammonansHOTO MccnenoBaTenbckoro yauBepeurera «Bricmas [llkona Dxonomukn», Pocens.

1. Introduction

A business process consists of a set of activities that are performed in a coordinated manner in an
organizational and technical environment and allow a business goal to be achieved [1]. Analyzing
business process models at the design stage allows us to identify inconsistencies and potential errors
before implementing the process. Our paper focuses on a specific correctness criterion for process
models, called soundness. Different types of soundness properties have been defined for business
processes. The most well-known are classical [2], weak [3], generalized [4], relaxed [5], and lazy
[6] soundness. The paper [7] presents a classification of the main soundness properties proposed for
process models.

A classical approach to verifying soundness of a process model is to represent it as a Petri net and
check the soundness property for this representation. However, in data-aware process models, where
data influence the execution of the process, classical Petri nets are not appropriate. In such cases,
different extensions of Petri nets are used, one of which is Data Petri nets (DPNSs) [8], which we
consider in this paper. Data Petri Nets extend place/transition nets with variables, adding guards that
depend on the values of these variables and allowing transitions to update them. Consequently, each

70

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

state in a DPN is represented as a pair that includes a marking and a variable valuation (values
assigned to all model variables).

DPNs may incorporate both data and resource perspectives. The resources, as in classical Petri nets,
could be represented as individual places that may be unbounded and contain extra tokens in a final
state (since any DPN with arithmetic conditions is Turing complete, as was proved in [9], it is a
reasonable choice to represent resources as places but not as variables). For DPNSs, an algorithm to
verify the classical soundness (whether a process always terminates properly and whether each
process activity occurs in at least one of its executions) was proposed in [10]. However, this property
is too strong, making the model incorrect unless it is bounded and does not allow for additional
tokens in the final state. This makes this definition not suitable for checking correctness of resource-
oriented DPNs.

An example of a resource-oriented DPN is shown in Fig. 1. Here, the model represents a gambling
process and contains a resource place p that stores game tokens obtained by a gambler. The idea of
gambling is simple: A gambler rolls a number from 0 to 100 and based on this number, he/she may
win or lose tokens or leave them unchanged. A gambler may quit the game whenever he/she wants.
The initial number of tokens is 3. This DPN is unbounded, since p; may store any number of game
tokens. Thus, it is not sound according to the definition of classical soundness proposed in [9].
However, the model can be considered correct for representing a real gambling process. Note that
the following properties hold for this model: (i) it has at most one token in the sink place o, (ii) there
are some number of feasible executions that end at o (albeit with possibly several tokens left in p3),
(iii) each transition occurs in at least one feasible execution. This means that the model is relaxed
[5] and lazy [6] sound.

I Start Gambling }

End Gambling |

o

Fig. 1. Resource-oriented DPN IV representing a process of gambling.
p3 is a resource place representing game tokens.

Deciding relaxed and lazy soundness properties requires solving a reachability problem [7,11] that
is known to have high time complexity even for classical Petri nets (a lower bound is a tower of
exponentials [12]). Thus, these soundness properties can barely be checked in practice even for small
models. For DPNs with variables of infinite domains, the task becomes even more complex. In this
paper, we propose a new soundness property called relaxed lazy soundness, which combines the
main features of relaxed and lazy soundness and deciding which can be reduced to solving a

71

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

coverability problem, which is significantly less computationally complex that the reachability one.
Our property captures a possibility of termination, support for lazy activities [6], and a requirement
of participation of all activities in process executions. Compared with lazy soundness, our property
allows models to have deadlocks (as in relaxed soundness). Compared with relaxed soundness, our
property supports lazy activities (as in lazy soundness). We propose an algorithm to verify relaxed
lazy soundness, which, according to our experimental evaluation, can be used in practice for
moderately sized process models.

2. Related Works

Much effort has been put into validating data-aware process models, both in terms of model checking
and soundness verification. The approaches differ not only in the algorithms themselves but also in
the formalisms used to represent such process models.

The main current standardized approach to represent data-aware process models is to use the
Business Process Model and Notation (BPMN) together with the Decision Model and Notation
(DMN) to achieve the separation of concerns while representing both control and data flows [13].
Some authors propose other BPMN extensions, such as BPMN models with conditions on arcs [14].
However, due to the complexity and ambiguity of the BPMN notation, simpler mathematical
formalisms are usually used to represent data-aware process models and verify their correctness. A
classical formal representation of a business process is a workflow net [15]. A workflow net is a
Petri net that has a single source place (a place without input arcs), denoted i, and a single sink place
(a place without output arcs), denoted o, where each node is on a path from i to o. Representing
data-aware process models using workflow nets is a cumbersome task, as shown in [16]. The reason
is that, for each variable value, a separate place should be generally added. This makes this approach
applicable only for small process models with rather limited domains of variable values, as for larger
models or domains such construction results in huge models that cannot be analyzed either manually
or automatically.

Another approach is to use Petri net extensions. The authors in [17] propose a conceptual workflow
model extended with data operations (WFD-net), where each model state is represented by a
marking and a subset of satisfied guards. Here, the activities actually read/write entire guards, which
may be not granular enough to represent real process models [18]. Paper [19] introduces a workflow
model extended with SQL operations on tables (WFT-net) designed to overcome this limitation. In
[20], this formalism is extended by adding domain constraints that must hold in each state of the
model. Each state of the proposed formalism is represented as a tuple that includes a marking, a state
of data elements, a state of tables, and a subset of satisfied guards. The number of elements that
represent a state makes the state sufficiently difficult to perceive, while the data perspective appears
rather abstract.

