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Abstract. The article presents an experimental evaluation of SVAN, a static analysis tool designed for 

functional verification of RTL models written in Verilog and SystemVerilog. The research addresses the 

growing need for reliable domestic EDA tools, particularly in light of restrictions on proprietary solutions. 

SVAN’s architecture integrates formal methods and heuristic approaches to detect a wide range of errors, 

including syntactic issues, coding style violations, logical inconsistencies, and security vulnerabilities. 

Empirical testing on open-source hardware benchmarks demonstrates SVAN’s superior effectiveness compared 

to Synopsys VCS and Verilator, with a 73% broader error detection spectrum and 25-23% higher error 

identification rate, respectively. Key advantages of SVAN include high analysis accuracy and detailed error 

classification. However, limitations such as reduced flexibility in handling mixed-language designs highlight 

areas for future improvement. The study underscores SVAN’s potential as a competitive tool for static 

verification in electronic design automation. 
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Аннотация. В статье представлены результаты экспериментального анализа инструмента SVAN 

статического анализа описаний цифровой аппаратуры на языках Verilog и SystemVerilog. Инструмент 

разрабатывается в ИСП РАН и предоставляет средства формального и эвристического анализа HDL-

описаний, нацеленные на выявление синтаксических ошибок, нарушений стиля оформления кода, 

проблем безопасности. Эксперименты, проведенные на описаниях из открытого тестового набора hdl-

benchmarks, демонстрируют более высокую эффективность SVAN в сравнении с открытым 

инструментом Verilator и проприетарным инструментом Synopsys VCS. В частности, SVAN обнаружил 

на 73% больше типов ошибок и на 23-25% больше ошибок в целом. Ключевые преимущества 

инструмента SVAN состоят в более высоком уровне локализации ошибок и развитой типологии 

ошибок. К выявленным недостаткам инструмента SVAN относится ограниченная поддержка RTL-

моделей, в которых используется несколько языков описания. Полученные результаты подчеркивают 

потенциал SVAN как конкурентоспособного инструмента статического анализа в области 

автоматизации проектирования цифровой аппаратуры. 

Ключевые слова: статический анализ; RTL-модель; HDL-описание; анализатор SVAN; языки 

описания аппаратуры Verilog, SystemVerilog; функциональная верификация; обнаружение ошибок; 
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1. Introduction 

The design of ultra-large-scale integrated circuits (ULSICs) is a complex task that requires high 

precision and reliability at all stages of development. In the early stages of designing digital ULSICs, 

they are described at the Register Transfer Level (RTL) using Hardware Description Languages 

(HDLs), such as Verilog [1] and SystemVerilog [2]. Modern RTL models can reach significant sizes, 

encompassing millions of lines of code [3], making automated functional verification as one of the 

key tasks in the development process. Functional verification is aimed at detecting design errors that 

could lead to incorrect operation of the ULSIC or its complete failure. 

To solve the problem of functional verification, various methods are employed, each possessing 

their own advantages and limitations. Static analysis holds a special place among them, as a 

technique for examining HDL description without its simulation. This approach includes the 

analysis of the structure, syntax, and semantics of the source code, making applicable to identifying 

a wide range of issues, from syntactic errors to potential vulnerabilities [4]. 

Static analysis tools implement the following processing stages: 
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 Code Analysis. The source code is transformed into an abstract syntax tree (AST) or another 

internal representation (IR), enabling the tool to comprehend the structure of the code. 

 Rule Application. A set of predefined rules or checks is applied to the IR, aimed at 

identifying issues of a specific type, such as syntactic errors, style violations, or logical 

inconsistencies. 

 Problem Reporting. Upon detecting rule violations, the tool generates a report containing 

the exact location of the issue (usually, a file name, and a line number), a description of the 

problem, and, probably, a recommendation for its resolution. 

Currently, there are both commercial and open-source tools available for static analysis of RTL 

models. Commercial tools include VCS [5] and SpyGlass [6] (Synopsys), JasperGold (Cadence) [7], 

and Questa (Siemens) [8]. Among the open-source tools for static analysis are Slang [9], 

Verilator [10], Svlint [11], Surelog [12], and Verible [13]. Open-source tools often exhibit limited 

functionality compared to their commercial counterparts. For example, they may not support the full 

range of HDL standards or demonstrate lower accuracy in detecting complex errors. Proprietary 

static analysis tools are currently either unavailable or restricted for use under sanction regimes, 

posing significant risks to the domestic electronics industry. This situation forces the industry to 

either adapt existing tools or completely abandon their use. Furthermore, the utilization of foreign 

EDA (Electronic Design Automation) tools carries inherent information security risks. 

