Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-10 tOC-EH

Application of SVAN Static Analysis Tool on Open
RTL Benchmarks

S.M. Panova, ORCID: 0009-0008-5106-0915 <panova@ispras.ru>
S.A. Smolov, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
M.M. Volkova, ORCID: 0009-0009-8324-7562 <volchonok03@bk.ru>

Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
Plekhanov Russian University of Economics,
36, Stremyanny lane, Moscow, 115004, Russia.

Abstract. The article presents an experimental evaluation of SVAN, a static analysis tool designed for
functional verification of RTL models written in Verilog and SystemVerilog. The research addresses the
growing need for reliable domestic EDA tools, particularly in light of restrictions on proprietary solutions.
SVAN’s architecture integrates formal methods and heuristic approaches to detect a wide range of errors,
including syntactic issues, coding style violations, logical inconsistencies, and security vulnerabilities.
Empirical testing on open-source hardware benchmarks demonstrates SVAN’s superior effectiveness compared
to Synopsys VCS and Verilator, with a 73% broader error detection spectrum and 25-23% higher error
identification rate, respectively. Key advantages of SVAN include high analysis accuracy and detailed error
classification. However, limitations such as reduced flexibility in handling mixed-language designs highlight
areas for future improvement. The study underscores SVAN’s potential as a competitive tool for static
verification in electronic design automation.

Keywords: static analysis; RTL; SVAN; Verilog; SystemVerilog; functional verification; error detection;
open-source benchmarks.

For citation: Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open
RTL Benchmarks. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025, pp. 131-142. DOI:
10.15514/ISPRAS-2025-37(5)-10.

Acknowledgements: The project is supported by the Ministry of Industry and Trade of the Russian Federation
within the R&D project “Development of a static analysis system for a hardware description language”, code
“CAD-Analysis” (as part of the R&D project “CAD microelectronics”, the main contractor is JSC “ISTC
MIET”).

131

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

MpumeHeHne nHcTpymeHTa SVAN cTaTU4eCKOro aHanusa onmMcaHuu
annapaTtypbl Ana sepmdpukaumm oTKpbITbIX TECTOBbIX HabopoB

C.M. Ilanosa, ORCID: 0009-0008-5106-0915 <panova@ispras.ru>
C.A. Cuonos, ORCID: 0000-0003-0173-3081 <smolov@ispras.ru>
M.M. Bonxosa, ORCID: 0009-0009-8324-7562 < volchonok03@bk.ru>

HUncmumym cucmemnozo npoepammuposanus um. B.I1. Heannuxosea PAH,
Poccus, 109004, o. Mockea, ya. A. Conxcenuybina, 0. 25.
Poccuiickuii sxonomuueckuti ynueepcumem um. I'.B. [lnexanosa,
Poccus, 115054, 2. Mockea, Cmpemannblii nepeyiox, 0.36.

AHHoTanmsi. B craThe MpeACTaBIeHBI Pe3yJabTaThl JKCIIEPUMEHTALHOrO aHamu3a uHcTpyMeHta SVAN
CTATHYECKOTO aHallM3a onucaHuii nudpoBoii ammaparypsl Ha s3bikax Verilog u SystemVerilog. MucTpymenT
paspabatrsBaetcs B ICI1 PAH u mpenocraBnsier cpenctsa popManbHOTO B 3BpUCTHUECKOrO aHamm3a HDL-
ONMCaHMH, HallelICHHbIE HA BBIIBJICHHE CHHTAKCHYECKUX OIMIMOOK, HApyHmIEHHH CTWII o(QopMIEeHHs KonIa,
npoGiieM 6e30MacHOCTH. DKCIEPUMEHTHI, IPOBEICHHBIE HA OMMCAHUIX M3 OTKPBITOro TecToBoro HaGopa hdl-
benchmarks, memonctpupyror 6osee Bbicokyto 3bdextuBHocTh SVAN B CpaBHEHHH C OTKpPBITBHIM
uncrpymenrom Verilator u nponpuerapusiv nHCTpYMeHTOM SYnopsys VCS. B yactHoctu, SVAN oGHapy ui
Ha 73% Oompme THmoB ommbOok M Ha 23-25% Oombmie ommbok B menoM. KioueBble IpemMyInecTBa
urctpymenta SVAN cocTosT B Gojiee BBICOKOM YPOBHE JIOKAIH3AUUHM OIMHOOK M Pa3BUTOI TUIIOIOTHH
oumbok. K BeisiBIeHHBIM Hemoctatkam HHCTpyMeHTa SVAN oTHOcHTCs orpaHudeHHas momaepkka RTL-
Moyieneil, B KOTOPBIX UCHOJIb3YeTCsl HECKOJIBKO SI3BIKOB OIMcaHus. I1oyueHHbIC pe3yabTaThl IO JYEPKUBAIOT
noteniman SVAN Kkak KOHKYPEHTOCHOCOOHOrO HMHCTPYMEHTa CTAaTHYECKOro aHaiuu3a B 00JacTu
aBTOMATH3AaIMY POEKTHPOBAHUS LIU(PPOBOH anmaparypsl.