Our paper focuses on Data Petri nets proposed in [8]. In DPNSs, the data perspective is represented
by variable valuations, while each transition is accompanied by a constraint that includes input and
output conditions on variables. Compared with WFD and WFT nets, most of the behavioral
properties of DPNs are generally undecidable. Thus, to consider correctness properties, such as
soundness, the authors usually consider a subclass of DPNs, where each variable is real-typed and
conditions are composed of variable-operator-constant and variable-operator-variable atoms.
Regarding soundness properties, data-aware process models are verified mainly against classical
soundness (for example, all soundness verification algorithms for DPNs, namely [18,21,22], check
only classical soundness). Paper [7] proves that a Petri net is classical sound if and only if its closure
(a workflow net, where a transition is added from i to o) is live (from any reachable marking it is
possible to enable any transition) and bounded. However, in many scenarios, weaker correctness
criteria are determined for models. For instance, in resource-oriented models, model unboundedness
is not a sign of incorrectness and, thus, checking them against classical soundness is not meaningful.
For such cases, weaker notions of soundness have been proposed. Let us consider some of them.

72

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

Probably, the most well-known property after classical soundness is weak soundness [3]. A model
is weakly sound if and only if the process always properly terminates (i.e., leads to marking [o]).
This notion allows dead transitions, which are never executed, but still requires the model to be
bounded. For cases when it is important not to have dead transitions in the model, relaxed soundness
[5] can be applied. A model is relaxed sound if and only if each model activity is present in some
execution that leads to the final state. A relaxed sound model may be unbounded and may include
deadlocks and livelocks. In resource-oriented models, it is often the case that proper termination
(having a single token in o) is not required. This is the case where lazy soundness [6] can be applied:
a process model is lazy sound if and only if the process always ‘adequately’ terminates. Here, the
‘adequate’ termination means reaching a marking with a single token in o and any number of tokens
in other places, whereas markings having more than one token in o should not be reachable. Lazy
soundness requires an “adequate' termination from each reachable state, and thus deadlocks and
livelocks are not allowed. Some authors also add other notions of soundness: for instance, [9]
proposes the property (which they call ‘relaxed soundness’) that only requires the model to contain
at least one proper execution. The last three soundness properties fit the case of resource-oriented
models (indeed, all of them hold for the model from Fig. 1), but deciding each of them requires
solving a reachability problem, which may take an unreasonable amount of time for unbounded
models even of small sizes.

For DPNs, the first attempt to verify soundness was made in [10]. Here, the authors propose to
convert a DPN into a colored Petri net (CPN) and then verify the soundness of the CPN using
existing techniques. The authors restrict the DPN to contain only variable-operator-constant
conditions. In all subsequent works, namely [21-23], the authors construct a finite abstraction of the
state space, called either a Constraint Graph or a Labeled Transition System (LTS), to verify the
classical soundness. Since, as proved in [22], such an abstraction of the state space is not sufficient
by itself to verify the soundness property, various special techniques have been developed to verify
soundness. In [23], the authors make an LTS as granular as possible by considering a graph node as
a pair that includes a marking and the smallest set of variable assignments that can be described by
a combination of atomic formulas present in the net. In [21], the authors construct a separate
abstraction for each reachable DPN marking and then combine them. [22] modifies the original DPN
by splitting transitions that belong to cycles and adding silent transitions in such a way that the
resulting DPN is still equivalent to the original one, but its LTS can now be directly used to verify
soundness.

All of the above algorithms are designed to verify the classical soundness. As mentioned in [23],
they can also be used to verify weak soundness by skipping the step of detecting dead transitions.
Checking classical and weak soundness can be done quick enough for small and medium-sized
models as both of these properties require model boundedness. If a model is unbounded, solving a
reachability problem becomes a significantly more complex task [24]. However, our investigation
has shown that the property that combines the main features of relaxed and lazy soundness could be
decided by a single coverability graph construction, which makes verification of this combined
property a viable option for checking correctness of resource-oriented DPNSs.

3. Data Petri Nets

A Data Petri net is a place/transition net that includes transition constraints, represented as logical
expressions, that define input and output conditions over the data variables.

Each constraint ¢ over a set X of variables is an expression of the form
p:=TlxOylxOc|=¢ oA,
where: (i) T is the logical “true”; (ii) x,y € X; (iii) ¢ € R; (iv) © € {<,=,>}.

By @ (X), we denote the language of constraints. For example, for X = {y, z}, expressions y > z,
z<2and (z>1DV({(z<2)A(y = 1)) arein @(X).

73

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

Let X be a set of variables. A constraint ¢ € @(X) is satisfied by an assignment 8: X — R, written
6 & ¢, according to the following definitions:

o 0 ExQ©cifandonlyif 6(x) is defined, and 6(x) © c is true;

e 0 Ex @ yifandonly if both 8(x) and 6(y) are defined, and 6(x) © 6(y) is true;
o Ok -gpifandonlyif 8 # ¢;

o OE @, ANp,ifandonlyiff = @, and 6 = ¢,.

By [[¢]], we denote the set of all assignments that satisfy ¢ € &(X). We say that two formulas
¥1, P, € ©(X) are logically equivalent (denoted ¢, ~ ¢,)if and only if [[@1]] = [[®2]]-

Let IV be some set of variables. Since in DPNs, variable values may be changed by a transition firing,
for each variable v € V, we use variables v" (r — for ‘read’) and v" (w — for ‘write”) to address its
input and output (w.r.t. transition firings) values. Define V" = {v"|v € V}and V*w = {v¥|v € V}.
Then each transition constraint in a DPN is an expression in @ (V" U V").

Now we can define a DPN:

Definition 1 (Data Petri net). A data Petri net (DPN) is atuple N = (P, T, F,V, guard), where:

e P and T are disjoint sets of places and transitions, respectively;
e F:(PXT)U(T xP)— Nisaflow relation;
e Vs a finite set of variables;

o guard:T - ®(V"UVY) is a guard assignment function that labels transitions with
arithmetic constraints.
Given t € T, we also define read(t) and write(t) to denote, respectively, the set of variables V"
and V" that occur in guard(t). In this work, we consider DPNs with distinguished input (denoted
i) and output (denoted o) places.
A state of a DPN WV is a pair (M, a), where
e M:P — N isamarking function that assigns a number of tokens to each place p € P, and
e a:V — Risavariable valuation function that assigns a value to each variable in V.
We use A, to denote the set of all possible variable valuations in V' and M, to denote the set of
all markings in V. Given two markings M" and M"' of a DPN NV, we write M"' = M'if and only if
for all p € P,-, we have M"'(p) = M'(p), and we write M"" > M'if and only if M"" = M’ and there
exists p € Py s.t. M"(p) > M'(p).
A DPN changes from one state to another by firing transitions. Given a DPN V" and a state (M, a),
we say that transition t € T may fire at (M,) yielding a new state (M, «")if and only if:
e M(p)=F(pt)and M'(p) = M(p) — F(p,t) + F(t,p), forall p € P;
e [E guard(t), where B: V" UV" — R and, for every v € V, it holds that B(v") = a(v)
and (v") = o' (v);
o a(v) =a'(v), forevery v € V such that v¥ # write(t).

