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Abstract. The ongoing digitalization of education requires new ways of presenting information and attention 

retention mechanisms. The aim of the presented work is to propose a solution for implementing a large 
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Аннотация. Продолжающаяся цифровизация образования требует новых способов представления 

информации и механизмов удержания внимания. Цель представленной работы – предложить решение 

на основе большой языковой модели, которая будет интерактивно генерировать подсказки различных 

типов в рамках электронного учебного курса по программированию. Основными подходами являются 

анализ существующих относительно небольших языковых моделей, TOPSIS-анализ (методика 

определения порядка предпочтения по сходству с идеальным решением), прототипирование и 

интеграция предлагаемого программного решения с образовательной системой вуза. В результате 

представлен сервис, который может быть интегрирован в системы управления обучением. В статье 

также представлены результаты тестирования моделей, которые легли в основу представленного 

решения. 

Ключевые слова: генерация подсказок; большие языковые модели; обучение программированию; 

обучающий ассистент; методика определения порядка предпочтения по сходству с идеальным 

решением (TOPSIS). 
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интеграция AI-ассистента в систему управления обучением. Труды ИСП РАН, том 37, вып. 4, часть 2, 

2025 г., стр. 175–190 (на английском языке). DOI: 10.15514/ISPRAS–2025–37(4)–25. 

1. Introduction 

Text-based chatbots that use large language models (LLMs) to generate responses to the user 

questions are becoming more and more widespread. Learning from big data has long allowed such 

assistants to solve many tasks from various fields of knowledge, and programming is no exception. 

The incorporation of AI technologies into both industrial development and programming-related 

educational processes is not to be overlooked. Many students, for example, use chatbots to solve 

educational tasks. It is almost impossible to fight this, intellectual assistants are becoming more 

and more thoroughly part of our lives, and therefore it is necessary to take this trend into account 

and adapt the educational process to the new realities. A good description of this trend can be 

found in the article [1]. Of course, the basis remains the same – to learn something, to get a deep 

understanding of the subject, it is necessary to analyze new information independently, active 

practice of the acquired skills and their subsequent verification is required. The main premise of 

this paper was the idea to supplement this process - to introduce an intellectual assistant to support 

the educational process. The key feature of the presented chatbot is its ability to interactively 

answer the user's questions, generate hints and explanations, guide him to the right path, without 

giving out the whole solution. 
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1.1 Overview of Existing Solutions 

Over the last few years, the range of solutions that utilize large language models to support the 

educational process has expanded significantly. Such systems not only help to answer users’ 

questions but also aim to provide interactive learning support, but each analog has its own features 

and limitations. 

 Evahelp.ai 

The Evahelp.ai platform is a universal solution based on artificial intelligence that generates 

answers and explanations in real time. The system demonstrates high adaptability and is 

able to adjust to a wide range of queries, thus covering a variety of educational tasks. 

However, when moving into highly specialized areas such as programming, Evahelp.ai 

often lacks technical details, reducing its practical applicability in professional training. 

 OpenAI Codex 

OpenAI Codex, implemented in GitHub Copilot, is focused on code generation and 

demonstrates high accuracy in understanding the syntax and semantics of software 

languages. This model is capable of automatically augmenting and correcting code, which 

significantly speeds up the workflow. However, an in-depth analysis shows that Codex’s 

main focus is on delivering ready-made solutions. This approach can reduce the educational 

value, as the student does not always have time to comprehend the logic of the proposed 

code independently, and the algorithm is often not adapted to the individual level of 

knowledge of the student. 

 Tutor CoPilot 

Tutor CoPilot [2] is an example of an innovative solution that aims to support the 

pedagogical process by combining human expertise with the power of AI. This system 

shows a significant improvement in student learning through the application of expert 

thinking models. Tutor CoPilot helps tutors to ask leading questions rather than just giving 

ready-made answers, which promotes analytical thinking and learner autonomy. At the 

same time, the experimental data show an increase in mastery by several percentage points, 

especially among students studying with less experienced tutors. 