KawueBble cioBa: cratmdyeckuil anamu3; RTL-momens; HDL-omucanue; anammzatop SVAN; s3bIKH
omucanus ammaparypel Verilog, SystemVerilog; ¢yHkunoHansHas BepuduUKaims; oOHapyXeHHE OIIHOOK;
OTKPBITBIN TECTOBBIIT HAOOD.

Jas nurupoBanusi: [lamoa C.M., CmonoB C.A., BomkoBa M.M. [lpumenenne nuctpymenta SVAN
CTaTUYECKOTO aHAIIN3a OTIMCAHUH anmmapaTypsl Ul BepU(PHUKAIIHA OTKPHITHIX TeCcTOBBIX Ha0opoB. Tpyasr UCIT
PAH, tom 37, Beim. 5, 2025 1., ctp. 131-142 (Ha anrmmiickom si3sike). DOI: 10.15514/ISPRAS-2025-37(5)-10.

Baaronapuoctu: IIpoext ¢unancupyercss MUHHCTEPCTBOM NPOMBIIUICHHOCTH W TOProBiM Poccuiickoit
Oeneparmu B pamkax OKP «Pa3paboTka cCTEeMBI CTaTHUECKOTO aHAIM3a JUIS S13bIKa OTMCAHUS aIllapaTypsl»,
umop «CAITP-Anamu3» (B coctaBe OKP «CAIIP MHKpO3JIeKTpOHMKa», TOJOBHOH HcmoimHuTedb — AO
«MHTL] MUDT»).

1. Introduction

The design of ultra-large-scale integrated circuits (ULSICs) is a complex task that requires high
precision and reliability at all stages of development. In the early stages of designing digital ULSICs,
they are described at the Register Transfer Level (RTL) using Hardware Description Languages
(HDLs), such as Verilog [1] and SystemVerilog [2]. Modern RTL models can reach significant sizes,
encompassing millions of lines of code [3], making automated functional verification as one of the
key tasks in the development process. Functional verification is aimed at detecting design errors that
could lead to incorrect operation of the ULSIC or its complete failure.

To solve the problem of functional verification, various methods are employed, each possessing
their own advantages and limitations. Static analysis holds a special place among them, as a
technique for examining HDL description without its simulation. This approach includes the
analysis of the structure, syntax, and semantics of the source code, making applicable to identifying
a wide range of issues, from syntactic errors to potential vulnerabilities [4].

Static analysis tools implement the following processing stages:

132

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

o Code Analysis. The source code is transformed into an abstract syntax tree (AST) or another
internal representation (IR), enabling the tool to comprehend the structure of the code.

o Rule Application. A set of predefined rules or checks is applied to the IR, aimed at
identifying issues of a specific type, such as syntactic errors, style violations, or logical
inconsistencies.

e Problem Reporting. Upon detecting rule violations, the tool generates a report containing
the exact location of the issue (usually, a file name, and a line number), a description of the
problem, and, probably, a recommendation for its resolution.

Currently, there are both commercial and open-source tools available for static analysis of RTL
models. Commercial tools include VCS [5] and SpyGlass [6] (Synopsys), JasperGold (Cadence) [7],
and Questa (Siemens) [8]. Among the open-source tools for static analysis are Slang [9],
Verilator [10], Svlint [11], Surelog [12], and Verible [13]. Open-source tools often exhibit limited
functionality compared to their commercial counterparts. For example, they may not support the full
range of HDL standards or demonstrate lower accuracy in detecting complex errors. Proprietary
static analysis tools are currently either unavailable or restricted for use under sanction regimes,
posing significant risks to the domestic electronics industry. This situation forces the industry to
either adapt existing tools or completely abandon their use. Furthermore, the utilization of foreign
EDA (Electronic Design Automation) tools carries inherent information security risks.

There are studies in the literature demonstrating the application of these tools [14-15]; however,
experimental comparison of their effectiveness has not been conducted previously, making this task
novel and relevant for scientific investigation.

Taking into account the above, the development of domestic EDA tools represents a strategic task
that will ensure technological independence, information security, and the sustainable growth of the
country's electronics industry. Currently, the Ivannikov Institute for System Programming of the
Russian Academy of Sciences (ISP RAS) is conducting research and development work aimed at
creating SVAN, a static analysis tool for RTL models written in Verilog and SystemVerilog. SVAN
tool development is supported by the Ministry of Industry and Trade of the Russian Federation.
The aim of this research is to apply the SVAN tool, currently under development [16], for the
functional verification of open-source RTL models. The target design models selected for this
purpose were benchmarks — sets of HDL descriptions originally intended for testing digital VVLSI
EDA tools, as well as for conducting comparative studies in this domain [17-18].

