Tpyowr UCIT PAH, mom 37, evin. 4, uacme 2, 2025 2. /| Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025

DOI: 10.15514/ISPRAS-2025-37(4)-25 @(:_}H

Al-Assistant Development and Integration
into Learning Management System

LE.A. Karavaeva, ORCID: 0009-0003-0418-7685 <eakaravaeva_1@edu.hse.ru>
LV.1. Vasilevskij, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
2G.M. Lanin, ORCID: 0009-0002-6554-9996 <gmlanin@edu.hse.ru>
3D.S. Prokudin, ORCID: 0009-0003-0310-5385 <s02240530@gse.cs.msu.ru>

! Scientific and Educational Laboratory of Cloud and Mobile Technologies,
Higher School of Economics (HSE),
11, Pokrovsky Bulvar, Moscow, 109028, Russia.

2 Department of Software Engineering Higher School of Economics (HSE),
11, Pokrovsky Bulvar, Moscow, 109028, Russia.

3 Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia.

Abstract. The ongoing digitalization of education requires new ways of presenting information and attention
retention mechanisms. The aim of the presented work is to propose a solution for implementing a large
language model, which will interactively generate prompts of different types, within an e-learning course on
programming. The main approaches are the analysis of existing relatively small language models, the
TOPSIS method to select the most appropriate one, prototyping, and the integration of the proposed software
solution with the HEI educational system. As a result, a service that can be integrated into learning
management systems is presented. The paper also presents the results of testing the models that formed the
basis of the presented solution.

Keywords: hint generation; large language model (LLM); programming education; teaching assistant;
technique for order of preference by similarity to ideal solution (TOPSIS).

For citation: Karavaeva E.A., Vasilevskij V.., Lanin G.M., Prokudin D.S. Al-Assistant Development and
Integration into Learning Management System. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025,
pp. 175-190. DOI: 10.15514/ISPRAS-2025-37(4)-25.

175

mailto:eakaravaeva_1@edu.hse.ru
mailto:vivasilevskiy_1@edu.hse.ru
mailto:gmlanin@edu.hse.ru
mailto:s02240530@gse.cs.msu.ru

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

PaspaboTtka u nHrerpauma Al-accucteHTa
B CMCTeMy ynpaBrieHusi o6yuyeHnem

LE.A. Kapasaesa, ORCID: 0009-0003-0418-7685 <eakaravaeva_l@edu.hse.ru>
1 B.U. Bacunesckuii, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
2I'M. Jlanun, ORCID: 0009-0002-6554-9996 <gmlanin@edu.hse.ru>
3 J1.C. Ipoxyoun, ORCID: 0009-0003-0310-5385 <s02240530@gse.cs.msu.ru=

Y Hayuno-yuebnasn nabopamopus o6aaunvix u mobunshvix mexnonoauti, Hayuonanomuwiil
uccaeoosamenvckuli ynusepcumem "Boicuas wikona sxonomuxu" (HHUY BILD),
Poccus, 109028, Mocksa, Ilokposckuii 6yrvsap, 0. 11.

2 Jlenapmamenm npozpammnoti undcenepuu, Hayuonanvnwlil ucciedosamenbcruil
yuugepcumem "Buvicwasn wikona sxonomuxu” (HUY BILID),
Poccus, 109028, Mocksa, Ilokposckuii 6yavsap, 0. 11.

3 Mockoeckuii 2ocyoapcmeennviii ynusepcumem umeny M.B. Jlomonocosa,
Poccus, 119991, Mockea, Jlenunckue eopuwl, 0. 1.

Annoramusi. [Iponomkaromasicss nudposuzanus oOpa3oBaHusl TpeOyeT HOBBIX CIIOCOOOB MPEICTABICHUS
nHpopMaIMy 1 MEXaHH3MOB yJepkaHusl BHUMaHus. L{enb mpeacTaBneHHON pabOTHl — NMPEUIOKHUTh pelICHHE
Ha OCHOBE OOJIBILOI S3BIKOBOI MOZIENH, KOTOpasi Oy/ieT HHTEPAKTUBHO IT'eHEPHPOBATh MOJCKA3KH Pa3InIHbIX
THUIIOB B PaMKaxX 3JICKTPOHHOTO y4eOHOro Kypca o NporpaMMHUpoBaHnio. OCHOBHBIMH TTOJXOAMH SBIISIOTCS
aHaNM3 CYIIECTBYIOIIMX OTHOCHUTENHHO HEOONbIIMX S3BIKOBBIX Moneneit, TOPSIS-anamms (Meroanka
OIpeJIeICHUsI TOps/IKA MPEINOYTEHUS 110 CXOJACTBY C HJCaJbHBIM PEUICHHEM), NPOTOTHIMPOBAHUE U
MHTErpalysl MpelaraéMoro ImporpaMMHOrO pelieHusi ¢ 00pa3oBarelbHOM cHCTeMoi By3a. B pesynbraTe
MIPE/ICTABIICH CEPBHC, KOTOPHIH MOXKET OBITh MHTETPUPOBAH B CHUCTEMBI yIpaBJIeHUs oOydeHHeM. B cratbe
TAKOKe MPEJICTABJICHBI PEe3yJIbTaThl TECTHPOBAHUS MOJENEH, KOTOPBIE JIETJIH B OCHOBY IIPEICTaBIEHHOTO
peuIeHusl.

KirouyeBble ciioBa: reHepanus MOJICKa30K; OONbIINE SA3BIKOBBIE MOJENH; 00yd4eHHE HMPOrpaMMHPOBAHUIO;
00ydJaroIMil acCUCTEHT; METOIMKA ONPEACNCHUs TOPSAKA IMPEOIOYTEHHS 10 CXOACTBY C HACATBHBIM
peuterrem (TOPSIS).

Jas umtupoBanmsi: Kapasaea E.A., Bacunesckuii B.U., Jlanmn I'.M., Ilpokymun [.C. Pazpabotka u
nHTerpanus Al-accucteHTa B cucteMy ynpasieHus ooydenueM. Tpyast UCIT PAH, tom 37, Beim. 4, gacTs 2,
2025 r., cp. 175-190 (ua anrnuiickoM si3bike). DOI: 10.15514/ISPRAS—-2025-37(4)-25.