We denote transition firing as (M, a)[t)(M', a").

This is naturally extended to finite sequences of transition firings ¢ = t, - t,, called traces, while
each trace induces a run denoted as (Mg, ay)[ty)...[tn)(My, @) (or, equivalently, as
(Mg, ap)[o)(M,, a,)). Given two states (M, a) and (M', "), we write (M, a)[*)(M', a") to denote
zero or more transition firings leading from (M, a) to (M', a"). By (M, a;) we denote the initial
DPN state. As we consider resource-oriented nets, we assume that M; 3= [i] and M,[i] = 1. For DPN
NV with initial state (M;, ;) we define runs of V" and traces of V" as the set of runs and traces as
above, of any length, such that (M;, a;)[¢)(M, a) for some marking M and variable valuation a.

74

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

Consider DPN %V in Fig. 1. For this net, M; = [i] and a;(res) = 0. Firing Start Gambling consumes
a token from i and produces one token in p; and three tokens in p5. If now End Gambling fires, the
process terminates. If Gamble fires, it transfers a token to p, and sets a value from 0 to 100 to
variable res, based on which the choice between Lose, Draw, and Win is done on the next step. Note
that Lose consumes one token from p5, Win produces three tokens in p5, and Draw does not change
the number of tokens in p5. Firing any of these transitions adds a token to p; and another gambling
attempt can be made. The process terminates when End Gambling fires or when a gambler loses all
his game tokens.

Definition 2 (Reachability set, reachability graph). Let ' be a DPN with an initial state (M;, ;).
The reachability set of V', denoted by Reach,,, is the smallest set of states, which is inductively
defined as follows:

o (M, a;) € Reachy;

o if(M,a)[t)(M',a") fort € T and (M, a) € Reachy, then (M',a") € Reachy,.
The reachability graph of V', denoted as RGy, is a graph (V, E'), where:

e V = Reach,,is the set of reachable states of IV;

e ECVXT XV is the set of edges such that (v,t,v") € E if and only if v[t)v', for some
teT.

Fig. 2 shows a fragment of RG,-for v from Fig. 1. The fragment includes an execution that leads
to the situation, when all tokens are lost (a path from s, to s;,), and a feasible execution that includes
all DPN activities and ends in o (a path from s, to s;¢). A special case where a gambler starts and
immediately ends gambling is also added (a path from s, to s,).

(2. 3p3], {res = 1} @ o [p2. 3p3], {res = 99}

[p1,6p3], {res = 99}
[p2, 6p3], {res = 51}

[p1,6p3], {res = 51}

L
[p1,p3l, {res = 10} e
s
[pg, p3], {res = 1} @
L

[pg, 6p3], {res = 12}

[p1,5p3], {res = 12}

[pa), {res _ 0} % ' - (B10) fon sesl. (res — 12)

Fig. 2. A fragment of the reachability graph for " from Fig. 1. Arcs are labeled with the initial letters of the
transition names. Square brackets denote markings. Curly brackets denote variable valuations.
Double circles denote final nodes. Forbidden signs denote deadlocks.

3.1 Relaxed Lazy Soundness

We pose relaxed lazy soundness as an intersection of relaxed and lazy soundness properties.
Consequently, a model is relaxed lazy sound if and only if (i) in each reachable state, there is no

75

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

more than one token in o, (ii) it contains some feasible executions that end at M > [o], and (iii) each
model activity is present in at least one feasible execution. We formally define relaxed lazy
soundness for DPNs as follows:
Definition 3. Let ' be a DPN with initial state (M;, a;) and distinguished sink place o. Let
My = {Mg|Mp € My AMp(0) = 1AM = [0]}. NV is relaxed lazy sound if and only if the
following properties hold:

1) foreach M € M., M(0) < 1;

2) foreach t € T, there exist (M, @), (M',a") € Reach, and M € M , such that
M, a)[t)(M',a") and (M, a")[*)(ME,) for some ap.

The first condition states that place o should be bounded and contain no more than one token. The
second condition verifies that each DPN transition may fire leading to a state from which the sink
place is reachable (potentially, with some other tokens in the net). DPN I from Fig. 1 is relaxed
lazy sound, since both these conditions hold, although the DPN is unbounded and can enter a
deadlock if a gambler always loses. Compared with lazy-only and relaxed-only soundness, relaxed
lazy soundness can potentially be used for a wider range of resource-oriented models, since it
captures the basic properties that should typically hold for such models.

4. Verification Algorithm

In this section, we introduce the algorithm to verify relaxed lazy soundness of a DPN. The algorithm
is based on constructing and investigating a state space abstraction called an abstract coverability
graph (ACG) that we define in the next subsection.

4.1 State Space Abstraction

An ACG of a DPN is a generalization of a classical coverability graph such that each node represents
not a single state but a set of states having the same marking but different variable valuations.
Compared with a classical coverability graph, the abstract version is always finite for the DPN
setting that we consider in this paper (real-typed variables, variable-operator-constant/variable-
operator-variable conditions).

