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Cesepo-Kaskasckuil pedepanvHulil yHugepcumen,
Gaxynvmem mamemamuxy u KOMRbIOMEPHLIX HAYK umeHu npogeccopa H.U. Yepssaxosa,
Poccus, 355017, Cmasponons, Iywxuna, 0. 1.

AnHoTamusi. B crathe mpencraBieH MOAMGUIMPOBAHHBIA alTOPUTM  JIOKAIGHOTO BEIPABHUBAHMS
TeHETHYECKUX II0CIe0BaTeIbHOCTEH, OCHOBaHHBIM Ha anroputMe Cmura-Barepmana, ¢ mcroib3oBaHHEM
MeTo/ja OKOH M KOJMPOBaHUS JUINH cepuil. [IpoBeieHO IKCIIepMEeHTAIbHOE CPAaBHEHHE IIPOH3BOANTEIILHOCTH
[peIaraeMoro rnoaxo/a ¢ KINacCH4eCKUM aJITOPUTMOM I10 TAKUM METPHKaM, Kak BPeMs BBIIIOJIHCHUS, CpeHEe
W THKOBOE MOTpeOJieHHe NaMATH. Pe3ynbraTel IeMOHCTPHPYIOT 3()(EKTHBHOCTE MOAM(MUKAIMK IPH
COXPAaHCHHM KauecTBa BBIPABHHBAHMUS, OCOOCHHO B YCJIOBHSX OTPAaHUYCHHBIX BBIYHUCIMTENBHBIX PECYPCOB.
PabGoTa MMeeT NMpaKTHUECKOe 3HAUYCHHE IUIA 3a7ad OMOMH(MOPMATHKH, CBS3aHHBIX C aHAJIW30M TCHOMOB,
AQHHOTHPOBAaHUEM I'€HOB M IOMCKOM TOMOJIOTMYHBIX yYaCTKOB.

KiroueBble ciaoBa: anroputm Cmura-Barepmana; xogupoBaHue AJIMH CEpUii; METOJ OKOH; F€HETHUYECKUE
TIOCJIeIOBATEIbHOCTH; JIOKAIEHOE BEIpaBHUBaHUE; ONONH(OpPMAaTHKA.
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10.15514/ISPRAS-2025-37(5)-14.
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1. Introduction

Genetic sequence alignment is a bioinformatics technique that is based on placing two or more
sequences of deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or protein monomers under
each other in such a way that similar sequence regions can be observed to understand functional,
structural and evolutionary relationships [1].

The application of biological sequence alignment methods played a key role in one of the most
significant projects of modern science - the Human Genome Project [2], in which the results of
alignment formed the basis for subsequent functional annotation of genes, identification of genetic
variants associated with diseases, and development of personalized medicine.

Among the local alignment algorithms, the most popular is the Smith-Waterman algorithm [3],
which provides accurate matching of sequence fragments through dynamic programming. Despite
the high accuracy of this algorithm, its classical representation has significant computational costs,
namely, its time and space complexity is O(n X m), where n and m are the lengths of the compared
sequences. This limits its applicability when analysing long sequences or in conditions of limited
computational resources (e.g., on lined systems or in fog computing environments).

Current approaches in algorithm optimization focus on making use of high-performance computing.
These include vectorization using single instruction, multiple data (SIMD) principles [4-5], parallel
implementations on GPUs [6-7], and the use of specialized architectures [8]. Despite the efficiency
of the above approaches, the solutions require additional hardware and are not always applicable in
distributed computing environments.
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The actual task is to develop compact and efficient algorithms that do not depend on the architectural
features of the computing platform.

In the framework of the proposed study, a modification of the classical Smith-Waterman local
alignment algorithm is implemented using several known, but previously unused, joint techniques:
binarization of global sequences, data compression using the run-length encoding (RLE) method
[9], and partitioning data into fixed windows. Although the use of this method separately is widely
used in computational biology and information technology, the presented combination and its
practical application to local competition problems are constantly new.

The main novelty and originality of the proposed solution are as follows:
¢ initials and names of the authors;

e an original scheme for binarization of nucleotides sequentially is proposed, which allows
for a significant reduction in the volume of original data. In combination with RLE
encoding of binary data, high compression efficiency is achieved, especially in areas with
repeating symbols typical of genomic sequences;

o integration of binary representation and RLE encoding allows for speeding up the process
of sequence comparison, since the competition is reduced to bit operations instead of
symbol-by-symbol comparisons. This, in turn, provides additional performance gains,
especially in conditions of limited computing resources;

o the use of fixed windows for data processing provides not only a further reduction in
computational costs, but also the possibility of efficient implementation of the algorithm in
parallel environments and the distribution of distributed environments, such as systems
with limited computing power or fog computing.