 General-purpose Models 

In parallel with highly specialized solutions, general-purpose models such as ChatGPT, 

DeepSeek, YandexGPT and others grow in popularity. These systems, which include 

hundreds of billions of parameters, demonstrate an impressive ability to understand a wide 

variety of topics. However, their main task is to be as useful and informative as possible, 

which leads to the fact that when asked, they often offer several solutions, corrections and 

explanations at once. For an experienced specialist this approach may be valuable, but for a 

student in an educational course it often looks confusing. Moreover, ready-made solutions 

offered by such models contribute to copying code without deep understanding of the 

process of its creation. 

Thus, the analysis of existing solutions shows that most of them are either focused on generating 

ready-made answers or work within a wide range of tasks without taking specific features of 

programming training courses into account. These limitations emphasize the need to develop a 

specialized AI-assistant capable of guiding the student towards the correct solution of the problem, 

stimulating him to independent analysis and deep understanding of the material. Such assistant 

should take into account an individual learning style, help to form analytical thinking and avoid 

the temptation to quickly copy ready-made solutions, which is an important aspect in building a 

quality educational process. 

1.2 Problem Statement 

There are several issues that require attention when developing educational systems that 

incorporate AI assistants. First of all, student data is sensitive and sending them to external servers 
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can not only be time-consuming, but also pose security risks and loss of access to the data. 

Therefore, there is a need to develop a compact local system that will provide fast and secure 

access to the data while maintaining the functionality of the AI assistant. 

There is a need to create a system that has an embedded intelligent assistant that can support 

students in their learning process by providing hints and guidance for learning tasks. Instead of 

generating ready-made answers, the assistant should offer a set of hints that will stimulate thought 

processes and independent search for solutions. This will allow students to actively participate in 

the learning process, developing analytical thinking and deepening their understanding of the 

material. 

The system development will focus on integration with the existing local educational platform, in 

particular, with programming courses. The AI-assistant will be aimed at assisting in solving tasks, 

explaining errors and giving hints. An important feature will be the absence of the need to switch 

to external sources, which will ensure faster work and data protection. 

In addition, the system should be adaptive and support different levels of difficulty, depending on 

the student's skills, helping them move along the educational path from basic knowledge to more 

complex concepts. As part of the solution implementation, it will be important to develop 

algorithms to store and analyze student interactions with the AI assistant to improve the quality of 

prompts and personalize support. 

Thus, the challenge is to create a local system with an embedded intelligent assistant that will not 

just answer questions, but guide the student to an independent solution, while ensuring data 

security and improving the quality of the educational process. 

1.3 Purpose and Objectives 

The purpose of this work is to develop a specialized AI assistant integrated into the local 

educational system of a higher education institution to support a Python programming course. It is 

assumed that this assistant will not just answer questions, but will generate a set of hints. In 

addition, an important feature of the system is the need for local deployment to ensure data 

security and operational access to information, as well as integration with the network architecture 

of the educational platform, allowing to collect and analyze the history of interaction of students 

for further optimization of the assistant's algorithms. 

In order to achieve the objective, the following tasks are addressed: 

1) Identify and select the most appropriate language model capable of generating relevant 

and high-quality prompts in the context of a Python programming course. 

2) Deploy the selected model in the local infrastructure, while ensuring a high level of 

security and reliability of operation. 

3) Organize a mechanism for storing and analyzing the history of user interaction with the 

assistant to continuously improve the quality of provided hints and personalize training. 

4) Conduct comprehensive testing of the developed solution, evaluate its effectiveness and 

impact on the quality of the educational process. 

1.4 Research Questions 

In the process of creating the service, the questions that deserve special attention are: 

1) What is the best model to choose for local deployment? 

2) How to evaluate an AI model for generating prompts? 

3) What is the quality of the model's responses and how can the results be improved? 

4) How should the model be constrained and controlled to avoid leakage of problem solving 

in the responses? 
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2. Preparatory Stage 

2.1 Subject Area 

This paper develops a chatbot based on a large language model that should generate prompts for 

students. Importantly, the assistant is developed for a specific basic course in Python programming 

language in Fig. 1. The course is embedded in a learning management system (LMS) based on the 

Moodle platform. The environment used allows not only to receive the student's text message, but 

also to support the request with additional data: the problem condition, the student's code, data 

from the CodeRunner problem testing subsystem, as well as the hidden reference solution of the 

problem, if any. 

