Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-13 tOC-EH

Generating and Debugging Java Code Using LLMs
Based on Associative Recurrent Memory

V.I. Vasilevskiy, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
D.V. Alexandrov, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

HSE University,
11, Pokrovsky blvd, Moscow, 109028, Russia.

Abstract. Automatic code generation by large language models (LLMs) has achieved significant success, yet
it still faces challenges when dealing with complex and large codebases, especially in languages like Java. The
limitations of LLM context windows and the complexity of debugging generated code are key obstacles. This
paper presents an approach aimed at improving Java code generation and debugging. We propose using the
Associative Recurrent Memory Transformer (ARMT) model, which extends the context window and has
enhanced memory capabilities, to address two tasks: 1) selecting the most relevant snippets from the existing
codebase for generating new code; 2) selecting the most significant parts of stack traces and runtime data for
iterative debugging. This approach is integrated with an iterative debugging loop, embodied in our developing
system "JavaCapsule" (inspired by PyCapsule for Python), which includes compilation and test execution in a
controlled Docker environment using Gradle. It is expected that the proposed method will enhance the accuracy
and relevance of generated Java code, particularly in the context of large projects, and improve the automated
debugging process. Such benchmarks like JavaBench further underscore the need for such focused
advancements. This paper is an output of a research project implemented as part of the Basic Research Program
at the National Research University Higher School of Economics (HSE University).

Keywords: code generation; java; large language models; code debugging; associative recurrent memory
transformer; recurrent memory transformer; long context; context selection; iterative debugging; javabench.

For citation: Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code using LLMs based on
Associative Recurrent Memory. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 173-182. DOI:
10.15514/ISPRAS-2025-37(5)-13.

Acknowledgements. This research is conducted at the Cloud and Mobile Technologies Laboratory of the
Software Engineering Department at HSE University.

173

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

leHepauua n otnagka Java-koga
C Mcnonb3oBaHMEM GOoNbLINX A3bIKOBbLIX MoAenen
Ha OCHOBE accoLMaTUBHOW PEeKYypPpPEHTHOM NaMATU

B.U. Bacunescxuii, ORCID: 0009-0004-0115-7082 <vivasilevskiy_1@edu.hse.ru>
J.B. Anexcanopos, ORCID: 0000-0002-9759-8787 <dvalexandrov@hse.ru>

HUY BIID,
Poccus, 109028, 2. Mocksa, Ioxposckuii 6-p, 0. 11.

AHHOTaNMs. ABTOMaTHYECKas TeHepanus Koaa OoNbIIMMH s3bIKOBbIMEH Mojeinsmu (LLM) mocruria
3HAUUTENBHBIX YCIIEXOB, OJHAKO BCE €le CTAlIKMUBAaeTcsa € MpobieMaMu IpH paboTe cO CIOKHBIMH H
00BbEMHBIMHM KOJOBBIMH 0a3aMH, OCOOCHHO Ha TaKMX s3bIKaxX, Kak Java. OTpaHMYeHHs KOHTEKCTHOTO OKHA
LLM u CIOXXHOCTH OTIaJKH CT€HEPUPOBAHHOTO KOJA SBIAIOTCS KIIIOUEBBIMU INPEIMSTCTBUSAMU. B maHHOM
CTaThe MPEJCTaBICH IOJXOMA, HANpPaBICHHBIM Ha YIydllleHWEe TIeHepalud M oTIaaku Java-koma. Msl
mpeJyiaraeM HCIojibp30BaTh Mojaedb Associative Recurrent Memory Transformer (ARMT), o6xanaronryro
pacHIMpeHHBIM KOHTEKCTHBIM OKHOM 1 YJIYYIIEHHBIMH BO3MOKHOCTSIMH IIaMSITH, JUIS PEIICHUs ABYX 3a1ad: 1)
BbIOOpa HanboJee peJeBaHTHRIX (PParMEeHTOB M3 CYLIECTBYOMIEH KOI0BOW Ga3bl Ayl TeHepaliuy HOBOTO KO/,
2) BeIOOpa Hamboee 3HAYMMBIX YacTeH CTEKTPEHCOB M paHTaHMAAHHBIX Ul UTEPATHBHOH OTIaiKu. DTOT
MOJIXOJT MHTETPUPOBAH B UTEPATHUBHBII IIMKI OTIAJKH, pEaJHM30BaHHbIA B HallIel pa3pabaTbiBaeMoOl cucTeMe
«JavaCapsule» (mo ananoruu ¢ PyCapsule mis Python), kotopas BKIOYaeT KOMIHJISIMIO M BBIITOJHEHUE
TECTOB B KOHTpoJmpyemoii cpene Docker ¢ ncnonszoBannem Gradle. Oxxumaercs, 9To IpeAIoKEeHHBIH METO
MOBBICHT TOYHOCTh M PEIEBAHTHOCTh T€HEPUPYEMOTo Java-Koja, 0COOEHHO B KOHTEKCTE KPYHMHBIX IPOEKTOB,
M YIAYYLIUT TpPOLIECC aBTOMATU3MPOBAHHOW oTianku. benumapkw, Takme kak JavaBench, nomomHmTensHO
MOAYEPKUBAIOT HEOOXOAUMOCTH ITOJOOHBIX IIeJICHAIPABICHHBIX YCOBEPIICHCTBOBAHHH.