To represent a set of variable valuations, we use the language of constraints defined in the previous
section. In [22], we have proved that any set of variable valuations in DPN abstract state space
structures can be described by some formula in @ (V). The formula of a new state is then computed
using operator @ defined in [18]. Given transition constraint guard(t) and node formula
©n € P(V), [[¢n D guard(t)]] is the union of all possible variable valuations that can be obtained
by firing t at any variable valuation from [[¢,]]. The result of this operation is computed using the
concept of quantifier elimination, which is decidable for real arithmetic [25], but may be undecidable
for other domains.

To define an ACG, we first define a coverability relation. Let (M, ¢), (M, ¢") be two nodes. We
say that (M',¢") covers (resp., strictly covers) (M, @), denoted as (M, @) E (M',¢") (resp.,
(M, @) = (M', ¢"), if and only if [[¢]] = [[¢']] and M < M' (resp., M < M'). To operate with
unbounded nets, we use the special symbol w, as in [22], which represents an unbounded number of
tokens. For each integer n, w > n, w + n = w and w = w. Now we can define an ACG:
Definition 4 (Abstract Coverability Graph). Let v = (P, T, F,V, guard) be a DPN with initial state
(M;, a;). Let @ (V) be the language of constraints, as in Section 3. Abstract Coverability Graph
ACGy of W isatuple (S, E,s,), where:

o s, = (M;,¢;) € Sisthe initial node with ¢; = A,ep{v = a;(v)};
o §5C Myx®(V)isthe least set that contains s, and is closed under the transition relation.

e ECSXT xS isasetofarcs labeled with transitions, s.t. (M, ¢),t, (M’, ¢")) € E if and
only if:
76

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

» ¢'=¢ D guard(t) and [[¢]] = 0
= foreachp € P, M(p) = F(p,t).
= given M*(p) = M(p) —F(p,t) + F(t,p), M'(p) = w if there exists a node
(M",¢") € Sc; along the path from s, to (M,¢), st. (M",¢") = (M*, ¢"), and
M*(p) > M"(p), otherwise M'(p) = M*(p).
If (s, t,s") € E, we say that (s, t, s") is a transition firing in ACG,,. We denote a transition firing by
writing s[t)s’. We extend this definition to sequences ¢ = (t;, ..., t,) of n transition firings, called
traces, and denote the corresponding run by sq [t;)sq[t2). .. [t,)s, Or equivalently by sy[o)s,. Fig. 3
illustrates an ACG constructed for DPN V' from Fig. 1.

[p1,3p3], [p2,3p3l,
(res =0) (0 < res < 100)

& D (?
[i], (res = 0) :' 31 G

[r1,2p3],
(0 < res < 40)

. S [p1,3p3],
(40 < res < 85)

[PL 6p3],
85 < res < 100)

S9 " [P1,wp3],
(40 < res < 85)

[P1,2p3], .
(40 < res < 85) °,

[p1s

p3], [p1,wps],
(0 < res < 40) * 813

o™ 1
5117 (85 <'res < 100)

[p1. p3], Ie. [P1,5p3],
(40 < res < 85) (85 < res < 100,

[p2, p3l, [;
p1.4p3],
(0 < res < 100) L (85 < mes < 100)

[p1],
(0 < res < 40) - 816

(40 <[7 i]s < 85) G

D, G

[p1,3p3],

819 2520 (g5 <ves < 100)

[p2], (0 < res < 100)

Fig. 3. An abstract coverability graph for " from Fig. 1. Arcs are labeled with the initial letters of the
transition names. Square brackets denote markings. Dotted circles denote nodes from which it is possible to
fire End Gambling and reach o (nodes with a token in o are omitted for brevity).

Proposition 1. Let & = (P,T,F,V, guard) be a DPN with initial state (M, a;) and RG, be a
reachability graph of V. Let AC G, be an abstract coverability graph of V. Then, (M}, ¢,)[0)(M, ¢)
is in ACG, if for each a € [[¢]], (M}, a))[0)(M*,a) is in RGy,, where M*(p) = M(p) if
M(p) # w.

Proof. The statement is a corollary to Definition 4 (specifically, from the consequent application of
the @ operator and from the marking construction that is based on the coverability relation).

Proposition 2. Let N = (P, T, F,V, guard) be a DPN with initial state (M,, «;) and RG,, be the
reachability graph of M. Let ACG, be the abstract coverability graph of M. If run
(M, p)[o)Y(M,) is in ACG,, , then for each a € [[¢]], there exists run (M, a;)[c")(M*, @) in

77

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

R G, where the set of transitions in ¢* coincides with the set of transitions in ¢, and M (p) = M*(p)
if M(p) + w.

Proof. If run (M, ¢p)[o)(M, ¢) is in ACG, and for each p, M(p) # w, then for each a € [[¢]],
RG) includes run (M}, a))[0)(M, «) (follows from Definition 4). Assume that a run in ACG-ends
with (M, ¢), where for some p, M(p) = w. Then, trace o may not be executable in RG - (due to the
nature of w-abstraction). Let us represent ¢ as a sequence oy, t4, ..., t,_1, 0y, SO that the execution
of each o-part in AC G, preserves the same set of places with w in all the markings, while transitions
ty,..., t,_4 transform some places to w-places.

Consider a base case. Let (M,, ¢;)[01)(M;, ;) be a run in ACG,,. For brevity, we further denote
(M, A) as a set of DPN states (M, a), where a € A. Let (M,, A,) be a set of states resulting from
executing o; from (M;, ;) in RG,-. By Definition 4, A, = [[¢,]]. Let (My, d,)[t1)(M, 1) be a
transition firing in ACG,, . Then, there exists a sequence of transition firings in V" that includes only
transitions from ¢, and transition ¢, and that can be executed any number of times by adding tokens
in places for which M; (p) = w. From each node (M, a;) with a; € A,, execute t and this sequence
of transitions as many times as necessary to obtain the number of tokens in each p € P, where
M (p) = w, greater than any fixed but arbitrary natural number. Following Definition 4, there must
exist a set of runs that include only transitions from ¢, and transition ¢, and reach (M;*, a,"), where
M,'(p) = M{*(p) if M; '(p) # w, so that the union of such (M*, a;") can be described as (M;*, A;")
with A" = [[¢4]].