 

Fig. 1. User Interface of the Course. 

Within the framework of the problem to be solved, the hints were categorized into 3 types: 

 Code Explanation 

1) The user can select a code fragment to get its description and explanation of its 

structure. 

2) The assistant analyzes the last sent solution and, if there are errors, generates an 

interpreted description of them. 

3) The assistant answers the user's questions in online chat, helping with understanding 

the steps of the solution without providing the finished code. 

4) If the question goes beyond the scope of the task at hand, the assistant notifies the 

user. 

 Mistake correction hint 

1) We leverage the idea explained in [3]: based on the task condition, user code and data 

from CodeRunner, the assistant identifies syntax and logic errors, pointing out 

possible problems. 

 Next step hint 

1) The assistant helps you determine the next step in solving a problem by explaining the 

general meaning of the step and recommending useful functions without a detailed 

code description. This approach follows the idea suggested in [4]. 
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The main restriction is the prohibition against giving the full solution. Although the student may 

resort to asking for advice, the assistant must not solve the problem for the student. 

2.2 LLM Choice 

The next task was to select a model that should form the basis of the assistant to be developed. 

Thus, we faced a classical decision-making process. The decision in favor of one or another 

alternative should be made on the basis of evaluations of each of the options, which required of us 

to determine in advance the evaluation criteria and their significance. Note that criteria by the 

nature of their significance can be of two types: benefit (the more, the better) and non-benefit (the 

less, the better). 

Classical criteria for evaluating large language models turned out to be insufficient for the task at 

hand, since what matters, for example, is not only whether the assistant can solve all tasks (such 

measurements already exist), but whether the assistant performs the cueing function well, is well-

managed, and can work within the domain under consideration. Therefore, additional less explicit 

criteria were introduced, for which interval scores are used. A scale of real numbers from 0 to 10 

was used to construct such assessments. 

Thereby, the following criteria were proposed for comparison: 

 C1. Speed of response. This is important for better user experience and also allows using 

less resources, i.e., serving more students with a single model. 

Type: benefit 

Value: a non-negative real number taken as the average rate of output token generation 

per second across all test requests. Considering the following: 

 t – task from the dataset with N tasks; 

 T(t) – throughput, number of output tokens per second for the task; 

 s – speed, average throughput for all tasks from the dataset. 

 

 C2. Instructional Conformance. The model should follow a predefined configuration 

prompt. For example, that the model should work as a learning assistant, generating hints 

without issuing code. 

Type: benefit 

Value: the average number of instructions executed for each task. The score is formed as 

follows: for each model response, the number of executed instructions is calculated from 

the total number of instructions in the prompt, and then the average of all test queries is 

taken in percent: 

 aj – answer of the model to the task j; 

 bi – instruction from the prompt with M instructions; 

 conf(bi, a) – a function that shows whether the instruction in the given answer has 

been completed; 

 ICj – prompt’s instructional conformance to the task j. 

 



Караваева Е.А., Василевский В.И., Ланин Г.М., Прокудин Д.С. Разработка и интеграция AI-ассистента в систему управления 

обучением. Труды ИСП РАН, 2025, том 37 вып. 4, часть 2, с. 175-190. 

181 

 

 C3. Relevance. It is necessary to make sure that the model generates answers that are as 

relevant to the given topic as possible (without digressions and unnecessary details). 

Type: benefit 

Value: the average value in percent of the ratio of the number of topic sentences to the 

total number of sentences in the answers to the test queries: 

 si – sentence i from the answer of the model with K sentences; 

 rel(si, tj ) – a function that shows whether the sentence; 

 rj – relevance of the answer for the task tj; 

 r – relevance of the model’s answers. 

 

 C4. Hallucinations. Large language models by virtue of their design cannot guarantee 

the reliability of the information given, so non-existent sources, fictitious functions and 

libraries, or other unverified information may be given. 