There are studies in the literature demonstrating the application of these tools [14-15]; however, 

experimental comparison of their effectiveness has not been conducted previously, making this task 

novel and relevant for scientific investigation. 

Taking into account the above, the development of domestic EDA tools represents a strategic task 

that will ensure technological independence, information security, and the sustainable growth of the 

country's electronics industry. Currently, the Ivannikov Institute for System Programming of the 

Russian Academy of Sciences (ISP RAS) is conducting research and development work aimed at 

creating SVAN, a static analysis tool for RTL models written in Verilog and SystemVerilog. SVAN 

tool development is supported by the Ministry of Industry and Trade of the Russian Federation. 

The aim of this research is to apply the SVAN tool, currently under development [16], for the 

functional verification of open-source RTL models. The target design models selected for this 

purpose were benchmarks – sets of HDL descriptions originally intended for testing digital VLSI 

EDA tools, as well as for conducting comparative studies in this domain [17-18]. 

To achieve this goal, the following tasks were identified. First, an analysis of the applicability of 

SVAN for collection [19] of open-source RTL benchmarks was made. Next, the same benchmarks 

were analyzed using proprietary Synopsys VCS tool and open-source Verilator tool. After that, the 

results comparison was made. 

A comparative analysis of open-source tools constitutes an independent scientific problem that falls 

outside the scope of the current study and has not been previously addressed in the literature. For 

the purposes of this comparison, we selected Verilator project – a widely recognized open-source 

tool that has been under active development since 2019 (currently in its sixth year of development). 

The tool’s popularity and broad acceptance within the community served as the primary criteria for 

its selection. 

As the second tool in our comparison, we chose Synopsys VCS – a well-established commercial 

solution that is highly regarded in the industry and was accessible to us during the study. Both tools 

were selected due to their strong market presence, long-term development history, and widespread 

adoption in industrial applications. 

An extended comparison of open-source tools may be pursued as a subject of future research and 

more comprehensive analysis. 
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2. SVAN tool description 

Static analysis tools are designed to identify various issues in the code. These issues can be 

categorized into several classes. 

1) Simple syntactic errors arise due to incorrect code writing, including the following: 

1). missing commas, semicolons, parentheses, etc.; 

2). incorrect use of language keywords or constructs; 

3). typo errors in variable names or function calls; 

2) Style violations are issues related to coding standards [20-21], for example: 

1). inconsistent indentations; 

2). deprecated constructions usages; 

3). violations of naming conventions. 

3) Logical inconsistencies represent a more complex class of issues that affect the behavior of 

the program or the design of the hardware. Examples of such inconsistencies include 

unreachable code (a situation where a portion of the code can never be executed due to 

logical errors) or race conditions (where the order of execution of code blocks directly 

impacts the overall outcome of the program). 

Static analysis can also identify security-related issues, such as the use of uninitialized variables, 

which may lead to unpredictable behavior or improper handling of sensitive data, such as passwords 

or cryptographic keys. 

The static analysis tool SVAN (Static Verification ANalysis tool) is a modern solution for verifying 

RTL models. SVAN supports Verilog (IEEE 1364-2005 standard) and SystemVerilog (IEEE 1800-

2023 standard) HDL, enabling its use for verifying projects of varying complexity and purpose. The 

tool is designed to detect errors across various categories, which include the classes described above. 

The architecture of SVAN is built on the principles of modularity and extensibility and is described 

on Figure 1. The tool includes the following key components: 1) SystemVerilog compiler (includes 

lexical analyzer, syntax analyzer and source code handling module); 2) analysis module (include 

rule detection module). 

 

Fig. 1. SVAN Architecture. 

The compiler is the central element of the SVAN architecture. It is responsible for processing the 

input code written in SystemVerilog and Verilog. The base compiler used is Slang – a modern, high-

performance open-source compiler that supports the latest versions of the SystemVerilog standards 

(e.g., IEEE 1800-2023). 