1. Introduction

Text-based chatbots that use large language models (LLMSs) to generate responses to the user
questions are becoming more and more widespread. Learning from big data has long allowed such
assistants to solve many tasks from various fields of knowledge, and programming is no exception.
The incorporation of Al technologies into both industrial development and programming-related
educational processes is not to be overlooked. Many students, for example, use chatbots to solve
educational tasks. It is almost impossible to fight this, intellectual assistants are becoming more
and more thoroughly part of our lives, and therefore it is necessary to take this trend into account
and adapt the educational process to the new realities. A good description of this trend can be
found in the article [1]. Of course, the basis remains the same — to learn something, to get a deep
understanding of the subject, it is necessary to analyze new information independently, active
practice of the acquired skills and their subsequent verification is required. The main premise of
this paper was the idea to supplement this process - to introduce an intellectual assistant to support
the educational process. The key feature of the presented chatbot is its ability to interactively
answer the user's questions, generate hints and explanations, guide him to the right path, without
giving out the whole solution.

176

mailto:eakaravaeva_1@edu.hse.ru
mailto:vivasilevskiy_1@edu.hse.ru
mailto:gmlanin@edu.hse.ru
mailto:s02240530@gse.cs.msu.ru

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

1.1 Overview of Existing Solutions

Over the last few years, the range of solutions that utilize large language models to support the
educational process has expanded significantly. Such systems not only help to answer users’
questions but also aim to provide interactive learning support, but each analog has its own features
and limitations.
e Evahelp.ai
The Evahelp.ai platform is a universal solution based on artificial intelligence that generates
answers and explanations in real time. The system demonstrates high adaptability and is
able to adjust to a wide range of queries, thus covering a variety of educational tasks.
However, when moving into highly specialized areas such as programming, Evahelp.ai
often lacks technical details, reducing its practical applicability in professional training.
e OpenAl Codex
OpenAl Codex, implemented in GitHub Copilot, is focused on code generation and
demonstrates high accuracy in understanding the syntax and semantics of software
languages. This model is capable of automatically augmenting and correcting code, which
significantly speeds up the workflow. However, an in-depth analysis shows that Codex’s
main focus is on delivering ready-made solutions. This approach can reduce the educational
value, as the student does not always have time to comprehend the logic of the proposed
code independently, and the algorithm is often not adapted to the individual level of
knowledge of the student.
e Tutor CoPilot
Tutor CoPilot [2] is an example of an innovative solution that aims to support the
pedagogical process by combining human expertise with the power of Al. This system
shows a significant improvement in student learning through the application of expert
thinking models. Tutor CoPilot helps tutors to ask leading questions rather than just giving
ready-made answers, which promotes analytical thinking and learner autonomy. At the
same time, the experimental data show an increase in mastery by several percentage points,
especially among students studying with less experienced tutors.
e General-purpose Models
In parallel with highly specialized solutions, general-purpose models such as ChatGPT,
DeepSeek, YandexGPT and others grow in popularity. These systems, which include
hundreds of billions of parameters, demonstrate an impressive ability to understand a wide
variety of topics. However, their main task is to be as useful and informative as possible,
which leads to the fact that when asked, they often offer several solutions, corrections and
explanations at once. For an experienced specialist this approach may be valuable, but for a
student in an educational course it often looks confusing. Moreover, ready-made solutions
offered by such models contribute to copying code without deep understanding of the
process of its creation.
Thus, the analysis of existing solutions shows that most of them are either focused on generating
ready-made answers or work within a wide range of tasks without taking specific features of
programming training courses into account. These limitations emphasize the need to develop a
specialized Al-assistant capable of guiding the student towards the correct solution of the problem,
stimulating him to independent analysis and deep understanding of the material. Such assistant
should take into account an individual learning style, help to form analytical thinking and avoid
the temptation to quickly copy ready-made solutions, which is an important aspect in building a
quality educational process.

1.2 Problem Statement

There are several issues that require attention when developing educational systems that
incorporate Al assistants. First of all, student data is sensitive and sending them to external servers
177

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

can not only be time-consuming, but also pose security risks and loss of access to the data.
Therefore, there is a need to develop a compact local system that will provide fast and secure
access to the data while maintaining the functionality of the Al assistant.

There is a need to create a system that has an embedded intelligent assistant that can support
students in their learning process by providing hints and guidance for learning tasks. Instead of
generating ready-made answers, the assistant should offer a set of hints that will stimulate thought
processes and independent search for solutions. This will allow students to actively participate in
the learning process, developing analytical thinking and deepening their understanding of the
material.

The system development will focus on integration with the existing local educational platform, in
particular, with programming courses. The Al-assistant will be aimed at assisting in solving tasks,
explaining errors and giving hints. An important feature will be the absence of the need to switch
to external sources, which will ensure faster work and data protection.

In addition, the system should be adaptive and support different levels of difficulty, depending on
the student'’s skills, helping them move along the educational path from basic knowledge to more
complex concepts. As part of the solution implementation, it will be important to develop
algorithms to store and analyze student interactions with the Al assistant to improve the quality of
prompts and personalize support.

Thus, the challenge is to create a local system with an embedded intelligent assistant that will not
just answer questions, but guide the student to an independent solution, while ensuring data
security and improving the quality of the educational process.

1.3 Purpose and Objectives

The purpose of this work is to develop a specialized Al assistant integrated into the local
educational system of a higher education institution to support a Python programming course. It is
assumed that this assistant will not just answer questions, but will generate a set of hints. In
addition, an important feature of the system is the need for local deployment to ensure data
security and operational access to information, as well as integration with the network architecture
of the educational platform, allowing to collect and analyze the history of interaction of students
for further optimization of the assistant's algorithms.

In order to achieve the objective, the following tasks are addressed:

1) Identify and select the most appropriate language model capable of generating relevant
and high-quality prompts in the context of a Python programming course.