To achieve this goal, the following tasks were identified. First, an analysis of the applicability of
SVAN for collection [19] of open-source RTL benchmarks was made. Next, the same benchmarks
were analyzed using proprietary Synopsys VCS tool and open-source Verilator tool. After that, the
results comparison was made.

A comparative analysis of open-source tools constitutes an independent scientific problem that falls
outside the scope of the current study and has not been previously addressed in the literature. For
the purposes of this comparison, we selected Verilator project — a widely recognized open-source
tool that has been under active development since 2019 (currently in its sixth year of development).
The tool’s popularity and broad acceptance within the community served as the primary criteria for
its selection.

As the second tool in our comparison, we chose Synopsys VCS — a well-established commercial
solution that is highly regarded in the industry and was accessible to us during the study. Both tools
were selected due to their strong market presence, long-term development history, and widespread
adoption in industrial applications.

An extended comparison of open-source tools may be pursued as a subject of future research and
more comprehensive analysis.

133

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

2. SVAN tool description

Static analysis tools are designed to identify various issues in the code. These issues can be
categorized into several classes.

1) Simple syntactic errors arise due to incorrect code writing, including the following:

1). missing commas, semicolons, parentheses, etc.;
2). incorrect use of language keywords or constructs;
3). typo errors in variable names or function calls;

2) Style violations are issues related to coding standards [20-21], for example:

1). inconsistent indentations;
2). deprecated constructions usages;
3). violations of naming conventions.

3) Logical inconsistencies represent a more complex class of issues that affect the behavior of
the program or the design of the hardware. Examples of such inconsistencies include
unreachable code (a situation where a portion of the code can never be executed due to
logical errors) or race conditions (where the order of execution of code blocks directly
impacts the overall outcome of the program).

Static analysis can also identify security-related issues, such as the use of uninitialized variables,
which may lead to unpredictable behavior or improper handling of sensitive data, such as passwords
or cryptographic keys.

The static analysis tool SVAN (Static Verification ANalysis tool) is a modern solution for verifying
RTL models. SVAN supports Verilog (IEEE 1364-2005 standard) and SystemVerilog (IEEE 1800-
2023 standard) HDL, enabling its use for verifying projects of varying complexity and purpose. The
tool is designed to detect errors across various categories, which include the classes described above.
The architecture of SVAN is built on the principles of modularity and extensibility and is described
on Figure 1. The tool includes the following key components: 1) SystemVerilog compiler (includes
lexical analyzer, syntax analyzer and source code handling module); 2) analysis module (include
rule detection module).

. . Analysis
SystemVerilog compiler modiule
I_ Rule
— Lexical analyzer detection
module

— Syntax analyzer

Source code handling
module

Fig. 1. SVAN Architecture.

The compiler is the central element of the SVAN architecture. It is responsible for processing the
input code written in SystemVerilog and Verilog. The base compiler used is Slang — a modern, high-
performance open-source compiler that supports the latest versions of the SystemVerilog standards
(e.g., IEEE 1800-2023).

134

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

The advantages of using Slang lie in its ability to accurately analyze complex and large-scale
projects. After processing the input code, the compiler transforms it into a specific IR, which serves
as the input data for subsequent analysis stages.

The analysis module is the core of SVAN’s functionality. It contains rule-based detectors designed
to identify specific types of errors in the code. Each detector is focused on a particular category of
issues, such as logical errors, coding style violations, or potential vulnerabilities.

All rules utilized by the tool have been classified into several categories based on language-related
aspects and the development process. This classification ensures a systematic approach to
identifying and addressing various types of issues in the code. Among the examples of categories
are:

1) Assign — checks for assignment operations

2) Case — checks for case statements

3) Loop — checks for loop operators

4) Range — checks for out-of-bounds violations

5) Type — checks for type-related conflicts, and others

The detectors in the tool are implemented using two primary approaches: formal methods and
heuristics.

To evaluate the performance and reliability of SVAN, it was tested on several well-known open-
source hardware projects, including PicoRV32 [22], CVAG [23], and OpenTitan [24]. The testing
process involved analyzing these projects to identify potential issues across various categories, such
as logical inconsistencies, coding style violations, and structural errors. The results of the testing
confirm that SVAN is a reliable and efficient static analysis tool. Its ability to effectively handle
complex real-world projects demonstrates its suitability for industrial use. By successfully
processing large and intricate codebases, SVAN has proven its capability to meet the demands of
modern hardware design verification, making it a valuable asset for both academic research and
commercial applications in the field of electronic design automation (EDA).