Type: non-benefit 

Value: total number of hallucinations on the course dataset. 

 fc(ai) – a function that shows the number of hallucinations in the model’s answer to 

the task ti; 

 h – cumulative count of hallucinations: 

 

 C5. Toxicity. Model responses should not have negative emotional coloring, as this is 

unacceptable behavior within educational institutions. This is often taken into account at 

the model training stage, so this behavior is usually rare, but it is still useful to check. 

Since this is an assessment of emotional coloration and linguistic properties, it is difficult 

to characterize toxicity with a single number - such an assessment will always have some 

error, so interval estimates are used for this criterion and all subsequent ones. 

Type: non-benefit 

Value: An interval estimate of the number of responses classified as toxic. 

 tox(ai) – a function that shows whether the model’s answer to the task ti is toxic. 

 x – cumulative count of toxic answers. 
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 C6. Computing resources. For locally deployed models, it is crucial to estimate their 

CPU and GPU consumption. However, it is quite difficult to do so, as benchmark 

estimates and a possible advantage in numbers does not guarantee the superiority of one 

model over another. 

Type: non-benefit 

Value: subjective interval estimate of resource consumption. 

 CR – estimate of resource consumption. 0 means small resource requirements, 10 –

very high resource requirements. 

 l – lowest estimation 

 r – highest estimation 

 CR = [l, r], where l < r ∧ l, r ∈ [0, 10] ∧ l, r ∈ N 

 C7. Availability. Since the assistant is to be used by a legal entity (educational 

institution), it is necessary to minimize possible legal risks, exclude proprietary solutions, 

select a suitable license of use. 

Type: benefit 

Value: linguistic scale label: 

 X = {"Unavailable model", "Available with great limitations", "Limitedly available", 

"Almost without restrictions", "Available without restrictions"} 

 x ∈ X is also a stakeholder's estimation. 

 C8. Russian language support. Since the course is developed in Russian and the 

audience of the service is Russian-speaking, it is especially necessary to provide high-

quality support for this locale. Unfortunately, this cannot be described by a formula based 

on answers containing non-Russian characters, since sometimes it is acceptable to use 

English (language operators, names of data structures). 

Type: benefit 

Value: subjective interval evaluation of the quality of language support. 

 RLS – estimate of russian language support. 0 means ”does not support”, 10 – 

”immaculate support”. 

 l – lowest estimation 

 r – highest estimation 

 RLS = [l, r], where l < r ∧ l, r ∈ [0, 10] ∧ l, r ∈ N 

 C9. Stability. Since student queries and responses together form an ongoing dialog, the 

stability of the model over time must be considered. In particular, make sure that the 

model is consistent and does not get confused in its responses. This is a complex test that 

cannot be automated, it is a non-deterministic process, and it is evaluated manually by the 

user (the stakeholder). 

Type: benefit 

Value: subjective interval score. The scale is from 0 to 10. 

Next, it was necessary to prioritize these criteria, reflecting their relative importance for the 

assistant's intended use. The weights of the criteria are summarized in Table I. The highest weights 

were assigned to Russian language support (C8) and Stability (C9), as these are a priori critical for 

an assistant intended to support a Russian language programming course. High-quality language 

support ensures that the assistant can effectively communicate with students, while stability 

guarantees coherent multi-turn interactions, which are essential in a learning context. 
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Table 1. Criteria Weights. 

 
Instructional Conformance (C2) also received a relatively high weight, as it is important that the 

assistant remains easily controllable. This ensures that the assistant acts in accordance with our 

goals, such as providing hints instead of full solutions. Moreover, the need for complex 

instructions should be avoided, as we try to compile one versatile set of instructions for all 

different tasks. On the other hand, Speed of response (C1) was assigned a relatively low weight. 

While responsiveness contributes to student experience, it does not directly affect the quality of the 

model responses and is of secondary importance in this context. 

2.3 Collecting Data for the Benchmark 

A dataset based on the Python course in question was collected to evaluate models using the 

proposed criteria. 10 tasks, covering all types of exercises in the course, were selected from 

different sections. And, for each selected task, 10 questions (across 3 types of hints) were 

formulated to simulate student inquiries. Each input prompt for the models consisted of the 

corresponding task and one of its related questions. Also, additional instructions and constraints, 

such as a prohibition on providing full solutions, were included in the prompts. An example 

prompt is shown in Fig. 2. All input prompts were the same for each considered model. Thus, our 

dataset consisted of 100 different input prompts. Prompts and answers are available in a dedicated 

repository on GitHub [5]. 