SystemVerilog compiler

Lexical analyzer

Syntax analyzer

Source code handling 
module

Analysis 
module

Rule 
detection 
module
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The advantages of using Slang lie in its ability to accurately analyze complex and large-scale 

projects. After processing the input code, the compiler transforms it into a specific IR, which serves 

as the input data for subsequent analysis stages. 

The analysis module is the core of SVAN’s functionality. It contains rule-based detectors designed 

to identify specific types of errors in the code. Each detector is focused on a particular category of 

issues, such as logical errors, coding style violations, or potential vulnerabilities. 

All rules utilized by the tool have been classified into several categories based on language-related 

aspects and the development process. This classification ensures a systematic approach to 

identifying and addressing various types of issues in the code. Among the examples of categories 

are: 

1) Assign – checks for assignment operations 

2) Case – checks for case statements 

3) Loop – checks for loop operators 

4) Range – checks for out-of-bounds violations 

5) Type – checks for type-related conflicts, and others 

The detectors in the tool are implemented using two primary approaches: formal methods and 

heuristics. 

To evaluate the performance and reliability of SVAN, it was tested on several well-known open-

source hardware projects, including PicoRV32 [22], CVA6 [23], and OpenTitan [24]. The testing 

process involved analyzing these projects to identify potential issues across various categories, such 

as logical inconsistencies, coding style violations, and structural errors. The results of the testing 

confirm that SVAN is a reliable and efficient static analysis tool. Its ability to effectively handle 

complex real-world projects demonstrates its suitability for industrial use. By successfully 

processing large and intricate codebases, SVAN has proven its capability to meet the demands of 

modern hardware design verification, making it a valuable asset for both academic research and 

commercial applications in the field of electronic design automation (EDA). 

3. Experimental analysis 

In the course of the study, a file-by-file processing methodology was applied to the benchmark set. 

Each file was analyzed sequentially using a static analysis tool. In the event of errors indicating the 

absence of required modules or files, an attempt was made to locate the missing components within 

the benchmark collection itself. 

If the necessary files could not be found, the case was labeled as an error, and a stub module with a 

required interface was created. These stub modules were placed in the same directory as the original 

file to ensure correct path resolution during inclusion. For each recurring type of error, a generalized 

description was compiled, including the error category and the recommended correction (see 

Table 1). Descriptions of certain errors related to implementation specifics were supplemented with 

detailed explanations. 

After applying the corrections, each file was re-analyzed using the same tool to verify that the error 

had been resolved and that no further diagnostic messages were issued by the analyzer. No time 

limits were set for the static analysis tool. 

The main contribution of this paper consists of two key aspects. First, a comprehensive comparative 

evaluation of existing static analysis tools was conducted in the context of digital circuit verification 

tasks. Second, a number of errors were identified and corrected within a widely used benchmark 

collection, thereby improving its overall quality and suitability for use in both academic and practical 

applications. 

As part of the conducted research to analyze the applicability of SVAN for open RTL benchmarks, 

the tool was tested on the open-source hdl-benchmarks collection. This collection includes the 

following sets of benchmarks: 
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1) ICCAD-2015 CAD Contest benchmark suite; 

2) ISCAS'85 benchmarks [25]; 

3) ISCAS'89 benchmarks [26]; 

4) IWLS'2005 benchmarks [17]; 

5) LGSynth'1991 benchmarks [27]; 

6) Quartus University Interface Program (QUIP) benchmarks [18]; 

7) Texas-97 benchmarks [28]; 

8) VCEGAR benchmarks [29]; 

9) Verilog2SMV benchmarks [22]; 

These benchmarks were widely used for the verification of HDL design and synthesis tools [23-24]. 

However, it has not yet been analyzed using static analysis methods. These projects encompass a 

broad spectrum of algorithms and functionalities, which served as the decisive factor in their 

selection as a suitable object for comprehensive analysis. Such a wide-ranging representation 

ensures that the tool’s capabilities are tested under conditions that closely mimic real-world 

hardware design scenarios, thereby providing a robust assessment of its effectiveness and reliability. 

Results of experimental evaluation of analyzed tools (with default running options) are shown in 

Table 1. On the first column error types are described. Last columns are named by the related static 

analysis tools: SVAN (ISP RAS), VCS (Cadence) V-2023.12 and Verilator 4.028 2020-02-06 

respectively. 