3. Experimental analysis

In the course of the study, a file-by-file processing methodology was applied to the benchmark set.
Each file was analyzed sequentially using a static analysis tool. In the event of errors indicating the
absence of required modules or files, an attempt was made to locate the missing components within
the benchmark collection itself.
If the necessary files could not be found, the case was labeled as an error, and a stub module with a
required interface was created. These stub modules were placed in the same directory as the original
file to ensure correct path resolution during inclusion. For each recurring type of error, a generalized
description was compiled, including the error category and the recommended correction (see
Table 1). Descriptions of certain errors related to implementation specifics were supplemented with
detailed explanations.
After applying the corrections, each file was re-analyzed using the same tool to verify that the error
had been resolved and that no further diagnostic messages were issued by the analyzer. No time
limits were set for the static analysis tool.
The main contribution of this paper consists of two key aspects. First, a comprehensive comparative
evaluation of existing static analysis tools was conducted in the context of digital circuit verification
tasks. Second, a number of errors were identified and corrected within a widely used benchmark
collection, thereby improving its overall quality and suitability for use in both academic and practical
applications.
As part of the conducted research to analyze the applicability of SVAN for open RTL benchmarks,
the tool was tested on the open-source hdl-benchmarks collection. This collection includes the
following sets of benchmarks:

135

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

1) ICCAD-2015 CAD Contest benchmark suite;

2) ISCAS'85 benchmarks [25];

3) ISCAS'89 benchmarks [26];

4) TWLS'2005 benchmarks [17];

5) LGSynth'1991 benchmarks [27];

6) Quartus University Interface Program (QUIP) benchmarks [18];

7) Texas-97 benchmarks [28];

8) VCEGAR benchmarks [29];

9) Verilog2SMV benchmarks [22];

These benchmarks were widely used for the verification of HDL design and synthesis tools [23-24].
However, it has not yet been analyzed using static analysis methods. These projects encompass a
broad spectrum of algorithms and functionalities, which served as the decisive factor in their
selection as a suitable object for comprehensive analysis. Such a wide-ranging representation
ensures that the tool’s capabilities are tested under conditions that closely mimic real-world
hardware design scenarios, thereby providing a robust assessment of its effectiveness and reliability.
Results of experimental evaluation of analyzed tools (with default running options) are shown in
Table 1. On the first column error types are described. Last columns are named by the related static
analysis tools: SVAN (ISP RAS), VCS (Cadence) V-2023.12 and Verilator 4.028 2020-02-06
respectively.

Table 1. Errors are detected by Static Analysis Tools.

Error type SVAN VCS Verilator

Unknown macros or compiler directives detected 36 8 134
Expected expression 35 0 0
Unknown module 290 236 97
No implicit conversion; explicit conversion exists

TS 2 0 0

but casting is missing

Unable to resolve hierarchical path 1 0 0
Module redefinition 4 0 0
No such file or directory 26 77 79
Invalid delay value expression 2 0 0
Size requires a constant range 3 0 0
Too many arguments passed 1 0 0
Incompatible bit widths 1 0 0
Unknown system name 2 0 0
Missing identifier 5 0 0
Too many connections specified for port instantiation 2 2 0
Other 23 0 24
Total 433 323 334

The errors classified as “Unknown macros or compiler directives detected” are essentially a
consequence of the absence of the source code referencing macros or directives that are not defined
within the analyzed files or their associated include paths. Below is an example of the error
containing code and related diagnostics:

unknown macro or compiler directive ' RDY'
if (ACK == “RDY)

The “Unknown module” error indicates that the code instantiates a module whose declaration is not
present in the example being analyzed by the tool.

The “No such file or directory” error occurs when the code attempts to include a header or other file
that does not exist in the directory where the analyzed code is located. This type of error is the second
most frequently encountered among those identified. Its presence in the benchmarks may be
attributed to inaccuracies introduced during the aggregation of the original projects into the hd1-

136

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

benchmarks collection. However, configuring the tool execution flow does not provide an
opportunity to rectify such errors, as it is not feasible to recover the missing components and
reconstruct the projects outside the scope of this collection.

Table 2 presents the solutions proposed as part of the measures taken to rectify errors present in the
open-source benchmarks. In particular, to address errors related to missing modules, functions, or
macro definitions, a search was conducted for the corresponding file within the project directories.
If the file was not found, a stub file implementing the required module, function, or macro was
created accordingly. Additionally, to resolve the issue of missing explicit type casting, it was
introduced using a system task.

During the experimental testing, it was determined that the SVAN tool demonstrates significant
superiority over both the commercial Synopsys VCS and the open-source Verilator tool across
several key metrics. In particular, the number of classes of errors detected by SVAN (15) was found
to be 73% broader than that both of VCS (4) and Verilator (4). Additionally, the total number of
errors identified by SVAN (433) in the analyzed RTL model modules exceeds the corresponding
metric for VCS (323) by 25% and for Verilator (332) by 23% (see “Total” row in Table 1).

This difference can be attributed to several factors.

Table 2. Errors and Suggested Solutions.

Error type

Suggested correction

Unknown macros or compiler directives
detected

Expected expression

Unknown module

No such file or directory

Check the project directory to see whether the required file exists.
If it does, import it into the module. If not, create a stub file in the
project directory and import it into the module.

