Tpyowr UCIT PAH, mom 37, evin. 5, 2025 2. // Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025

DOI: 10.15514/ISPRAS-2025-37(5)-3 tocld

Generating
Compact Residue Number Systems Bases

V.V. Lutsenko, ORCID: 0000-0003-4648-8286 <officialvladlutsenko@gmail.com>
M.G. Babenko, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

North-Caucasus Federal University, Stavropol,
1, Pushkin st., Stavropol, 355017, Russia.

Abstract. Modern computational tasks involving large-number processing demand not only high precision but
also significant operational speed. In this context, the residue number system provides an effective approach
for parallel processing of large numbers, with applications in cryptography, signal processing, and artificial
neural networks. The primary task in defining such a system is determining its basis. This paper presents an
algorithm for generating compact residue number system bases based on the Diemitko theorem. The proposed
algorithm generates bases 15.5% faster on average than Pseudo-Mersenne-based construction and 75.7% faster
than the general filtering method. Comparative analysis demonstrates that using compact bases delivers an
average 12% acceleration in modular operations compared to special moduli sets.

Keywords: residue number system; high-performance computing; special sets of moduli; generation of prime
numbers; cryptography.

For citation: Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP
RAN/Proc. ISP RAS, vol. 37, issue 5, 2025. pp. 43-52. DOI: 10.15514/ISPRAS-2025-37(5)-3.

Acknowledgements. The research was supported by the Russian Science Foundation Grant No. 25-71-30007,
https://rscf.ru/en/project/25-71-30007/.

43

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

FeHepauml KOMMAaKTHbIX 6a3MCOB CUCTEMbI OCTAaTOUYHbIX KITaccoB

B.B. Jlyyenxo, ORCID: 0000-0003-4648-8286 <officialvladlutsenko@gmail.com>
M.TI". Ba6enxo, ORCID: 0000-0001-7066-0061 <mgbabenko@ncfu.ru>

Cesepo-Kaskasckuii pedepanvHulii yHugepcumem,
Poccus, 355017, 2. Cmagponons, ya. Ilywkuna, 0. 1.

AnHotamusi. CoBpeMeHHbIE BBIYHUCIUTEIBHBIC 33aa4H, CBSI3aHHBIE ¢ 00paboTKOH GONBIINX YHCEN, TPeOyIoT
HE TOJIBKO BBICOKOM TOYHOCTH, HO M 3HAYUTEIBHOW CKOPOCTH Ollepauuii. B 1aHHOM KOHTEKCTE IPUMEHEHUE
CHCTEMBI OCTATOYHBIX KJIACCOB MpeularaeT MoaXoJ K MapauieibHOH 00paboTKe OONBIIUX YHCEN, KOTOPbIH
MpUMeHsAeTcs B Kpunrorpaduu, oOpadOTKE CHUTHAIOB M HCKYCCTBEHHBIX HEHpPOHHBIX ceTsax. KimoueBoit
3aJadeil MpHU MOCTPOCHUH CHUCTEMBI OCTATOYHBIX KJIACCOB SBIAETCS ompexaeneHue e Oasuca. B crartbe
MIPE/ICTABIICH AITOPUTM I'eHepalid KOMIIaKTHBIX 0a3MCOB CHCTEMBI OCTaTOYHBIX KJIACCOB, OCHOBAHHBIM Ha
teopeme Jlmemurko. IIpeyioxKeHHBIH anropuT™M TeHepupyer 0a3ucel B cpexHeM Ha 15,5% ObicTpee, deMm
MOCTPOCHUE 0a3MCOB HA OCHOBE ICeBO-MepCeHHOBCKUX Ymcel, W Ha 75,7% ObicTpee, 4eM MeTon oOmniei
¢unbrpanyy. [IpoBen€HHBI CpPaBHUTENBHBIH aHANN3 IOKa3ajl, YTO HCIOJIB30BaHHE KOMIIAKTHBIX 0a3HCOB
obecnieunBaeT B cpefHeM 12% ycKopeHne MOTYIbHBIX ONIepalii 10 CPaBHEHHUIO CO CIIEIIMATIbHBIMEI HA00paMu
MOJAYJIEH.

KnroueBble c10Ba: cucTeMa OCTaTOYHBIX KIACCOB; BBHICOKONPOM3BOAUTENIBHBIEC BHIYUCICHHS; CIICIHATIbHbIC
Ha0OPBI MOAYJIEH; TeHepalys IPOCTHIX YHUCEN; KpUITOrpadus.