Table 1. Errors are detected by Static Analysis Tools. 

Error type SVAN VCS Verilator 

Unknown macros or compiler directives detected 36 8 134 

Expected expression 35 0 0 

Unknown module 290 236 97 

No implicit conversion; explicit conversion exists 

but casting is missing 
2 0 0 

Unable to resolve hierarchical path 1 0 0 

Module redefinition 4 0 0 

No such file or directory 26 77 79 

Invalid delay value expression 2 0 0 

Size requires a constant range 3 0 0 

Too many arguments passed 1 0 0 

Incompatible bit widths 1 0 0 

Unknown system name 2 0 0 

Missing identifier 5 0 0 

Too many connections specified for port instantiation 2 2 0 

Other 23 0 24 

Total 433 323 334 

The errors classified as “Unknown macros or compiler directives detected” are essentially a 

consequence of the absence of the source code referencing macros or directives that are not defined 

within the analyzed files or their associated include paths. Below is an example of the error 

containing code and related diagnostics: 

unknown macro or compiler directive '`RDY' 

            if (ACK == `RDY) 

The “Unknown module” error indicates that the code instantiates a module whose declaration is not 

present in the example being analyzed by the tool. 

The “No such file or directory” error occurs when the code attempts to include a header or other file 

that does not exist in the directory where the analyzed code is located. This type of error is the second 

most frequently encountered among those identified. Its presence in the benchmarks may be 

attributed to inaccuracies introduced during the aggregation of the original projects into the hdl-
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benchmarks collection. However, configuring the tool execution flow does not provide an 

opportunity to rectify such errors, as it is not feasible to recover the missing components and 

reconstruct the projects outside the scope of this collection. 

Table 2 presents the solutions proposed as part of the measures taken to rectify errors present in the 

open-source benchmarks. In particular, to address errors related to missing modules, functions, or 

macro definitions, a search was conducted for the corresponding file within the project directories. 

If the file was not found, a stub file implementing the required module, function, or macro was 

created accordingly. Additionally, to resolve the issue of missing explicit type casting, it was 

introduced using a system task. 

During the experimental testing, it was determined that the SVAN tool demonstrates significant 

superiority over both the commercial Synopsys VCS and the open-source Verilator tool across 

several key metrics. In particular, the number of classes of errors detected by SVAN (15) was found 

to be 73% broader than that both of VCS (4) and Verilator (4). Additionally, the total number of 

errors identified by SVAN (433) in the analyzed RTL model modules exceeds the corresponding 

metric for VCS (323) by 25% and for Verilator (332) by 23% (see “Total” row in Table 1). 

This difference can be attributed to several factors. 

Table 2. Errors and Suggested Solutions. 

Error type Suggested correction 

Unknown macros or compiler directives 
detected Check the project directory to see whether the required file exists. 

If it does, import it into the module. If not, create a stub file in the 

project directory and import it into the module. 

Expected expression 

Unknown module 

No such file or directory 

No implicit conversion; explicit 
conversion exists but casting is missing 

Add an explicit cast using 
$sformatf("%s", in_file) 

Unable to resolve hierarchical path 
In the included file, initialize the used parameters and assign them 

appropriate values 

Module redefinition 

Review all included files to determine whether the same file is 

being included twice through different paths into the module under 

investigation. Then adjust the file inclusion order to prevent 

module redeclaration 

Invalid delay value expression Add a file containing the defined delay value expressions 

Size requires a constant range 
Include a .vh file that contains the required constant range 

definitions 

Too many arguments passed 
Modify both the function definition and its usage within the 

module so that no more arguments are passed than are required 

Unknown system name Add a stub file implementing a function with the specified name 

Missing identifier Declare the missing identifier 

Too many connections specified for port 

instantiation 

Correct the instance declaration so that no more port connections 

are provided than are necessary 

3.1 Functional limitations of Synopsys VCS and Verilator 

The VCS tool terminates its analysis upon encountering the first error of a specific category. For 

instance, if an error arises due to a missing included file or directory, the tool halts further error 

detection not only within that category but also across all other categories, even though additional 

errors may still exist in the code. There are no any options allowing to continue further errors 

detection, which leads to significant restrictions the comprehensiveness of the analysis. 