KioueBble c0oBa: reHepanus Koja; java; OONBLIME S3BIKOBBIE MOJIENH; OTJajKa Koja; Ipeodpa3oBareib
aCcCOIMATHBHOM PEKYPPEHTHON MaMsTH; Pe0Opa30BaTENlb pEKYPPEHTHOM MAMSTH; JUTMHHBIN KOHTEKCT; BEIOOD
KOHTEKCTa; MTepaTUBHAs OTIIAJKa; OIlEHKa MoJeliei javabench.

Jas untupoBanusi: Bacunesckuit B.M., AnekcannmpoB JI.B. I'eHepauus u otiagka Java-koma ¢
WCTIOJIb30BaHHEM OOJBIINX S3BIKOBBIX MOJIENEH Ha OCHOBE aCCOLMATUBHON PEKyppEHTHOW mamstu. Tpymsl
HUCII PAH, tom 37, Boim. 5, 2025 r., crp. 173-182 (ua anrmuiickom s3eike). DOI: 10.15514/ISPRAS-2025-
37(5)-13.

Baaromapnocrn. [lanHoe nccnenosanue Bexercs B Jlaboparopuu OOnauHbIX 1 MOOHIBHBIX TEXHOJIOTHI
JenapramenTa IIporpammuoit Umxenepuu HIY BIID.

1. Introduction

Large Language Models (LLMs) demonstrate impressive results in the field of automatic code
generation [7]. However, applying these models to complex object-oriented languages like Java
presents several difficulties. Java projects are often characterized by large code volumes, complex
dependencies, and strong typing, requiring models to have a deep understanding of the context. The
JavaBench benchmark [1] has highlighted these challenges, particularly in object-oriented
programming (OOP) features and project-level code generation, and underscores the relevance of
research in this area.

One of the key problems is the limited context window size of modern LLMs. When generating or
modifying a code snippet in a large project, the model must access relevant parts of the existing
codebase (other classes, methods, interfaces), which often exceeds the standard context limit.
Furthermore, debugging the generated code remains a complex task. Approaches based on analyzing
code execution block by block and providing the model with runtime data [3] are quite promising
but are limited by the same context window, preventing the transmission of the full stack trace or
the history of variable value changes needed to find and fix complex errors.

174

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

To address the limited context problem, architectures such as the Recurrent Memory Transformer
(RMT) [4] have been proposed, using recurrent mechanisms to process long sequences. A further
development of this idea, the Associative Recurrent Memory Transformer (ARMT) [5], adds
associative memory, significantly improving memory usage efficiency and performance on long-
context tasks, such as BABILong [6].

On the other hand, iterative debugging approaches, where code is executed in a controlled
environment (e.g., a container), and the execution results (success/failure, test output) are used for
the next generation iteration, have shown effectiveness for Python [2]. We are developing a similar
system for Java, named “JavaCapsule”.

In this study, we propose combining the advantages of ARMT and iterative debugging to create a
system for generating and fixing Java code. The main idea is to train an ARMT-like model (or use
its attention mechanisms) to select the most relevant information — codebase snippets during
generation and parts of the stack trace/state during debugging — which is then passed to the main
LLM to perform the task. We hypothesize that such an approach will allow effective work with large
Java projects and complex errors, overcoming the limitations of the context window. This research
is conducted at the Cloud and Mobile Technologies Laboratory of the Software Engineering
Department at HSE University in collaboration with researchers from Huawei Technologies Co. Ltd.