Induction step. Let for k < n, itis true. Then, we have run (My,', ¢) [0k+1) Mis1, Pr+1) iN ACGy
and there exists a set of states (M}, A;") such that A;" = [[¢,']] and M,'(p) = M} (p) if My (p) #
w. Since for each p € P, where M;'(p) = w, we have a number of tokens greater than any fixed but
arbitrary natural number, trace gy,; can be executed on (M;*, A,") leading to the set of states
(M 41, Agr1), Where Ay yy = [[@rya]] and My (p) = My y1(p) if Myy1(p) # w. If 0y s the last
part of o, the proposition is proved. Otherwise, there must exist transition firing
(Mys1, 1) [res1)Mist's drsr’) in ACGye. Then, there exists a sequence of transitions that
consists of transitions from ay, ..., 0,41, transitions t,, ..., t; 1, that ends with t,., ;, and that can be
executed any number of times putting tokens in places, for which M; ,,'(p) = w and My,,(p) # w.
From (My,1, A1), let execute t,, 4 and this sequence of transitions as many times as necessary to
obtain the number of tokens in each p € P, where M, ,,'(p) = w and M, ,,(p) # w, greater than
any fixed but arbitrary natural number. After that, we obtain the set of states (M., Ax+1'), Such
that Agt1" = [[Pr+1']] and My11'(P) = M1 (p) if M1 (p) # w. 0
Note that it is impossible to tell from a coverability graph alone whether the net contains deadlocks
and/or livelocks. This was proved in [24] for classical coverability graphs, and since an ACG is a
generalization of this state-transition structure, the same limitation holds for ACG. For bounded
DPNs, the problem of detecting deadlocks and livelocks is known to be decidable and was solved
in [18,22,23]. For unbounded DPNS, there is currently no solution for this task. Note that the task of
detecting deadlocks is challenging even for classical Petri nets. Although deadlock- and livelock-
freedom can be reduced to the reachability problem that is known to be decidable [11], existing
works, such as [24-25], allow one to verify the absence of deadlocks only for rather limited classes
of nets (e.g., [25] considers nets with only one unbounded place). For similar reasons, the
coverability graphs alone cannot be used to check whether the sink place is reachable in a ’clean
way’ (when M = [o]). Since coverability graphs allow w-markings, we cannot determine whether
it is possible to consume all the tokens from w-places and thus reach the output place with no
remaining tokens. There are some workarounds for this, but most of them use other representations
of business processes, such as m-calculus in [28].

Nevertheless, coverability graphs could be used to verify some important properties that should
usually hold for resource-oriented models. It is possible to check whether the model could terminate
having one token in o and potentially extra tokens in the net (we could call this as ‘adequate’
termination), whether each model transition can actually fire and be present in executions with

78

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

‘adequate’ termination, and whether all the model executions do not put more than one token in o.
These properties could be seen as a combination of main relaxed and lazy soundness features, and
all of them are actually included in the proposed above the relaxed lazy soundness property.

4.2 Checking Relaxed Lazy Soundness

The procedure of checking relaxed lazy soundness is based on constructing and studying the ACG.
Algorithm 1 illustrates the procedure of constructing an ACG according to Definition 4. Sets S and
E represent the nodes and arcs of ACGy, s, — the initial node of ACG,,. Set N stores the nodes that
need to be expanded. For each node in V', we try to fire DPN transitions for the marking and variable
valuations it represents (lines 6-11). If some transition may fire, we try to find preceding strictly
covering nodes (lines 12-13). If such nodes are found, we define places where the number of tokens
should be replaced with w (lines 13-16). If the resulting node already exists in the graph, we add an
arc to this node from the current one; otherwise, a new node is added to the graph and to the set of
nodes to be expanded (lines 17-20).

Regarding the implementation of the algorithm, the simplest approach is to construct the graph using
a depth-first search and use a stack to represent set N. For each new node in the graph, we can
determine the set of parents using the information obtained from the previous node, and thus skip
the graph traversal procedure when checking node coverage. As for checking the equivalence of
formulas, we can perform it by checking the satisfiability: to check ¢ ~ ¢, we can verify whether
P A’V AP is satisfiable (if not, then ¢ ~ ¢’ is true) using known satisfiability modulo
theories (SMT) solvers such as Z3 [29]. Note that for our constraint language, satisfiability is
decidable, as well as the quantifier elimination needed to compute the result of the -
procedure [22].

Algorithm 1 ConstructACG(V, (M,, a;))

Input: ADPN WV = (P, T, F,V, guard) with initial state (M, ;).
Result: Abstract Coverability Graph of V.
¢1 < Nev{v = a;(v)}
So < (Mp, ar)
S < {so}
E<0Q
N < {so}
while N = @ do
(M, ¢) « Pick(N) // Take a node from N
N <N {(M,$)}
foreach t € T s.t. M[t)M’ do
¢’ < ¢ ® guard(t)
if =(¢’' ~ false) then
foreach state (M,, ¢,), from which (M, ¢) is reachable do
if (M' > M,) AN(¢p' ~ ¢,) then
foreachp € P do
if M'(p) > M,(p) then
M) =ow
E<EU{{(M¢)t, (M, ¢")}
ifv(M,p) €S:M #= MV (¢’ ~ ¢) then
S<Su{M', o}
N <NU{M',¢)}

return (S, E, sq)

79

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

Algorithm 2 describes the procedure for checking relaxed lazy soundness that consists of two steps:
(i) constructing an ACG (line 1),

(ii) exploring the ACG using graph-traversing techniques to verify the absence of markings
that have more than one token in o (lines 2-3) and the ability to reach the sink place after
each of the DPN transitions (lines 4-7).

Some of these checks can be included in the ACG construction procedure to answer the soundness
of the model more quickly.