Verilator does not correctly handle the ‘include <path-to-file>’ directive (even when 

using the additional command-line argument +incdir+<path-to-dir>) which is used to 

include external files in module code. As a result, the tool fails to locate included files, even when 

they exist in the same directory as the module being analyzed. This limitation leads to a large number 

of false negatives, as Verilator generates errors related to “missing” files that are actually accessible 

during compilation. 
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By contrast, SVAN continues its analysis regardless of the presence of initial errors, ensuring a more 

thorough and exhaustive examination of the codebase. This capability allows SVAN to identify a 

broader spectrum of errors, thereby providing a more complete picture of the design's integrity and 

potential vulnerabilities. 

3.2 Granularity of error classification 

SVAN provides a more detailed classification of errors compared to both VCS and Verilator. For 

instance, errors related to invalid delay value expressions and the absence of macro or compiler 

directive definitions are grouped under a single marker in VCS, labeled as “Error-[UM] Undefined 

macro”. 

Verilator assigns a broad category of “Syntax error” to multiple distinct error types identified by 

SVAN, such as missing identifiers, unknown system names, and passing too many arguments to a 

function. 

This broad categorization can obscure the specific nature of the issues, making it more challenging 

for developers to identify and address the root causes effectively. 

In contrast, SVAN distinguishes between these categories of errors, enabling more precise 

diagnostics. For example, issues like missing predefined delay expressions, undefined macros, 

unresolved hierarchical paths, and incorrect argument counts are flagged as independent errors. This 

approach allows users to pinpoint the exact nature of each issue, facilitating more efficient 

debugging and resolution. By providing clearer and more granular feedback, SVAN ensures that 

developers receive actionable insights into the specific problems within their code, ultimately 

enhancing the overall quality and reliability of the design process. 

3.3 Absence of detection for certain error categories 

Furthermore, the analysis revealed significant limitations in both Synopsys VCS and Verilator. 

Synopsys VCS tool does not detect certain categories of errors, such as the absence of implicit type 

casting. This limitation can result in potentially problematic code sections going unnoticed, thereby 

increasing the risk of errors during synthesis or simulation stages. For instance, issues related to 

incompatible data types or missing explicit type conversions may remain undetected, leading to 

unpredictable behavior or functional failures in the hardware design. 

Verilator has an even narrower range of detectable errors. It cannot identify issues such as 

unresolved hierarchical paths, module redefinitions, or many other errors that could impact the 

correctness of the system. 

On the contrary, SVAN is capable of identifying such non-obvious errors due to its inclusion of 

detectors specifically designed to verify the correct usage of data types. These detectors explicitly 

check for cases where implicit type casting is expected but absent, ensuring that all type-related 

issues are flagged and addressed. By incorporating these advanced checks, SVAN provides a more 

thorough analysis of the code, reducing the likelihood of oversight and enhancing the overall 

robustness of the design process. 

During experimental testing, it was also found that 5% of the analyzed RTL models were incorrectly 

classified as containing errors by SVAN and Verilator, whereas the Synopsys VCS tool marked 

them as correct and they were actually correct. They were marked as “Other” in the Table 1. 

Those issues arise due to the specific characteristics of code analysis performed in accordance with 

the Verilog IEEE 1364-2005 and SystemVerilog IEEE 1800-2023 standards. When verifying 

benchmarks containing mixed code written in both languages, valid Verilog code did not meet the 

stricter requirements of the SystemVerilog standard. For example, a variable named do was 

recognized as a reserved keyword introduced in the SystemVerilog standard. As a result, such 

models were flagged as erroneous, even though they were actually compliant with the Verilog 

standard. 
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The broader spectrum of detectable errors, increased level of analysis detail, and absence of the 

limitations of VCS and Verilator make SVAN a more effective tool for the static verification of RTL 

models. 

Table 3 shows the errors distribution on the selected benchmarks. The analysis reveals that the 

IWLS-05 benchmark contains the highest number of errors among the evaluated datasets. 

Specifically, SVAN, VCS, and Verilator detected 214, 214, and 212 errors (see “IWLS-05” row in 

Table 3) respectively, in this benchmark, making it the most error-prone dataset in absolute terms. 