2. Related Work

2.1 Code Generation using LLMs

Significant progress has been made in recent years in using LLMs for code generation (e.g.,
StarCoder [8], Qwen-Coder [9]). Models are trained on vast code corpora and can generate code
from textual descriptions in various languages. However, the quality of generation for complex
languages like Java, especially within large projects, requires improvement.

Java Code Generation Benchmarks

The landscape of code generation evaluation has been historically dominated by Python.
Recognizing this gap, Cao et al. introduced JavaBench [1], a project-level Java benchmark
specifically designed to exercise OOP features. JavaBench comprises four Java projects with 389
methods in 106 classes, featuring high test coverage and attestation by undergraduate students. It
aims to address imbalances in programming language focus, code granularity (moving beyond
function/statement level), and the lack of testing for advanced OOP features (encapsulation,
inheritance, polymorphism) in existing benchmarks. JavaBench’s evaluation design includes
multiple context settings and synthesis strategies, providing a more nuanced understanding of LLM
capabilities in Java. Its findings emphasize the need for future advancements, especially in providing
relevant context like method signatures.

2.2 Long Context Processing

The context window limitation is a fundamental problem for transformers. Various architectures are
being developed to address it. RMT [4] introduces recurrence at the segment level using special
memory tokens. ARMT [5] improves upon RMT with an associative memory mechanism,
demonstrating superiority over RMT and other models like Mamba [10] and RWKYV [11] in
associative retrieval and ultra-long sequence processing tasks (up to 10 million tokens) on the
BABILong benchmark [6]. The BABILong benchmark is specifically designed to evaluate a
model’s ability to retrieve and use information distributed across long text, making it relevant for
assessing models intended to work with large codebases.

2.3 Code Debugging using LLMs

Automated debugging is another promising direction. LDB (Large Language Model Debugger) [3]
proposes using code execution information (execution traces, variable values per basic block) to

175

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

identify errors. The model is provided with the execution context, based on which it localizes and
fixes the bug. However, as noted, the volume of this information can exceed the context window.
PyCapsule [2] implements an iterative approach for Python with two agents (programmer and
executor), where code is executed in a Docker container, and test results and compilation errors are
used to request corrections from the programmer agent. This approach does not require deep stack
trace analysis by the model but may need many iterations. Our JavaCapsule system draws inspiration
from this iterative, containerized execution model.

2.4 Relevant Context Selection

The idea of selecting relevant information is not new and is actively used in Retrieval-Augmented
Generation (RAG) [12], where an external knowledge base is used to find relevant documents. In
the context of code generation, this might mean searching for similar code snippets or
documentation. However, initial analysis of solutions like RAG and Repository Mapping indicates
they may not be sufficiently effective for selecting precise, deeply-nested contextual information
required for complex generation and debugging tasks within large, existing Java codebases. A more
refined mechanism is needed, capable of extracting specific dependencies or relevant parts of
debugging information. The associative memory mechanisms in ARMT [5] could potentially be
adapted to train a model for such selective information extraction from structured context (codebase,
stack trace).

3. Proposed Method

Within this research, we are developing “JavaCapsule”, a system for Java code generation and
debugging based on the following components:

1. Context/Debugging Selection Model based on ARMT: The core of the system is a model
utilizing ARMT principles, trained to perform two main functions:

e Code Context Selection: Upon receiving a request for Java code generation or
modification (e.g., description of a method, class to be changed), the model analyzes
the current codebase (provided as an indexed set of files or a structural representation)
and selects the most relevant snippets (imports, signatures of other methods, class fields,
parent classes, interfaces) necessary for correct generation. The associative memory
mechanism of ARMT [5] can be used to establish connections between the request and
relevant code sections.

e Debugging Information Selection: When a compilation error or test failure occurs, the
model receives the error message and stack trace. The model’s task is to select the most
informative lines or blocks from the stack trace and possibly from the execution history
(if available) that indicate the cause of the problem. This allows focusing the LLM on
the source of the error without overloading the context with redundant information.

2. Main LLM Generator: We have selected ‘gemma3-27b-it as the base large language model
capable of generating Java code. It receives the original user request as input, augmented
with the relevant code context or debugging information selected by the model in step 1.