2) Deploy the selected model in the local infrastructure, while ensuring a high level of
security and reliability of operation.

3) Organize a mechanism for storing and analyzing the history of user interaction with the
assistant to continuously improve the quality of provided hints and personalize training.

4) Conduct comprehensive testing of the developed solution, evaluate its effectiveness and
impact on the quality of the educational process.

1.4 Research Questions
In the process of creating the service, the questions that deserve special attention are:

1) What is the best model to choose for local deployment?
2) How to evaluate an Al model for generating prompts?
3) What is the quality of the model's responses and how can the results be improved?

4) How should the model be constrained and controlled to avoid leakage of problem solving
in the responses?

178

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

2. Preparatory Stage

2.1 Subject Area

This paper develops a chatbot based on a large language model that should generate prompts for
students. Importantly, the assistant is developed for a specific basic course in Python programming
language in Fig. 1. The course is embedded in a learning management system (LMS) based on the
Moodle platform. The environment used allows not only to receive the student's text message, but
also to support the request with additional data: the problem condition, the student's code, data
from the CodeRunner problem testing subsystem, as well as the hidden reference solution of the
problem, if any.

yyyyyyyyy

Fig. 1. User Interface of the Course.

Within the framework of the problem to be solved, the hints were categorized into 3 types:
e Code Explanation

1) The user can select a code fragment to get its description and explanation of its
structure.

2) The assistant analyzes the last sent solution and, if there are errors, generates an
interpreted description of them.

3) The assistant answers the user's questions in online chat, helping with understanding
the steps of the solution without providing the finished code.

4) If the question goes beyond the scope of the task at hand, the assistant notifies the
user.

e Mistake correction hint

1) We leverage the idea explained in [3]: based on the task condition, user code and data
from CodeRunner, the assistant identifies syntax and logic errors, pointing out
possible problems.

o Next step hint

1) The assistant helps you determine the next step in solving a problem by explaining the
general meaning of the step and recommending useful functions without a detailed
code description. This approach follows the idea suggested in [4].

179

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

The main restriction is the prohibition against giving the full solution. Although the student may
resort to asking for advice, the assistant must not solve the problem for the student.

2.2 LLM Choice

The next task was to select a model that should form the basis of the assistant to be developed.
Thus, we faced a classical decision-making process. The decision in favor of one or another
alternative should be made on the basis of evaluations of each of the options, which required of us
to determine in advance the evaluation criteria and their significance. Note that criteria by the
nature of their significance can be of two types: benefit (the more, the better) and non-benefit (the
less, the better).

Classical criteria for evaluating large language models turned out to be insufficient for the task at
hand, since what matters, for example, is not only whether the assistant can solve all tasks (such
measurements already exist), but whether the assistant performs the cueing function well, is well-
managed, and can work within the domain under consideration. Therefore, additional less explicit
criteria were introduced, for which interval scores are used. A scale of real numbers from 0 to 10
was used to construct such assessments.

Thereby, the following criteria were proposed for comparison:
e C1. Speed of response. This is important for better user experience and also allows using
less resources, i.e., serving more students with a single model.
Type: benefit

Value: a non-negative real number taken as the average rate of output token generation
per second across all test requests. Considering the following:

= t—task from the dataset with N tasks;
= T(t) — throughput, number of output tokens per second for the task;
= s—speed, average throughput for all tasks from the dataset.

e T()

N ey

e C2. Instructional Conformance. The model should follow a predefined configuration
prompt. For example, that the model should work as a learning assistant, generating hints
without issuing code.

Type: benefit

Value: the average number of instructions executed for each task. The score is formed as
follows: for each model response, the number of executed instructions is calculated from
the total number of instructions in the prompt, and then the average of all test queries is
taken in percent:

= @;—answer of the model to the task j;

= bj— instruction from the prompt with M instructions;

= conf(bi, a) — a function that shows whether the instruction in the given answer has
been completed;

= |ICj— prompt’s instructional conformance to the task j.

conf(bi,a) = {0 if instruction has not been completed @

1 if instruction completed

180

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

i conf(bi,a;)

IC; = o 3)
N
v IC,

IC = % «100%)

C3. Relevance. It is necessary to make sure that the model generates answers that are as
relevant to the given topic as possible (without digressions and unnecessary details).
Type: benefit

Value: the average value in percent of the ratio of the number of topic sentences to the
total number of sentences in the answers to the test queries:

= s;—sentence i from the answer of the model with K sentences;
= rel(si, tj) — a function that shows whether the sentence;
= r1j—relevance of the answer for the task t;;

= r—relevance of the model’s answers.

0 if s; is relevant to the task ¢,
rellent) =11 i itis not

X %
ri= Yimt ’”Ie{l(svt,v) 6)
N
r= # * 100% %)

C4. Hallucinations. Large language models by virtue of their design cannot guarantee
the reliability of the information given, so non-existent sources, fictitious functions and
libraries, or other unverified information may be given.

Type: non-benefit
Value: total number of hallucinations on the course dataset.

= fc(a)) — a function that shows the number of hallucinations in the model’s answer to
the task t;;

= h— cumulative count of hallucinations:

N

h= Z felas) (3)

i=1

C5. Toxicity. Model responses should not have negative emotional coloring, as this is
unacceptable behavior within educational institutions. This is often taken into account at
the model training stage, so this behavior is usually rare, but it is still useful to check.
Since this is an assessment of emotional coloration and linguistic properties, it is difficult
to characterize toxicity with a single number - such an assessment will always have some
error, so interval estimates are used for this criterion and all subsequent ones.

Type: non-benefit

Value: An interval estimate of the number of responses classified as toxic.

= tox(a;) — a function that shows whether the model’s answer to the task t; is toxic.

= X — cumulative count of toxic answers.

N
T = Ztom(a,) ©)
i=1

181

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

C6. Computing resources. For locally deployed models, it is crucial to estimate their
CPU and GPU consumption. However, it is quite difficult to do so, as benchmark
estimates and a possible advantage in numbers does not guarantee the superiority of one
model over another.

Type: non-benefit

Value: subjective interval estimate of resource consumption.