The paper proposes a modification of the Smith-Waterman algorithm based on the preliminary
binary representation of sequences followed by bitwise compression based on RLE. This approach
allows to significantly reduce the amount of processed data and speed up computations by
simplifying the matching operations. In addition, an adapted penalty system for the binary format is
introduced to preserve the algorithm's sensitivity to biologically significant changes.

2. Method

2.1 Data presentation

To reduce the data volume of the processed information and increase the efficiency of local
alignment operations, the proposed algorithm first performs the conversion of nucleotide sequences
into a binary data representation [10]. This conversion is based on the binary encoding of each
nucleotide using a two-bit scheme, which provides a compact and convenient representation of the
input data.

In the proposed approach, a unique two-bit combination is assigned to each symbol of a nucleotide
sequence from the set {4, C, T, G}:

A—-00,C-01,T-10,G - 11.

This scheme provides efficient memory usage because it allows any sequence of length n to be
represented as a bit string of length 2n bits, which halves the character representation compared to
a character representation using 8 bits per character.
The conversion of the character string to a binary string is implemented by the function
«dna_to_binary(dna_str)», which replaces each nucleotide with the advised 2-bit string. The reverse
conversion is implemented by the function «binary to dna(binary_str)» and is necessary to restore
the interpreted result after calculations in binary representation.
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This conversion allows bitwise comparisons instead of character comparisons, which significantly
speeds up the work of the modified algorithm. Instead of string operations comparing two
nucleotides (for example, A == G), an exclusive-or operation (XOR) [11] is performed between 2-
bit codes, and the result is O only if there is a complete match. This approach is easily scalable for
vector computations and hardware optimisations including the SIMD principle. The described
contributions are presented in Algorithm 1.

Algorithm Nel Function for representing a sequence in binary form
Input: dna_str — string of characters {4,C, T, G}

Output: binary_str — string of characters {0, 1}

1. bin_map « {'A":'00",'C":'01','T":'10’,'G": "11'}

2. binary_str « empty string

3. For i from 0 to length (dna_str) — 1 is executed

3.1. nucleotide « dna_str|i]

3.2. bin_str « binary_str + bin_map|[nucleotide]

3.3. End of cycle

4. Return bin_str

5. Define dna_map « {'00":'4’,'01":'C’,'10":'T",'"11":'G" }
6. If length(bing,.)mod 2 # 0 then

7. bin_str « bin_str + '0’

8. For i from 0 to length(bin_str) — 1 step 2 do

8.1. bits « bin_str[i] + bin_str[i + 1]

8.2. nucleotide « dna_map[bits]

8.3. dna_str « dna_str + nucleotide

8.4. End of cycle

9. Return dna_string

2.2 Application of compression

The After converting the nucleotide sequence into a binary representation, data compression is
performed. It is needed in order to reduce redundancy and reduce the amount of information that
needs to be equalized. The repetitive sequence encoding algorithm, RLE, has been used for this
purpose.

The RLE method is one of the simplest and least resource-intensive methods of data compression,
in which sequences consisting of identical characters (in this case — bits) are replaced by a pair of
values: character and number of repetitions. For example, the substring 000001111 will be encoded
as 05 14, which will reduce the total amount of representation in the presence of long single-type
data blocks.

When representing genetic data in binary form, the proposed method shows high efficiency, because
binary strings, binary strings derived from nucleotide sequences, often contain repetitive fragments,
for example, homopolymer regions — sequences like AAAA, CCCC, etc. The binary format of
genetic data shows high efficiency. In addition, the binary format itself has low entropy compared
to the character format, which further enhances the efficiency of RLE coding [12].

The following factors explain the choice of compression technique:

e the RLE algorithm has a low computational complexity of O(n), so it is suitable for
processing large data sets without significant computational cost [13];

e window method compression, where a string in binary representation is split into fixed-
length fragments, each of which is compressed separately. These actions make the
algorithm robust to local changes and decoding with minimal resource consumption;
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e unlike more complex methods (e.g., Huffman's algorithm [14] or arithmetic coding [15]),
recovering data from an RLE representation does not require the construction of external
tables and can be performed in a single linear pass, which is especially important in
resource-constrained environments such as embedded systems or fog computing
nodes [16];

o after applying RLE, additional data compression is possible, providing multi-layer
compression without data loss.