No implicit conversion; explicit
conversion exists but casting is missing

Add an explicit cast using
S$sformatf ("%s", in file)

Unable to resolve hierarchical path

In the included file, initialize the used parameters and assign them
appropriate values

Module redefinition

Review all included files to determine whether the same file is
being included twice through different paths into the module under
investigation. Then adjust the file inclusion order to prevent
module redeclaration

Invalid delay value expression

Add a file containing the defined delay value expressions

Size requires a constant range

Include a . vh file that contains the required constant range
definitions

Too many arguments passed

Modify both the function definition and its usage within the
module so that no more arguments are passed than are required

Unknown system name

Add a stub file implementing a function with the specified name

Missing identifier

Declare the missing identifier

Too many connections specified for port
instantiation

Correct the instance declaration so that no more port connections
are provided than are necessary

3.1 Functional limitations of Synopsys VCS and Verilator

The VCS tool terminates its analysis upon encountering the first error of a specific category. For
instance, if an error arises due to a missing included file or directory, the tool halts further error
detection not only within that category but also across all other categories, even though additional
errors may still exist in the code. There are no any options allowing to continue further errors
detection, which leads to significant restrictions the comprehensiveness of the analysis.

Verilator does not correctly handle the “include <path-to-file>’ directive (even when
using the additional command-line argument +incdir+<path-to-dir>) which is used to
include external files in module code. As a result, the tool fails to locate included files, even when
they exist in the same directory as the module being analyzed. This limitation leads to a large number
of false negatives, as Verilator generates errors related to “missing” files that are actually accessible
during compilation.

137

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

By contrast, SVAN continues its analysis regardless of the presence of initial errors, ensuring a more
thorough and exhaustive examination of the codebase. This capability allows SVAN to identify a
broader spectrum of errors, thereby providing a more complete picture of the design's integrity and
potential vulnerabilities.

3.2 Granularity of error classification

SVAN provides a more detailed classification of errors compared to both VCS and Verilator. For
instance, errors related to invalid delay value expressions and the absence of macro or compiler
directive definitions are grouped under a single marker in VCS, labeled as “Error-[UM] Undefined
macro”.

Verilator assigns a broad category of “Syntax error” to multiple distinct error types identified by
SVAN, such as missing identifiers, unknown system names, and passing too many arguments to a
function.

This broad categorization can obscure the specific nature of the issues, making it more challenging
for developers to identify and address the root causes effectively.

In contrast, SVAN distinguishes between these categories of errors, enabling more precise
diagnostics. For example, issues like missing predefined delay expressions, undefined macros,
unresolved hierarchical paths, and incorrect argument counts are flagged as independent errors. This
approach allows users to pinpoint the exact nature of each issue, facilitating more efficient
debugging and resolution. By providing clearer and more granular feedback, SVAN ensures that
developers receive actionable insights into the specific problems within their code, ultimately
enhancing the overall quality and reliability of the design process.

3.3 Absence of detection for certain error categories

Furthermore, the analysis revealed significant limitations in both Synopsys VCS and Verilator.
Synopsys VCS tool does not detect certain categories of errors, such as the absence of implicit type
casting. This limitation can result in potentially problematic code sections going unnoticed, thereby
increasing the risk of errors during synthesis or simulation stages. For instance, issues related to
incompatible data types or missing explicit type conversions may remain undetected, leading to
unpredictable behavior or functional failures in the hardware design.

Verilator has an even narrower range of detectable errors. It cannot identify issues such as
unresolved hierarchical paths, module redefinitions, or many other errors that could impact the
correctness of the system.

On the contrary, SVAN is capable of identifying such non-obvious errors due to its inclusion of
detectors specifically designed to verify the correct usage of data types. These detectors explicitly
check for cases where implicit type casting is expected but absent, ensuring that all type-related
issues are flagged and addressed. By incorporating these advanced checks, SVAN provides a more
thorough analysis of the code, reducing the likelihood of oversight and enhancing the overall
robustness of the design process.

During experimental testing, it was also found that 5% of the analyzed RTL models were incorrectly
classified as containing errors by SVAN and Verilator, whereas the Synopsys VCS tool marked
them as correct and they were actually correct. They were marked as “Other” in the Table 1.

Those issues arise due to the specific characteristics of code analysis performed in accordance with
the Verilog IEEE 1364-2005 and SystemVerilog IEEE 1800-2023 standards. When verifying
benchmarks containing mixed code written in both languages, valid Verilog code did not meet the
stricter requirements of the SystemVerilog standard. For example, a variable named do was
recognized as a reserved keyword introduced in the SystemVerilog standard. As a result, such
models were flagged as erroneous, even though they were actually compliant with the Verilog
standard.

138

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

The broader spectrum of detectable errors, increased level of analysis detail, and absence of the
limitations of VCS and Verilator make SVAN a more effective tool for the static verification of RTL
models.