Algorithm 2 CheckRelaxedLazySoundness(V, (M;, a;))

Input: ADPN V' = (P, T, F,V, guard) with initial state (M;, ;).
Result: Whether or not V" is relaxed lazy sound.
{S,E, so} « ConstructACG(V, M, a;)
if 3(M, ¢) € S: M(0) > 1 then

return false
Sfeasible < {S €S | EI(1WFf ¢):S[*)(MFI ¢) /\MF > [0]}
foreacht € T do

if V(s,t,5"):5" € Steasinie then

return false

return true

Proposition 3. Let v =(P,T,F,V,guard) be a DPN with initial state (M,, ;). Procedure
CheckRelaxedLazySoundness(V, (M;, a;)) terminates.

Proof. In paper [22], it was proved that a labeled transition system for a DPN with quasi-ordering =
defined there is a well-structured transition system (WSTS) [30]. The ACG defined in our paper is
actually a coverability graph for a labeled transition system defined in [22], where sets of states are
replaced with formulas of the constraint language. In our case, relation = is decidable, and the
procedure of computing node successors is also decidable (follows from the decidability of =). From
this, according to the WSTSs theory, it follows that the ACG is finite and effectively constructible.
Since the ACG is finite, graph traversal methods on this structure are guaranteed to terminate. This
proves that the procedure CheckRelaxedLazySoundness terminates.

Proposition 4. Let & =(P,T,F,V, guard) be a DPN with initial state (M;, ;). Let ACGy =
(S, E, s,) be the abstract coverability graph of . Then for each M € M, M(0) < 1 if and only if
M (o) < 1 foreach (M,) €S.

Proof. (=) It follows from Proposition 1 that in ACG,, M(0) may be either 0, 1, or w. If
M (0) = w, then o is unbounded and R G, contains an execution that produces M’ with M'(0) > 1,
which contradicts the precondition VM € My, M(0) < 1.

(<) Follows from Proposition 2.]

Proposition 5. Let N = (P,T,F,V, guard) be a DPN with initial state (M,, ;). Let ACGy =
(S, E, so) be the abstract coverability graph of . Then for each t € T, RGy-contains an arc (v, t, v")
included in a path to some node with My = [o]if and only if there exists an arc (s, t,s') € E with a
path from s’ to a node with M = [o].

Proof. (=) RG, contains an execution that includes t and produces My > [0]. According to
Proposition 1, the trace that represents this execution must be in ACG,,. The trace execution ends at
(M', ¢"), where M' = M (follows from Definition 4). Since M’ > Mg, we have M’ = [o].

(&) ACG,, contains an execution that includes t and produces Mg > [o]. By Proposition 2, RGy,
must exist a corresponding trace ¢* that includes all transitions of the trace in ACG . Let this trace
execution end at (M', a"). If M?(0) < w, then M'(0) = M¥(0) = 1. If M¥(0) = w, then M'(0)
contains at least one token (follows from Definition 4). Thus, M’ = [o]. Ll
80

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

The following is a corollary of Propositions 4 and 5:

Corollary 1. Let ¥ = (P,T,F,V, guard) be some DPN with initial state (M}, a;). V" is relaxed
lazy soundif and only if CheckRelaxedLazySoundness(V', (M;, a;)) returns true.

5. Implementation and Experiments

The proposed algorithm has been implemented as a module in the existing DPN soundness
verification toolkit implemented on .NET WPF. The application with the added module is available
for download on https://github.com/SuvorovNM/DPN-Soundness-Verification. Fig. 4 demonstrates
the outputs provided by the application for DPN & from Fig. 1. A custom coloring function is
implemented to ease the interpretation of ACGs, which can be huge in some cases.

[ET4 T ol nd =

‘ [E15 [0l ffand (>-= res 7 0.0 (== rex + 7000] ot (== 40
B

G (<= res 7 1000) (>= res.7 4001

= 850 ‘mruu.]‘ | e

[
400) inot <= 850 ws)
2 /

(23070 fand &=

GG b= 505

3, o] ({and (> = res 1 00) (<= res 1 1000} (> = res « 40.0) (not (<= 850 res 1)

(837 3. o1 o = ves 7 B0/ (<= s 1 10001 = rws 1 8500

[T P e = 87 00) o= e T 00 G- res rE50)
Fod Gablng

End Gambiing

S
Gamble [E24 [p, w31 (fand {>= res_+ 0.0) (<= ves 1 160.0] [-= res_r 400) ot [== B8 rres 1)

G5 05, ol fand (o= res. 00) (<= 1o 1000 (m res 8500 [0 [p7 w3l (ond
Y —End
27 [p3, o] fand (> = res.7 00) (<= res.7 1000) ot [<= A

oing
e B P (e = 00 (e s

100.0] (> = res, 1 85,0)———{idi28 [wp3, o1 ({and (= res v 00) (<= res.r 100,0) (= res r8500)
i Gambling

feasible (nG way to final) states: 0. Unclean final states: D, Deadkocks: 0.

Fig. 4. Screenshot of the tool that implements the relaxed lazy soundness verification algorithm.
The tool demonstrates AC G5, for DPN V" from Fig. 1.

The tool takes as input a DPN in an extended PNML-based file format. All operations over formulas
are conducted with the help of Z3 Solver [29]. At the implementation level, we have also made a
small adjustment to the algorithm: we decided to check for M (o) < 1 when constructing an ACG
and immediately return false when a node with M (o) > 1 is obtained. For large models, the ACG
can be huge: even for a DPN with 10 transitions, an ACG may have more than 100000 nodes (see
the HugeACG.pnmlx example in the repository). Thus, building the entire ACG when it is already
known to be unsound may not be reasonable in some situations.

Table 1. Relaxed lazy soundness verification time for sample DPNs. Column ‘Size’ defines the net size in the
number of places, denoted P, the number of transitions, denoted T, and the number of variables, denoted V.