 
Fig. 2. Prompt Example. 

For each input prompt, the outputs (answers) of compared models were collected. An output 

example from another task is shown in Fig. 3. These outputs were evaluated manually according to 

the proposed criteria. The manual evaluation was conducted blindly, without information about 

which model produced a given response, in order to minimize potential bias. 

During the evaluation process, some noteworthy outputs were observed. For example, outputs with 

unexpected words from English or Chinese languages were received, shown in Fig. 4. Some 

models didn't follow the instructions and returned responses with full Python code, shown in 

Fig. 5. These observations further supported the need for using of our proposed criteria. 



Karavaeva E.A., Vasilevskij V.I., Lanin G.M., Prokudin D.S. AI-Assistant Development and Integration into Learning Management System. 

Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190. 

184 

 
Fig. 3. Output Example. 

 
Fig. 4. Wrong Language Output Example. 

 
Fig. 5. Full Python Code Output Example. 

The responses containing only one or two words in unexpected foreign languages were not heavily 

penalized. However, outputs that included substantial portions of text in a foreign language were 

penalized more heavily according to our criteria. Similarly, outputs containing complete Python 

code, despite explicit instructions prohibiting full solutions, were subject to significant penalties. 

2.4 Decision Making 

More than 20 medium-sized language models were considered during the pre-selection process. 

Since the task involves code, it was first suggested to consider “code” versions of common 

models: DeepSeek Code, CodeLlama and others. It was expected that pre-training on code-based 

tasks would allow the assistant to better understand the task condition and to assist the student 

more flexibly. In practice, it turned out that code models of small size (up to 10 billion 

parameters), which can be deployed locally, were not at all suitable for our task. 

Their understanding of the code was sufficient to solve the question at hand, but they themselves 

lacked dialog “flexibility”. They do not follow instructions well, they have narrower Russian 

language support and as a side effect of additional training on code tasks – they almost always give 

a full-fledged code or problem solution in the answer, which is inadmissible by the subject area of 

the task. Having found such disadvantages in the dialog part, we decided to turn to more general 

Instruction models, which are immediately designed for dialog with the user. At the same time, 

experiments showed that even such models already have enough knowledge about programming to 

fully help students solve problems from the course. 

The initial selection resulted in the following set of alternatives: 

 A1. Llama 3 8B IT [6]; 
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 A2. Gemma 2 9B IT [7]; 

 A3. Qwen2.5 7B IT [8]. 

They have similar weights and also have moderate requirements for computational resources. 

Next, it was necessary to prioritize them according to the given criteria, and select the most 

suitable one. For this purpose, the classical TOPSIS [9] approach was used. First, we formed 

approximate preliminary estimates (Table 2). 

Table 2. Preliminary Scores. 

 

Since the solution has to be evaluated comprehensively and the criteria are of different nature, 

defuzzification of the scores by taking the mean value of the interval was chosen (Table 3). 

Table 3. Defuzzied Scores. 

 

Let's perform normalization of the estimates. For each column we calculated square roots from the 

sum of squares of its values, and then each column value was divided by the calculated root (Table 

4). Next, weights were applied to the estimates (Table 5). 

Table 4. Normalized Scores. 

 
Table 5. Weighted Normalized Scores. 

 

The next step is to select Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS). The PIS 

vector will contain maximum values for benefit criteria and minimum values for non-benefit 

criteria, and opposite for NIS (Table 6). 

Table 6. Positive/Negative Ideal Solutions. 

 

Next, based on the PIS and NIS values for the scores of each alternative, the Euclidean distances to 

each alternative were calculated. The final weight for each alternative was the ratio of the distance 

to the negative solution to the sum of the distances (Table 7). 

Table 7. Results of Ranking. 