Table 3 shows the errors distribution on the selected benchmarks. The analysis reveals that the
IWLS-05 benchmark contains the highest number of errors among the evaluated datasets.
Specifically, SVAN, VCS, and Verilator detected 214, 214, and 212 errors (see “IWLS-05" row in
Table 3) respectively, in this benchmark, making it the most error-prone dataset in absolute terms.
A significant proportion of these errors — 77% (165 out of 214) — are attributed to the absence of a
file containing the module whose instance is instantiated in the analyzed file. This issue represents
the most frequently encountered error type in the IWLS-05 benchmark.

Another notable dataset is the QUIP benchmark, which was released as part of Altera's educational
program. While QUIP is not the largest benchmark in terms of error count, it exhibits a relatively
high error rate, with 99 errors detected (see “QUIP” row in Table 3). The higher error frequency in
QUIP can be attributed to its lesser degree of debugging compared to other benchmarks. Similar to
IWLS-05, the most common error in QUIP is the absence of a module corresponding to an
instantiated instance. Additionally, the minor variability in error detection rates among the tools
suggests that QUIP presents specific challenges for verification tools.

Table 3. Errors to Benchmarks distribution.

Benchmark SVAN VCS Verilator
Verilog2SMV 1 1 1
VCEGAR 5 0 5
TEXAS-97 17 17 17
QUIP 99 99 97
IWLS-05 214 214 212
ISCAS89 4 4 4

The benchmark with the fewest errors, based on the results of the empirical study, is Verilog2SMV
(see “Verilog2SMV” row in Table 3). This may be attributed to the fact that this benchmark serves
as a test suite specifically developed for testing the eponymous tool by the Bruno Kessler
Foundation [30].

Additionally, only four errors of the type “Unknown Module” were detected by all tested static
analysis tools on the ISCAS-89 benchmark. The ISCAS-89 benchmark was originally distributed
on tape to participants of the Special Session on Sequential Test Generation at the International
Symposium on Circuits and Systems in May 1989 and is partially characterized in [26]. This is the
reason for the number of errors contained in this benchmark being minimal and representing only
one class of errors outlined in Table 1.

Overall, the tools SVAN and VCS demonstrate robust performance across all benchmarks,
consistently identifying the highest number of errors. Their consistent results highlight their
reliability in detecting issues, even in less refined datasets like QUIP.

In terms of tool performance, SVAN and VCS demonstrate nearly identical results across all
benchmarks, consistently detecting the same number of errors. The primary discrepancy lies in the
complete absence of error detection by VCS within the VCEGAR benchmark, where SVAN
demonstrates superior performance by identifying errors, matching the results achieved by Verilator.
This highlights the robustness of SVAN in handling the complexities of the VCEGAR dataset,
further solidifying its position as a leading tool in error detection across diverse benchmarks.

4. Conclusions and final remarks

Based on the empirical study, a number of unique characteristics of SVAN were identified, setting
it apart from existing solutions for the verification of hardware descriptions written in Verilog and
SystemVerilog. The key advantage of SVAN compared to Synopsys VCS and Verilator is high
analysis accuracy. SVAN’s ability to provide more granular and precise diagnostics ensures that

139

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

even subtle issues are identified and properly categorized, reducing the likelihood of undetected
errors that could compromise the design process.

Despite its significant advantages, the SVAN tool has certain limitations that must be taken into
account when using it. One of the key drawbacks is its insufficient flexibility in handling RTL
models are written in two hardware description languages — both Verilog and SystemVerilog. This
limitation highlights the need for further improvements in SVAN’s ability to handle mixed-language
designs and to differentiate between language-specific constructs more effectively. While SVAN’s
strict adherence to SystemVerilog standards ensures high accuracy in many cases, it can also lead to
false positives when analyzing legacy Verilog code or designs that combine both languages.
Addressing this challenge will be critical for enhancing the tool’s compatibility and usability across
a wider range of hardware design projects.

The results presented in this work are valuable both in terms of comparing the developed SVAN
tool with proprietary counterparts and in a broader context. On one hand, the study has a scientific
focus, involving the analysis and comparison of functional capabilities among existing static
analysis tools. On the other hand, it can be regarded as a technical report reflecting the current state
and practical capabilities of the SVAN tool.

The further development of this research includes a broader comparison of the static analysis tool
SVAN with existing commercial and non-commercial tools, including an assessment of
performance and functional capabilities. This will be the subject of future studies and will allow for
a deeper evaluation of the proposed method's potential under real-world application conditions.

References

[1]. IEEE SA. IEEE Standard for Verilog Hardware Description Language [Online]. Available:
https://standards.ieee.org/ieee/1364/3641/ (accessed 2025, Mar. 27).

[2]. IEEE SA. IEEE Standard for SystemVerilog — Unified Hardware Design, Specification, and Verification
Language [Online]. Available: https://standards.ieee.org/ieee/1800/7743/ (accessed 2025, Mar. 27).