= CR - estimate of resource consumption. 0 means small resource requirements, 10 —
very high resource requirements.

= |- lowest estimation

= r— highest estimation

= CR=[lr],wherel<rAl,re[0,10]AlLreN

C7. Availability. Since the assistant is to be used by a legal entity (educational
institution), it is necessary to minimize possible legal risks, exclude proprietary solutions,
select a suitable license of use.

Type: benefit
Value: linguistic scale label:

= X = {"Unavailable model", "Available with great limitations", "Limitedly available",
"Almost without restrictions", "Available without restrictions"}

= X € X is also a stakeholder's estimation.

C8. Russian language support. Since the course is developed in Russian and the

audience of the service is Russian-speaking, it is especially necessary to provide high-

quality support for this locale. Unfortunately, this cannot be described by a formula based

on answers containing non-Russian characters, since sometimes it is acceptable to use

English (language operators, names of data structures).

Type: benefit

Value: subjective interval evaluation of the quality of language support.

= RLS - estimate of russian language support. 0 means “does not support”, 10 —
“immaculate support”.

= |- lowest estimation

= r— highest estimation

= RLS=]l, r],wherel<rAl,re[0,10]Al,reN

C9. Stability. Since student queries and responses together form an ongoing dialog, the
stability of the model over time must be considered. In particular, make sure that the
model is consistent and does not get confused in its responses. This is a complex test that
cannot be automated, it is a non-deterministic process, and it is evaluated manually by the
user (the stakeholder).

Type: benefit
Value: subjective interval score. The scale is from 0 to 10.

Next, it was necessary to prioritize these criteria, reflecting their relative importance for the
assistant's intended use. The weights of the criteria are summarized in Table I. The highest weights
were assigned to Russian language support (C8) and Stability (C9), as these are a priori critical for
an assistant intended to support a Russian language programming course. High-quality language
support ensures that the assistant can effectively communicate with students, while stability
guarantees coherent multi-turn interactions, which are essential in a learning context.

182

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

Table 1. Criteria Weights.

Cl C2 [C3 | C4 | C5 c6e | C7 C8 [e]]
wg;, | 005 | 015] 01 01]005[005] 01| 025] 015

Instructional Conformance (C2) also received a relatively high weight, as it is important that the
assistant remains easily controllable. This ensures that the assistant acts in accordance with our
goals, such as providing hints instead of full solutions. Moreover, the need for complex
instructions should be avoided, as we try to compile one versatile set of instructions for all
different tasks. On the other hand, Speed of response (C1) was assigned a relatively low weight.
While responsiveness contributes to student experience, it does not directly affect the quality of the
model responses and is of secondary importance in this context.

2.3 Collecting Data for the Benchmark

A dataset based on the Python course in question was collected to evaluate models using the
proposed criteria. 10 tasks, covering all types of exercises in the course, were selected from
different sections. And, for each selected task, 10 questions (across 3 types of hints) were
formulated to simulate student inquiries. Each input prompt for the models consisted of the
corresponding task and one of its related questions. Also, additional instructions and constraints,
such as a prohibition on providing full solutions, were included in the prompts. An example
prompt is shown in Fig. 2. All input prompts were the same for each considered model. Thus, our
dataset consisted of 100 different input prompts. Prompts and answers are available in a dedicated
repository on GitHub [5].

Input prompt:

IIpuser! Tl BBIIOIHSENIB POJIb ACCHCTEHTA IO KYPCY IPOrpaMMUpPOBa-
uug Ha Python. Tebe neobxoqumMo 03HAKOMUTBCS € YCJIOBUEM 3a/Ia4H U
HOMOYb CTYJEHTY, OTBETHB Ha €ro

BOIIPOC.

Bamaua: Hammmure nporpaMmy, koropast Belbupaer u3 TabJuubl
TOBaphl, He J0POXKe 3aJaHHON TeHbI.

Kon crynenra
import csv

def filter_goods(filename, max_price):
with open(filename, encoding='utf-8') as file:

reader = csv.reader(file, delimiter=';"')

with open('filtered-goods.csv', 'w', encoding='utf-8') as output:
writer = csv.writer(output, delimiter=';'}
for row in reader:

if int(row[2]) == max_price:
writer.writerow(row)

Bompoc: Tlogemy 3TOT KOJi MOXKET BBI3BATH ONMMOKY IIPH BBIOJIHEHUH !
B kakoM mecte Bo3MoxKHA TpobiiemMa’

OI‘paHl{‘l(-!leIH Ha BBEIXO/:
B oreere ne JAOJIZKHO 6bITH HCIIPaBJICHHOI'O KOAa.

Fig. 2. Prompt Example.

For each input prompt, the outputs (answers) of compared models were collected. An output
example from another task is shown in Fig. 3. These outputs were evaluated manually according to
the proposed criteria. The manual evaluation was conducted blindly, without information about
which model produced a given response, in order to minimize potential bias.

During the evaluation process, some noteworthy outputs were observed. For example, outputs with
unexpected words from English or Chinese languages were received, shown in Fig. 4. Some
models didn't follow the instructions and returned responses with full Python code, shown in
Fig. 5. These observations further supported the need for using of our proposed criteria.

183

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

Output: IIpobrema B TOM, 9TO B KO CTYIEHT
nelTaeTcs OTKPEITH aii ‘filtered-goods.csv' B pexxume
nobGasienust ().

Ecmn daiin yxe cymecTByer, ero KOHTeHT Oy/JeT nepe-
3alHcal IIpH OTKPBITHH B 3ITOM peXxKHME.

CurieioBare/IbHO, IPH KazKIOM 3aIlyCKe IPOrPaMMbl BeCh
crapelif KoHTeHT OyJer ynajeH, u B daiiie ocTaHyTCs
TOJILKO TOBAphl, HalJICHHBIE 110 33/IAHHOMY KPHTEPHIO
Ha TEKYIILyI0 HTCPAIHIO.

Fig. 3. Output Example.