Jas murupoanms: JIynenko B.B., babenko M.I'. T'eHepalyiss KOMIAKTHBIX 0a3MCOB CHCTEMBI OCTATOYHBIX
kiaccoB. Tpymst UCIT PAH, tom 37, Bem. 5, 2025 r., crtp. 43-52 (ma anrimiickom s3wike). DOI:
10.15514/ISPRAS-2025-37(5)-3.

BaaromapHocTu. MccienoBanue BRIIONTHEHO 3a cyeT rpanTta Poccuiickoro Hayunoro ¢onma Ne 25-71-30007,
https://rscf.ru/project/25-71-30007/.

1. Introduction

Modern computational problems involving the processing of large numbers require not only high
accuracy but also significant speed of operations. In this context, unconventional arithmetic offers
innovative approaches that optimize computation in various areas such as cryptography, signal
processing and theoretical computer science. One of the key tools in this area is the Residual Number
System (RNS), which dates back to the 1950s and is based on the Chinese Remainder Theorem
(CRT) [1]. RNS is an alternative way of representing numbers based on modular arithmetic. Instead
of dealing with numbers in a positional representation, RNS decomposes them into a set of residues
obtained by division by pairwise prime numbers, called the RNS basis [2]. The main advantage of
RNS is that the addition and multiplication operations are performed in parallel on each residue,
which greatly speeds up the computation. Despite the cost of the inverse transformation, which in
the worst case depends quadratically on the size of the basis, computations involving addition and
multiplication become extremely performant. However, inverse transformation, division and
comparison of numbers in RNS remain computationally challenging problems, but recent works
propose efficient algorithms for these tasks [3-5].

RNS has been applied in signal processing [6], cryptography [7], and neural networks [8]. The
research presented in this paper is relevant to a wide range of applications related to large number
processing, including cryptographic systems since the 1990s [9], such as RSA, DH, ECC [10-11],
as well as pairing methods, Euclidean lattice-based algorithms and homomorphic protocols [12].

In cryptography, where arithmetic operations are performed modulo large numbers that are often
prime, the application of RNS becomes more challenging due to the need to perform modulo taking,
which has led to active research aimed at selecting optimal bases to improve implementation
efficiency [13-14]. RNS is also of particular interest for defense against error injection attacks, as
the introduction of redundant elements at the basis level allows error detection mechanisms to be

44

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

organized [15]. In addition, the random choice of basis provides a different representation of data at
each computation, which complicates the analysis of possible information leaks. Thus, the choice of
basis is the first and most important task of RNS.

In this paper we present a method for generating RNS bases based on Diemitko's theorem. This
approach allows us to obtain bases satisfying the compactness condition.

The article is structured as follows. Following the introduction, Section 2 covers the fundamentals
of RNS. Section 3 reviews related works. Section 4 presents the proposed algorithm for generating
compact RNS bases. Section 5 then evaluates the algorithm's performance. Finally, the key findings
are summarized in the conclusion.

2. Residue Number System
RNS is based on the widely known CRT [16]. RNS argues that, knowing the smallest non-negative
residues from dividing an integer X by the integer moduli p,, p,, ..., p,, it is possible to uniquely
determine the residue from dividing X by the product of these moduli, provided that the moduli are
pairwise coprime. RNS, unlike classical b-ary number systems, is not defined by a single fixed base,
but by a set of moduli {py, p,, ..., p,} such that ged(p;, p;) = 1 forall i,j € 1,2,...n,i # j, where
gcd() is the greatest common divisor. The product of these moduli P = []X, p; determines the
dynamic range of the RNS. An integer X € [0, P) is represented as a vector composed of the smallest
non-negative residues obtained by dividing X by p;:

X =(x1,%2,...,Xp)- (D)
where x; = X(mod p;), which is also denoted by x; = |X|,,.
Consider RNS with the basis {4,5,7}. In this basis, we can mutually uniquely represent the numbers
from the half-interval [0; 140), since P = 140.
Table 1 shows the correspondences of numbers from the positional number system and the RNS.
Table 1. Representation of Numbers for RNS with the Basis {4,5,7}.