[3]. NVDLA Project, “NVIDIA Deep Learning Accelerator (NVDLA) — Open-Source Inference Accelerator”,
GitHub repository, 2017-2023. [Online]. Available: https://github.com/nvdla (accessed 2025, Mar. 27).

[4]. GOST R 71207-2024, “Information Protection. Secure Software Development. Static Code Analysis.
General Requirements”, Moscow: Standartinform, 2024. [Online]. Available:
https://protect.gost.ru/v.aspx?control=7&id=257752 (accessed 2025, Mar. 27).

[5]. Synopsys, “VCS® Functional Verification Solution”, Synopsys Inc., 2023. [Online]. Available:
https://www.synopsys.com/verification/simulation/vcs.html (accessed 2025, Mar. 27).

[6]. Synopsys, “SpyGlass: Early Design Analysis Tools for SoCs”, Synopsys Inc., 2025. [Online]. Available:
https://www.synopsys.com/verification/static-and-formal-verification/spyglass.html (accessed 2025,

Jun.12).
[7]. Cadence Design Systems, “Formal and Static Verification Solutions”, Cadence Inc., 2023. [Online].
Available: https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-

static-verification.html (accessed 2025, Mar. 27).
[8]. Siemens EDA (2025, Mar. 27). Questa Verification Solutions, Siemens Digital Industries Software, 2023.
[Online]. Available: https://eda.sw.siemens.com/en-US/ic/questa/ (accessed 2025, Mar. 27).
[9]. M. Popoloski, slang: SystemVerilog Language Services, version 8.0, 2015-2025. [Online]. Available:
https://github.com/MikePopoloski/slang (accessed 2025, Mar. 27).
[10]. Verilator. Verilator — a fast Verilog/SystemVerilog simulator. GitHub repository, 2003-2024. [Online].
Auvailable: https://github.com/verilator/verilator (accessed 2025, Mar. 27).
[11]. D. Alance. svlint — SystemVerilog linter. GitHub repository 2020-2024. (2025, Mar. 27). [Online].
Available: https://github.com/dalance/svlint (accessed 2025, Mar. 27).
[12]. CHIPS Alliance, Surelog v1.84 — SystemVerilog 2017 Toolchain, 2024. [Online]. Available:
https://github.com/chipsalliance/Surelog (accessed 2025, Mar. 27).
[13]. CHIPS Alliance. Verible — Suite of SystemVerilog developer tools. GitHub repository, 2019-2024.
[Online]. Available: https://github.com/chipsalliance/verible (accessed 2025, Mar. 27).
[14]. T. Pecenka, L. Sekanina, and Z. Kotasek, “Evolution of synthetic RTL benchmark circuits with predefined
testability”, ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 3, pp. 1-21, Jul. 2008.

140

ITanosa C.M., Cmonos C.A., Bonkoa M.M. Ilpumenenne uactpymenta SVAN cTaTHuecKkoro aHaan3a OMMCAHUN anmapaTypsl st
BepU(UKALNK OTKPHITBIX TECTOBBIX HAOOPOB. Tpyosrt MCIT PAH, 2025, Tom 37 Bbim. 5, ¢. 131-142.

[15]. F. Yuan, “Design and Test for Timing Uncertainty in VLSI Circuits”, Ph.D. dissertation, Chinese
University of Hong Kong, Hong Kong, 2012.

[16]. Ya. A. Churkin, R. A. Buchatskiy, K. N. Kitaev, A. G. Volokhov, E. V. Dolgodvorov, A. S. Kamkin, A.
M. Kotsynyak, and D. O. Samovarov, “Static Analysis System for SystemVerilog Hardware Description
Language”, Proceedings of the ISP RAS, vol. 37, no. 1, pp. 7-40, 2025.

[17]. International Workshop on Logic & Synthesis (IWLS), “TWLS 2005 Benchmark Suite”, 2005. [Online].
Available: https://iwls.org/iwls2005/benchmarks.html (accessed 2025, Mar. 27).

[18]. N. Isaac, “QUIP Toolkit Benchmarks (v9.0)”, ECE496 GitHub repository, 2020. [Online]. Available:
https://github.com/neilisaac/ece496/tree/master/reference/quip_toolkit-9.0/benchmarks (accessed 2025,
Mar. 27).

[19]. hdl-benchmarks — Collection of digital hardware modules & projects (benchmarks), GitHub repository,
2019-2023. [Online]. Available: https://github.com/ispras/hdl-benchmarks (accessed 2025, Apr. 06).

[20]. Freescale Semiconductor, Verilog HDL Coding: Semiconductor Reuse Standard. Freescale
Semiconductor, Inc., 2005.

[21]. M. Taylor and Bespoke Silicon Group. BSG SystemVerilog Coding Standards, University of Washington,
2023.