Output: ... u pe3yiabTaT BCé pABHO BBIIAETCS HEIPa-
BuIbHO, TO nocmorpure slikely be that there might be
a misunderstanding of whitespace in the ‘ingredients’
function.

Try adding the spaces using string formatting to ensure
the exact formatting as specified in the task. If the issue
persists, consider re-checking the task requirements and
the implementation details.

Fig. 4. Wrong Language Output Example.

Output:

Hanpumep, MOXKHO 06aBUTH JONOJHUTENbHBIE Hapamerp "indent" (o
YMOJIMAHHUIO 4) U HCIONIB30BATh ero Jyisi (POpMATUPOBAHUSI BBIBOAA:
Kox crynenra

def ingredients(food, indent=4):
for item in food:
print(' ' * indent + item)

Fig. 5. Full Python Code Output Example.

The responses containing only one or two words in unexpected foreign languages were not heavily
penalized. However, outputs that included substantial portions of text in a foreign language were
penalized more heavily according to our criteria. Similarly, outputs containing complete Python
code, despite explicit instructions prohibiting full solutions, were subject to significant penalties.

2.4 Decision Making

More than 20 medium-sized language models were considered during the pre-selection process.
Since the task involves code, it was first suggested to consider “code” versions of common
models: DeepSeek Code, CodeLlama and others. It was expected that pre-training on code-based
tasks would allow the assistant to better understand the task condition and to assist the student
more flexibly. In practice, it turned out that code models of small size (up to 10 billion
parameters), which can be deployed locally, were not at all suitable for our task.

Their understanding of the code was sufficient to solve the question at hand, but they themselves
lacked dialog “flexibility”. They do not follow instructions well, they have narrower Russian
language support and as a side effect of additional training on code tasks — they almost always give
a full-fledged code or problem solution in the answer, which is inadmissible by the subject area of
the task. Having found such disadvantages in the dialog part, we decided to turn to more general
Instruction models, which are immediately designed for dialog with the user. At the same time,
experiments showed that even such models already have enough knowledge about programming to
fully help students solve problems from the course.

The initial selection resulted in the following set of alternatives:
e Al Llama38B IT [6];

184

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

e A2.Gemma29BIT[7];
e A3.Qwen257BIT [8].

They have similar weights and also have moderate requirements for computational resources.
Next, it was necessary to prioritize them according to the given criteria, and select the most
suitable one. For this purpose, the classical TOPSIS [9] approach was used. First, we formed
approximate preliminary estimates (Table 2).

Table 2. Preliminary Scores.

Cl | C2|C3
Al | 174 | 68 | 81
A2 | 160 | 94 | 97
A3 | 204 | 72 | 93

Cé | C7T| C8 C9

[781 | 4 | [7,8] | [7.9]
[8,9] 3 [8,9] | [9,10]
[6,7] 5 [6,7] | [9,10]

OOL‘ID
@l
cccm

Since the solution has to be evaluated comprehensively and the criteria are of different nature,
defuzzification of the scores by taking the mean value of the interval was chosen (Table 3).

Table 3. Defuzzied Scores.

Cl [C2|C3|C4|[C5[C6 | C7T|C8|CY
Al | 174 | 68 | 81 4 0 |75 4 [75 8
A2 | 160 [94 | 97 0 0 8.5 3 85| 95
A3 | 204 [72 | 93 0 0 | 65 5 6.5 | 9.5

Let's perform normalization of the estimates. For each column we calculated square roots from the
sum of squares of its values, and then each column value was divided by the calculated root (Table
4). Next, weights were applied to the estimates (Table 5).

Table 4. Normalized Scores.

C1 C2 C3 C4 [Cé C7 C8 c9

Al | 0566 | 0481 | 0498 | 1.000 | 0 | 0.565 | 0.566 | 0.565 | 0.541
A2 | 0520 | 0.665 | 0.597 | 0.000 | O [0.640 | 0.424 | 0.640 | 0.642
A3 | 0663 [0.509 | 0572 | 0.000 | O | 0.489 | 0.707 [0.489 | 0.642

Table 5. Weighted Normalized Scores.

C1 C2 C3 C4 | C5 Co C7 C8 Cc9
Al | 0.0283 | 0.0721 | 0.0498 | 0.1 0 0.0282 | 0.0566 | 0.1412 | 0.0811
A2 | 0.0260 | 0.0998 | 0.0597 0 0 0.0320 | 0.0424 | 0.1600 | 0.0963
A3 | 0.0332 | 0.0764 | 0.0572 [1] 0 0.0244 | 0.0707 | 0.1222 | 0.0963
The next step is to select Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS). The PIS
vector will contain maximum values for benefit criteria and minimum values for non-benefit

criteria, and opposite for NIS (Table 6).

Table 6. Positive/Negative Ideal Solutions.

C1 C2 C3 C4 | C5 Cé C7 C8 [&]
PIS | 0.0332 | 0.0998 | 0.0597 | 0 0 [00244 | 0.0707 | 0.1600 | 0.0963
NIS | 0.0260 | 0.0721 | 0.0498 | 0.1 [0 | 0.0320 | 0.0424 | 0.1222 | 0.0811

Next, based on the PIS and NIS values for the scores of each alternative, the Euclidean distances to
each alternative were calculated. The final weight for each alternative was the ratio of the distance
to the negative solution to the sum of the distances (Table 7).

Table 7. Results of Ranking.

dp dy ﬁfd—N Final Rank
Al (Llama 3 8B IT) | 0.1081 | 0.0241 | 0.1823 3
A2 (Gemma 2 9B IT) | 0.0302 | 0.1119 | 0.7873 1
A3 (Qwen2.5 7B IT) | 0.0445 | 0.1050 | 0.7041

According to the obtained scores, Gemma 2 received the highest rank — this makes it the most
preferable alternative in our decision-making task. Compared to its analogs, it demonstrated better
understanding of the Russian language, generated correct hints and clearly followed the
instructions.

185

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

3. Emotional State Awareness

One of the key aspects in the design of the assistant was to ensure not only methodologically
correct but also psychologically comfortable interaction with students. While earlier sections
focused on the relevance and contextual adaptation of the assistant’s prompts, the current section
addresses the integration of emotional state recognition as a critical feature, especially in remote
learning environments where immediate human feedback is absent.