. Classic Relaxed Verification Yerification
Model Size Lazy L . | Time: Relaxed
Sound Time: Classic

Sound Lazy
Gambling Example (Fig. 1) 5P + 6T + 1V False True 34ms 89ms
Livelock Example [22] 3P+3T+2V True True 130ms 18ms
Digital Whiteboard: Transfer [9] | 7P+6T+3V False True 40ms 15ms
Package Handling [23] 16P+28T+5V False False 1010ms 213ms
Road Fines Mined [9] 9P+19T+8V False False 491ms 194ms
Simple Auction [31] AP+4T+2V False True 193ms 90ms

Table 1 reports on how much time the proposed algorithm takes to verify the relaxed lazy soundness
of different DPN models presented in the literature. For bounded DPNs, as expected, verifying
relaxed lazy soundness is usually faster than classical soundness, since classical soundness requires
constructing more refined state space structures. If a net is unbounded (as V" in Fig. 1), then classical
soundness can be checked much faster, since we can immediately return false when a node with w
is obtained.

81

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

We have also tested the performance of the algorithm on synthetically generated data. Givenn € N,
we considered DPNs parameterized according to the following setup:

e 1.2n places,

e n transitions,

e 0.25n variables, and
e 0.5n conditions.

For each n € N from 3 to 90, we generated 10 DPNSs that have at least one trace leading to M > [o]
and at least 40% feasible transitions (i.e., transitions occurring in executions leading to some
M = [o]) using the tool introduced in [22], refined for the current study. In our experiments, we
have considered nets with a low and moderate level of inherent concurrency (a limitation of the DPN
generation tool). The obtained results are visualized in Fig. 5. The plot shows that our algorithm
typically takes less than a minute to verify the relaxed lazy soundness of a DPN with fewer than 100
transitions.

170 standard deviation
160 mean

150

140

130

120

110

100

verification time (sec)
=]
[=]

0 20 40 60 80

Number of Transitions
Fig. 5. CheckRelaxedLazySoundnes procedure execution time on DPNs of different sizes.

Note that in the worst-case scenarios, the verification can take an unreasonable amount of time. This
may be the case for DPNs with a high inherent level of concurrency, which can lead to state space
explosion, and for DPNs with long constraints on transitions, which can seriously impact the speed
of formula operations. However, the results of our preliminary experimental evaluation show that
the algorithm is promising and can be used in practice to verify the correctness of resource-oriented
data-aware process models. Interestingly, the algorithm could also be used for preliminary
verification of arbitrary process models, since for bounded models, it terminates sufficiently faster
than the algorithm for classical soundness verification.

6. Conclusion

In this paper, we have proposed the notion of relaxed lazy soundness that can be used to check
correctness of resource-oriented process models. We have shown that this property is decidable both
for classical Petri nets and for Data Petri nets and could be evaluated using a single coverability
graph construction compared to separate relaxed and lazy soundness properties that require solving
a reachability problem to be decided. Performance evaluation of the algorithm implementation
shows its practical applicability for process models of small and medium size.

82

Cysopos H.M., JlomazoBa 1.A. IIpoBepka ocnabneHHoit teHnBoit 6e3nedextHoctr amns ceteit [letpu ¢ nanubiMu. Tpyoer UCIT PAH, 2025,
Tom 37 BhImL 4, yacts 2, c¢. 69-84.

The proposed algorithm can be used immediately after building a process model to verify that the
model actually contains executions that terminate “adequately' and that each process activity can be
present in such executions. One of practical applications of the proposed algorithm could be a plug-
in for tools for constructing data-aware process models. The algorithm could run in the background
and warn if the user's model is ill-structured.

In the future, we plan to estimate our verification algorithm on real industrial process models both
in terms of speed and in terms of model errors found. This could help to identify the overall practical
applicability of the relaxed lazy soundness property in industry. Another direction for investigation
is finding an abstract state space structure that would be smaller than the proposed ACG but that
would be sufficient for verifying relaxed lazy soundness. In its current state, the algorithm provides
rather poor results for large models with a high level of concurrency, and it is interesting whether
this issue can be addressed. Lastly, a promising direction could be to define the rules to reduce an
ACG in order to make its visualization perceivable even for models of medium and large sizes,
where an ACG could contain hundreds or thousands of nodes.

References

[1]. Weske M. Business Process Management: Concepts, Languages, Architectures. Introduction. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 3-23.
[2]. van der Aalst W. M. P. Verification of workflow nets. In Application and Theory of Petri Nets 1997, 1997,
pp. 407-426.
[3]. Martens A. Analyzing web service based business processes. In Fundamental Approaches to Software
Engineering, 2005, pp. 19-33.
[4]. van Hee K. M., Sidorova N., Voorhoeve M. Soundness and separability of workflow nets in the stepwise
refinement approach. In Applications and Theory of Petri Nets, 2003, pp. 337-356.
[5]. Dehnert J., Rittgen P. Relaxed soundness of business processes. In Advanced Information Systems
Engineering, 2001, pp. 157-170.
[6]. Puhlmann F., Weske M. Investigations on soundness regarding lazy activities. In Business Process
Management, 2006, pp. 145-160.
[7]. van der Aalst W. M. P., van Hee K. M., ter Hofstede A. H. M., Sidorova N., Verbeek H. M. W., Voorhoeve
M., Wynn M. T. Soundness of workflow nets: classification, decidability, and analysis. Formal Aspects
of Computing, 23(3), 2011, pp. 333-363.
[8]. de Leoni M., van der Aalst W. M. P. Data-aware process mining: Discovering decisions in processes using
alignments. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, 2013,
pp. 1454-1461.
[9]. Mannhardt F. Multi-perspective process mining. Ph.D. dissertation, Eindhoven University of Technology,
2018.
[10]. de Leoni M., Felli P., Montali M. A holistic approach for soundness verification of decision-aware process
models. In Conceptual Modeling, 2018, pp. 219-235.
[11]. Esparza J., Nielsen M. Decidability issues for Petri Nets. Information Processing and Cybernetics, 30(3),
1994, pp. 143-160.
[12]. Czerwinski W., Lasota S., Lazic R., Leroux J., Mazowiecki F. The reachability problem for Petri nets is
not elementary. In STOC 2019, 2019, pp. 24-33.
[13]. Bazhenova E., Zerbato F., Oliboni B., Weske M. From bpmn process models to dmn decision models.
Information Systems, vol. 83, 2019, pp. 69-88.
[14]. Knuplesch D., Ly L. T., Rinderle-Ma S., Pfeifer H., Dadam P. On enabling data-aware compliance
checking of business process models. In Conceptual Modeling, 2010, pp. 332-346.
[15]. van der Aalst W. M. The application of petri nets to workflow management. Journal of Circuits, Systems
and Computers, vol. 8, 1998, pp. 21-66.
[16]. Awad A., Decker G., Lohmann N. Diagnosing and repairing data anomalies in process models. In Business
Process Management Workshops, 2010, pp. 5-16.
[17]. Sidorova N., Stahl C., Trcka N. Soundness verification for conceptual workflow nets with data: Early
detection of errors with the most precision possible. Information Systems, 36(7) , 2011, pp. 1026-1043.
[18]. Felli P., de Leoni M., Montali M. Soundness verification of decision-aware process models with variable-
to-variable conditions. In ACSD 2019, 2019, pp. 82-91.