3. lterative Debugging Loop (JavaCapsule Workflow): The generation and debugging process
is iterative, adapting the idea from [2]:
e User Request: A user, potentially through an IDE plugin, submits a task description for
code generation or modification.

e Generation: The main LLM (‘gemma3-27b-it) generates Java code based on the
request and context selected by the ARMT-based model (if applicable for an existing
project).

176

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

e Compilation and Testing (Execution Agent): The generated code (or modified project)
is passed to an Execution Agent. This agent compiles the Java code using standard tools
(e.g., Gradle) and runs user-provided or automatically generated unit tests (e.g., JUnit).
This step is performed in an isolated Docker container for security, dependency
management, and reproducibility.

e Result Processing:

— Successful Execution: If compilation and all tests pass, the final code is returned to
the user (e.g., displayed in the IDE).

— Compilation Error: If a compilation error occurs, the error logs are captured by the
Execution Agent. These logs are then processed by the ARMT-based debugging
information selection model to extract relevant error messages. The selected
information is passed back to the main LLM along with the problematic code for a
correction attempt.

— Test Failure; If tests fail, the Execution Agent runs tests in debug mode to gather
more comprehensive debug data (e.g., stack traces, intermediate variable values if
feasible). This complete debug data is passed to the ARMT-based model, which
selects the most relevant context from this data and the original code. The
problematic code, selected debug context, and test error information are then sent to
the main LLM for fixing.

e Repetition: The loop (Fixed code -> Retry with new code) repeats from the Compilation
and Testing step until successful execution or an iteration limit is reached.

The architecture, inspired by PyCapsule [2], is shown in Fig. 1. The key distinction in our
JavaCapsule approach is the explicit use of an ARMT-based model for intelligent selection of both
code context during generation and specific debugging information during the error-fixing iterations.
A key aspect is training the ARMT model (or its equivalent) for selection tasks. This requires
creating specialized datasets for Java, where generation requests are annotated with relevant parts
of the codebase, and error reports are annotated with relevant stack trace lines.

4. Preliminary Considerations and Future Work

This research is currently in the concept development and initial implementation stage. The
JavaCapsule system (repository: https://github.com/Vvil1568/JavaCapsule) is under active
development, aiming to realize the iterative debugging loop with Docker and Gradle for Java.
Before settling on the ARMT-based selection model, several alternative approaches were
considered. One involved using a 7B model where input tokens are replaced by pre-computed BERT
embeddings for Java code snhippets. Another approach was to fine-tune a 7B model using
ParameterEfficient Fine-Tuning (PEFT) techniques like LORA to generate Java code with explicit
type annotations (e.g., transforming ‘someObj.foo()* into ‘((SomeClass)someObj).foo()‘). While
promising, these approaches primarily focus on altering the generation process itself. The ARMT
approach was ultimately chosen for its direct focus on solving the core problem of long-context
retrieval and relevance filtering, which we believe is a more fundamental bottleneck for working
with large codebases and complex debugging scenarios. A comparative computational cost analysis
of these three plans is provided in the next section. Expected Advantages:

o Improved quality of Java code generation for large projects by providing the LLM with
relevant context.

e Enhanced automated debugging by focusing the LLM on significant parts of diagnostic
information.
e Overcoming LLM context window limitations without needing models with ultra-large
context for the entire task.
177

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

Client Environment
e

User

Py
e

r, h T
1. Generation reguest h

"
10. Display result
{task description) p. ray
, g

-,
A

W5Code IDE Plugin

e
ri

2. Forward task description
(for initial generation)

Cloug Services

9. Final code /

LLM (Cloud!
Large {) Error message

_,-"'-.-” - ./ . \\. —
i II %
| 1 1 -
3. Generated Java code 8. Fixed code L e L
Code + error logs |

. | v
- ~_ ¢ -
Execution Environment A ~
7. Fix request: T A e
Code + selected context + Execution Agent
test error info 1 v
[f " 5. Execution result
6b. Test failure: J— ' [success / compilation
4, Code executi
Code + full debug data | n_le - . mt:.] error /
/ compilation, tes
(for context selection) | { = \ test failure + logs / debug
| data)
. I-". ‘
ARMT-LLM (local) Docker Container {Runtime)