 

According to the obtained scores, Gemma 2 received the highest rank – this makes it the most 

preferable alternative in our decision-making task. Compared to its analogs, it demonstrated better 

understanding of the Russian language, generated correct hints and clearly followed the 

instructions. 
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3. Emotional State Awareness 

One of the key aspects in the design of the assistant was to ensure not only methodologically 

correct but also psychologically comfortable interaction with students. While earlier sections 

focused on the relevance and contextual adaptation of the assistant’s prompts, the current section 

addresses the integration of emotional state recognition as a critical feature, especially in remote 

learning environments where immediate human feedback is absent. 

Emotional well-being directly affects learning efficiency, particularly in programming education, 

where students often encounter repeated failures, misunderstandings, or anxiety about "not 

knowing enough." These factors can lead to decreased motivation and even burnout. Therefore, 

lightweight but effective mechanism for emotional support was implemented, enabling the 

assistant to adjust its communicative tone based on the learner’s psychological state. 

The assistant evaluates the emotional state of the user on a scale from 1 to 10, where: 

 1-3 indicates high stress, 

 4-6 corresponds to neutral or mildly anxious states, 

 7-10 implies calmness, confidence, and concentration. 

In accordance with the assistant's adaptive response mechanism, its tone and level of support are 

modulated based on the emotional state inferred from the user's input. The following examples, 

generated using the Gemma 2 model, demonstrate this adaptive behavior within the context of a 

typical Python programming task, specifically involving CSV file processing. Notably, the 

assistant provides distinct responses to the same user query, contingent upon the emotional context 

identified by the model. For more detailed information about the full prompt and its application, 

please refer to the Fig. 6. 

Case 1: Emotional State = 6 (neutral) – "Привет! Ошибка может возникнуть, если в 

некоторых строках CSV-файла меньше трех элементов. В этом случае row[2] вызовет 

IndexError: list index out of range, поскольку индекс 2 выходит за пределы списка". 

The assistant uses a factual and concise tone, focusing on the problem with minimal affective 

language. 

Case 2: Emotional State = 2 (stress) – "Привет! Понимаю, это может быть стрессово — с 

этим сталкивается каждый время от времени. Ошибка, вероятно, возникает, если в 

строке файла goods.csv содержится меньше трех элементов. Попытка обратиться к 

row[2] в таком случае вызывает IndexError. Не переживай — это очень распространенная 

проблема при работе с данными в формате CSV". 

Here, the assistant provides emotional reassurance alongside technical guidance, helping to 

mitigate frustration and support emotional resilience. 

Case 3: Emotional State = 10 (confident) – "Эта ошибка возникает, если в некоторых 

строках файла goods.csv меньше трех столбцов. Попытка доступа к row[2] в таких 

случаях вызывает ошибку IndexError. Рекомендуется добавить проверку длины перед 

доступом к индексу 2". 

The tone is business-like and information-dense, assuming the student requires direct input without 

emotional cushioning. 

Rationale and Impact 

Learning is inherently an emotional process, with cognitive effectiveness strongly influenced by 

the student’s affective state. The assistant’s ability to adapt its tone, even based on a coarse-

grained numeric estimate, improves communication quality and reduces the risk of emotional 

burnout. This adaptive behavior aligns with the assistant’s role as not only a technical but also a 

pedagogical tool, bridging the gap between purely algorithmic feedback and human-centered 

educational support. 
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Fig. 6. Mistakes Handling Example. 
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4. Aspects of Software Implementation 

4.1 System Architecture 

The software implementation of the "Sage" project comprises several key components (Fig. 7) that 

interact to deliver adaptive hints to students within the Moodle learning platform. The system is 

designed using a microservice architecture to ensure flexibility, scalability, and responsibility 

segregation between modules. It consists of the following important components: 

 
Fig. 7. Overall System Architecture. 

 Client-side (JS Client): Implemented in JavaScript and integrated into Moodle as part of a 

PHP plugin. It is responsible for the user interface (UI) components such as the chat 

window and code highlighting functionality, real-time user interaction, context gathering 

(e.g., task details), and dispatching requests to the server. The client architecture features 

a universal API for chat interaction and context transmission, facilitating straightforward 

functional extensions. 