A significant proportion of these errors – 77% (165 out of 214) – are attributed to the absence of a 

file containing the module whose instance is instantiated in the analyzed file. This issue represents 

the most frequently encountered error type in the IWLS-05 benchmark. 

Another notable dataset is the QUIP benchmark, which was released as part of Altera's educational 

program. While QUIP is not the largest benchmark in terms of error count, it exhibits a relatively 

high error rate, with 99 errors detected (see “QUIP” row in Table 3). The higher error frequency in 

QUIP can be attributed to its lesser degree of debugging compared to other benchmarks. Similar to 

IWLS-05, the most common error in QUIP is the absence of a module corresponding to an 

instantiated instance. Additionally, the minor variability in error detection rates among the tools 

suggests that QUIP presents specific challenges for verification tools. 

Table 3. Errors to Benchmarks distribution. 

Benchmark SVAN VCS Verilator 

Verilog2SMV 1 1 1 

VCEGAR 5 0 5 

TEXAS-97 17 17 17 

QUIP 99 99 97 

IWLS-05 214 214 212 

ISCAS89 4 4 4 

The benchmark with the fewest errors, based on the results of the empirical study, is Verilog2SMV 

(see “Verilog2SMV” row in Table 3). This may be attributed to the fact that this benchmark serves 

as a test suite specifically developed for testing the eponymous tool by the Bruno Kessler 

Foundation [30]. 

Additionally, only four errors of the type “Unknown Module” were detected by all tested static 

analysis tools on the ISCAS-89 benchmark. The ISCAS-89 benchmark was originally distributed 

on tape to participants of the Special Session on Sequential Test Generation at the International 

Symposium on Circuits and Systems in May 1989 and is partially characterized in [26]. This is the 

reason for the number of errors contained in this benchmark being minimal and representing only 

one class of errors outlined in Table 1. 

Overall, the tools SVAN and VCS demonstrate robust performance across all benchmarks, 

consistently identifying the highest number of errors. Their consistent results highlight their 

reliability in detecting issues, even in less refined datasets like QUIP. 

In terms of tool performance, SVAN and VCS demonstrate nearly identical results across all 

benchmarks, consistently detecting the same number of errors. The primary discrepancy lies in the 

complete absence of error detection by VCS within the VCEGAR benchmark, where SVAN 

demonstrates superior performance by identifying errors, matching the results achieved by Verilator. 

This highlights the robustness of SVAN in handling the complexities of the VCEGAR dataset, 

further solidifying its position as a leading tool in error detection across diverse benchmarks. 

4. Conclusions and final remarks 

Based on the empirical study, a number of unique characteristics of SVAN were identified, setting 

it apart from existing solutions for the verification of hardware descriptions written in Verilog and 

SystemVerilog. The key advantage of SVAN compared to Synopsys VCS and Verilator is high 

analysis accuracy. SVAN’s ability to provide more granular and precise diagnostics ensures that 
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even subtle issues are identified and properly categorized, reducing the likelihood of undetected 

errors that could compromise the design process. 

Despite its significant advantages, the SVAN tool has certain limitations that must be taken into 

account when using it. One of the key drawbacks is its insufficient flexibility in handling RTL 

models are written in two hardware description languages – both Verilog and SystemVerilog. This 

limitation highlights the need for further improvements in SVAN’s ability to handle mixed-language 

designs and to differentiate between language-specific constructs more effectively. While SVAN’s 

strict adherence to SystemVerilog standards ensures high accuracy in many cases, it can also lead to 

false positives when analyzing legacy Verilog code or designs that combine both languages. 

Addressing this challenge will be critical for enhancing the tool’s compatibility and usability across 

a wider range of hardware design projects. 

The results presented in this work are valuable both in terms of comparing the developed SVAN 

tool with proprietary counterparts and in a broader context. On one hand, the study has a scientific 

focus, involving the analysis and comparison of functional capabilities among existing static 

analysis tools. On the other hand, it can be regarded as a technical report reflecting the current state 

and practical capabilities of the SVAN tool. 

The further development of this research includes a broader comparison of the static analysis tool 

SVAN with existing commercial and non-commercial tools, including an assessment of 

performance and functional capabilities. This will be the subject of future studies and will allow for 

a deeper evaluation of the proposed method's potential under real-world application conditions. 
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