The Huffman algorithm [14, 17] and arithmetic coding [15, 18] are used to efficiently encode
character sequences, especially in the presence of statistical differences in character frequencies, but
they require the construction and storage of auxiliary structures, which increases the amount of
metadata and complicates decoding.

The compression methods LZ7 and LZ78 [19-20] and their derived algorithms, including the
Lempel-Ziv-Welch algorithm (LZW) and the Lempel-Ziv-Markov chain algorithm (LZMA) [21],
show a high compression rate when processing large amounts of text data [19], but they also require
large buffers and time for preliminary analysis, which makes them less suitable for low-level
optimization in a limited computational environment.

RLE, in turn, has high speed and minimal memory requirements, which makes it particularly
efficient in the presence of patterned, repetitive patterns - exactly the kind of structures characteristic
of genetic sequences. In addition, compared to Huffman coding and LZW, RLE shows better
performance on short fragments and in applications with «real-time» data processing [22].

In the proposed approach, local alignment is not performed at the nucleotide level, but in the space
of binary strings that were obtained by performing binary coding.

The splitting into windows is performed using the function «split_into_windows», after which
separate processing is performed. Each window is compressed using the RLE method. The data
recovery process allows to exactly restore the original window content and, if necessary, to perform
an accurate restoration of the binary sequence (Algorithm 2).

An important aspect of the proposed approach is that binarization and subsequent RLE coding of
genetic sequences do not impose restrictions on the ability to identify alignments of arbitrary length
or location. Despite the fact that the local alignment algorithm is performed in binary representation,
this is an exclusively intermediate form of data that ensures efficient processing. After the alignment
procedure is completed, an exact reverse transformation from the binary representation to the
original nucleotide sequences is implemented. This ensures complete compliance of the alignment
results with the original sequences without loss of information accuracy. Thus, any alignments found
at the binary level are unambiguously and accurately translated back into the original nucleotide
sequences, preserving the biological significance and accuracy of the final result.

2.3 Window method

Window method is a commonly used technique in sequence, signal, and text processing algorithms,
where the input data is partitioned into fixed-size non-overlapping segments (windows) [23]. Unlike
sliding window techniques, each window in this method is processed independently without overlap.
In the context of biological data processing, particularly sequence alignment, the window method
improves computational efficiency by reducing the working data set size. This approach also
facilitates parallel execution, as each window can be processed independently, which enhances
performance and optimizes memory usage.

In the proposed window method, S is a binary string of length n and the window size is W. The
string S is partitioned into windows, each consisting of a sequence of length W, except for the
outermost window which can be shorter if the length of string n is not divisible by W.
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Algorithm Ne2 Data compression and recovery

Input: binary_str, window_size

Output: compressed_windows, decompressed_windows
1. windows < empty list

2. For i from 0 to length (binary_str) step window_size do
2.1. window « substring of binary_str for index i to i + window_size
2.2. Append window to windows

3. End of cycle

4. compressed_windows « empty list

5. For each window in windows do

5.1. If window is empty, then continue

5.2. compressed « empty string

5.3. current_bit « first bit of window

54 count « 1

5.6 For bit in window starting from second position do
5.6.1. If bit = current_bit, then

5.6.1.1. count « count +1

5.6.2. Else

5.6.2.1. Append current_bit + count to compressed
5.6.2.2. current_bit « bit

5.6.2.3. count « 1

5.7 Append final current_bit + count to compressed

5.8. Append compressed to compressed_windows

6. End of cycle

7. decompressed_windows « empty list

8. For each compressed_win in compressed_windows do
8.1. window <« empty string

82.i« 0

8.3. While i < length(compressed_win) do

8.3.1. bit « compressed_win[i]

8.3.2. count <« integer value of compressed_win[i + 1]
8.3.3. Append bit * count to window

834.i « i+ 2

8.4. Append window to decompressed_windows

9. End of cycle

10. Return compressed_windows, decompressed_windows

The process of partitioning into windows:
windows (S, W) = [S[i:i + W]|i = {0O,W,2W, ..., [(%J x W],

where i is the start index of each window, W is the window size, and S[i:i + W] is a slice of the
string S starting at index i and of length W. The expression l(%] X W ensures that no window
exceeds the bounds of the sequence.