 Moodle Plugin (PHP Plugin): Operates within the Moodle environment. It functions as a 

bridge between the JS client and the main backend logic. Leveraging Moodle’s modular 

plugin system, it provides access to course and user data, validates and complements 

client requests with the required context (e.g., assignment information) before forwarding 

them to the main server. It is implemented as a block plugin. 

 Main Server (Java Backend): Acts as the central mediator within the microservice 

architecture. It receives context-complemented requests from the PHP plugin, manages 

business logic, interacts with the databases, and coordinates requests to the AI module via 

adapters. The Java backend architecture is designed with configurability in mind. 

 AI Module (Python Backend): A microservice responsible for processing requests using a 

Large Language Model (LLM). It receives requests from the Java backend through 

adapters, interacts with the LLM to generate explanations, hints, and code analysis, and 

returns the responses. Key functions include status monitoring and processing textual 

requests, taking into account context and system instructions. 

 Databases: The system utilizes two Database Management Systems (DBMS): a relational 

one (PostgreSQL - PSQL) and a non-relational one (MongoDB). This separation allows 

storing structured data (e.g., chat history) in PostgreSQL, and more flexible or large-scale 

data (e.g., complex contexts in JSON format) in MongoDB. 

 Adapters: Components ensuring standardized interaction between the Java backend and 

various Python backend implementations (AI modules). 

 Deployment: The entire system is packaged using Docker and Docker Compose, ensuring 

ease of deployment on any host, managing dependencies via a shared network, and 

enabling easy data resets (purging) for testing or updates. For code execution in an 

isolated environment (if required), Jobe can be utilized. 
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4.2 Client Application (JS Client) 

The client application, written in JavaScript, serves as the primary interface for user interaction 

with the "Sage" system within Moodle. Main features of this application are following: 

 UI Components: Features a chat window and buttons enabling users to request 

explanations for selected code snippets or analyses of runtime errors. 

 Interaction: Utilizes asynchronous requests (Ajax) directed to the PHP plugin for sending 

messages and receiving responses. It also processes server responses, displaying them to 

the user. 

 Context: Transmits not only the user's message but also relevant context, such as the 

selected code fragment or error text. 

 Extensibility: The API is designed to easily accommodate new request types (e.g., 

requests for motivational messages or specific types of hints). 

4.3 Server Components (PHP & Java) 

The server-side infrastructure is divided into two main components: the PHP plugin for Moodle 

integration and the Java backend acting as a mediator: 

 PHP Plugin: Developed adhering to Moodle's API and architectural standards. It receives 

data from the JS client, verifies access permissions and request validity, extracts 

necessary context (User ID, Course ID, Task/Assignment ID, etc.) from the Moodle 

environment, complements the original request with this context, and securely forwards it 

to the Java backend. 

 Java Backend: Implemented using Java (leveraging the Spring Framework), it acts as the 

central hub: routing requests, managing chat sessions, persisting request history to 

MongoDB, querying PostgreSQL for chat content, and interacting with the Python 

backend via a standardized interface (adapters). The data partitioning between 

PostgreSQL and MongoDB is chosen for optimal storage of different data types. 

5. Conclusion 

The evaluation results revealed that Gemma 2 9B IT emerged as the most suitable model, offering 

the best overall alignment with the proposed criteria, such as accurate instruction following, 

context comprehension, and effective hint generation in Russian language. 

To fully realize the capabilities of the assistant, the necessary software infrastructure was 

developed. This includes a universal PHP plugin for seamless integration into Moodle courses, a 

modular backend (Java and Python) for request routing and AI processing, and a flexible adapter 

system to simplify the future addition of alternative LLMs. 

The resulting system represents a scalable and adaptable educational tool, capable of being 

extended to support other courses or reconfigured in response to changes within the current course 

structure. Its modular architecture ensures both ease of maintenance and extensibility. 

Future work will focus on expanding the affective and psychological dimension of the assistant. In 

particular, upcoming versions will incorporate mechanisms for long-term emotional profiling, 

taking into account not only the student’s current affective state but also their interaction history. 

This will allow the assistant to offer increasingly personalized and empathetic support adapted to 

the individual students. 
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