[22]. C. Wolf, “PicoRV32 — A Size-Optimized RISC-V CPU Core”, YosysHQ GitHub repository, 2015-2023.
[Online]. Available: https://github.com/YosysHQ/picorv32 (accessed 2025, Mar. 27).

[23]. OpenHW Group, “CVA6 — An Open-Source 64-bit RISC-V CPU Core”, GitHub repository, 2019-2023.
[Online]. Available: https://github.com/openhwgroup/cvaé (accessed 2025, Mar. 27).

[24]. lowRISC, “OpenTitan — Open Source Silicon Root of Trust”, GitHub repository, 2018-2023. [Online].
Available: https://github.com/lowRISC/opentitan (accessed 2025, Mar. 27).

[25]. M. Hansen, H. Yalcin, J. Hayes, “Unveiling the ISCAS-85 benchmarks: A case study in reverse
engineering”, IEEE Design & Test of Computers, vol. 16, no. 3, pp. 72-80, 1999.

[26]. F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of Sequential Benchmark Circuits”, Proc.
IEEE Int. Symposium on Circuits and Systems, pp. 1929-1934, May 1989.

[27]. Microelectronics Center in North Carolina. LGSynth91 benchmarks. [Online]. Awvailable:
https://ddd.fit.cvut.cz/www/prj/Benchmarks/LGSynth91.7z (accessed 2025, Jun. 14).

[28]. Department of Electrical and Computer Engineering at the University of Texas. Texas-97 benchmarks.
[Online]. Awvailable: https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97 (accessed
2025, Jun. 14).

[29]. University of Oxford. VCEGAR benchmarks. [Online]. Available:
http://www.cprover.org/hardware/benchmarks/vcegar-benchmarks.tgz (accessed 2025, Jun. 14).

[30]. FBK, “Verilog2SMV”, Fondazione Bruno Kessler (FBK). [Online]. Available: https://es-
static.fbk.eu/tools/verilog2smv/ (accessed 2025, Mar. 29).

UHgpopmayusi 06 aemopax / Information about authors

Copuss M. TIlamoBa sBisieTcss JTaOOpaHTOM-WCCIENOBATENEM OTHENa | eXHOJOTHH
IIporpammupoBanuss HWuctuTyTa cucteMHOro nporpamMmmupoBanus um. B.II. BanHukosa
Poccwuiickoii akagemun Hayk (MCIT PAH). O6nacTs Hay9HBIX WHTEPECOB: MHU(poBas anmaparypa,
CTaTUYeCKU aHaau3, QyHKIHOHATbHAS BepH(UKATIHS.

Sophia M. Panova — Laboratory assistant at the Software Engineering Department of the Ivannikov
Institute for System Programming of the Russian Academy of Sciences (ISP RAS). Her research
interests include digital hardware design, static analysis, and functional verification.

Cepreit A. CMOJIOB sBisiercst HAy9HBIM COTPYAHUKOM oTaena Texuomoruid [TporpaMMupoBanus
Wucturyta cucremuoro nporpammupoBanust uM. B.I1. BannukoBa Poccuiickoll akagemun Hayk
(UCIT PAH), crapmmii Hay4HBI COTpYIHHMK Hay4yHOH Jsaboparopun «l ereporeHHbIe
KOMITbIOTepHBIE cucTeMbl» POY wum. I'.B. IlnexanoBa. OOmacTb Hay4HBIX MHTEPECOB:
aBTOMATH3aLus IPOEKTUPOBAHUS LU(PPOBOH anmapaTypsl, Bepu(UKalys 1 TECTHPOBAHHE.

Sergey A. SMOLOQOV - Researcher at the Software Engineering Department of Ivannikov Institute
for System Programming of the Russian Academy of Sciences (ISP RAS), senior researcher at the

141

Panova S.M., Smolov S.A., Volkova M.M. Application of SVAN Static Analysis Tool on Open RTL Benchmarks. Trudy ISP RAN/Proc. ISP
RAS, vol. 37, issue 5, 2025. pp. 131-142.

Heterogeneous Computing Systems research lab of Plekhanov RUE. His research interests include
digital hardware design automation, verification and testing.

Mapuna M. BOJIKOBA sBusercs nabopantom otaena Texnosnoruit IlporpammupoBanus
HucturyTra cucreMHoro nporpammuposanus uM. B.II. MBanHukoBa Pocculickoil akajeMuu HayK
(MUCIT PAH). Ob6nacte Hay4HBIX MHTEPECOB: MalIMHHOE O0y4YeHHe, MHTEJUICKTYalbHbIH aHaJIu3
JIaHHBIX, METOIbI CTATUYECKOT0 aHaIM3a U BepH(UKaIHK.

Marina M. VOLKOVA - Laboratory assistant at the Software Engineering Department of Ivannikov
Institute for System Programming of the Russian Academy of Sciences (ISP RAS). Her research
interests include machine learning, data analysis, methods of static analysis and verification.

142