Emotional well-being directly affects learning efficiency, particularly in programming education,
where students often encounter repeated failures, misunderstandings, or anxiety about "not
knowing enough.” These factors can lead to decreased motivation and even burnout. Therefore,
lightweight but effective mechanism for emotional support was implemented, enabling the
assistant to adjust its communicative tone based on the learner’s psychological state.

The assistant evaluates the emotional state of the user on a scale from 1 to 10, where:

e 1-3indicates high stress,
e 4-6 corresponds to neutral or mildly anxious states,
e 7-10 implies calmness, confidence, and concentration.

In accordance with the assistant's adaptive response mechanism, its tone and level of support are
modulated based on the emotional state inferred from the user's input. The following examples,
generated using the Gemma 2 model, demonstrate this adaptive behavior within the context of a
typical Python programming task, specifically involving CSV file processing. Notably, the
assistant provides distinct responses to the same user query, contingent upon the emotional context
identified by the model. For more detailed information about the full prompt and its application,
please refer to the Fig. 6.

Case 1: Emotional State = 6 (neutral) — "Ilpusem! Ouubkra modxcem 603HUKHYMb, ecau 8
Hexomopwix cmpoxax CSV-gaiina menvuwe mpex snemenmos. B smom ciyuae row[2] evizosem
IndexError: list index out of range, nockonvky unoexc 2 8bixooum 3a npeoeivi cnucka'.

The assistant uses a factual and concise tone, focusing on the problem with minimal affective
language.

Case 2: Emotional State = 2 (stress) — "IIpusem! Ilonumaro, 3mo modsicem Ovims CMpecco8o — ¢
OMUM CMAIKUBACTNCS KANCObLL epemMst om 6pemMeHU. Omu6l<a, 6€EPOAIMHO, 603HUKAem, eciu 6
cmpoxe ¢haiina goods.csv codepoicumcss MeHbule mpex dnemenmos. Ilonvimxa obpamumscsa K
row[2] 6 maxom cayuae gvizvigaem IndexError. He nepesicusaii — 2mo ouenb pacnpocmpaHenHas
npobaema npu pabome c danuvimu 6 popmame CSV".

Here, the assistant provides emotional reassurance alongside technical guidance, helping to
mitigate frustration and support emotional resilience.

Case 3: Emotional State = 10 (confident) — "Oma owwubka eosnuxaem, eciu 6 HeKOMOPLIX
cmpokax ¢aiina §00ds.CSV menvuwe mpex cmonbyos. Ionvimka docmyna x row[2] 6 maxux
cayuasx evizvigaem owuobky IndexError. Pexomendyemcs 0obasumv npogepxy Onulvbl nepeo
docmynom K unoexcy 2".

The tone is business-like and information-dense, assuming the student requires direct input without
emotional cushioning.

Rationale and Impact

Learning is inherently an emotional process, with cognitive effectiveness strongly influenced by
the student’s affective state. The assistant’s ability to adapt its tone, even based on a coarse-
grained numeric estimate, improves communication quality and reduces the risk of emotional
burnout. This adaptive behavior aligns with the assistant’s role as not only a technical but also a
pedagogical tool, bridging the gap between purely algorithmic feedback and human-centered
educational support.

186

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

ITpuset! Thl BHINONHAEIIE POJIb ACCHCTEHTA [0 KypCy IporpammupoBanus Ha Python. ITepen tem
KaK OTBEYaTh Ha BOIPOC CTYJEHTA, IIOKAITyHCTa:
* OueHH 110 BOIIPOCY CTYJIEHTa ero MOLMOHANBHOE COCTOAHNeE Mo mKane oT 1 o 10, rae:

- 1 - oYeHp HAUPsHKEH/pa3apaKeEH,

- 10 - 9yBCTBYHO ce0s YBEPEHHO H CIOKOMHO.
* B 3aBuCHMOCTH OT OLIEHKH aIallTHPY#t CBOH TOH K MOAaYy OTBETA:
1-3: Byms ocobenno momnepkuBatomuM. [loaboapH cTynmeHTa, BHIpasH MOHWMAaHHE, TOBOPH
MArKo, n3berai kpuTHky. HaroMuHal, 4To oIHOKY - 3TO0 HOPMAIBHO H YacTh 00yYeHH.
4-6: Coxpansit apyxentoOHBIH M HeHTpanpHBIH ToH. Jla#t 4€Tkmii orBeT, H3beras HIMHIIHEH
CTPOTOCTH, IOA0OAPH MPH HEOOXOJHMOCTH.

7-10: Hcnone3yil nenoBoH, YBEpeHHBIH KM [0 CYMIECTBY CTHIb. MHHHMYyM 3MOIHOHATIBHOTO
OKpaca, MaKCUMYM TIOJB3bI H TOTHOCTH.

Teneps cama 3axaua:

3apava: Hanumure nporpaMmy, KoTopas BeIOHpaeT M3 TaONHIEI TOBaphl, HE JAOPOXKE 3aJaHHOH
IICHEL.

Dopmat Beoaa: Paiin goods.csv (UTF-8, pazgemutens - ;); B mocneanel KOIOHKE 3alHcaHa IIeHa
ToBapa. l{enoe uncio - BepxHsis rpaHHIA IIEHb] - CYUTEIBAETCSH C KIIABHATYPHL.

dopmat BeiBoaa: Paiin filtered-good.csv, comepxanuii TOBaps! ¢ MEHOH He BEIIIE 3aJaHHOM, B
HMCXOIHOM IOpSIKE.

Kox cryaenra:
import csv

def filter_goods(filename, max_price):
with open(filename, encoding='utf-8') as file:
reader = csv.reader(file, delimiter=';")

with open('filtered-goods.csv', 'w', encoding='utf-8', newline='") as output:
writer = csv.writer(output, delimiter=";")

for row in reader:
if int(rowl[2]) <= max_price:
writer.writerow(row)
Bonpoc crynenTa:
ITogeMy 5TOT KOJ MOKET BBI3BaTh OMHUOKY MpH BeMOMHeHWH? B KakoM MecTe BO3MOXKHA
npobnema?