RNS
0—(0,0,0)

RNS
1—(1,11)

RNS
2—1(2,22)

RNS
3—(3,33)

RNS
4—(0,4,4)

RNS
5—(1,0,5)

RNS
6 —(2,1,6)

RNS
7—(3,2,0)

RNS
8 —(0,3,1)

RNS
9 —(1,4,2)

RNS
10 —(2,0,3)

RNS
11— (3,1,4)

RNS defines basic operations on numbers, which are divided into two groups. The operations of the
first group, which are sometimes called modular, include addition and subtraction of numbers
without the possibility of determining the sign of the result, as well as multiplication. Such
operations are performed component-wise on remainders, i.e. without forming carryovers between
them. Let the numbers X,Y and R be represented as (xq,%3,...,%n), V1, V2 -, Vn) and
(ri, 1y, e,), respectively. Then for any modular operation ° we
have

XoY =(r,r...Tm), 2
where r; = [x; 0 yil,,.
Thus, the i-th digit of the result in RNS, r;, is defined only in terms of |x; o y;|,, and does not
depend on any other digit ;. This allows the realization of carry-free, high-speed (parallel) computer
arithmetic and makes RNS an attractive number system for use in resource-intensive applications,
especially those involving the processing of large numbers. It also provides high computational
reliability since an error in the i-th digit has no effect on other digits and therefore can be efficiently
localized and eliminated [15]. In turn, for operations of the second group, often called non-modular,
it is not enough to know the values of individual residues and requires an estimate of the magnitude
of numbers: the result of such an operation is either not a number in RNS at all, or the value of each

45

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

of its digits (residue) is not only a function of the values of the corresponding digits of the operands,
but depends on the magnitude of these operands.
Algorithm 1 presents a method for performing modular operations in RNS.

Algorithm 1: Modular operations in RNS.

InpUt: {pl' D2y - pn}l (xlixZ' Ty xn)v (yli Y2, e !yn)! o€ {+: _:X}
Output: R = (1,73, .., 1y)

l.fori=1,i <n,i++do:

127 =|x;° Yilpi

Here is an example of addition in RNS.
Example 1 (Addition in RNS). Let us add two numbers X =(2,0,3) and Y =(3,0,1) in the basis
{4,5,7}. Use (2) for addition:

X+ Y=(2+3,]0+0][3+1],) =(1,04)

RNS
Hence R = (1,0,4). Which is true since 25 — (1, 0, 4).

3. Related Works

The choice of modulo set is very important to achieve a suitable RNS implementation. The modulo
set affects the whole RNS architecture [17]. Special sets of moduli are widely used [18]. Table 2
presents the most well-known special sets of moduli.

Table 2. Special sets of moduli.

Number Set Year
1 {2n —1,2",2" + 1} 1967
2 {2n—1,2n,2n + 1} 1995
3 {22n+1,2"+1,2"— 1} 1997
4 {2n—1,2",2"1— 1} 1998
5 (2" —1,2" 2™ — 13} 1999
6 {2n — 1,27, 2271 — 1} 2008
7 {2n—1,2",22" + 1} 2008
8 {29,2f —1,2F + 1} 2008
9 (3" —2,3"—1,3"} 2007
10 {2rn—1,2" 2" +1,2"1 + 1} 1999
11 {2n —1,2",2" +1,2™1 — 1} 2000
12 {2n —1,2",2" 4+ 1,22 — 1} 2003
13 {2n—1,2"+1,2" —3,2" + 3} 2004
14 {2n —1,2" 4+ 1,220 — 2,22"+1 — 3} 2008
15 {2n—1,2"+1,2722" + 1} 2009
16 {2n —1,2m, 2" + 1,227 — 1} 2009
17 {2n —1,2" + 1,227, 2241 — 13 2009
18 {2k,2" —1,2" + 1,21 + 1} 2014
19 {2k,2n —1,2" + 1,21 — 1} 2014
20 {2n —1,2m,2n 41,20 — 2(+D/2 4 gn 4 p(HD/2 4 1} 2005
21 {2n—1,27 2"+ 1,2" 1 — 1,2™4 — 1} 2007
22 {2n/2 —1,2m,2M2 +1,2" + 1,227 1 — 1} 2009
23 {2n — 1,27, 2" 4 1,27 — 204 D/2 4 1 g 4 p(HD/2 4 g ol 4 1} 2012
24 {an —1,2m8 2n 4 1,2n — 204 D/2 4 1 gn 4 2(4D/2 4 q pndl 4 1} 2012
25 {2mh,2" —1,2" + 1,2" — ky, 2" + kg, o, 2" — Ky, 27 + Ky} 2018

In the work [19], the sets of modules from Table 2 were investigated. As a result of the experiments,
the set of modules {2™ — 1, 2", 2™ + 1} turned out to be the most effective.