Fig. 1. Adapted architecture for iterative Java code generation and debugging in JavaCapsule.
Steps include generation by an LLM (e.g., Gemma), execution/testing in a Docker container via
Gradle, and a feedback loop using an ARMT model for context/debugging information selection
(adapted from [2]). The "ARMT-LLM (local)” in the diagram represents our proposed ARMT-
based selection model.
Main Challenges:

e Training Data Creation: Developing methodologies and tools for creating datasets linking
generation/debugging requests with relevant code/stack trace snippets in Java projects. We
plan to initiate dataset collection, potentially using automated labeling with existing
generative models as a starting point.

e Training the Selection Model: Choosing the architecture (ARMT or similar) and effectively
training the model for selective information extraction from structured, yet large, contexts.

e Component Integration: Creating an efficient pipeline combining the selection model, the
LLM generator (‘gemma3-27b-it‘), and the JavaCapsule compilation/testing system.

178

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

Evaluation: The JavaBench benchmark [1] provides a valuable resource. We have started
adapting JavaBench for evaluating the Gemma model (adapted version available at:
https://github.com/Vvil1568/JavaBench/tree/gemma). This will require further
development of custom metrics and test scenarios for our specific tasks.

Future Work Plan:

1.

Continue development of the JavaCapsule prototype system for compiling and testing Java
code in a container using Gradle.

Begin creation of a dataset for training and evaluating the code context selection model
using several open-source Java projects.

Initiate creation of a dataset for training and evaluating the debugging information selection
model based on real or synthetic errors, exploring automated labeling techniques.

Experiment with Gemma-3 models as the generator and as the base for the ARMT selector.

Compare the proposed approach with baseline LLMs (without context selection) and
standard RAG approaches on the adapted JavaBench and custom tasks.

Evaluate performance on tasks such as generating new methods, modifying existing code,
and fixing errors based on tests within the JavaCapsule framework.

We plan to use code quality metrics (e.g., Pass@Kk test pass rate from JavaBench, CodeBLEU [13])
and debugging efficiency metrics (number of iterations, percentage of fixed errors).

5. Computational Cost Analysis of Training Approaches

This section provides a high-level estimation of the computational resources required for training
the models under the three considered plans. These figures are approximate and intended to provide
a sense of scale for each approach. A summary is presented in Table 1.

5.1 General Assumptions
The following assumptions are used for the calculations:

Precision: BF16 (2 bytes per parameter).

Optimizer: AdamW, which requires 2 additional values per parameter, resulting in 4 bytes
per parameter for optimizer states. Gradients require 2 bytes/param.

Total Memory per Parameter (Full Training): 2 (params) + 4 (optimizer) + 2 (gradients) =
8 bytes. For PEFT, this applies only to trainable parameters.

Total FLOPs (heuristic): Approximately 6x N x D for full training and =~ 3x Nfull x D for
PEFT, where N is the number of parameters and D is the number of tokens.

Model FLOPs Utilization (MFU): We assume a realistic MFU of 40% of the GPU’s peak
theoretical performance.

5.2 Plan 1: 1.1B ARMT-based Context Selector (Full Tuning)

Model and Task: A 1.1B parameter ARMT-like model for context selection, trained via full
fine-tuning.
Training Data: Estimated at 40 billion tokens.
VRAM (Video Memory) Estimation:
— Model States: 1.1x109 params X8 bytes/param = 8.8 GB.
— Activations: Can consume 15-30 GB or more, depending on batch size and sequence
length.
— Total Estimated VRAM: 24-44+ GB.
179

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

Training Time Estimation:

— Total TFLOPS Required: 6x(1.1x109)x(40%109) = 2.64x1020 FLOPS, or 264,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
2.64 x 102°

~ 183.300 GPU — h
1000 x 1072 x 0.4 X 3600 ours

5.3 Plan 2: 7B Model with BERT Embeddings (Full Tuning)

Model and Task: A 7B parameter model for code generation, where input tokens are
precomputed BERT embeddings. This involves full fine-tuning.

Training Data: Estimated at 15 billion BERT-vector “’tokens”.

VRAM (Video Memory) Estimation:

— Model States: 7x109 params %8 bytes/param = 56 GB.

— Activations: For a 7B model, activations can easily require 20-40+ GB.