OrpanuyeHHd Ha OTBET:
B oTeeTe He MODKHO OBITH HCIIPARIEHHOTO KOAA.

IIpumep nosicHeHus OIMOKH:

Omubka MOXKeT BOZHHKHYTh H3-32 TOTO, YTO CTYJEHT NpWHHMaeT row[2] 3a meHy ToBapa, He
[IPOBEPHB, YTO CTPOKA ACHCTBHTENBHO COAEPHT TPH 3HA4E€HHA. DTO MOXKET HpHBecTH K Index
Error: list index out of range.

IIpo6mema Bo3MoxkHa B cTpoke if int (row [2]) <= max_price:

Fig. 6. Mistakes Handling Example.

187

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

4. Aspects of Software Implementation

4.1 System Architecture

The software implementation of the "Sage" project comprises several key components (Fig. 7) that
interact to deliver adaptive hints to students within the Moodle learning platform. The system is
designed using a microservice architecture to ensure flexibility, scalability, and responsibility
segregation between modules. It consists of the following important components:

188

Moodle *(_——'
D—— Java-backend

PHP-plugin
: -

[Adapter | [Adepter | | Adapter '
/1 Y \ MongoDB
Y

JS-client H JS-client H JS-client ‘ v

Python-backend Python-backend Python-backend

Fig. 7. Overall System Architecture.

Client-side (JS Client): Implemented in JavaScript and integrated into Moodle as part of a
PHP plugin. It is responsible for the user interface (Ul) components such as the chat
window and code highlighting functionality, real-time user interaction, context gathering
(e.g., task details), and dispatching requests to the server. The client architecture features
a universal API for chat interaction and context transmission, facilitating straightforward
functional extensions.

Moodle Plugin (PHP Plugin): Operates within the Moodle environment. It functions as a
bridge between the JS client and the main backend logic. Leveraging Moodle’s modular
plugin system, it provides access to course and user data, validates and complements
client requests with the required context (e.g., assignment information) before forwarding
them to the main server. It is implemented as a block plugin.

Main Server (Java Backend): Acts as the central mediator within the microservice
architecture. It receives context-complemented requests from the PHP plugin, manages
business logic, interacts with the databases, and coordinates requests to the Al module via
adapters. The Java backend architecture is designed with configurability in mind.

Al Module (Python Backend): A microservice responsible for processing requests using a
Large Language Model (LLM). It receives requests from the Java backend through
adapters, interacts with the LLM to generate explanations, hints, and code analysis, and
returns the responses. Key functions include status monitoring and processing textual
requests, taking into account context and system instructions.

Databases: The system utilizes two Database Management Systems (DBMS): a relational
one (PostgreSQL - PSQL) and a non-relational one (MongoDB). This separation allows
storing structured data (e.g., chat history) in PostgreSQL, and more flexible or large-scale
data (e.g., complex contexts in JSON format) in MongoDB.

Adapters: Components ensuring standardized interaction between the Java backend and
various Python backend implementations (Al modules).

Deployment: The entire system is packaged using Docker and Docker Compose, ensuring
ease of deployment on any host, managing dependencies via a shared network, and
enabling easy data resets (purging) for testing or updates. For code execution in an
isolated environment (if required), Jobe can be utilized.

Kapasaesa E.A., Bacunesckuii B.1., Jlanuu I''M., IIpokyaun JI.C. Pa3paborka u nnterpauuns Al-acCUCTeHTa B CHCTEMY YIPaBICHUSL
obyuenuem. Tpyast UCIT PAH, 2025, Tom 37 Beim. 4, gacts 2, ¢. 175-190.

4.2 Client Application (JS Client)

The client application, written in JavaScript, serves as the primary interface for user interaction
with the "Sage" system within Moodle. Main features of this application are following:

e Ul Components: Features a chat window and buttons enabling users to request
explanations for selected code snippets or analyses of runtime errors.

o Interaction: Utilizes asynchronous requests (Ajax) directed to the PHP plugin for sending
messages and receiving responses. It also processes server responses, displaying them to
the user.

e Context: Transmits not only the user's message but also relevant context, such as the
selected code fragment or error text.

e Extensibility: The API is designed to easily accommodate new request types (e.g.,
requests for motivational messages or specific types of hints).

4.3 Server Components (PHP & Java)

The server-side infrastructure is divided into two main components: the PHP plugin for Moodle
integration and the Java backend acting as a mediator:

e PHP Plugin: Developed adhering to Moodle's API and architectural standards. It receives
data from the JS client, verifies access permissions and request validity, extracts
necessary context (User ID, Course ID, Task/Assignment ID, etc.) from the Moodle
environment, complements the original request with this context, and securely forwards it
to the Java backend.

e Java Backend: Implemented using Java (leveraging the Spring Framework), it acts as the
central hub: routing requests, managing chat sessions, persisting request history to
MongoDB, querying PostgreSQL for chat content, and interacting with the Python
backend via a standardized interface (adapters). The data partitioning between
PostgreSQL and MongoDB is chosen for optimal storage of different data types.

5. Conclusion

The evaluation results revealed that Gemma 2 9B IT emerged as the most suitable model, offering
the best overall alignment with the proposed criteria, such as accurate instruction following,
context comprehension, and effective hint generation in Russian language.

To fully realize the capabilities of the assistant, the necessary software infrastructure was
developed. This includes a universal PHP plugin for seamless integration into Moodle courses, a
modular backend (Java and Python) for request routing and Al processing, and a flexible adapter
system to simplify the future addition of alternative LLMs.

The resulting system represents a scalable and adaptable educational tool, capable of being
extended to support other courses or reconfigured in response to changes within the current course
structure. Its modular architecture ensures both ease of maintenance and extensibility.

Future work will focus on expanding the affective and psychological dimension of the assistant. In
particular, upcoming versions will incorporate mechanisms for long-term emotional profiling,
taking into account not only the student’s current affective state but also their interaction history.
This will allow the assistant to offer increasingly personalized and empathetic support adapted to
the individual students.