46

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

In cryptography, it is possible to use general-form moduli sets. By increasing the number of moduli,
a higher degree of parallelism can be achieved. The literature often describes methods for generating
RNS bases based on Pseudo-Mersenne numbers [20]. The paper [14] proposes a filtering method
for constructing a very large RNS basis. However, these approaches do not account for the
compactness condition of the RNS basis.

Definition 1. A set of moduli {p;, p, ..., pn}, Where p; < p, < -+ < p,, is compact if p, < 2p;.
Let's look at Examples 2 and 3.

Example 2. For the basis {2047, 2048, 2049} the number X = 3758423681 in RNS it is presented
as X 3 (673, 1665, 353).

Example 3. For the basis {3, 5,626604229} the number X = 3758423681 in RNS it is presented
as X =5 (2,1, 625402536).

As can be seen from Example 3, if the compactness condition is not met, the third residue of the
number in RNS has the same bit length as the number in the positional numeral system, which
negates the advantage of RNS. The total computational delay depends on the largest modulo in the
system.

4. Generating Compact RNS Bases

To generate compact sets of moduli we can use the method of constructing prime numbers which is
used in the standard STB 1176.2-99 (and the Russian standard GOST R 34.10-94 which has ceased
to function), which is based on Diemitko's theorem [21].
Theorem 1: Let n = qR + 1, where q is a prime odd number, R is an even number, R < 4(q + 1),
i.e,n < (2q+1)2 Ifa < nis found:

1) a™ ! = 1(mod n),

n-1

2) a ¢ # 1(mod n), then n is a prime number.
Thus, if we have a prime number g, then, by searching even numbers R, we construct numbers n =
qR + 1 and test them for primality according to Diemitko's theorem until we obtain a prime number.
By the obtained number we can construct another prime number.
Algorithm 2 allows us to obtain a larger prime number p, having length |p| = t, starting from a

smaller prime number q, whose length is |g| = E]

Algorithm 2: Generating prime numbers using Diemitko's theorem (PrimeNumbers).

Input: t — the required dimensionality of the prime number, g — a prime number
Output: p
2t—1 2t—1§
LR= [q] + [q]
2.if R # 0(mod 2) then
21R=R+1
3.u=0
dn=R+uq+1
5.if n > 2t then
5.1 Return to step 1
6. if 2D = 1(mod n) and 2R*¥ % 1(mod n) then
6.lp=n
6.2 break
7. else
Tlu=u+2
7.2 Return to step 4

47

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

The process uses a random variable & uniformly distributed on the interval (0,1). This value is
generated in a linear congruent manner. For each step of the algorithm, a new value of ¢ is calculated.
Some prime numbers generated by this method may not be defined as such, because at step 6 the
verification of the condition of Diemitko's theorem is carried out only for the number a = 2 and not
for all a < p. However, the probability that a randomly chosen number a fulfils the conditions of
Diemitko's theorem for a prime number n is (1 - 5) Using the check exclusively for a = 2 turns

out to be quite sufficient to exclude only a small number of prime numbers from consideration. The
advantage of choosing a = 2 is due to the fact that the degree expansion of the number 2 in the
binary representation system is performed very efficiently.
Here is an example of generating a prime number using Diemitko's theorem.
Example 4. For g = 3 = 11,, let us generate a prime number of length t = 4.
Let's find R at £ = 0.5:
8 8-0.5

R=[3]+[5=2
To satisfy parity, R = R + 1 = 4. Candidate prime numbersp =4-3 + 1 = 13.
Since, 2'2(mod 13) = 1 and 2*(mod 13) % 1.
Hence, the sought prime number p = 13 = 1011,,.
Thus, using Algorithm 2, Algorithm 3 is developed, which allows to generate compact bases with
moduli of the form p; = Rq; + 1.

Algorithm 3: Generation compact bases.

Input: {qy, g2, -, Gn}, t

Output: b = {p,, 0y, ..., P}

1. b append PrimeNumbers(q4, t)
2.fori =2,i<n,i++do

2.1 p =PrimeNumbers(gy, t)

2.2 if p < 2p,; then

2.2.1 b append p

In the next section, we will consider the performance of the proposed algorithm.