83

Suvorov N.M., Lomazova I.A. Relaxed Lazy Soundness Verification for Data Petri nets. Trdy ISP RAN/Proc. ISP RAS, vol. 37, issue 4,
part 2, 2025. pp. 69-84.

[19]. Tao X., Liu G., Yang B., Yan C., Jiang C. Workflow nets with tables and their soundness. IEEE
Transactions on Industrial Informatics, 16(3), 2020, pp. 1503-1515.

[20]. SongJ., Liu G, Wang M. Model checking of workflow nets with tables and constraints. ACM Transactions
on Autonomous and Adaptive Systems, 2025, 37p.

[21]. Felli P., Montali M., Winkler S. Soundness of data-aware processes with arithmetic conditions. In
Advanced Information Systems Engineering, 2022, pp. 389-406.

[22]. Suvorov N. M., Lomazova I. A. Verification of data-aware process models: Checking soundness of data
petri nets. Journal of Logical and Algebraic Methods in Programming, vol. 138, 100953, 2024.

[23]. Felli P., de Leoni M., Montali M. Soundness verification of data-aware process models with variable-to-
variable conditions. Fundamental Informaticae, 182(1), 2021, pp. 1-29.

[24]. Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), pp. 541-580,
1989.

[25]. Tarski A. A decision method for elementary algebra and geometry. Journal of Symbolic Logic, 14(3), pp.
188-188, 1949.

[26]. Lu F., Tao R., Du Y., Zeng Q., Bao Y. Deadlock detection-oriented unfolding of unbounded petri nets.
Information Sciences, vol. 497, 2019, pp. 1-22.

[27]. Ding Z., Jiang C., Zhou M. Deadlock checking for one-place unbounded petri nets based on modified
reachability trees. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(3), pp.
881-883, 2008.

[28]. Puhlmann F. Soundness verification of business processes specified in the pi-calculus. In On the Move to
Meaningful Internet Systems 2007: CooplS, DOA, ODBASE, GADA, and IS, 2007, pp. 6-23.

[29]. de Moura L., Bjerner N. Z3: An efficient smt solver. In TACAS, 2008, pp. 337-340.

[30]. Finkel A., Schnoebelen P. Well-structured transition systems everywhere! Theoretical Computer Science,
256(1), 2001, pp. 63-92.

[31]. Felli P., Montali M., Winkler S. Repairing soundness properties in data-aware processes. In 2023 5th
International Conference on Process Mining (ICPM), 2023, pp. 41-48.

Ungpopmayusi 06 aemopax / Information about authors

Hukonait Muxaitnosnu CYBOPOB— acniupaHT acnUpaHTCKOM IIKOJIbI [0 KOMIIBIOTEPHBIM HayKaM
Hny BIIID, CTa)kep-UCCIIeN0BaATEIb J1abopaTopun IIPOLIECCHO-OPUEHTUPOBAHHBIX
nndopmanmonnsix cucrem (ITIOMC) dakynbreta kommbioTepHbix Hayk HUY BIID. Cdepa
HAYYHBIX WHTEPECOB: TEOpUsl aBTOMAaTOB, pacIpeAeiIeHHbIe IPOLECcChl, BepupUKanus U
HCIIPABJICHUE MOJEIEH.

Nikolai Mikhailovich SUVOROV - postgraduate student at Doctoral School of Computer Science,
HSE University, research fellow at Laboratory of Process-Aware Information Systems, Faculty of
Computer Science, HSE University. Research interests: automata theory, distributed processes, and
model verification and repair.

Upuna AnexcangpoHa JIOMA3OBA — nokrop (u3MKo-MaTeMaTHYECKHUX Hayk, Impodeccop
¢dakympTeTa KoMmmbioTepHBIX Hayk HHWY BIID, Hay4yHBIi pyKOBOAMTENb HAay4HO-y4eOHOM
mabopaToOpUy TPOILIECCHO-OPUEHTHPOBAHHBIX HHpopMannoHHEIX cuctem ([IOMC) HUY BIID.
OO0nacTh Hay4yHBIX WHTEPECOB: aHAIM3 M MOJEJMpPOBaHHE OW3Hec-TporeccoB, cetd Ilerpw,
BJIOXKCHHBIE ceTH [leTpu, TPOLECCHO-OPHEHTHPOBAaHHBIE HH()OPMAIIOHHBIE CHCTEMBI,
(opMasTbHBIE MOZEIIH PACTIPEICIEHHBIX CUCTEM.

Irina Alexandrovna LOMAZQOVA - Dr. Sci. (Phys.-Math.), professor of the faculty of computer
science in HSE University, and laboratory head of the Laboratory for Process-Aware Information
Systems (PAIS Lab), HSE University. Doctor of Sciences in Theoretical Foundations of Computer
Science Russian Academy of Sciences Dorodnitsyn Computation Center since 2002. Research
interests mainly include analysis and modeling of business processes, Petri nets, process-oriented
information systems, formal models of distributed systems.

84