References

[1]. M. A. Razafinirina, W. G. Dimbisoa, and T. Mahatody, ‘“Pedagogical alignment of large language
models (llm) for personalized learning: a survey, trends and challenges,” Journal of Intelligent Learning
Systems and Applications, vol. 16, pp. 448-480, 2024.

189

Karavaeva E.A., Vasilevskij V.1., Lanin G.M., Prokudin D.S. Al-Assistant Development and Integration into Learning Management System.
Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 4, part 2, 2025. pp. 175-190.

[2]. R. E. Wang, A. T. Ribeiro, C. D. Robinson, S. Loeb, and D. Demszky, “Tutor copilot: a human-ai
approach for scaling real-time expertise,” arXiv preprint arXiv:2410.03017, 2024.

[3]. T. Phung et al., “Automating human tutor-style programming feedback: leveraging gpt-4 tutor model for
hint generation and gpt-3.5 student model for hint validation,” in Proceedings of the 14th Learning
Analytics and Knowledge Conference, 2024, pp. 12-23.

[4]. L. Roest, H. Keuning, and J. Jeuring, “Next-step hint generation for introductory programming using
large language models,” in ACE ’24: Proceedings of the 26th Australasian Computing Education
Conference, 2024, pp. 144-153.

[5]. Data for article: prompts and answers. (Online). ocrynHo mo ccbuike: https://github.com/sage-
hse/data_for_article

[6]. M. Al “Llama 3 technical report,” https://ai.meta.com/llama/, 2024, accessed: 2025-04-10.

[7]. M. Riviere, S. Pathak, P. G. Sessa, and et al., “Gemma 2: Improving open language models at a practical
size,” arXiv preprint arXiv:2408.00118, 2024. (Online). TocTymnHoO MO CCBLIKE:
https://arxiv.org/abs/2408.00118

[8]. A. Yang, B. Yang, B. Cao, and et al., “Qwen2: Scaling up and distilling down open multilingual
language models,” arXiv preprint arXiv:2403.16473, 2024. (Online). ocTymHO TIO CCBUIKE:
https://arxiv.org/abs/2403.16473

[9]. E. Roszkowska, “Multi-criteria decision-making models by applying the topsis method to crisp and
interval data,” in Multiple Criteria Decision Making. Springer International Publishing, 2011, pp. 7-11.

Information about authors

Exatepmna AmngpeeeHa KAPABAEBA sBmseTcs cTakepoM-HCCIeOBaTelIeM J1abopaTopuu
0o0MavHBIX W MOOWJIBHBIX TEXHOJOTHH (aKyIbTeTa KOMIIBIOTEPHBIX Hayk HarmonamsHOTO
HCCIIEOBATEIbCKOTO yHHMBepcuTeTa «Bpicmras mkoma skoHoMmukm». Cdepa e€ HaydHBIX
HMHTEPECOB OXBATHIBACT 0OJIATHBIE TEXHOJIOTHH, AITOPUTMBI U CTPYKTYPHI ITaHHBIX.

Ekaterina Andreevna KARAVAEVA is a research intern at the Laboratory of Cloud and Mobile
Technologies, Faculty of Computer Science, National Research University Higher School of
Economics. Her research interests include cloud technologies, algorithms, and data structures.

Bnamumup Mropesnu BACUJIEBCKUI sBnsercss crakepoM-HCCleoBaTeIeM 1abopaTopuu
00JayHBIX M MOOWJIBHBIX TEXHOJOTHH (haKyiabTeTa KOMIBIOTEpHBIX Hayk HannoHamsHOTO
HCCIIEeI0BATEIbCKOTO yHHUBepcuTeTa «Bplcmas mkoma skoHoMukm». Cdepa ero HaydHBIX
MHTEPECOB BKIIIOYAET 00IaYHbIe TEXHOJIOTUHU U KOJOT€Hepanusi.

Vladimir Igorevich VASILEVSKIJ is a research intern at the Laboratory of Cloud and Mobile
Technologies, Faculty of Computer Science, National Research University Higher School of
Economics. His research interests include cloud technologies and code generation.

l'eopruit Muxaitnosuu JIAHUH sBnsercss cryaeHTOM 2-TO Kypca NpOrpaMMbl CHCTEMHas HU
NporpaMMHasi HHKEHEepUsl JierapTaMeHTa POrpaMMHON MHXeHepHn (DaKyJIbTeTa KOMIBIOTEPHBIX
Hayk HanuoHanbpHOTo McClieoBaTeIbcKOro yHUBepcHUTeTa «Bricias mxona skoHOMHKHY. Chepa
€r0 Hay4YHBIX HHTEPECOB OXBATHIBAECT CUCTEMHBII aHANIN3 U MYJIbTHAreHTHBIE CHCTEMBI.

Georgy Mikhailovich LANIN is a 2nd year student of the System and Software Engineering
program at the Department of Software Engineering, Faculty of Computer Science, National
Research University Higher School of Economics. His research interests include systems analysis
and multi-agent systems.

Jmutpmii Cepreesnd [TPOKY IVH siBnsiercst cniennanictoM Kadenpbl MareMaTHuecKuX METO/I0B
IIPOTHO3UPOBaHUS MOCKOBCKOIO TOCYAAapCTBEHHOro yHuBepcurera umeHn M.B. JlomoHocoOBa.
Ero HaydHble HHTEpECH! BKJIIOYAIOT paclio3HaBaHHUE 00pa3oB.

Dmitrii Sergeevich PROKUDIN — specialist of the Department of mathematical methods of
forecasting of CMC of Lomonosov Moscow State University. His research interests include
pattern recognition.

190

https://github.com/sage-hse/data_for_article
https://github.com/sage-hse/data_for_article
https://scholar.google.ru/citations?view_op=search_authors&hl=ru&mauthors=label:%D1%80%D0%B0%D1%81%D0%BF%D0%BE%D0%B7%D0%BD%D0%B0%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2