5. Performance Evaluation

Modelling and computational experiments were conducted on a computer equipped with a 2.80 GHz
Intel Core i7-7700HQ processor, 8 GB of 1196 MHz DDR4 RAM and a 512 GB SSD, running
Windows 10 Home, using the high-level programming language C++.

The first stage of the experiment involved comparing the speed of generating compact bases based
on the Diemitko's theorem against methods for generating very large RNS bases. For comparison,
two approaches were selected: the Pseudo-Mersenne number construction method and the general
filtering method. The performance results of the algorithms are presented in Table 3.

Table 3. Comparison of execution time for different bases generation approaches, ms.

Number of modulo General filtering Construction base of Generating compact
Pseudo-Mersenne bases
8 10324 5328 4561
12 25211 9523 7531
16 50164 15433 13467
20 79057 19544 15389
32 165897 28413 23953

48

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

The compact bases generation method, based on the Diemitko's theorem, exhibits superior
performance across all tested cases, with execution times substantially lower than both the Pseudo-
Mersenne construction and general filtering approaches.

The experimental results demonstrate that the compact basis generation method is on average 15.5%
faster than the Pseudo-Mersenne-based construction method and 75.7% faster than the general
filtering approach when varying the number of moduli from 8 to 32. The maximum performance
advantage is observed for the 32-moduli basis, where the compact method outperforms the Pseudo-
Mersenne approach by 15.7% and the general filtering method by 85.6%. The second stage involved
constructing sets of moduli with a dynamic range size from 32 to 128 bits and comparing them with
a special set {2™ — 1, 2", 2™ + 1}. The comparison sets are presented in Tables 4 and 5. Next, the
sets of moduli were compared in performing modular operations (Algorithm 1). The results of
modular operations execution time are presented in Tables 6-8. Based on the presented data, we can
conclude that on average compact bases provide the following speed gains for modular operations:
by 11.87% for addition, by 12.08% for subtraction, and by 12.43% for multiplication. Thus, the use
of compact bases allows speeding up calculations by about 12% on average for all operations
compared to the use of moduli of a special set. Especially noticeable speed increase is observed for
96 and 128 bits, which indicates the prospect of using the algorithm of compact bases generation
when increasing the digit capacity of numbers.

Table 4. Bases generated by algorithm 3 for modular operations modeling.

Dynamic range size, bits Bases
32 {1823,1997,1997}
64 {521,599,613,617,647,761}
96 {4217,4447,4951,5279,5281,5461,5521,6521}
128 {16633,17317,17579,17747,20287,20981,21067,22079, 24179}
Table 5. Moduli sets {2 — 1, 2", 2™ + 1} for modular operations modeling.
Dynamic range size, bits Bases
32 {2047,2048,2049}
64 {4194303,4194304,4194305}
96 {4294967295,4294967296,4294967297}
128 {8796093022207,8796093022208,8796093022209}

Table 6. Results of number addition modeling in RNS, wus.

Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 143.384 167.211 195.984 223.263
Bases generated by the 142.184 140.301 162.101 193.652
algorithm 3
Table 7. Results of number subtraction in RNS, us.
Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 143.641 168.023 196.112 221.287
Bases generated by the 143.1 140.871 161.539 189.975
algorithm 3
Table 8. Results of multiplication of numbers in RNS, us.
Dynamic range size, bits 32 64 96 128
Bases {2" —1,2™,2" + 1} 144.544 172.382 198.073 224.632
Bases generated by the 143.624 141.503 163.122 194.162
algorithm 3

49

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

6. Conclusion

This paper presents a method for generating compact RNS bases based on Diemitko's theorem.
Experimental results reveal that the compact basis generation method reduces computation time by
an average of 15.5% compared to Pseudo-Mersenne-based construction and 75.7% compared to
general filtering. These advantages become more pronounced with increasing system size, reaching
performance improvements of 15.7% and 85.6% respectively for 32-moduli bases. The method's
efficiency extends to modular arithmetic operations, where it provides approximately 12% faster
execution for addition, subtraction, and multiplication compared to traditional {2™ — 1, 2", 2™ + 1}
moduli sets.