— Total Estimated VRAM: 56 GB + (20-40+ GB) = 76-96+ GB. This requires A100
(80GB) or H100 GPUs.

Training Time Estimation:

— Total TFLOPS Required: 6x(7x109)x(15%109) = 6.3x1020 FLOPS, or 630,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
6.3 x 102°

~ 437. PU —
1000 x 1012 x 0.4 x 3600 37.500 GPU — hours

5.4 Plan 3: 7B Model with Explicit Types (PEFT)

Model and Task: Fine-tuning a 7B parameter model using PEFT (LoRA) to generate Java
code with explicit type annotations.

Training Data: Requires a large dataset of Java code pre-processed with explicit types,
estimated at 100 billion tokens.

VRAM (Video Memory) Estimation:
— Frozen Model: 7x109 params x2 bytes/param = 14 GB.

— LoRA Adapters (70M params): Optimizer states and gradients for adapters require
70x106x6 bytes ~ 0.42 GB.

— Activations: Calculated for the full 7B model, requiring 20-40+ GB.

— Total Estimated VRAM: 14 GB + 0.5 GB + (20-40+ GB) = 35-55+ GB. Suitable for
48GB-class GPUs and above.

Training Time Estimation:

— Total TFLOPS Required: 3 x (7 x 109) x (100 x 109) =2.1 x 1021 FLOPS, or 2,100,000
PetaFLOPS.

— Estimated GPU-Hours (H100):
2.1 x 10%1

~ 1,458.000 GPU — h
1000 x 1072 x 0.4 X 3600 ours

These estimates underscore that all considered plans require access to significant high-performance
computing infrastructure.

180

Bacunesckuii B.W., Anexcannpos JI.B. I'eneparus u omnajgka Java-Koaa ¢ HCIOIb30BaHHEM OONBIIMX SI3BIKOBBIX MOJIENCH HA OCHOBE
aCcCOLMATUBHOM peKyppeHTHOU mamsitu. Tpyost UCIT PAH, 2025, Tom 37 Beim. 5, ¢. 173-182.

Table 1. Summary table of computational cost estimates for different training approaches.

GPU- Suitable
Plan Parameters VRAM Tokens TFLOPS Hours GPUSs
(Training) | (Estimate) | (Training) (Total) (H100, 40%
(VRAM)
MFU)
1.
4090(48GB),
IBHARMT 1 gty | 244 | sobillion | 224990 | 183300 A100,
(context GB PFLOPs
. H100
selection)
2.
7B+BERT 15 billion 630,000 A100(80GB),
omb 7B (full) | 76-96+ GB (BERT) PELOPS 437.500 H100
(generation)
3.
4090(48GB),
7B+Types | 7B (T0M | 5 ooy g | 100 billion | 229909 | 1458000 | Ad00,
(generation, PEFT) PFLOPs H100
PEFT)

6. Conclusion

Generating and debugging code for complex, large Java projects using LLMs presents a current and
unresolved challenge. Context window limitations and the difficulty of interpreting the entire
codebase or full stack traces are significant constraints. In this research, we propose a novel approach
based on using an Associative Recurrent Memory Transformer (ARMT) type model for intelligent
selection of relevant code context and diagnostic information. This selected information is then
passed to a main LLM (Gemma-3-27b-it) for code generation or correction within an iterative loop
involving compilation and testing, embodied in our developing JavaCapsule system. The adaptation
of benchmarks like JavaBench will be crucial for evaluation. We expect this approach to enhance
the accuracy, relevance, and efficiency of automated Java code generation and debugging, opening
new possibilities for applying LLMs in enterprise-level software development. Future work will
focus on dataset creation, training the selection model, and experimentally validating the proposed
system.

References

[1]. CaoJ., Chen Z., Wu J., Cheung S., Xu C. JavaBench: A Benchmark of Object-Oriented Code Generation
for Evaluating Large Language Models. arXiv preprint arXiv:2406.12902, 2024.

[2]. Adnan M., Xu Z., Kuhn C. C. N. Large Language Model Guided Self-Debugging Code Generation. arXiv
preprint arXiv:2502.02928, 2025.

[3]. Zhong L., Wang Z., Shang J. LDB: A Large Language Model Debugger via Verifying Runtime Execution
Step by Step. arXiv preprint arXiv:2402.16906, 2024.