If the string length n is not a multiple of W, the last window will have a shorter length equal to
n mod W, where n mod W is the remainder of dividing n by W. The partitioning algorithm ensures
that the entire string is covered by non-overlapping windows, with the last one possibly shorter than
the others.

Partitioning a string into smaller, fixed-size windows allows for the distribution of computational
tasks, as each window can be processed independently. This feature is particularly beneficial in
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multitasking or multiprocessor systems, where each window can be assigned to a separate thread or
process. The technique also contributes to optimized memory usage, enabling processing of smaller
data portions without requiring the entire sequence to be loaded into memory.

Thus, the described algorithms can be implemented as a unified program or used independently in
unrelated tasks. Based on these modules, a working program has been developed, and its results are
presented in the next section.

3. Conducting the experiment

To evaluate the efficiency of the proposed algorithm for local alignment of genetic sequences, a
series of computational experiments were conducted.

The study was carried out on the basis of programmes described in the Python programming
language [24], on a dataset of genetic sequences ranging from 100 to 3000 nucleotides, with a step
of 100, on equipment with the following characteristics:

e CPU: Apple M2 16 cores, 3.4GHz;

¢ RAM: 8GB LPDDR4X;

e Storage: 512GB NVMe SSD PCle 3.0;

e Operating System: macOS Sonoma 15.4.

The experiment was conducted in three phases:

1) measurement of speed, average memory and peak memory when performing local
alignment using the classical Smith-Waterman algorithm;

2) measurement of speed, average memory and peak memory when performing local
alignment using the modified algorithm based on the Smith-Waterman algorithm;

3) comparisons of the obtained results.

Average memory usage was computed as the mean value of allocated memory during the entire
execution, while peak memory corresponds to the maximum memory usage observed at any point.
These metrics were chosen to reflect both sustained and worst-case memory behavior.

The results showed that as sequence length increased from 100 to 3000 nucleotides, the classical
Smith-Waterman algorithm exhibited a quadratic increase in execution time (up to 520 seconds). In
contrast, the modified version maintained a nearly constant execution time between 10 and 20
seconds. This demonstrates a significant reduction in computational load — approximately 11.7-fold
(Fig. 1).

Fig. 2 shows a comparison of the average memory consumption between the classical and modified
algorithms as a function of sequence length. The results demonstrate that the classical algorithm
exhibits linear growth in average memory usage as the input sequence length increases, exceeding
20,000 KB for sequences of 3,000 nucleotides.

In contrast, the modified algorithm displays a more stable behavior: after a brief initial rise, average
memory usage stabilizes at approximately 3,800 KB and remains nearly constant regardless of
further increases in input size.

These findings confirm that the proposed method is particularly effective for use in systems with
limited computational resources, where predictable and low memory usage is critical.

Fig. 3 presents a comparison of peak memory consumption between the classical and modified
algorithms. The classical Smith-Waterman algorithm is characterized by an exponential increase in
peak memory usage as sequence length grows, reaching approximately 72,088 KB for input
sequences of 3,000 nucleotides.

In contrast, the modified algorithm shows significantly lower peak memory usage: after a moderate
initial increase, the values stabilize around 7.8 MB, regardless of further input growth.
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Fig. 3. Comparison of peak memory consumption

These results confirm the effectiveness of the proposed window-based compression and processing
technique, which substantially reduces memory load while preserving the accuracy of the alignment.
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4. Conclusion

The paper proposes an algorithm for local alignment of genetic sequences based on window method
and RLE compression. The results of computational experiments show a significant reduction of
time and resource costs. In particular, the modified algorithm demonstrates a 11.7-fold reduction in
execution time compared to the original algorithm. Also, a 4.8-fold reduction in average and peak
memory consumption is obtained, which makes the proposed method promising for big data analysis
and implementation in environments with limited computational capabilities.

In the future, it is planned to extend the proposed approach by including adaptive compression
strategies that will automatically select the most efficient coding scheme depending on the structure
of the input sequence. In addition, a promising direction is the implementation of the modified
algorithm in distributed computing systems, including fog computing environments and embedded
devices, in order to assess the scalability and stability of the algorithm under resource constraints.
The integration of the developed method into existing bioinformatics pipelines remains an urgent
task, which will allow us to assess its practical significance in solving applied problems, such as
homology search, gene annotation and analysis of changes in genomes.
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