Thus, the proposed RNS basis generation approach demonstrates high computational speed while
enhancing the efficiency of modular arithmetic operations. This is particularly crucial for
cryptographic applications that require processing of large numbers. Future research will focus on
optimizing non-modular RNS operations using the moduli generated by the proposed algorithm.

References

[1]. Sousa L. Nonconventional computer arithmetic circuits, systems and applications. IEEE Circuits Syst.
Mag, 2021, vol. 21, no. 1, pp. 6-40.

[2]. Garner H.L. The residue number system. Papers presented at the the March 3-5, 1959, western joint
computer conference. ACM, 1959, pp. 146-153.

[3]. Jlyuenko B.B., Ba6enko M.T'., XamumoB M.M. BBICOKOCKOPOCTHO# METO/I IEPEBO/Ia YUCEI U3 CUCTEMBI
OCTaTOYHBIX KJIACCOB B MO3UIIMOHHYIO cucremy cuucienus. Tpyast UCIT PAH, Tom 36, Bem. 4, 2024 1.,
crp. 117-132. DOI: 10.15514/ISPRAS-2024-36(4)-9. / Lutsenko V.V., Babenko M.G., Khamidov M.M.
High speed method of conversion numbers from residue number system to positional notation.
Proceedings of the Institute for System Programming of the RAS, 2024, vol. 36, issue 4, pp. 117-132 (in
Russian). DOI: 10.15514/ISPRAS-2024-36(4)-9.

[4]. JTyuenko B.B., Ba6enko M.T'., Yepnbix A.H., Jlanmina M.A. OnTHMH3AIHMS alropuT™Ma JICICHHUs YUCEN B
CHCTEMe OCTaTOYHBIX KJIacCOB Ha ocHOBe (pyHKImy siapa Akynickoro. Tpyast UCIT PAH, tom 35, Beim. 5,
crp. 157-168. DOI: 10.15514/ISPRAS-2022-35(5)-11. / Lutsenko V.V., Babenko M.G., Tchernykh A.N.,
Lapina M.A. Optimization of a number division algorithm in the residue number system based on the
Akushsky core function. Proceedings of the Institute for System Programming of the RAS, 2023, vol. 35,
issue 5, pp. 157-168 (in Russian). DOI: 10.15514/ISPRAS-2022-35(5)-11.

[5]. Shiriaev E. Kucherov N., Babenko M., Nazarov A. Fast operation of determining the sign of a number in
rns using the akushsky core function. Computation, 2023, vol. 11, no. 7, pp. 124.

[6]. Cardarilli G. C., Nannarelli A., Re M. RNS applications in digital signal processing. Embedded Systems
Design with Special Arithmetic and Number Systems, 2017, pp. 181-215.

[7]. Schoinianakis D. Residue arithmetic systems in cryptography: a survey on modern security applications.
Journal of Cryptographic Engineering, 2020, vol. 10, no. 3, pp. 249-267.

[8]. Nakahara H., Sasao T. A High-speed Low-power Deep Neural Network on an FPGA based on the Nested
RNS: Applied to an Object Detector. 2018 IEEE international symposium on circuits and systems
(ISCAS). — IEEE, 2018, pp. 1-5.

[9]. Ananda Mohan P. V. RNS in Cryptography. Residue Number Systems: Theory and Applications. — Cham:
Springer International Publishing, 2016, pp. 263-347.

[10]. Fournaris A. P., Papachristodoulou L., Sklavos N. Secure and efficient rns software implementation for
elliptic curve cryptography. 2017 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW). — IEEE, 2017, pp. 86-93.

[11]. Fournaris A. P., Papachristodoulou L., Batina L., Sklavos N. Secure and efficient RNS approach for
elliptic curve cryptography, 2016.

[12]. Zalekian A., Esmaeildoust M., Kaabi A. Efficient implementation of NTRU cryptography using residue
number system. International Journal of Computer Applications, 2015, vol. 124, no. 7.

[13]. Bajard J. C., Kaihara M., Plantard T. Selected RNS bases for modular multiplication. 2009 19th IEEE
Symposium on Computer Arithmetic. — IEEE, 2009, pp. 25-32.

[14]. Bajard J. C., Fukushima K., Plantard T., Sipasseuth A. Generating very large RNS bases. IEEE
Transactions on Emerging Topics in Computing, 2022, vol. 10, no. 3, pp. 1289-1301.