[4]. Bulatov A., Kuratov Y., Burtsev M. S. Recurrent memory transformer. Advances in Neural Information
Processing Systems, vol. 35, 2022, pp. 11079-11091.

[5]. Rodkin 1., Kuratov Y., Bulatov A., Burtsev M. Associative Recurrent Memory Transformer. In Proc. of
the ICML 2024 Next Generation of Sequence Modeling Architectures Workshop, 2024.

[6]. Kuratov Y., Bulatov A., Anokhin P., Rodkin I., Sorokin D., Sorokin A., Burtsev M. BABILong: Testing
the Limits of LLMs with Long Context Reasoning-in-a-Haystack. arXiv preprint arXiv:2406.10149, 2024.

[7]. Chen M., Tworek J., Jun H., Yuan Q., Pinto H. P. D. O., Kaplan J., ... Brockman G. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[8]. LiR., Allal L. B., Zi Y., Muennighoff N., Kocetkov D., Mou C., ... Li J. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

[9]. Hui B., Yang J., Cui Z., Yang J., Liu D., Zhang L., ... Lin J. Qwen2. 5-Coder Technical Report. arXiv
preprint arXiv:2409.12186, 2024.

181

Vasilevskiy V.I., Alexandrov D.V. Generating and Debugging Java Code Using LLMs Based on Associative Recurrent Memory. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 173-182.

[10]. Gu A., Dao T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv preprint
arXiv:2312.00752, 2023.

[11]. Peng B., Alcaide E., Anthony Q., Albalak A., Arcadinho S., Cao H., ... Zhu R. J. RWKV: Reinventing
RNNs for the Transformer Era. arXiv preprint arXiv:2305.13048, 2023.

[12]. Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V., Goyal N., ... Kiela D. Retrieval-augmented
generation for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, vol.
33, 2020, pp. 9459-9474.

[13]. Ren S., Zhou D., Zhang S., Liu S., Chen Y., Sun H., ... Liu Y. CodeBLEU: a method for automatic
evaluation of code synthesis. arXiv preprint arXiv:2009.10297, 2020.

Ungpopmayusi 06 aemopax / Information about authors

Bonagumup Wropesny BACUJIEBCKUI — craxep-uccienoparens JlaGopatopun OGNAuHBIX 1
Moobunenbix Texnonoruit ®dakynsrera Kommbrorepusix Hayk HUY BIID. Cdepa HaydHbIX
MHTEpECcOB: OOJBLIME SI3BIKOBBIC MOJICNHM, TeHEpalus M OTIaaKa Koja, oOpadoTKa JJIMHHBIX
MOCTIEeI0BATENbHOCTEH, KOMIUIISTOPEI.

Vladimir Igorevich VASILEVSKIY is a research assistant at the Cloud and Mobile Technologies
Laboratory of the Faculty of Computer Science, HSE University. His research interests include large
language models, code generation and debugging, long sequence processing, and compilers.

Ovutpuit Bragumuposma AJIEKCAHAPOB — mpodeccop amemaprameHTa MpOTrpaMMHON
HHKEeHepuH (aKyIbTeTa KOMIBIOTepHBIX Hayk HIY “Beiciiast mKkona SKOHOMHUKH’, 3aBEIyFOIIHI
Hay4HO-y4eOHOI TabopaTopun 001a4HBIX M MOOMIBHBIX TexHOJMOTHH. Chepa HayIHBIX HHTEPECOB:
METO/IbI 1 TEXHOJIOTUH NCKYCCTBEHHOTO MHTEIJIIEKTa, MAllIMHHOE 00yUCHHE U aHAIN3 JaHHBIX, 10S
pa3paboTka, pa3paboTKa MOOWIBHBIX TNPHUIOKEHHH, pa3paboTkKa HpOrpaMMHOTO OOcCHEedYeHHs,
indoor HaBuranws, 6a3el JaHHBIX, pa3padOTKa UTp.

Dmitry Vladimirovich ALEXANDROV is a Professor in the Department of Software Engineering,
Faculty of Computer Science, National Research University “Higher School of Economics”. He is
also the Head of the Research and Educational Laboratory of Cloud and Mobile Technologies. His
research interests include methods and technologies of artificial intelligence, machine learning and
data analysis, iOS development, mobile application development, software development, indoor
navigation, databases, game development.

182