50

JIyuenko B.B., babenko M.I'. I'eHeparins KOMIaKTHBIX 0a3UCOB CHCTEMBI OCTATOYHBIX KiaccoB. Tpyost UCII PAH, 2025, Tom 37 B, 5,
c. 43-52.

[15]. Lutsenko V., Zgonnikov M. Investigation of Neural Network Methods for Error Detection and Correction
in the Residue Number System. International Workshop on Advanced Information Security Management
and Applications. — Cham: Springer Nature Switzerland, 2024, pp. 194-206.

[16]. Omondi A. R., Premkumar A. B. Residue number systems: theory and implementation. — World Scientific,
2007, vol. 2.

[17]. Skavantzos A., Abdallah M., Stouraitis T. Large dynamic range RNS systems and their residue to binary
converters. Journal of Circuits, Systems, and Computers, 2007, vol. 16, no. 02, pp. 267-286.

[18]. Molahosseini A. S., Teymouri F., Navi K. A new four-modulus RNS to binary converter. Proceedings of
2010 IEEE International Symposium on Circuits and Systems. — IEEE, 2010, pp. 4161-4164.

[19]. Lutsenko V.V., Kravtsov M.D., Gorlachev D.E., Mirny N.M. Research of special sets of moduli of the
residue number system. Proceedings of the Institute for System Programming of the RAS, 2025, vol. 35,
no. 5, pp. 157-168 (in Russian).

[20]. Kawamura S., Koike M., Sano F., Shimbo A. Cox-rower architecture for fast parallel montgomery
multiplication. Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory
and Application of Cryptographic Techniques Bruges, Belgium, May 14-18, 2000 Proceedings 19.
Springer Berlin Heidelberg, 2000. pp. 523-538.

[21]. Diemitko N. Generating multiprecision integer with guaranted primality. Proc. of the SIFIP Int. Conf. on
Comep. Sci., IFIP Security 88, Amsterdam, 19-21 May, 1988. pp. 1-8.

UHghopmayusi 06 aemopax / Information about authors

Brnanucnas BsiuecnaBoBuu JIYLIEHKO — acnupanTt kadenpbl BBIUMCIMTENBHON MaTeMaTHKU M
KuOepHeTHKH (haKylbTeTa MaTeMaTHKH M KOMIBIOTEPHBIX HayK HMeHH mpodeccopa H.U.
Yeprsikoa PI'AOY BIIO «Cesepo-Kaskasckuit ¢enepanbHbiii yHuBepcuter». Chepa HaydIHBIX
HUHTEPECOB: BBICOKONPOU3BOAUTENBHBIE BBIYUCIECHHS, CHUCTEMa OCTATOYHBIX KIIACCOB, YMHBIN
ropoj, HEMpOHHBIE CETH, UHTEPHET BEILIEH.

Vladislav Vyacheslavovich LUTSENKO - postgraduate student, Department of Computational
Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named after Professor
N.I. Chervyakov, North Caucasus Federal University. Research interests: high-performance
computing, residue number system, smart city, neural networks, Internet of Things.

Muxamn I'puropseBud BABEHKO - noktop ¢u3nko-mMareMaTHYeCKUX HAyK, 3aBEIYIOIIHH
Kadenpbl BBIYMCIUTEIBHOW MaTeMaTHKH M KHOGpHETHKH (aKkylbTeTa MaTeMaTuKd |
KOMIIBIOTEPHBIX Hayk uMmeHH mpodeccopa H.M. Ueppskosa PT'AOY BIIO «Cesepo-KaBkasckuii
¢denepanbHblit yHuBepcuter». Cdepa HaydHBIX MHTEpECOB: OOJNayHble BBIYHCICHHS,
BBICOKOTIPOU3BOJIUTEIILHBIE BBIUMCIICHUS, CHUCTEMa OCTAaTOYHBIX KJIACCOB, HEHPOHHBIE CETH,
Kpunrorpadus.

Mikhail Grigoryevich BABENKO - Dr. Sci. (Phys.-Math.), Head of the Department of
Computational Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named
after Professor N.I. Chervyakov, North Caucasus Federal University. His research interests include
cloud computing, high-performance computing, residue number systems, neural networks,

cryptography.

51

Lutsenko V.V., Babenko M.G. Generating compact residue number systems bases. Trudy ISP RAN/Proc. ISP RAS, vol. 37, issue 5, 2025.
pp. 43-52.

52

